
Quality of Service Based Cloud Computing
Framework for Resource Management

PhD Thesis

Submitted By:

Saeed Ullah
Reg. No: 1094-212004

Supervised By:

Professor Meritorious Dr. Mohammad Daud Awan

Dean Faculty of Computer Science, Preston University, Kohat, Islamabad Campus

Co-Supervised By:

Professor Dr. Malik Sikandar Hayat Khiyal

Faculty of Computer Science, Preston University, Kohat, Islamabad Campus

Faculty of Computer Science

Preston University, Kohat

Islamabad Campus

December, 2017

IN THE NAME OF ALLAH, THE MOST BENEFICENT, THE MOST MERCIFUL.

PLAGIARISM UNDERTAKING

I solemnly declare that research work presented in the thesis titled “Quality of Service

Based Cloud Computing Framework for Resource Management” is solely my research

work with no significant contribution from any other person. Small contribution/help

wherever taken has been duly acknowledged and that complete thesis has been written by

me.

I understand the zero tolerance policy of the HEC and Preston University, Kohat, towards

plagiarism. Therefore I as an Author of the above titled thesis declare that no portion of

my thesis has been plagiarized and any material used as reference is properly

referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis

even after award of PhD degree, the University reserves the rights to withdraw/revoke my

PhD degree and that HEC and the University has the right to publish my name on the

HEC/University Website on which names of students are placed who submitted

plagiarized thesis.

 Saeed Ullah

 Reg. No: 1094-212004

 PhD Scholar

i

ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this

thesis. First and foremost, I offer my profoundest gratitude to my supervisor, Dr. Prof. Merit.

Dr. Mohammad Daud Awan and co-supervisor Prof. Dr. Malik Sikandar Hayat Khiyal. I

would like to thank them for continuous guidance, support, and encouragement.

I also acknowledged the guidance of my committee members. Their suggestions were very

viable in completion of this research.

I would like to thank my parents for their unconditional support throughout my degree.

Besides, a special thanks to my friends for their support.

I would like to give heartfelt thanks to my wife for his endless help in supporting and

motivating me. I express my deepest appreciation for her care.

Finally, to my beloved daughter Haniya Saeed, I would like to express my thanks for being

such a good girl and always cheering me up.

