
Quality Assurance In Diagnostic Radiology

Robert G. Gould, Sc.D. Professor and Vice Chair Department of Radiology University of California San Francisco, California

Why Do Quality Control?

- Improve clinical results
- Preempt quality or safety problems
- Maintain standard of care
- Minimize patient radiation dose
- Satisfy government regulations

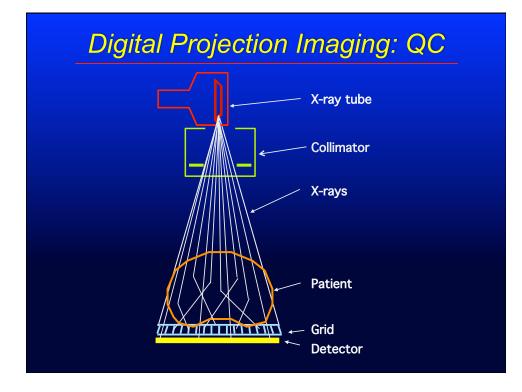
QC Testing

- Acceptance testing
 - Upon installation prior to patient use
 - Medical physicist
- Annual inspection
 - Medical physicist
 - Equipment vendor/service provider
- Daily and weekly tests
 - QC technologist

Quality Control (QC)

- Team approach
 - Radiologists, Medical Physicists, Technologists
- Use eyes and experience
- Don't "work around" problems
- Try to be preemptive

Mechanical Integrity


- Fix problems as soon as possible
 They only get worse
- If things become loose, tighten them!

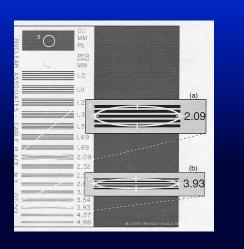
Regulations

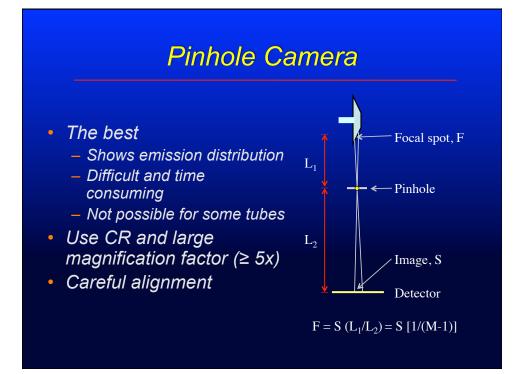
- Are more better?
- Are all of equal value?
- Do they cover all aspects of IQ and safety?
 - Should I stop when all the regulatory tests are complete?

Quality Control

- Emphasize those tests that are important to IQ and/or safety
 - Concentrate on those functions that effect quality and safety
 - Minimize time on activities done primarily to meet regulations

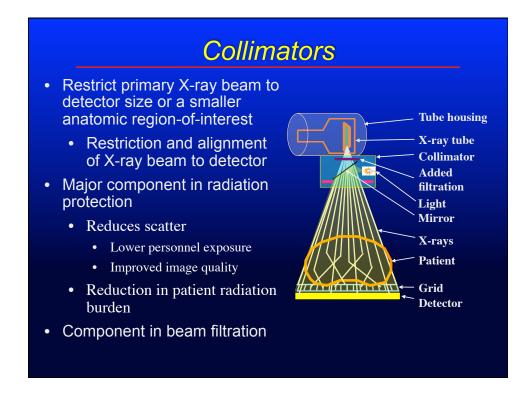
X-Ray Tube Concerns

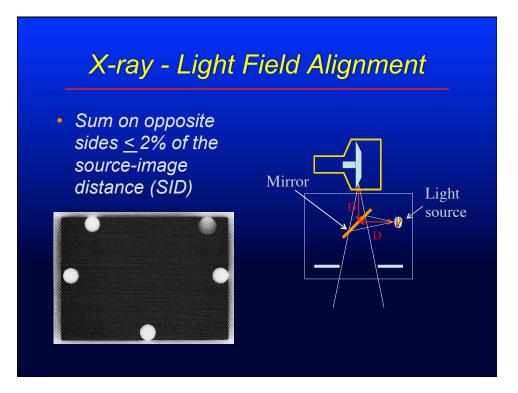

- Focal spot size
 Component in spatial resolution
- Worn anode
 - Variation in intensity across field
 - Increase in HVL due to metal coating on inside of glass
- Instabilities, arching

