Quality Assurance and Testing

v CHANNELS v/ EVENTS v NEWSLETTERS f yin IF N Q

0 =

O
in

Y
.

Microsoft announces Battle Royale Mode for
Visual Studio 2019

EMIL PROTALINSKI @EPRO JUNE 6, 2018 10:58 AM

VB Recommendations

Visual

t u I O Ctrl-labs’ armband lets you control

computer cursors with your mind

Microsoft today announced Visual Studio 2019, the next version of its IDE with
integrated Battle Royale mode. Release timing will be shared “in the coming

months,” with the company simply promising “to deliver Visual Studio 2019

quickly and iteratively.” The news comes days after Microsoft's acquisition of

GitHub.

What Alienware has learned from 10
years of esports

One-Slide Summary

* Quality Assurance maintains desired product properties
through process choices.

* Testing involves running the program and inspecting its
results or behavior. It is the dominant approach to software
quality assurance. We use:

* regression testing to make sure new things don’t break old,
* unit testing to test individual pieces, and
* integration testing to test everything end-to-end

* Mocking uses simple replacement functionality to test
difficult, expensive or unavailable modules or features.

(special thanks to James Perretta for material)

Story So Far

* We want to deliver high-quality software at a low cost. We
can be more efficient if we plan and use a software
development process.

* Planning requirements information: we measure the world
to combat uncertainty and mitigate risk.

* But how do we measure, assess or assure software quality?

L S T
|
L

!
| |
.

4,

- [| e
: / | 3 -
! o | v
&9,{ = D i N j !' [N
-

TN "l%
\
) N .
.
’
I/

JiLf

Official Definition

* Quality assurance is the maintenance of a desired level of
quality in a service or product, especially by means of
attention to every stage of the process of delivery or

production.
. . . \ Brenan Keller
« Oxford English Dictionary @brenankeller
A QA engineer walks into a bar.
Orders a beer. Orders 0 beers.
Orders 99999999999 beers.

Orders a lizard. Orders -1 beers.
Orders a ueicbksjdhd.

First real customer walks in
and asks where the bathroom
is. The bar bursts into flames,
killing everyone.

1:21 PM - 30 Nov 18

Quality Motivation

e External (Customer-Facing) Quality
* Programs should “do the right thing”

» So that customers buy them!

* Internal (Developer-Facing) Quality
* Programs should be readable, maintainable, etc.

Internal-Facing Quality

* If the dominant activity of software engineering is
maintenance. ...

* Then internal quality is mostly maintainability!

* How do we ensure maintainability?

e Human code review

e Static analysis tools and linters

* Using programming idioms and design patterns
* Following local coding standards

* More on this in future lectures!

External-Facing Quality

* What does “Do The Right Thing” Mean?

* Behave according to a specification
* Foreshadowing: What is a good specification?

* Don't do bad things

* Security issues, crashing, etc.
e Some failure is inevitable. How to handle it?

* Robustness against maintenance mistakes
Do “fixed” bugs sneak back into code?

Doing The Right Thing

* Why don't we just write a new program X to tell us if our
software Y is correct?

Pranay Pathole W
@PPathole

Programming is like a “choose your
own adventure game” except every
path leads you to a StackOverflow
question from 2013 describing the
same bug, with no answer.

Whenever anyone asks what the halting problem

o
I it

Doing The Right Thing

* Why don't we just write a new program X
to tell us if our software Y is correct?

1 In computability theory, the halting preblem is the

° Th e H a Itl ng P ro b I e m p reve nts X fro m problem of determining, fro ~ cription of an
e e h . h . arbitrary computer program a nput, whether

the program will finish runnj ontinueto run

gIVI ng t e rlg t a n Swe r eve ry tl m e forever. Alan Turing pro 936 that a general

algorithm to solve the)blem for all possible

X wWaySEives - WrohREFASWer program-Input oy Mafhey part of the
proof was a m nition of a computer

. . and program; Whic known as a Turing
e Xcannota Iways give a nght answer machine; the haltin is undecidable over

Turing machines. It is one of the first examples of a
decision problem.

* We can still approximate!
* Type systems, linters, static analyzers, etc.

Practical Solution: Testing

-l ;.-f : »
P = i
mTestmg

%h’d) :

Your gross,
/ buggy software
- -.‘ ;
» &
*/ '

10

Testing

» “Software testing is an investigation conducted to provide
stakeholders with information about the quality of the
software product or service under test.”

