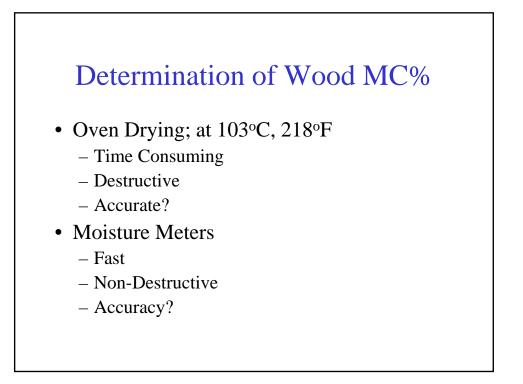


$$MC = \frac{m_{wet} - m_{dry}}{m_{dry}} (100\%)$$

^	m Moisture Content elative Humidity
• RH %	• EMC %
-90	-20
-80	-16
-65	-12
-50	-9
-30	-6
-0	-0


Wood used as and for industrial, commercial and consumer applications must be dried:

- Preservative-treated Poles, RR ties, Piling
- Construction lumber and timbers
- Lumber for interior applications
 - Flooring
 - Furniture
 - Cabinets

- Preservative-treated Poles, RR ties, Piling
 Target *below 25-30% MC*, dry enough to treat
- Construction lumber and timbers

 Target < 19% MC, minimize warp and mold
- Lumber for interior applications

 Target 6-8% MC, dimensionally stable to interior-use %RH and %EMC

ASTM Standard - %MC

ASTM

- American Society for Testing and Materials

ASTM Standard - %MC

ASTM D4442 - 16

• Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials

ASTM Standard - %MC

ASTM D4442 - 13

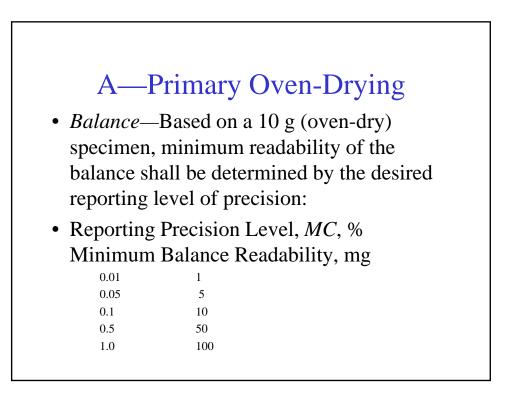
• Standard Test Method for Laboratory Standardization and Calibration of Hand-Held Moisture Meters

ASTM Standard - %MC

ASTM D4442 - 16

• Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials

ASTM D4442-16


- Method A—Primary Oven-Drying
- Method B—Secondary Oven-Drying
- Method C—Distillation (Secondary)
- Method D—Other Secondary Methods.

ASTM D4442-16

The Secondary methods (B through D) are intended for special purposes or under circumstances where the primary procedure (Method A) is not desired or justified. In these procedures, moisture content values cannot be reported with an accuracy greater than integer percentage values (that is, lower than in Method A).

A—Primary Oven-Drying

 Oven—A forced-convection oven that can be maintained at a temperature of 103 +/-2°C throughout the drying chamber for the time required to dry the specimen to the endpoint shall be used. Ovens shall be vented to allow the evaporated moisture to escape.

A—Primary Oven-Drying

• *Endpoint*—Assume that the endpoint has been reached when the mass loss in a 3 h interval is equal to or less than twice the selected balance sensitivity.

For example, given a specimen weight of 10 g and for a balance sensitivity of 1 mg chosen in 5.1.2 to allow reporting to a 0.01 % *MC* precision, the endpoint is assumed to have been reached when the change in weight is 2 mg or less in a 3 h period.