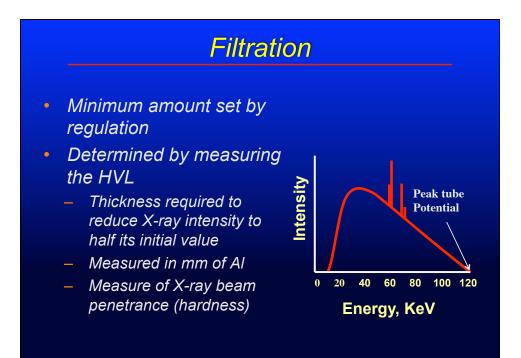


- When?
 - Acceptance
 - Annually
 - Tube replacement
- How?
 - Star pattern-measure spatial resolution
 - Pinhole camera

Spatial Resolution Measurement

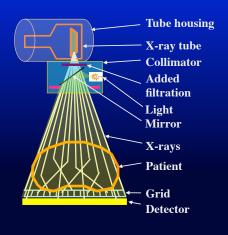

- Image a lead bar test pattern
- Assess using vendor QC software to determine contrast of specific line pairs
 - MTF can be obtained
- Determine along both axis or at an angle of 45°


Generator QC


- Consistent x-ray output for same technical factors (KVp, mA, exposure time)
- mA and time settings
 - Should be linear
 - Should be consistent
 - mR/mAs should be a constant
- KVp calibration

Collimator

- What?
 - -X-ray field detector alignment
 - X-ray light field alignment
- When?
 - Acceptance
 - Annually
 - Tube replacement

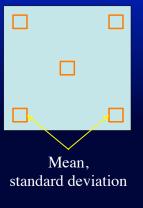

Filtration/B	eam Qu	ality
 Indicated by measuring half value layer (HVL) Need to measure at only a single KVp Tube potential indication should be calibrated 	Tube Potential, KVp	Minimum HVL, Mm Al
	50	1.5
	71	2.1
	80	2.3
	100	2.7
	120	3.2

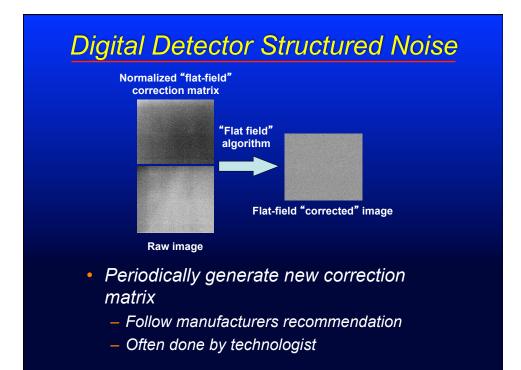
Filtration

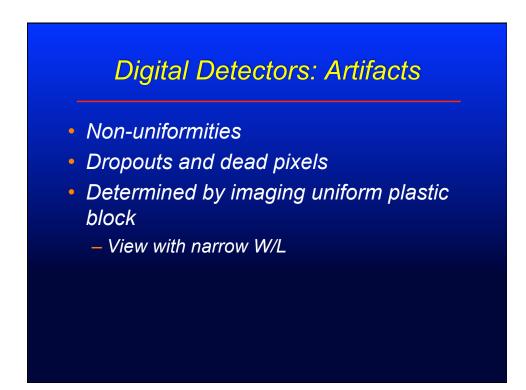
- Current digital R/F and angio systems have variable filtration
 - Combinations of AI and Cu of various thicknesses
 - Anatomic protocols automatically change
- Measure HVL at minimum filtration

Basic Imaging Geometry: Detector

- Converts X-ray intensity to electrical signal
- Major component of spatial resolution
- Major determinate of patient dose
 - Component of automatic exposure control system




Digital Detectors: Radiography

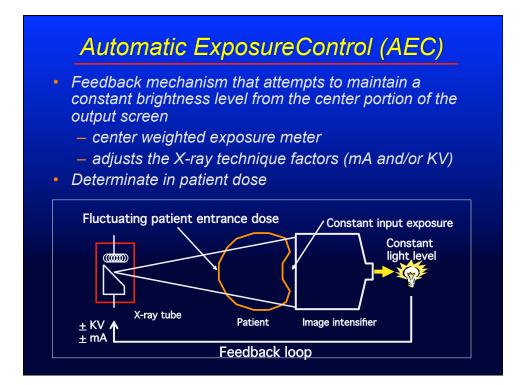

- What?
 - Uniformity
 - Artifacts
 - AEC
- When?
 - Acceptance
 - Annually
 - Component replacement
 - Manufacturers recomendation