ii

This thesis is dedicated to

my respected supervisors,

whose passion for knowledge and learning was inspiring and contagious

iii

TABLE OF CONTENTS
Chapter 1: Introduction ... 1

1.1 Overview of Cloud Computing .. 1

1.1.1 Definition of Cloud Computing.. 2

1.1.2 Background... 4

1.1.3 Technologies in Cloud Computing... 4

1.2 Cloud Computing Service Models ... 5

1.2.1 Infrastructure as a Service (IaaS).. 5

1.2.3 Software as a Service (SaaS) .. 6

1.2.4 Platform as a Service (PaaS) .. 6

1.3 Deployment Models .. 6

1.3.1 Public Cloud ... 6

1.3.2 Private Cloud .. 7

1.3.3 Community Cloud .. 7

1.3.4 Hybrid Cloud .. 7

1.4 Commercial Clouds... 8

1.4.1 Amazon [9] ... 8

1.4.2 Google Cloud Computing [13] ... 8

1.4.3 Rackspace [14] .. 8

1.5 Inter-Cloud ... 8

1.6 Research Motivation ... 10

1.7 Research Problems and Objective.. 12

1.7.1 Benchmarking... 12

1.7.2 Provisioning of Resources based on QoS Ranking .. 12

1.7.3 Monitoring SLA Violations.. 12

1.7.4 Deployment and Testing... 12

1.8 Methodology ... 13

1.9 Thesis Organization... 14

Chapter 2: Related Work .. 15

2.1 Service Selection Taxonomy... 15

iv

2.1.1 Process of Service Selection... 16

2.2 Taxonomy of Service Ranking.. 19

2.3 Benchmarking Taxonomy... 23

2.3.1 Benchmarking Frameworks.. 31

2.3.1.1 CloudCmp [32] .. 32

2.3.1.2 CloudStone [81]... 32

2.3.1.3 HiBench [83] ... 33

2.3.1.4 Yahoo Cloud Serving Benchmark (YCSB) [85] ... 33

2.3.1.5 CloudSuite [87].. 34

2.3.2 Benchmark Applications .. 36

2.3.2.1 SPECjvm [88].. 36

2.3.2.2 Open-Source Benchmarking [89].. 36

2.3.2.3 The DaCapo Benchmarks [90] .. 36

2.3.2.4 IOzone Filesystem Benchmark [92] .. 37

2.3.2.5 Bonnie++ [93] ... 37

2.3.2.6 Cachebench [94] .. 37

2.4. Taxonomy of Large Scale Resource Management Frameworks 38

2.4.1 Hadoop.. 39

2.4.2 Spark... 40

2.4.3 Flink.. 41

2.4.4 Storm .. 42

2.4.5 Comparative Analysis of Large Scale Resource Management Frameworks 43

2.5. Scope and Positioning of the Research Study.. 47

Chapter 3: Broker based Resource Provisioning Framework... 49

3.1 Background ... 49

3.2 Negotiation Mechanism ... 51

3.2.1 Assumptions ... 52

3.3 IaaS Metrics for CP Ranking .. 54

3.3.1 Compute.. 54

3.3.2 Memory Hierarchy ... 54

3.3.3 Network .. 55

v

3.3.4 Storage .. 55

3.4 Metrics Evaluation .. 55

3.4.1 Server Latency/ Response Time (Compute)... 55

3.4.2 Outage Length (Compute) .. 56

3.4.3 Memory Bandwidth (Compute).. 56

3.4.4 Speed of VM (Compute) .. 56

3.4.5 Scaling Latency (Compute) .. 56

3.4.6 Availability (Compute)... 56

3.4.7 Throughput (Network).. 57

3.4.8 Network Latency .. 57

3.4.9 Network Availability .. 57

3.4.10 Input/ Output Operations per Second (Storage) ... 57

3.5 QoS based Ranking Algorithm ... 57

3.5.1 Definition 1... 58

3.5.2 Definition 2... 58

3.5.3 Algorithm Complexity Analysis... 61

3.6 Proposed Framework... 61

3.6.1 Job Management Module ... 62

3.6.1.1 Negotiation Engine .. 62

3.6.1.2 Resource Manager ... 63

3.6.1.3 Deployment Manager .. 63

3.6.1.4 Resource Migration Service .. 63

3.6.2 Ranking Module ... 63

3.6.3 SLA Management Module ... 64

3.6.3.1 SLA Service Management... 65

3.6.3.2 Resource Monitoring Module.. 68

Chapter 4: Implementation ... 71

4.1 Benchmarking Methodology... 71

4.2 Implementation Technologies ... 72

4.3 QoS Evaluation Policies.. 78

4.3.1 Local Resource Allocation ... 78

vi

4.3.2 Broker based Outsource oriented Resource Allocation.. 78

4.4 Workload Generation .. 79

Chapter 5: Results & Discussion .. 83

5.1 Benchmarking Results... 83

5.1.1 CPU Benchmarking.. 83

5.1.2 Network Benchmarking.. 86

5.1.3 Memory Benchmarking.. 88

5.1.4 Storage Benchmarking ... 91

5.2 Ranking Cloud Providers for Scientific Computing ... 95

5.3 Simulation Results... 97

5.4 JClouds Testbed Results.. 104

5.4.1 Case Study I: Cross-Species Sequence Comparisons... 106

5.4.1.1 Experimentation Procedure ... 109

5.4.2 Case Study II: POV-RAY and Wikipedia Dumps.. 114

5.4.2.1 Experimentation Results.. 116

5.5 Comparison with State of the Art Implementations.. 119

Chapter 6: Conclusion and Future Work .. 121

6.1 Conclusion... 121

6.2 Contributions... 121

6.3 Limitations .. 123

6.4 Future Work .. 124

Appendix-A... 125

References... 127

vii

LIST OF TABLES

Table 2.1: Comparison of Different Cloud Ranking Frameworks………….. 23

Table 2.2: Comparison of Different Cloud Benchmarking Studies………… 30

Table 2.3: Comparison of Different Benchmarking Techniques…………… 35

Table 2.4: Comparison of Big Data Frameworks……..……..……..……….. 43

Table 2.5: Comparison and Application Areas of Related Research Studies. 46

Table 4.1: List of VM instances used for Experimentation……..……..…… 71

Table 4.2: Network Benchmarking Tools……..……..……..……..……..…. 72

Table 4.3: CPU Benchmarking Tools……..……..……..……..……..……... 72

Table 4.4: Storage Benchmarking Tools……..……..……..……..……..…... 72

Table 4.5: Memory Benchmarking Tools……..……..……..……..……..…. 72

Table 4.6: Tools used in Simulation of the Proposed Framework……..…… 73

Table 4.7: Tools used in the Experimentation of the Designed Framework... 76

Table 5.1: Decapo price-performance Analysis (α=5) ……..……..………... 84

Table 5.2: SPECJVM price-performance Analysis (α=10) ……..……..…… 85

Table 5.3: Phoronix price-performance analysis (α=2) ……..……..……..… 86

Table 5.4: Network price-performance Analysis (α=5) ……..……..………. 87

Table 5.5: Ubench price-performance Analysis (α=2) ……..……..……..…. 88

Table 5.6: Rackspace IOZone Results……..……..……..……..……..……... 92

Table 5.7: Amazon IOZone Results……..……..……..……..……..……..… 93

Table 5.8: Google IOZone Results……..……..……..……..……..……..….. 94

Table 5.9: List of Metrics and associated weights……..……..……..………. 96

Table 5.10: Aggregate Utility Ranking based on Performance Metrics…….... 97

Table 5.11: Simulation Results of 7 days Experiments……..……..……..…... 104

Table 5.12: Total Number of Sequences……..……..……..……..……..……. 110

Table 5.13: SLA Monitor settings for BLAST+……..……..……..……..…... 111

Table 5.14: Experimentation Results of BLAST+ for two policies………….. 112

Table 5.15: SLA Monitor settings for POV-Ray……..……..……..……..…... 116

Table 5.16: SLA Monitor settings for Wikipedia Dump……..……..……..…. 116

viii

Table 5.17: Total SLA Violations……..……..……..……..……..……..……. 118

Table 5.18: Comparison of Proposed Broker vs. Local Resource Utilization
Policies……..……..……..……..……..……..……..……..……… 119

Table 5.19: POV-RAY Performance Results for Two Policies……………… 119

ix

LIST OF FIGURES

Fig. 1.1: Cloud Computing Environment.………………………………… 3

Fig. 1.2: Cloud Service Stack.…………………………………………….. 3

Fig. 1.3: Inter-cloud Network Model……………………………………… 10

Fig. 1.4: Structure of Thesis………………………………………………. 14

Fig. 3.1: General process of resource provisioning 51

Fig. 3.2: Architecture of VM placement across Multi-cloud……………… 54

Fig. 3.3: Proposed Framework for QoS based Ranking in federated Cloud 63

Fig. 3.4: SLA Schema for QoS Metrics…………………………………… 67

Fig. 3.5: SLA Negotiation Process for Job Submission…………………... 68

Fig. 3.6: SLA Monitoring and Termination Process……………………… 69

Fig. 3.7: SLA Violation Rule-set………………………………………….. 70

Fig. 4.1: Cloud Simulation Environment………………………………….. 74

Fig. 4.2: Architecture of Extended CloudSim…………………………….. 75

Fig. 4.3: Job Preferences for SLA Management…………………………... 76

Fig. 4.4: JClouds Experimentation Setup…………………………………. 77

Fig. 4.5: Large Spike of Resource Demand……………………………….. 80

Fig. 4.6: Time Interval Distribution of Resource Spike…………………... 81

Fig. 4.7: Proposed Workload Model for Simulation……………………… 82

Fig. 5.1: Benchmarking Result of Decapo Test suite……………………... 84

Fig. 5.2: Performance Classifications of three SPECJVM Test cases…….. 85

Fig. 5.3: Performance Classifications of three Phoronix Test cases………. 86

Fig. 5.4: Network performance of VM Instances…………………………. 87

Fig. 5.5: Ubench Memory Benchmarking Score………………………….. 88

Fig. 5.6: Cachebench Results of three Cloud Providers…………………... 91

Fig. 5.7: IOZone Benchmarking Results of 4GB VM instances………….. 91

Fig. 5.8: Bonnie File System Benchmarking Results……………………... 95

Fig. 5.9: Resource Demand on Varying Loads……………………………. 98

Fig. 5.10: Overall Resource Utilization of LRAI Policy…………………… 99

Fig. 5.11: Results of LRAI Policy………………………………………….. 99

x

Fig. 5.12: Resource Utilization of BOR Policy…………………………….. 100

Fig. 5.13: Simulation Results of BOR Policy………………………………. 101

Fig. 5.14: Policy Comparison for 8 hour Simulation……………………….. 102

Fig. 5.15: Rejected Job Comparison of Two Polices……………………….. 103

Fig. 5.16: Overall Resource Utilization of LRA and BOR Policies………... 103

Fig. 5.17: JClouds log for Rackspace VM Connection…………….………. 105

Fig. 5.18: Cross-species Sequence Analysis Process………………………. 107

Fig. 5.19: FASTA File with Two Sequences……………………………….. 109

Fig. 5.20: FASTA Sequence Comparison of zebrafish.1.protein with
human.1.protein.faa……………………………………………… 110

Fig. 5.21: Bio-sequence Analysis Parallelization Pipeline for BLAST+…... 111

Fig. 5.22: Level of Parallelism for Different Virtual Machines……………. 113

Fig. 5.23: Similarity Distribution of Zebrafish with Human and Mouse…... 114

Fig. 5.24: Render Output of benchmark.pov………………………………. 115

Fig. 5.25: Average Execution Time………………………………………… 117

Fig. 5.26: Frequency of POV-RAY Job Completion for Different Cloud
Providers…………………………………………………………. 118