B – Secondary Oven-Drying

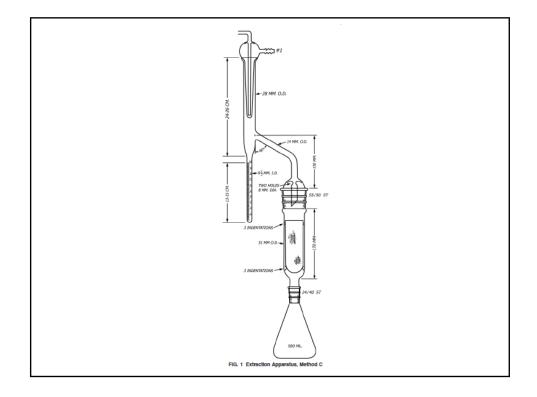
• *Balance*—The sensitivity shall be a minimum of 0.1 % of the nominal oven-dry mass of the specimen (see 5.1.2).

B – Secondary Oven-Drying

Example - A specimen of wood weighed 56.7 g. After oven-drying, the mass was 52.3 g. MC% = ((56.7 - 52.3)/52.3) *100% = 8.41%

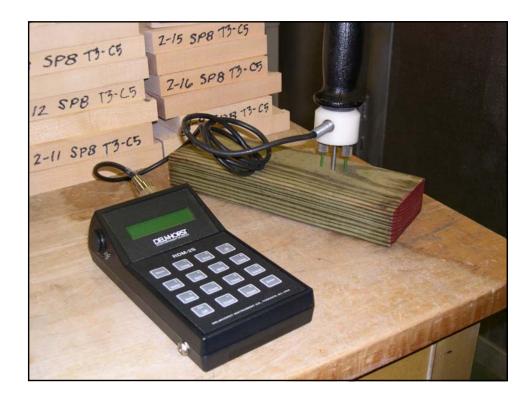
• Round to 8 % MC

- (or simply, at best, 8.4% MC).


D – Other Second Methods

- Karl Fischer titration
- infrared (heating and absorption)
- Microwave (heating and absorption)
- nuclear magnetic resonance (NMR),
- vacuum-oven drying, etc.

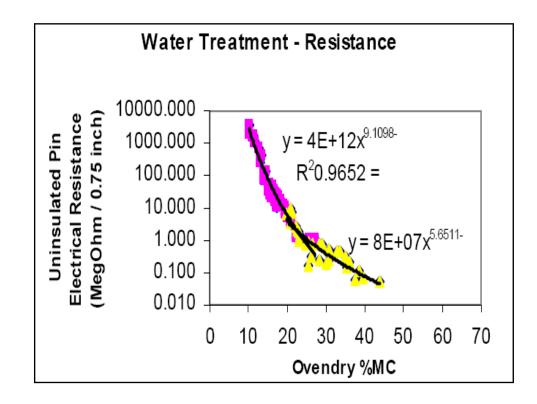
There are no recommended procedures for these methods.

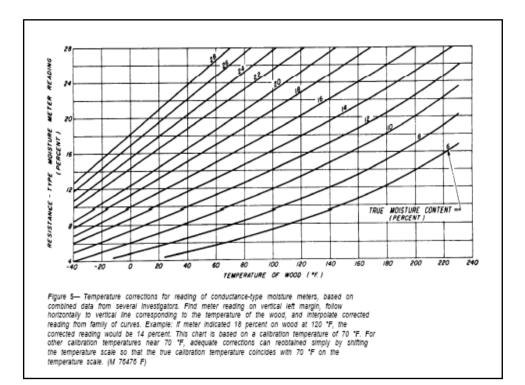

C – Distillation

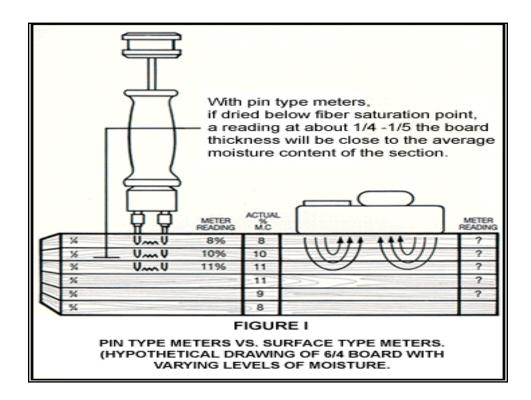
- Distillation (secondary) method is intended for use with materials that have been chemically treated or impregnated such that the oven-drying procedures introduce greater error than desired in the results.
- Or if there are volatile extractives.