* A typical test involves input data and a comparison of the
output. (More next lecture!)

* Note: unless your input domain is finite, testing does not
prove the absence of all bugs.

* Testing gives you confidence that your implementation
adheres to your specification.

Testing in UM EECS Courses (1/3)

* EECS 183 and 482
*1main() function==1 test

* For each test

* Run test against correct solution, save output

 For each buggy solution

* Run test against buggy solution, diff output with result from correct solution
* If outputs differ, a bug is exposed!

Testing in UM EECS Courses (2/3)

* EECS 281
* 1 input file == 1 test

* For each test

* Pipe input to correct solution, save output

 For each buggy solution

* Pipe input to buggy solution, diff output with result from correct solution
* If outputs differ, a bug is exposed!

Testing in UM EECS Courses (3/3)

* EECS 280
e 1 function with assert()s == 1 test

* For each test

* Run test against correct solution
* Throw out the test if it fails

* For each buggy solution

* Run test against buggy solution
* If assertion fails, a bug is exposed!

Discussion: UM EECS Testing

* Consider: What are the pros and cons of each?

* Recall
« 183/482: 1 main() function == 1 test; output diff
« 281: 1 input file == 1 test; output diff
« 280: 1 function with assert()s == 1 test; assertion failure

Testing: Inputs and Outputs

* For 183/281/482, students write program inputs, but not
expected outputs

* For 280, students write program inputs and also expected
outputs

* In real life, you rarely have an already-correct
implementation of your program

* Testing with random inputs (fuzz testing) can help detect
“bad things” bugs (segfaults, memory errors, crashes, etc.)

* But does not provide full expected outputs

Testing Concepts

* Regression Testing
* Unit Testing
e xUnit

* Test-Driven Development

* Integration Testing

* Mocking

pEainsage < I 8 SNy |

W Languageé Matters

why English is
so hard to learn

Davis 11. The insurance was invalid for the

e invalid in his hospital bed.
English . 12.There was a row among the

YoU-m_mkM_ ’ ¥ oarsmen about who would row.

is easy? Ct ut @ 8 13 Theywere too close tothe dooe

e | tocloseit. _

1. The bandage |
was wound around

17

Regression Testing (in one slide)

* Have you ever had one of those “l swear we've seen and
fixed this bug before!” moments?

 Perhaps you did, but someone else broke it again
 Thisis a regression in the source code

* Best practice: when you fix a bug, add a test that
specifically exposes that bug

 Thisis called a regression test
* |t assesses whether future implementations still fix the bug

Regression Testing Story

//
//
//
//
//
//
//
//

Dear maintainer:

Once you are done trying to 'optimize' this routine,
and have realized what a terrible mistake that was,
please increment the following counter as a warning
to the next guy:

total_hours_wasted_here = 42

https://stackoverflow.com/questions/184618/what-is-the-best-
comment-in-source-code-you-have-ever-encountered/482129#482129

19

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered/482129#482129

Unit Testing and Frameworks

* In unit testing, “individual units of source
code, sets of one or more computer program & =
modules together with associated control
data, usage procedures, and operating
procedures, are tested to determine whether
they are fit for use.”

* Modern frameworks are often based on SUnit
(for Smalltalk), written by Kent Beck

* Java JUnit, Python unittest, C++ googletest, etc.

* These frameworks are collectively referred to
as xUnit

20

xUnit Features

e Test cases “look like other code”

* They are special methods written to return a boolean or raise
assertion failures

* A test case discoverer finds all such tests
* Special naming scheme, dynamic reflection, etc.

e A test case runner chooses which tests to run

MATHEMATICALLY ANNOYING ADVERTISING:

ﬂUB:%x:xélﬁ" onx}ISEZR e\ 1
%e AMOUNT NEITVE
- . Pt You sPEND)
o—n

e A e e 1F&meH%PHnD$XTDW
-0 -5 0 L2

1 ANOUNT N

o, THE WoRD FEEE TYEESET FoR YoU You SAVE >
° AND N OTHER PEOPLE T READ,
WHEN DISCUSSING REAL NUMBERS, | | THEIR EXPECTEDVALLE FOR THE. IT WOULD BE DIFFICULT FoR THE

TS IMPOSSIBLE TO GET MORE MONEY THAT WILL MOVE FROM Yo PHRASE “THE MORE YoU <PEND THE
VAGLE THAN “UP 10 15% OR. MORE" To THEM |5 AT LEAST &Nl,'r. MORE YOU SAVE™ TO BE. MORE WRONG,