xi

LIST OF ABBREVIATIONS

Abbreviation Illustration

BLAST Basic Local Alignment Search Tool

AES Advanced Encryption Standard

AWS Amazon Web Services

API Application Program Interface

B2B Business to Business

C Cloud Computing Commodities 3

CP Cloud Provider

CSP Cloud Service Provider

EC2 Elastic Compute Cloud

FASTA FAST-All

FTP File Transfer Protocol

GNU GNU's Not Unix

HDFS Hadoop Distributed File System

HPC High Performance Computing

IaaS Infrastructure as a Service

IP Internet Protocol

iSCSI Internet Small Computer Systems Interface

JVM Java Virtual Machine

NIST National Institute of Standards and Technology

ORM Object Relational Mapping

P2P Peer to Peer

PaaS Platform as a Service

PC Personal Computer

SDK Software Development Kit

SOA Service Oriented Architecture

SaaS Software as a Service

SLA Service Level Agreement

SLO Service Level Objectives

xii

QoE Quality of Experience

QoS Quality of Service

VM Virtual Machine

VPC Virtual Private Cloud

VPN Virtual Private Network

VPS Virtual Private Servers

xiii

ABSTRACT

Cloud Computing is an evolving information technology development, deployment and

delivery model consisting of a collection of interconnected and virtualized computers

enabling real time delivery of services and solutions over the Internet. One of the critical

concerns in this environment is the provisioning of optimal software and hardware resources

to ensure a better quality of service (QoS). The classic cloud computing model where

services are provided by a single vendor introduces numerous challenges. Cloud services may

be interrupted due to unavailability, natural disaster or abrupt increase of the load and hence

the system may not be able to provide services to thousands of customers who solely rely and

pay for resources. One of the recently emerging areas in cloud computing is deployment of

virtual machines across multiple clouds based on providers’ ranking. This involves

benchmarking of different cloud providers, development of different techniques for selection

of candidate providers, frameworks for ranking cloud providers and monitoring service level

agreement (SLA) violations. Most of the existing literature is focused on employing

centralized approaches for overall system ranking and monitoring, however, these approaches

are not efficient for an environment where job migration and auto-scaling of virtual machines

take place across cloud boundaries. The main objective of this research work is the

development and evaluation of a QoS based ranking framework for IaaS computing resources

across multiple clouds for resource negotiation, provisioning of physical resources,

monitoring and ranking, based on job execution experience. We propose a broker enabled

QoS ranking, negotiation and monitoring framework based on user level QoS requirements

that determine users’ needs and utility for choosing a best-fit cloud provider among a list of

candidate cloud providers. Simulation and real test-bed experimentation results suggest that

our proposed framework not only gained higher profit margin but also attained more user

satisfaction in terms of lower job rejection and failure rate.

1

Chapter 1: Introduction
This thesis proposes a novel QoS ranking, negotiation and monitoring framework based on user

level QoS requirements to find best-fit IaaS cloud provider across multiple clouds through the

matchmaking process of cloud broker. A set of new metrics, algorithms and policies are designed

and developed to evaluate study results on simulated as well as real cloud infrastructure. This

chapter presents background, motivation and methodology of this research work.

1.1 Overview of Cloud Computing
Cloud computing is an evolving platform that has grasped the attention of scientific community

and business industry towards the provisioning of computing resources as a utility and software

as a service over a network. The platform of cloud computing shares many similar characteristics

of grids and clusters but it has its own unique attributes and capabilities such as dynamic services

that can be composed with web interfaces, virtualization and value added support from third

party services to build cloud compute, storage and application services for end users. Thus,

clouds are promising to provide services while abstracting the underlying hardware infrastructure

on which these services are hosted. This trend of computing commodities provisioning is

perceived as a fifth utility after electricity, gas, water and telephone as the services/resources are

available whenever and wherever with just pay as you go policy without incurring the capital

investments on the infrastructure [1].

Cloud computing is a new computational paradigm that relies on formulating the economies of

scale by sharing the resources and in return maximizing the utility of shared resources. The

maximum utilization of the resources is the key design goal underlying cloud computing

systems. Cloud users can access available computing, platform and software resources as a

single centralized view of the system and thus the existence of the underlying network and

details of installation, maintenance and licensing of the applications are mostly transparent to the

cloud users [2].

As huge investment in infrastructure, maintenance and up-gradation is required for business and

scientific applications, cloud computing benefits in a way that it cuts down the capital investment

cost required to purchase and install computing devices and provisions the capacities and

services ‘as and when’ required in just pay as you go fashion. Business owners can simply

2

acquire or rent-out the hardware, software or any other service according to business needs and

can just pay for the use of the service, hardware or software to the provider without being

worried for configuration, maintenance and other associated issues. It is just like renting a certain

amount of server resources and not to purchase the whole physical or part of infrastructure.

Cloud computing relies on the existing technologies being deployed as ‘ready to use’, so there is

no need for the consumers to be expert of each and every kind of technology being used in the

cloud, rather resource execution is the only concern left at consumers end.

1.1.1 Definition of Cloud Computing

Many definitions of cloud computing exist. NIST defined cloud computing as [3]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of configurable computing resources (for example, networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction. This cloud model is composed of five

essential characteristics, three service models, and four deployment models.”

Buyya et al. definition of cloud computing is as under [4] :

“A Cloud is a type of parallel and distributed system consisting of a collection of interconnected

and virtualised computers that are dynamically provisioned and presented as one or more

unified computing resources based on service-level agreements established through negotiation

between the service provider and consumers”

As shown in figure 1.1, cloud computing provides access to software and hardware resources as

a service that is seamless to consumers in a way that provider of the service could be anywhere

in the world by providing interfaces through internet for desktop, web and application APIs/

libraries.

3

Fig. 1.1: Cloud Computing Environment, adapted from [5]

Cloud computing, as described in definition, is a group of resources interconnected virtually,

located in a container that can be migrated from one physical place to another without service

interpretation. These containers are elastic and scalable enough to add more and more resources

capacity available for the consumers with the concept of virtualization. A typical cloud container

is depicted in figure 1.2:

Fig. 1.2: Cloud Service Stack, adapted from [6]

The cloud container can be mapped to a web server for resource provisioning across the cloud. In

this model, Infrastructure is the resource fabric that holds the real devices or set of devices in the

data center, platform provisions like an operating system of the devices in the infrastructure and

software/service can be mapped to the web application being deployed on the web server [6].

4

1.1.2 Background

In the early history of computing, when some complex and large computations had to be

performed, services as well as expensive software and hardware infrastructure had to be

purchased by the company or personnel to perform necessary computation and calculations.

With the evolutions of computing platform, the new trend of personalized, powerful and to-do-

yourself personal computers has taken place over the use of large room based, centralized

mainframe systems. A significant portion of the current generation of platforms consists of

inexpensive off-the-shelf software solutions installed in user devices. Thus, the idea of buying

services in order to orchestrate business or scientific tasks emerged and this trend evolved to

cloud computing [7].

The underlying cloud concept was originated from the mainframes used in 1950s and later for

organizational and academic needs of computation. The large mainframes were utilized using the

time sharing CPU model among multiple terminals during their mode of inactivity which, in

turn, resulted in the increase of return on investment. With the passage of time, many optimized

algorithms were proposed in order to efficiently utilize the idle cycles of computing resources,

where the computing capacities were made available to more number of users. In 2008,

Eucalyptus AWS API1

1.1.3 Technologies in Cloud Computing

provisioned the deployment of first open source private and hybrid

cloud. The dramatic growth of this concept took place as soon as the quality of service and issues

related to the providers and consumer were taken care by different projects of IT. Followed by

Eucalyptus, many other cloud platforms came into practice like Open Stack, IBM Smart Cloud

and Oracle Cloud.

Just like business entities, research community is also getting benefits from cloud services by

adopting the utility of cloud computing innovations at relatively lower costs. As vast amounts of

resources are required for high performance computing (HPC) applications to accommodate their

processing requirements, the advent of cloud computing has shifted such computation from the

dedicated clusters to the widely available clouds in a pay as you go fashion.