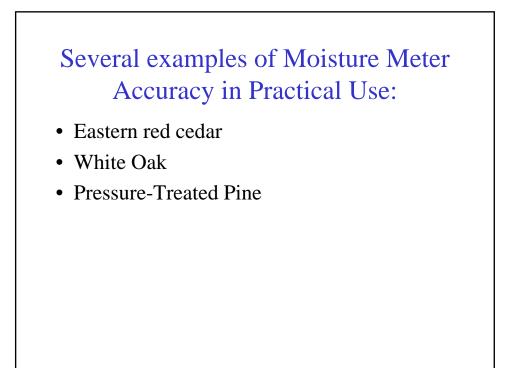
Determination of Wood MC%

- Oven Drying; at 103°C, 218°F
 - Time Consuming
 - Destructive
 - Accurate?
- Moisture Meters
 - Fast
 - Non-Destructive
 - Accuracy?

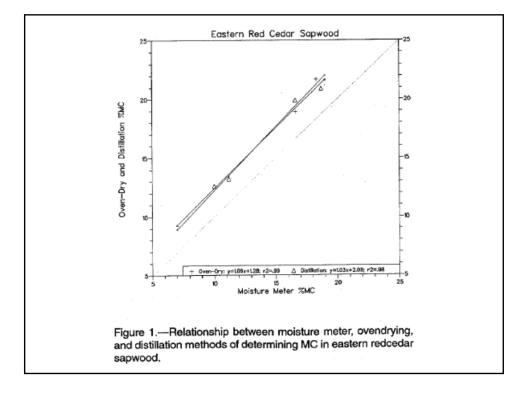


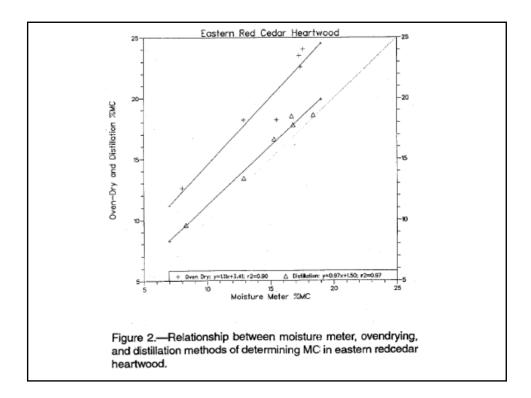

Correction Factors Species Temperature Pins 2 vs. 4 Insulated vs. Uninsulated Treatments can effect chemistry of wood




- Wood Species Chemical differences between species affect electrical conductivity
- Temperature higher temperature increase electrical conductivity
- Density affects on electro-magnetic field and moisture relationships