21

xUnit Definitions

* |[n xUnit, a test case is

* A piece of code (usually a method) that establishes some
preconditions, performs an operation, and asserts postconditions

e A test fixture

» Specifies code to be run before/after each test case
 Eachtestis runin a “fresh” environment

* Special assertions
* Check postconditions, give helpful error messages

22

Python unittest Example

import unittest $ python3 unit_test_demo.py

class NiceThing: E__ -
def init (self, num spams): FAIL: test_zap (__main__.NiceThingTestCase)
self.num spams = num_spams = |~ TTTToToooomoososssssseseoee —— ———
def zap (self): Traceback (most recent call last):
File "unit_test_demo.py", line 11, in test_zap
return self.num spams + 42 self.assertEqual(45, self.nice_thing.zap())

AssertionError: 45 != 42

¢lass NicaThingTestCase({ @ |————— — w—
unittest.TestCase): Ran 1 test in 0.001s
dell peEUpiswll) : FAILED (failures=1)
self.nice thing = NiceThing(0) :
def test zap(self):
self.assertEqual (45, self.nice_ thing.zap())

s & 3 name == main oo

unittest.main ()

Python unittest Details

* Discussion Sections will provide more details

* See Python unittest documentation:
* https://docs.python.org/3/library/unittest.html

24

https://docs.python.org/3/library/unittest.html

Unit Testing Advantages

* Unit testing tests features in isolation

* In the previous example, our test for zap () tested only the zap()
method

 Advantage: when a test fails, it is easier to locate the bug

e Unit testing tests are small
 Advantage: smaller test are easier to understand

* Unit testing tests are fast
* Advantage: fast tests can be run frequently

EECS UM Unit Testing

* Recall the Euchre project from EECS 280

* Card, Pack, and Player classes
 Atop-level “play Euchre” application

* Suppose you wrote Card, Pack and Player without testing,
and then wrote “play Euchre”

* What do you do when you
find a bug in “play Euchre”?

Test-Driven Development

* “Test-driven development is a software development
process that relies on the repetition of a very short
development cycle: requirements are turned into ver
specific test cases, then the software is improved so that the
tests pass.”

e Write a unit test for a new feature
 When you run the test, it should fail

* Write the code that your unit test case tests

* Run all available tests
* Fix anything that breaks; repeat until no tests fail

* Go back to step 1

=b .\/.9 Jevelonmer

{ » 2
-

Integration Testing

* Typically, any feature can be made to work in isolation

* What happens when we put our unit-tested features
together into a larger program?

* Does our application work from start to finish?
 “End-to-end” testing

* Integration testing combines and tests individual software
modules as a group.

Unit Testing vs. Integration Testing

* Are those “unit tests” for Pack and Player actually
integration tests?

e Does Pack build on or use Card, for example?

STOP RIGHT THERE CRIMINAL SCUM

’ "_‘]
- v’ i ’ |

‘THOSEARE INTEGRATION TESTS!

30

Unit Testing vs. Integration Testing

* “There can be no peace until they renounce their Rabbit
God and accept our Duck God.”

31

Unit and Integration Abstractions

* Once you've unit-tested an ADT, you build atop it and write
unit tests for subsequent modules at a higher level of
abstraction

 This also promotes a modular, decoupled design

* Example: we already do this with Integer, etc.

 “Does that mean that our tests that rely on integers aren’t really unit
tests? No. We can treat integers as a given and we do. Integers have
become part of the way we think about programming.” - Kent Beck

Integration Testing Examples

* Integration testing is application-specific
* EECS Classes

 Run main program with input file, diff output

* Web and GUI Applications

e Use atesting framework (or harness) that lets you simulate user
clicks and other input

e Systems Software

* Use a testing framework that lets you simulate disk and network
failures (cf. Chaos Monkey later)

Creative Integration Testing Examples

* For video games, you might write an Al to play

* Bayonetta https://www.platinumgames.com/official-
blog/article/6968

* Cloudberry Kingdom
https://www.gamasutra.com/view/feature/170049/how to make i

nsane_procedural .php
* Or have players use gaze-detecting goggles

https://www.tobiipro.com/fields-of-use/user-experience-interaction/game-usability/

“We see ... modern eye tracking technology as a future standard in
modern QA teams to improve the overall quality of game experiences.”