Cloud computing is evolved from cluster and grid computing where clusters and network of

clusters are interconnected in parallel to serve the dedicated tasks over networks. In case of

1 http://aws.amazon.com/about-aws/

5

clouds, it is all done over the internet with an agreed Quality of Service (QoS) level to end users.

The success behind the cloud lies in the concept of visualization where physical resources are

further divided into hundreds and even thousands of virtualized devices. Thus, serving more and

more consumers the capacity, computation and storage without any conflict unlike the grid. The

concept of services in cloud has been taken from the service oriented architecture (SOA), where

resources are provided in form of services to provide efficient solutions for the organizations

using them for their routine tasks [5]. The five main cloud computing characteristics as

mentioned by NIST are [3]:

� On-demand Self Service: Access to the service and resources unilaterally

� Broad Network Access: Resources and services can be accessed through heterogeneous

client platforms

� Resource Pooling: Service provisioning is coped with pools of services and resources

thus accommodating multiple consumers at a single instant of time

� Rapid Elasticity: With the increase or decrease of demand, resources/services can be

provisioned or released at runtime

� Measured Service: Like any other utility, service can be measured in terms of its usage

and control

1.2 Cloud Computing Service Models

In the world of information technology (IT), three general service models are defined, followed

by other emerging models of cloud as stated by research community:

1.2.1 Infrastructure as a Service (IaaS)

Consumers utilizing IaaS model have full access to resource fabric which includes virtual

machine (VM) instance, its operating system image, storage and configuration. However,

consumer does not have control over the underlying infrastructure of the cloud as the physical

details of the VMs are taken care by the provider of the service. Web hosting companies are

example of such model that charge for their services to manage files and web pages on their

servers. Virtual Private Servers (VPS) provide access to entire server as a dedicated server

solution including operating system (OS), hosted web applications and configuration while

hardware dependant details are usually provided at an abstract level to users. This mechanism

also allows the provision to subdivide the physical machines further into logical servers for the

6

scalability purpose. IaaS resource requirements can be configured, installed and monitored using

vendor specific APIs or web based control panels. Amazon, CloudNine, Microsoft, Rackspace

and WebFusion are some of the examples of IaaS providers.

1.2.3 Software as a Service (SaaS)

As the name suggests, consumers utilizing SaaS model have provision to execute user

applications, being hosted on the provider’s cloud infrastructure. Through a thin cloud interface,

user applications such as Google Docs, online games and web based email servers can be

accessed and executed at any part of the world. In this model, the burden of configuration or

other operational activities of the servers, hardware, network and storage are not the

responsibility of users. However, SaaS is different from the ordinary shared server in a sense that

it holds the concept of container where the website is in a virtual container that can be physically

moved from one place to another (may be on a better hardware whenever and howsoever

needed) without interrupting the service [8]. RackSpace Mosso and WebFusion are well known

SaaS providers in cloud computing.

1.2.4 Platform as a Service (PaaS)

Google Apps and Microsoft Azure are examples of such model. In this model, users can develop

and execute applications hosted on the cloud. Application, web development and configuration

tools are available so users can manage their work conveniently. However, they acquire a portion

of control over the configuration of the pre-configured cloud environment. Clients can invoke

services that are implemented over the cloud using REST and SOAP based protocols.

Application scalability, availability and security issues can easily be managed by the consumer

of the service through pre-installed rich platform services and scripts [8].

1.3 Deployment Models

1.3.1 Public Cloud

Cloud vendors offer their cloud resources as public to their end user based on pay as you go

pricing policy. The services provided by such clouds may be free for end users or based on

subscription model. Such clouds can be managed by institutions from different areas such as

business, organizations and research community. Organizations having spike period of workload

may use this model for their resource provisioning, for instance an online game may face

7

availability issue in case of gaming events and hence spare capacity is required. Since

procumbent of additional resources is not a feasible option as these resources may be

underutilized during valleys, hence this model provides a better alternative to reduce additional

investment costs. Google cloud services, Amazon web service, online games, web based email

servers are best examples of public cloud.

1.3.2 Private Cloud

These clouds provision their resources to specific communities or organizations in an isolated

environment. Such a model is motivated to be used when jurisdictional or regulatory laws govern

data privacy and security issues. Amazon provides private clouds as Virtual Private Cloud (VPC)

and Virtual Private Network (VPN) [8]. By utilizing a private cloud, an organization is lowering

the expenditures that are required to keep up the resources and the virtualized environment to

meet the business needs. Such clouds are hosted and managed either internally by the

organization or externally or by any third party.

1.3.3 Community Cloud

This model is developed and deployed for specific collaborative organizations with common

concerns to share infrastructure and available resources. An example is different government

departments sharing IT resources [8]. The costs are spread over few members, just like a public

cloud, so it better accommodates the budget of the community for investing in the establishment

of its own infrastructure.

1.3.4 Hybrid Cloud

A cloud infrastructure with combination of two or more above stated deployment models is a

hybrid cloud infrastructure. The services are composed of multiple cloud services, thus

increasing the capacity of the service being provided. The deployed model may be unique in its

properties but may rely on the standardized technology for data and application portability like

cloud bursting for load balancing [1]. As an example, if a project is not getting sufficient services

from its private cloud, it may connect to the public cloud, rendering services whenever needed.

Such composition and integration of service would be able to manage better workload during

spike period.

8

1.4 Commercial Clouds

1.4.1 Amazon [9]

Amazon Web Service (AWS), the pioneer of cloud infrastructure services, was launched in 2006.

Amazon, being ranked 35 among Fortune 500 companies, has an estimated US$ 2.1 billion

earning in 2012. AWS provides computational, storage, networking, deployment, management

application services, database and much more. Amazon products are offered through control

panel as well as Amazon product API which is a well defined set of APIs adopted as open

standard by several other cloud architectures such as Enomalism [10], Eucalyptus [11] and

OpenNebula [12]. Amazon, with 7000 consulting partners and more than 3000 technology

partners, offers cloud services in ten different regions.

1.4.2 Google Cloud Computing [13]

Google entered in cloud computing market with the launch of Google App Engine in April 2008.

Google released Object Storage Service in 2010 and Compute Engine in 2012. Google offers

services like storage, big data, Apache Hadoop, mobile applications, gaming solutions and many

more.

1.4.3 Rackspace [14]

Rackspace entered in the cloud market in 2008 following the company’s acquisition of Slicehost

[15]. The company has 6 data centers in different parts of the world. The company, with over

4800 employees, has revenue of US$ 1.3 billion in 2012. It offers services like Windows and

Linux instances, storage, CDN and many more. Rackspace has also strong integration support

with open source cloud platform OpenStack [16].

1.5 Inter-Cloud
In cloud, provisioning of computing resources is offered in the form of Virtual Machines (VM),

being deployed on physical computing nodes. Cloud data center needs to be efficient and

scalable to connect thousands and even thousands of thousands of such physical machines.