	Electrical resistance (megohms) at different levels of moisture content (percent)																		
Species	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
oftwoods																			
Cypress, southern	12,600		1,410	630	265	120	60	33	18.6		7.1	4.6	3.09	1.78		0.91		0.51	0.42
Douglas-fir (coast type)			1,660	630	265	120	60	33	18.6		7.1	4.6	3.09	2.14		1.10		0.60	
Fir, California red	31,600		2,000	725	315	150	83	48		18.2		7.6	5.01	3.31			1.15		
Fir, white		15,850	3,980	1,120	415	180	83	46		16.6			4.47	3.02			1.12		
Hemlock, western		5,620	2,040	850	400	185	98	51		16.2		6.0	3.89	2.52			0.72		
Larch, western		11,200	3,980		560	250		63		19.9		7.6	5.02	3.39		1.62		0.87	
Pine, eastern white	20,900		2,090	850	405	200	102	58		19.9		7.9	5.01	3.31			1.05		
Pine, longleaf	25,000		3,160		575		135		41.7	24.0		8.9	5.76	3.72			1.15		
Pine, ponderosa	39,800		3,310		645		150	81		25.1		9.1	5.62	3.55			1.15		
Pine, shortleaf		11,750	3,720		560	255	130	69		22.4		8.7	5.76	3.80			1.29		
Pine, sugar	22,900		1,660	645	280	140	76	44		15.9		6.6	4.36	3.02			1.05		
Redwood	22,400		1,550	615	250	100	45	22	12.6	7.2	4.7	3.2	2.29	1.74			0.85		
Spruce, Sitka	22,400	5,890	2,140	830	365	165	83	44	25.1	15.5	9.8	6.3	4.27	3.02	2.14	1.58	1.17	0.91	0.71
ardwoods																			
Ash, commercial white	12,000		690	250	105	55	28	14	8.3	5.0	3.2	2.0	1.32	0.89	0.63	0.50	0.44	0.40	0.40
Basswood	36,300		470	180	85	45	27	16	9.6	6.2	4.1	2.8	1.86	1.32	0.93	0.69	0.51	0.39	0.31
Birch		19,950	4,470	1,290	470	200	96	53	30.2	18.2	11.5	7.6	5.13	3.55			1.32		
Elm, American	18,200		350	110	45	20	12	7	3.9	2.3	1.5	1.0		0.48			0.40		
Hickory, true	_	31,600	2,190	340	115	50	21	11	6.3	3.7	2.3		1.00	0.71	0.52	0.44	0.40	0.40	0.40
Kahya	44,600			2,750		630			105.0			21.9		9.33	6.16	4.17	2.82	1.99	1.44
Magnolia		12,600	5,010	2,040	910	435	205	105		29.5		9.1	5.25	3.09			0.74		
Mahogany, American	20,900	6,760	2,290	870	380	180	85	43	22.4	12.3	7.2	4.4	2.69	1.66	1.07	0.72	0.49	0.35	0.26
Maple, sugar	72,400		3,160	690	250	105	53		16.6		6.8	4.5		2.24			0.98		
Oak, commercial red ²	14,400		1,590	630	265	125	63		18.2		7.3	4.6	3.02		1.45				
Oak, commercial white		3.550	1,100	415	170	80	42	22		7.2	4.3	2.7	1.70	1.15			0.49		
Shorea ³	2,890	690	220	80	35	15	9	5	2.8	1.7	1.1	0.7	0.45	0.30			0.12		
Sweetgum		6,460	2,090	815	345	160	81		25.7		9.3	6.0		2.63			0.87		
Tupelo, black ²	31,700			1,820	725	275	120	58		13.0	6.9	3.7	2.19				0.46		
Walnut, black	51,300		2,630	890	355	155	78	41		12.9	7.8	4.9	3.16	2.14			0.72		
Yellow-poplar ²	24,000	8,320	3,170	1,260	525	250	140	76	43.7	25.2	14.5	8.7	5.76	3.81	2.64	1.91	1.39	1.10	0.85



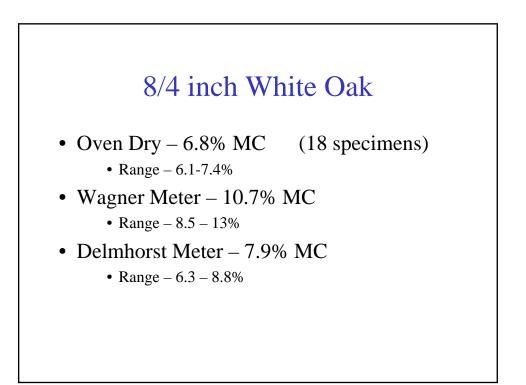


• Extractives in eastern red cedar appeared to be causing incorrect %MC values during oven-drying.