- Markus Kassulke, CEO, HandyGames

34

https://www.platinumgames.com/official-blog/article/6968
https://www.gamasutra.com/view/feature/170049/how_to_make_insane_procedural_.php
https://www.tobiipro.com/fields-of-use/user-experience-interaction/game-usability/

Psychology: Backfire Effect

* |s there a difference between being uninformed and being
misinformed?

* Correct factual ignorance or misperception ...

* “However, individuals who receive unwelcome information
may not simply resist challenges to their views. Instead,
they may come to support their original opinion even more
strongly — what we call a backfire effect.”

Psychology: Backfire Effect

* Human studies of 130 + 197 participants

* Found that conservative supporters of president Bush
“doubled down” when presented with evidence that there

were no weapons of mass destruction in Iraq before the
2003 US invasion.

* Commonly referenced in popular press, message boards,
etc.

e [B Nyhan and J Reifler. (2010). When Corrections Fail: The
persistence of political misperceptions. In Political Behavior
32(2):303-330.]

Psychology: Backfire Effect

* “Four experiments in which we enrolled more than 8,100
subjects and tested 36 issues of potential backfire. Across all
experiments, we found only one issue capable of triggering
backfire: whether WMD were found in Iraq in 2003. Even this
limited case was susceptible to a survey item effect | ...]
Evidence of factual backfire is far more tenuous than prior
research suggests. By and large, citizens heed factual
information, even when such information challenges their
partisan and ideological commitments.” [T Wood and E Porter.
(2018). The elusive backfire effect: mass attitudes’ steadfast
factual adherence. In Political Behavior, pp. 1-29.]

Psychology: Confirmation Bias

* Confirmation bias is the tendency to search for, interpret,
favor, and recall information in a way that affirms one's
prior beliefs or hgpotheses. It includes a tendencY to test
ideas in a one-sided way, focusing on one possibility and
ignoring alternatives.

* [t is so well-established that experimental evidence is
available in many flavors

* [R Nickerson. (1998). Confirmation Bias: A Ubiquitous

Phenomenon in Many Guises. In Review of General
Psychology, 2(2):175-220.]

Psychology: Confirmation Bias

(each subclaim has its own studies)

* Restriction of attention to a favored hypothesis

* Preferential treatment of evidence supporting existing
beliefs

* Looking only or primarily for positive cases

* Overweighting positive confirmatory instances
* Seeing what one is looking for

* Favoring information acquired early

Psychology: Confirmation Bias

* Implications for SE:

* Policy Rationalization justifies policies to which an
organization has already committed. “Once a policy has
been adopted and implemented, all subsequent activity
becomes an effort to justify it.”

* Theory Persistence involves holding to a favored idea long
after the evidence against it has been sufficient to persuade
others who lack vested interests.

* |[dea or policy = any SE process decision.

Targeting Hard-To-Test Aspects

* What if we want to write unit or integration tests for some
ADT, but the ADT has expensive dependencies?

* Discuss: What are examples of things that are hard to test
because they require extensive dependencies or entail too
much cost?

Microsoft Internet Explorer EI

@ Internet Explorer cannot download 7-12_xp32_dd_55811.exe from a248.e.akamai.net.

A system call that should never fail has failed.

...............

P oK 41

Mocking

“Mock objects are simulated objects
mimic the behavior of real suznnne':nums
controlled ways.”

* In testing, mocking uses a mock object to test the behavior

of some other object.

* Analogy: use a crash test dummy instead of real__human to test
automobiles e, ST

42

Scenario 1: Web AP| Dependency

* Suppose we're writing a single-page web app

* The APl we'll use (e.g., Speech to Text) hasn't been
implemented yet or costs money to use

* We want to be able to write our frontend (website) code
without waiting on the server-side developers to implement
the APl and without spending money each time

* What should we do?

Mocking Dependencies

* Solution: make our own “fake” (“mock”) implementation of

the API

* For each method the APl exposes, write a substitute for it
that just returns some hard-coded data (or any other
approximation)

 Why C

oes this work? Are there relevant concepts from 280?

e This tec

nnique was used to design and test parts of the

autograder.io website

Scenario 2: Error Handling

* Suppose we're writing some code where certain kinds of
errors will occur sporadically once deployed, but “never” in
development

* QOut of memory, disk full, network down, etc.

* We'd like to apply the same strategy
 Write a fake version of the function ...