However, installation, configuration and management of these hardware resources pose an

important problem: Time-varying patterns of cloud load over different data centers. Usually,

maximum utilization of cloud resources is observed during daytime while cloud usage remains

downward during nights or weekends [17]. Data center capacity needs to be increased if a cloud

provider (CP) is aiming to provide its services to all users, resulting in huge capital investment

9

along with the maintenance cost incurred during the service lifecycle. This over-provisioning of

resources can result in under utilization of computing nodes during valleys resulting in overall

increase in service cost and price. On the contrary, if maximum utilization is the primary

objective, data center capacity needs to be scale down to support average number of user

requests. This forces the provider to reject user requests during peaks. This will result in the loss

of revenue as well as loss of reputation/ trust of future cloud consumers [18].

The classic cloud computing model where services are provided by a single vendor introduces

numerous challenges. Cloud services may be interrupted due to unavailability, natural disaster or

abrupt increase of the load. Although one of the key features of cloud computing is the illusion

of infinite resources, capacity in cloud provider’s data centers is limited and eventually can be

fully utilized [18]. Under such circumstances, the system may not be able to provide services to

thousands of customers who solely rely and pay for resources.

There have been several cases of service outage during the past few years. A classic example is

Amazon’s data centers (northern Virginia) server failure whose implications were very serious

for the customers who relied on those data centers. Some data from customers was irretrievably

lost [19]. An important lesson learnt from this failure, as suggested by Daryl Plummer a cloud

expert and Gartner research fellow, not to put everything at risk with just one data service

provider [20]. Following the incident, many companies reverted to on-site servers to cope service

downtime. However, some large service consumers, including Priceline, Netflix, SmugMug and

Zynga, suffered little outage as their services were spread across different data centers.

Furthermore, data protection regulations/ legislation may vary in different countries. For

example, customer information according to Swiss law has to physically reside within

Switzerland. As another example, German citizen employee information cannot be processed by

IT systems outside Germany, without written approval from the employee [21]. Since a medium-

sized cloud vendor cannot operate in all regions across the globe, a mechanism is required by

means of ‘network of clouds’ (Inter-Cloud) where different cloud networks may mutually

cooperate to provide efficient, flexible and scalable service quality through inter-cloud systems

and compete against bigger cloud providers in the market [22]. Inter-Cloud network model,

being presented in figure 1.3, can be formally defined as:

10

“A cloud model that, for the purpose of guaranteeing service quality, such as the performance

and availability of each service, allows on-demand reassignment of resources and transfer of

workload through a [sic] interworking of cloud systems of different cloud providers based on

coordination of each consumers requirements for service quality with each providers SLA and

use of standard interfaces” [23].

Fig. 1.3: Inter-cloud Network Model

1.6 Research Motivation
Much research effort has been made in different areas of cluster, grid and cloud computing

focusing on the addressing research issues like negotiation [24], [25], provisioning of resources

[26], [27] and resource monitoring [28]. One of the recently emerging areas in cloud computing

is deployment of virtual machines across multiple clouds based on providers’ ranking. This

involves benchmarking of different cloud providers [29], [30], [31], [32], development of

different techniques for selection of candidate providers [33], [34], frameworks for ranking cloud

providers [35], [36] and monitoring SLA violations [37].

However, most of the researches, cited above, deal with cloud providers operating in isolation. In

cloud federation, a broker performs or facilitates multiple clouds to share resources. Cloud

broker acts as an intermediary between resource consumers and producers [38]. Cloud

consumers can find best provider and service through the matchmaking process of cloud broker

11

[39], [40], [41]. One of the critical concerns in this environment is the provisioning of optimal

software and hardware resources to ensure a better QoS [22], [42]. However, considering the

nature of cloud federation where resource demands and load spikes are unknown in advance, the

task of mapping incoming job requests to cloud resources becomes more challenging. The

situation becomes more complicated with the growth of cloud providers in a federation as the

selection of optimal clouds, meeting QoS requirements of user jobs become increasing difficult.

Often one cloud provider may provide cost effective services for computational intensive jobs,

they may be expensive for data storage services. Since power and other incurring charges may

vary over different regions, a single cloud provider may also offer same infrastructure services

but with different pricing schemes. Considering the diversity of such an environment, it is a

major challenge for cloud consumers to select the right ‘cloud provider’ that may meet their

requirements. It also involves trade-offs between critical and non-critical functional and non-

functional requirements to select a best match. Hence, evaluation of different cloud providers in

an objective way is necessary to satisfy user quality requirements which may change constantly

in such a dynamic environment. It is not just sufficient to discover and coordinate multiple cloud

providers, but it is also important to evaluate which is the most suitable cloud provider [43]. QoS

Manager is a crucial component in the broker operating in federated environment as it is

responsible of acquiring the virtual resources from the providers and ensuring that the negotiated

QoS is being delivered [22], [44].

To satisfy the aforementioned requirements, cloud broker needs to be more SLA aware to

identify the candidate cloud providers based on QoS requirements. Since these requirements

change may vary on individual job to job basis, ranking and monitoring cloud providers’

performance is an important area of research for dynamic allocation of resources under dynamic

environment of ‘network of clouds’. Most of the existing literature is focused on employing

centralized approaches for overall system ranking and monitoring, however, these approaches

are not efficient for an environment where job migration and auto-scaling of virtual machines

take place across cloud boundaries [42].

12

1.7 Research Problems and Objective
This study deals with the issues involved while selecting a best-fit IaaS candidate among a set of

cloud providers for a particular set of quality attributes. During this study, following issues arise

which are categorized as under:

1.7.1 Benchmarking

� How can different IaaS cloud providers be benchmarked for a particular set of quality

attributes?

This involves investigation of different tools, techniques and methodologies for

benchmarking IaaS cloud service providers. A final comparison table is generated

mapping QoS with associated ranked values that can be used as an input for selecting

candidate cloud providers based on particular QoS requirements for a job at run-time.

1.7.2 Provisioning of Resources based on QoS Ranking

� How can a generic broker based QoS ranking and resource selection framework be

designed for discovery of best-fit candidates?

The design and development of resource selection framework based on QoS ranking

algorithm for selection of candidates cloud providers is proposed and the model is

validated through necessary experiments.

1.7.3 Monitoring SLA Violations

� How can a monitoring component be deployed to monitor SLA violations and identify

necessary migration strategies across multiple clouds?

This phase involves development of monitoring components along with risk alerts to

detect any SLA violation during job execution. Necessary migration strategies are

developed to enforce job execution with SLA constraints.

1.7.4 Deployment and Testing

� How can the proposed framework and resource provisioning policies be evaluated?

There were two possible directions to address this issue: using cloud simulators or

evaluating usage scenarios on real cloud test-beds. Initially, the proposed model was

evaluated through CloudSim simulator. However, simulators allow limited set of

13

capabilities and these results cannot be generalized, so the proposed framework was

evaluated on heterogeneous IaaS cloud providers where performance of the proposed

model was validated at run-time.

To tackle the above mentioned challenges, the aim and objectives of the study are summarized

below:

� Examine benchmarking techniques and associated tools that may help finding necessary

statistics about cloud service providers. Cloud performance based on QoS parameters is

assessed so that income job requests may be mapped to best cloud providers.

� Look into necessary tools and techniques to generate Service Level Objectives (SLOs) to

model monitoring services necessary to enforce SLA biding.

� Evaluate proposed framework based on QoS preferences using real cloud testbeds such as

Amazon AWS, Google Compute Engine and Rackspace Cloud. Since in this study,

intended cloud platform is IaaS, VM instances from the popular cloud vendors were

leased for performance evaluation as well as benchmarking and ranking based on quality

attributes. This resulted in productivity of real world statistics as well experiment

repeatability for other researches in the similar directions.