			– Eastern redced	ar moisture cont	ent analysis.	D section		
	Malatana matan	A section	Ovendry	OD-TD ^b	Moisture meter	B section TD-MM ^c	Toluene distillatio	
Sample no.	Moisture meter	OD-MM ^a	Ovenary	00-10-	Moisture meter	ID-MM	Tomene distinatio	
Heartwood								
1-H	38.4		80.6	12.0	26.8		68.6	
2-H	37.5		69.9	1.5	34.0		68.4	
6-H	8.0	4.6	12.6	3.0	8.3	1.0	9.6	
7-H	15.5	2.7	18.2	1.6	15.3	1.3	16.6	
8-H	12.9	5.3	18.2	4.8	12.9	0.5	13.4	
11-H	17.3	6.2	23.5	4.9	18.4	0.2	18.6	
12-H	17.4	5.2	22.6	4.8	16.8	1.0	17.8	
13-H	17.6	6.4	24.0	5.5	16.7	1.8	18.5	
Average difference		5.1		4.8		1.0		
Sapwood								
3-S	16.6	2.3	18.9	-1.0	16.6	3.3	19.9	
4-S	18.3	3.4	21.7	0.8	18.7	2.2	20.9	
5-8	10.1	2.5	12.6	0.0	10.0	2.6	12.6	
9-8	>60		83.9	1.5	46.6		83.3	
10-S	11.2	2.1	13.3	0.1	11.2	2.0	13.2	
Average difference		2.6		0.3		2.5		

^o OD-TD - Ovendry - toluene distillation value.
^c TD-MM - Toluene distillation - moisture meter value.

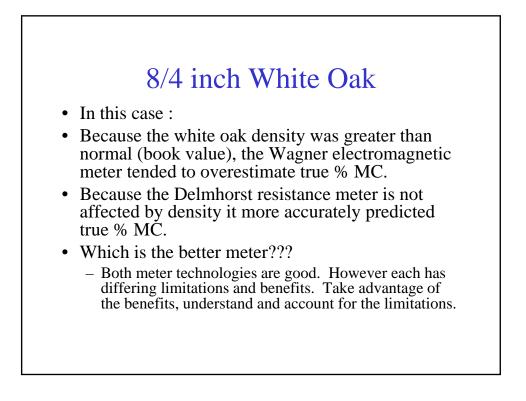
Eastern Red Cedar


- True %MC of heartwood and sapwood was determined using toluene solvent distillation.
- It was proved that due to evaporation of heartwood extractives oven drying did not accurately determine %MC.
- The resistance moisture meter accuracy was comparable to oven-drying with e.r.cedar sapwood.
- The resistance moisture meter accuracy was much better than oven-drying with e.r.cedar heartwood

8/4 inch White Oak

- A furniture company was concerned because their white oak appeared to be too wet
 - Wagner Meter 10.7% MC
 - Range 8.5 13%

- Wagner Meter 10.7% MC
 Range 8.5 13%
- ...so we checked the wood with a resistance meter, and then oven dried samples as well...
- Delmhorst Meter 7.9% MC
 Range 6.3 8.8%



8/4 inch White Oak

- Wagner Meter 10.7% MC
 - Range 8.5 13%
 - Specific Gravity Average = 0.79;

book value = 0.68

- Delmhorst Meter 7.9% MC
 - Range 6.3 8.8%
- Oven Dry 6.8% MC (18 specimens)
 - Range 6.1-7.4%

%MC Determination what and how best? Oven Dry method? Meters?

- Circumstances
- Accuracy
- Precision
- * see NEKDA Spring 2013, Jake Seidel presentation.

Thank you!

- Questions?
- Comments?
 - Bill Smith
 - wbsmith@esf.edu
 - -315/470-6832