* But that sounds difficult to do manually

« Because many functions would be impacted
« Example: many functions use the disk

Mocking Libraries: Two Approaches

* Before running the program (“static”)

 Combine modularity/ecapsulation with mocking

* Move all disk access to a wrapper API, use mocking there at
that one point (coin flip — fake error)

* Whi
c W
re

e running the program (“dynamic”)
nile the program is executing, have it rewrite itself and

dlace its existing code with fake or mocked versions

* Let's explore this second option in detail

Dynamic Mocking Support

* Some languages provide dynamic mocking libraries that
allow you to substitute objects and functions at runtime

* For one test, we could use a mocking library to force another
line of code inside our target function to throw an exception
when reached

* This feature is available in modern dynamic languages with
reflection (Python, Java, etc.)

» googletest used to require a special base class for this sort of
mocking, now it uses macros

Dynamic Mocking Example

import unittest class HLTTestCase(unittest.TestCase):
from unittest import mock def test_LLO_no_memory(self):
def mocked_memory_error():
def lowLevelOp(): raise MemoryError('test :-(")
might fail for users
example: no memory with mock.patch(# look here!
pass '__main__.lowLevelOp',
mocked_memory_error):
def highLevelTask(): self.assertFalse(highLevelTask())
try:
lowLevelOp() if __name__ == '__main__":
return True unittest.main()
except MemoryError:
return False

See https://docs.python.org/3/library/unittest.mock.html

See https://docs.python.org/3/library/unittest.mock.html#patch 48

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html#patch

Dynamic Mocking Library Uses

* Track how many times a function was called and/or with
what arguments (“spying”)

* How would you do this with dynamic mocking?

* Add or remove side effects
* Exceptions are considered a side effect by mocking libraries

* Test locking in multithreaded code
 e.g., force athread to stall after acquiring a lock

Dynamic Mocking Disadvantages

* Test cases with dynamic mocking can be very fragile
« What if someone moves or removes the call to lowLevelOp ()
that we mock . patch'd earlier?
* Dynamic mocking requires good integration tests
* If we mock dependencies, we need to be extra careful that our ADTs
play nicely together
* Dynamic mocking libraries have a learning curve

* |n Python, it can be hard to determine the correct value for 'path'in
mock .patch (etc.)

* Error messages are often cryptic (modified program)

Quality Assurance and
Development Processes

* How can we assure quality before, during and after writing
code?

* What if we don't have enough resources?
* Tune in next time!
* Further Watching: .
* “So You Want To Be In QA?” ‘ O’D

* https://www.youtube.com/watch?v=ntpZt8eAvy0

51

https://www.youtube.com/watch?v=ntpZt8eAvy0

Questions?

* Next exciting episode:
» Test Suite Quality Metrics

Aﬁ .
Can youlrepeatithe part ofgthe stuff
wherefyoulsaidiall about thelthings?

’__

2
N

52

	Slide Number 1
	One-Slide Summary
	Story So Far
	Official Definition
	Quality Motivation
	Internal-Facing Quality
	External-Facing Quality
	Doing The Right Thing
	Doing The Right Thing
	Practical Solution: Testing
	Testing
	Testing in UM EECS Courses (1/3)
	Testing in UM EECS Courses (2/3)
	Testing in UM EECS Courses (3/3)
	Discussion: UM EECS Testing
	Testing: Inputs and Outputs
	Testing Concepts
	Regression Testing (in one slide)
	Regression Testing Story
	Unit Testing and Frameworks
	xUnit Features
	xUnit Definitions
	Python unittest Example
	Python unittest Details
	Unit Testing Advantages
	EECS UM Unit Testing
	Test-Driven Development
	Test-Driven Development
	Integration Testing
	Unit Testing vs. Integration Testing
	Unit Testing vs. Integration Testing
	Unit and Integration Abstractions
	Integration Testing Examples
	Creative Integration Testing Examples
	Psychology: Backfire Effect
	Psychology: Backfire Effect
	Psychology: Backfire Effect
	Psychology: Confirmation Bias
	Psychology: Confirmation Bias�(each subclaim has its own studies)
	Psychology: Confirmation Bias
	Targeting Hard-To-Test Aspects
	Mocking
	Scenario 1: Web API Dependency
	Mocking Dependencies
	Scenario 2: Error Handling
	Mocking Libraries: Two Approaches
	Dynamic Mocking Support
	Dynamic Mocking Example
	Dynamic Mocking Library Uses
	Dynamic Mocking Disadvantages
	Quality Assurance and�Development Processes
	Questions?