� Implement a broker prototype to evaluate study results on real cloud infrastructure

� Implement negotiation strategies in broker based multi-cloud environment for better

resource utilization among cloud providers.

1.8 Methodology
The first objective of this research work was the development and evaluation of a QoS based

ranking framework for IaaS computing resources across multiple clouds for resource negotiation,

provisioning of physical resources, monitoring and ranking, based on job execution experience.

A significant part of the effort was put on benchmarking cloud providers for the services they

offer, integration of multiple cloud providers through a common API and management of job life

cycle: job submission, run-time execution and performance evaluation for benchmarking a cloud

provider for a particular set of quality attributes.

The research methodology consisted of the following steps:

14

� Experimentation: Different benchmarking tools such as Bonnie++, IOZone, IPerf,

SPECjvm, Phoronix Test Suite Suites are used to gather necessary statistics about IaaS

metrics (Processor, Memory, Storage and Networking capabilities).

� Mathematical Modeling: A ranking based algorithm was developed and validated to

prioritize cloud vendors based on quality attributes involved during SLA agreement.

� Prototyping: Initially, the proposed model was evaluated through CloudSim simulator.

Based on the results, a broker based federation of multi-cloud environment, using JCloud

API of different cloud vendors, was developed to validate this proposed model.

1.9 Thesis Organization
The outline of thesis is presented in figure 1.4 which shows the structure of thesis chapters. The

remainder of thesis is as under:

Chapter 2 describes a taxonomy and survey of cloud service selection, ranking and

benchmarking taxonomy. The proposed broker based resource provisioning framework,

negotiation mechanism and QoS based Ranking algorithm is investigated in chapter 3. Chapter 4

presents the methodology, workload model, benchmarking and experimentation design.

Simulation and real work experimentation results are discussed in chapter 5. Finally, the thesis

concludes in Chapter 6 by discussing conclusions and exploring future research directions.

Fig. 1.4: Structure of ThesisFig 1 4: Structure of Thesis

Literature

Review

Broker

Architecture

Workload, Experiment Design,

Benchmarking, Experimentation

Discussion &

Future Work

15

Chapter 2: Related Work

Quality of Service (QoS) is a broad topic in the field of computer networks and distributed

systems. It refers to guarantee a certain level of conformance for the resources under provision

[45]. Although various QoS standards are available for other fields of computer networks, much

research is still needed to define QoS standards and metrics in the field of cloud computing [46],

[47]. However, some proposed methodologies for QoS metrics classification are as under:

� Qualitative vs. Quantitative: Quantitative QoS metrics refer to the features that can be

expressed and measured in units such as reliability, availability and latency, while

qualitative metrics are based on user’s experience such as trust and reputation.

� Deterministic vs. Non-deterministic: Deterministic QoS metrics include attributes that

are known before a job is submitted such as price of service. On the other hand, non-

deterministic are uncertain at the time of invocation such as response time [48].

� Runtime related: This group includes metrics that can be calculated dynamically such as

scalability, elasticity, fault tolerance and latency [49].

QoS details are mostly provided in Service Level Agreement (SLA) document, a legal binding

between the service consumer and the cloud provider [50].

2.1 Service Selection Taxonomy
Service selection based on some given preferences has remained a topic of interest for cluster,

grid and service oriented research community. In such an environment, resources are represented

as components or web services and researchers have proposed different techniques to find the

optimal solution by filtering and selecting the best matches among them. Since this scenario also

applies in cloud computing where different models are presented as services, cloud computing

researchers can be benefited by the techniques proposed for other distributed paradigm. The aim

of this section is to explore different research techniques directed to address service selection

issues.

16

2.1.1 Process of Service Selection

Under such selection process, after the user job is submitted to job admission controller, several

steps take place before a particular service is invoked. User requirements are modeled and

formulated with necessary objectives and constraints. As an example, the authors in [51]

addressed the issue of bandwidth as service selection criteria. Then different decision making

strategies are applied to nominate the best fit candidate among a list of services.

The authors in [52] proposed an algorithm to filter a set of services from a service pool based on

user preferences. Their work, based on QoS modeling, enables user to query and invoke services

from a pool of services. A four-stage process is applied to retrieve the best fit service according

to the user requirement. Initially, user submits QoS criteria along with relevant priorities to the

search process. Search process matches all the services that meet the description requirement of

the user. The filter step removes the services that do not meet the QoS constraints of the job and

the rank process sorts the list according to the QoS priorities of the user job. Users can then

select the best-matched service among the list of services. Finally, the update search module

saves these heuristics so that decision about subsequent requests can be made based on user’s

experience.

A QoS based service composition algorithm (LOEM) is presented in [53]. The study addressed

the issue of maximizing utility function based on user QoS criteria. Multiple service composition

requests can be submitted by users in a single job. To model this architecture, a chain of services

is grouped together to meet the user QoS preferences. Since the problem of finding optimal

combination of services from a pool of services is NP hard, efficient estimation for efficiency is

achieved through pareto-optimal solutions. The proposed algorithm first filters out services that

do not match or provide poor utility then they introduced two variables: h as number of services

and n as total number of services where � �� services are selected as candidate services.

Afterwards, mixed integer programming is used to select pareto-optimal solutions.

The authors in [54] investigated QoS criteria for provisioning cloud services and analyzed

different issues associated with cloud platform. Firstly, they used SLA as driving force for

meeting QoS requirements. SLAs in their approach specify requirements for every actor of the

17

system and provide a mechanism for QoS requirements, obligations and penalties in case of

violations. Secondly, a model is proposed involving cloud vendors, users and consumers where

users are service providers and end-users are application consumers. Services providers play a

key role in their proposed approach as they have to create two SLAs: one for cloud provider and

the other for cloud users. The authors viewed cloud model through business centric approach

where profit maximization was the key goal while considering user QoS requirements. Four

different scheduling schemes are introduced in their approach. First is the ‘acquisition of VM’

where an incoming request is assigned a new VM. Second is the ‘wait’ where a request is put in

the queue until resources are available. Third is ‘insert’ where a request from the queue is

inserted as soon as resources got available under the constraint that SLA should not be violated

and finally ‘penalty delay’ where SLAs can be violated in favor of job execution. These four

schemes provide a balance between QoS requirements satisfaction by users and profit at

providers’ end. These policies are orchestrated in a way to achieve maximum profit. If the utility

of these policies is poor, incoming user request is rejected.

A prototype model was proposed for QoS based workflow execution systems in [55]. The system

aimed to capture and publish QoS related requirements from the running modules in a service

index. The proposed design is composed of three different modules. Coordination between

different components of the system is handled by workflow manager. At each cloud platform,

workflow enactor component is deployed which is capable for workflow execution. This

component is also responsible for comparing and monitoring processes according to QoS

requirements defined in service level objectives. If any violation is found, it triggers an alarm

which is handled by which is responsible for workflow execution.

The authors in [56], [57] proposed ontology based framework for modeling user preferences,

being considered as an optimization problem. They presented service discovery and composition

process focused on semantic web services. Their work is based on their previous research [58] to

utilize semantically described utility functions for defining user preferences. The proposed

optimization problem can be solved using dynamic or constraint programming. In their work,

QoS details are extracted from semantic description of web services. These values are then

linked to user requirements which generate utility function based on QoS criteria. To retrieve the

18

specifications of required optimization, XSL transformation is applied to the utility functions.