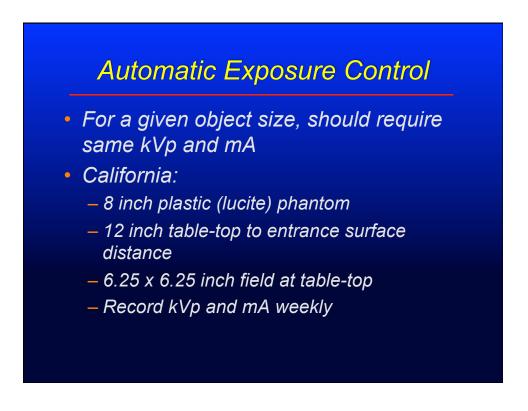
- Produces density variations within the image
- 'Structured' noise
- Assessed by uniformity of pixel values (eg. Mean and standard deviation)
- Most systems have software that automates testing

Automatic Exposure Control (AEC)

- Should be able to maintain a pixel mean value within ~15%
 - Track with changes in KVp
 - Clinically used range (~ 50 120 KVp)
 - Track with changes in patient thickness
 - 5 35 cm of water equivalent

Annual Testing - Key Measurements


- Mechanical integrity
- Linearity of mAs
- Half value layer
- X-ray field detector size
- Light x-ray field alignment
- Spatial resolution
- Artifacts/uniformity
- AEC consistency


Fluoroscopy QC

- What?
 - Table-top exposure rate
 - Automatic brightness control
- When?
 - Installation
 - Annually
 - Major component changes
 - Manufacturer's recommendation

Typical Regulations Fluoroscopic Equipment

- Table-top exposure rate cannot exceed 10 R/min
- During routine fluoroscopy the table-top (patient entrance) exposure rate shall not exceed 5 R/min for a typical patient
 - Determined by use of a phantom equivalent to 8" of water

Fluoroscopy - Image Quality

- Image resolution pattern

 Bar pattern (line pairs/ mm)
- Contrast sensitivity
 - Low contrast phantom

Problem: very subjective

Computed Tomography QC

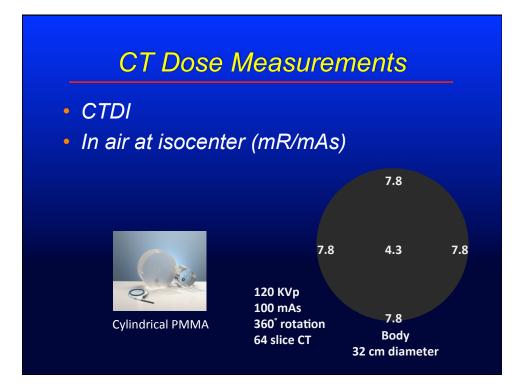

- What?
 - Dose
 - Slice thickness/sensitivity profile
 - Table incrementation accuracy
 - Image quality factors
- When?
 - Installation
 - Annually
 - Major component changes
 - Manufacturer's recommendation

Image Quality CT

- Uniformity
- Artifacts
- Linearity
- Noise
- Spatial resolution
- Contrast sensitivity

AAPM phantom

QC Challenges

- Man-machine interfaces
 - What goes on in the software black box?
 - How to test?

Cedars-Sinai CT Overexposures

- What happened?
- Brain perfusion procedures

 Used in stroke assessment
- Over-rode 'default' protocol settings
 - Protocols come with the machine
 - Changed technique factors that effect dose
- Eight times the protocol dose

Cedars-Sinai CT Overexposure

- Went on for 18 months because no one made the association of hair loss and skin reddening with CT procedure
 - 2-3 weeks after exposure before onset of hair loss

Cedars-Sinai CT Overexposure

- Errors at multiple levels
 - Originally caused by changing default protocol
 - Dose indicators appear at time of scan: should have been recognized at time of scan
 - Radiologist should have realized overdose from the images
- Not found during any QC testing

Conclusions

- QC is a necessary and valuable aspect of x-ray imaging
- QC should be a meaningful endeavor not just going through the motions
 - React to problems before they interfere with patient images
- Not all QC tasks are of equal value
 - Concentrate on the important ones (those that effect patient safety and image quality)