Although, constraint satisfaction optimization problem is selected for optimization problem but

various other techniques can also be applied using XSL meta-data [59].

Cloud services can be diverse in nature and may depend on multiple criteria (pricing policy, cost

performance and so on). Hence, a methodology is required to select cloud services made up of

different criteria to map user requirements. The complexity of services and number of available

options have complicated the process of service selection. A multi-criteria cloud service

selection methodology has been proposed in [60] to select services based on multiple

requirements. The selection process is based on the best matched vector table for a user

requirement criteria vector against all service descriptor vectors. In the first step of the process, a

weighted difference is calculated by subtracting user requirement vector from a list of decision

matrix. To compute the conformity of each service to the user requirements, the product of

matrix and transpose of user requirements is calculated. An element with the minimum value

corresponds to the best matched service for the given set of requirements. In the second step, the

effect of mutual cancellation between criteria exceeding above or below is restricted by

multiplying the matrix by scalar -1 followed by replacing each element

by �power of respective element . The novelty of the proposed approach is the ability to diminish the

influence of any criteria that exceeds user requirements.

The authors in [61] proposed a two-step algorithm for cloud service selection. In the first step,

services in a hierarchical structure are probed to filter a list of available service. In the second

step, an optimized service selection process is performed to select services with maximum gain

and minimum cost being incurred. Clients can access services using centralized or distributed

service proxies. The locality and replications issues are addressed so that users can invoke cloud

services from multiple proxies based on service types, geographic area and preference setup.

A cloud service provider indexing structure has been proposed in [62] to capture similarity

among various properties of service providers. In the designed structure, different properties such

as service type, quality of service, measurement and pricing units have specific locations to be

stored and retrieved in an index, developed in B+ tree. Based on this index, a service selection

19

algorithm is proposed to aggregate list of services and to provide ranking of potential service

providers. A refinement process is used to further reduce the number of service providers that

need to be fully examined. The authors proposed a design structure based query algorithm to find

� best vendors close to optimal for each desirable service, started from a best cloud provider with

an ascending order to search for a list of best providers. The proposed algorithm is compared

with a baseline brute-force algorithm which shows that the performance of proposed algorithm is

100 times faster for 10,000 service providers.

2.2 Taxonomy of Service Ranking
One positive sign for cloud community market is the great deal of competition being faced by

major cloud vendors [63]. This may result beneficial in terms of better QoS, available choices for

low price resource selection and introduction of interactive and creative services. However, it

may pose the issue of vendor selection as cloud market is growing at rapid pace. In this section,

different techniques proposed in the literature to address this issue are reviewed.

In cloud computing marketplace, multiple cloud providers are available with the same functions

but with different QoS attributes. The authors in [35] opined to evaluate cloud providers in an

objective way to find the most suitable ones. The proposed framework SMICloud, based on ISO

SMI [64], is a cloud services evaluation framework that addresses the issue of cloud provider

selection based on benchmarking of services and feedback from user experiences. ISO SMI KPIs

are used as an assessment tool to compare and evaluate cloud services. The novelty of their work

is the classification of requirements where users can specify requirements as essential or non-

essential. By using different QoS metrics, they addressed the issues of measurement of SMI

attributes and ranking of cloud providers based on these attributes. As a case study, different

cloud vendors were compared using Analytic Hierarchy Process (AHP) by investigating

performance heuristics from past researches. Based on these measures, cloud vendors were

ranked according to services they provide.

The authors in [65] argued that quality of services of external services in SaaS is uncertain till

these are not rendered. Normally, QoS attributes show randomness during different time

intervals. For this, quality of services that is addressed by service provider, and QoS preferences

that are aimed by user should be addressed in a systematic and coordinated manner. Normally

20

users cannot describe QoS values at a precise but may express the values in a range. So, the

authors proposed SaaS service selection for group user with interval numbers and worked on for

three quality attributes reliability, reputation along with price to obtain a group of optimal

services. The result of experiments for QoS values of four alternatives demonstrated that the

proposed approach has linear or polynomial time complexity, so it is an effective and fast

approach.

A service ranking system (SRS) was proposed in [66] that considers both static and dynamic

aspects of cloud systems. User feedback is not considered while ranking cloud providers in static

approach while dynamic ranking takes into account the user preferences. Seven attributes:

throughput, availability, reliability, cost, response time, security and user feedback are

considered for services selection and ranking. During the first stage of proposed algorithm, user

is prompted to prioritize most important attributes. Then qualitative values of these attributes are

calculated by service monitoring. Afterwards, user is asked to weight these attributes where

cumulative weight of these attributes should be equal to one. Finally, value of every attribute is

multiplied by weight and these values are sorted as ranking result. Since, in static ranking, user

intervention is not required so the system assigns weights based on stage 2 and 4. A repository of

cloud services along with performance information can be an add-on for better result

formulation.

The authors in [67] proposed a quality of experience (QoE) aware cloud service ranking

approach based on Markov chain for integration of QoE metrics for optimization of ranking

results. QoE is a term used to describe overall system performance from user perspective and it

is widely adopted for evaluation of multimedia services. The proposed approach not only

addresses the ranking of individual services but a prediction model is also applied to assure the

reliability of ranking. The process starts with user preference ranking of services which are

dispatched to user evaluation component. This component employs clustering algorithm to users

group based on preferences. The cloud service monitoring component collects historic data from

services at runtime. For user incoming request, cloud service selection component invokes cloud

ranking component to take necessary decisions based on user group level.

21

The authors in [68] argued to measure qualitative values of services before any comparison is

being made. They ranked different services based on prediction of qualitative values. In

traditional model of evaluation of service components on stand-alone systems, different service

calls can be invoked to predict the overall performance; however, this may not be a case with

cloud computing which involves different layers of abstraction between a service call and the

response. They argued that measuring performance at server end could be a reasonable solution

to calculate performance values for different parameters which may be close to what providers

normally claim. However, the case may vary with qualitative values as these values are based on

user preferences and evaluation of such parameters can be tested from client side. The proposed

approach, CloudRank, applies qualitative values of service prediction from client side. There are

two types of users in the proposed design; normal users with different requirement levels and

active users who rank the system based on certain parameters. A data repository is used to store

user information along with suggested ranking of services. The system comprises of three

components; a similarity computation measures similarity values for all active users based on

comparison from data repository. The classification component clusters users based on obtained

similarity values. Finally, the ranking component executes ranking algorithm and shows the final

results to the user. To evaluate the QoS ranking prediction accuracy, a large-scale real-world web

service evaluation data including 300 distributed users and 500 real- world web services, all over

the world, was collected. Normalized discounted cumulative gain metric was used to evaluate

ranking results. For these 500 real-world web services, each user invoked each web service for

one time, a total of 150,000 web service invocations were conducted. The response-time and

throughput values of each invocation were recorded. Experimental results demonstrated that the

proposed approach outperformed other rating-based approaches and the traditional greedy

methods.

The ‘aggregate approach’ proposed in [69] is based on different performance benchmarking as

well as input from users about service ranking. User feedback is aggregated in the benchmarking

results for comparison and ranking of services. Performance results from benchmarking and user

feedback are considered as objective and subjective assessment respectively. The proposed

system comprises of four components. The first component, cloud selection service, aims to filter

services that satisfies user’s requirement without involving their qualitative value. This

22

information is forwarded to other components of system for further evaluation. The

benchmarking component is responsible for performance analysis and testing. The user feedback

management component is assigned the responsibility of fuzzification of qualitative measures

and it produces a series of fuzzy numbers which can be used by rules based engine for

comparison of data. The final component, assessment aggregation component, returns candidate

services through performed assessment by other components of the system. For the experimental

purposes, two cluster systems were evaluated to test effects of job submission intervals,

scheduling policies, and different categories of workload on the reported metrics of the systems.

Three sets of experiments were performed to evaluate and rank two cluster systems. During the

first experiment, five jobs were submitted at the same time, each job was assigned to process 8

GB data. Each job had 160 map tasks and one reduce task. In the second experiment, only one

job was executed to process 40 GB data. According to the Hadoop configuration, the job had 720

map tasks while the configuration of mapred.reduce.tasks was set to five to match with first

experiment. Experiment three was repeated with the same configuration with a minor adjustment

in map tasks which were reduced to 360. Based on the experimental results, it was concluded

that different categories of workloads may affect the system under test for different evaluation

metrics and hence necessary customization is somehow required for benchmarking suits,

according to the user requirements.

The authors in [70] proposed SLA matching approach to define cloud provider capabilities for a

given quality requirement through matching SLA parameters. A four step process is involved

while assessing cloud provider. The first step is to create cloud model (a RDF file) CloudC that

lists cloud resources and their quantities, properties and a requirement model (RDF file) CloudR

that mentions job required resources and its quantities. Then these models are transformed into

graph structure using Jena API. Next step is to find pair-wise connectivity graph and induced

propagation graph. Finally mapping between two models is performed using RDF Schema to

determine they are equal, sub-class or super-class equivalent.

Table 2.1 presents a brief comparison of different schemes based on some commonalties, while

considering the above discussion. It can be inferred from the table that mostly QoS attributes are

treated as general requirements while requirements from users are mostly considered as equally

important in most of the frameworks. In case of CloudRank, necessary training data in the

23

framework is stored which can be retrieved by querying the QoS values provided by other users

or by the QoS values collected through monitoring cloud services, while this concept is not

addressed by other researchers.

Table 2.1: Comparison of Different Cloud Ranking Frameworks

Framework Technique QoS

attributes

Classification of

requirements

Knowledgebase

SMICloud [43] AHP SMI (ISO) Essential/ Non-

Essential

None

SRS [66] Weighting Pre-defined None None

CloudRank [68] Prediction Generic None Yes

Aggregation [69] Fuzzy logic Generic None None

SLA Matching [70] None SLA None None

2.3 Benchmarking Taxonomy
Benchmarking is the process of measuring services and products based on performance metrics

to industry best practices and standards [71], [72]. It is based on certain indicators resulting in a

metric form performance that can be comparable to other processes and products of similar

nature. Cloud vendors offer heterogeneous types of resources such as computational, storage and

network services with different level of quality of service. Before ranking a particular cloud

provider, it is necessary to benchmark its performance based on industry best standards to

compare the actual performance in contrast to the stated QoS which may vary over time.

Different providers offer different resource configurations and use different pricing and

provisioning models, and, while information about pricing levels and specifications are publicly

available, there is limited information about the resource performance levels. This is important

for organizations looking for first opportunities to migrate their in-house IT systems to the cloud.

They would like to obtain a quick assessment of the price/performance levels of different IaaS

providers to match their specific business needs. However, no two vendors offer the same

resource configurations, pricing and resource configuration, making the task of selecting

24

appropriate computing resources complex, expensive and time-consuming. By combining the

benchmark results with pricing information, enterprises can better identify the most appropriate

cloud providers and offerings based on their specific business needs. Benchmarking as a Service

(BaaS), the process of performance benchmarking of cloud infrastructure, may provide a future

extension to existing cloud services.

From 2010, more and more cloud benchmarks are being developed. Smart CloudBench [73] is a

platform that automates the performance benchmarking of cloud infrastructure by incorporate

price as a metric. It collects a number of performance metrics for TPC-W benchmark on twenty

different cloud server types under variable load conditions, including average response time,

maximum response time, total number of successful interactions and total number of timeouts. It

also calculates the standard deviation of average response time to determine the consistency.

Then, the benchmark maps the performance metrics with the cost of the system configuration.

Therefore, if users have a budget and performance requirements, they can easily shortlist the

candidates from a list of different resource configurations. Even though simple load tests were

performed during tested experimentation, the results show the value of having such a

benchmarking tool by highlighting that price does not necessarily translate to performance (and

its consistency) on the cloud, and that users do not necessarily benefit by procuring the most

powerful server instances. Smart CloudBench is helpful for the users to make high level

comparison of cloud offerings, but it does not provide a systematic way to compare any cloud

specific attribute.

How can applications be deployed on the cloud to achieve maximum performance? The research

[74] addressed the above question by proposing a benchmarking methodology in which a user

provides a set of weights that indicate how important memory, local communication,

computation and storage related operations are to an application. The user can either provide a

set of four abstract weights or eight fine grain weights based on the knowledge of the

application. The weights, along with benchmarking data collected from the cloud, are used to

generate a set of two rankings - one based only on the performance of the VMs and the other

takes both performance and costs into account. The authors hypothesized that by taking into

account the requirements of an application, along with benchmarking data collected from the

cloud, VMs can be ranked in order of performance and cost effectiveness so that a user can

25

deploy an application on a cloud VM, which will maximize performance. In their work, the focus

is on scientific High-Performance Computing (HPC) applications and maximum performance is

defined as the minimum execution time of an application. The value of each weight ranges from

0 to 5, where 0 signifies that the memory and process, local communication, computation, or

storage groups represented by the weight has no relevance to the application, and 5 indicates that

the group is important to the application for achieving maximum performance. Overall

benchmarking process comprised of six steps: (1) capture attributes of cloud VMs, (2) group

attributes of cloud VMs, (3) benchmark cloud VMs, (4) normalize attribute groups, (5) provide

weights to groups, and (6) rank cloud VMs. Two sets of ranks are generated; the first ranking is

solely based on the performance of the VMs and the second ranking considers both performance

and cost. The rankings are validated on three case study applications using two validation

techniques. The case studies on a set of experimental VMs highlight that maximum performance

can be achieved by the three top ranked VMs and maximum performance in a cost-effective

manner is achieved by at least one of the top three ranked VMs produced by the methodology. It

is deduced that high correlation between the ranks, which is an indication that the benchmarking

methodology with fine-grain weights, can produce results close to reality as verified through the

case studies.

While it is now widely established that running an HPC workload on top of IaaS resources

induces a non-negligible performance overhead due to the hypervisor at the heart of every Cloud

middleware, many people assume that this performance impact is counter-balanced by the

massive cost savings brought by the Cloud approach. A TCO analysis of an in-house HPC

facility was performed in [75]. This TCO model was then used to compare with the induced cost

that would have been required to run the same platform with the same workload over a

competitive Cloud IaaS offer. The approach to address this price comparison is three-fold. First a

theoretical price - performance model based on the study of the actual cloud instances proposed

by one of the major cloud IaaS actors Amazon Elastic Compute Cloud (EC2) is proposed. Then,

based on the HPC facility TCO analysis, an hourly price comparison is made between the in-

house cluster and the equivalent EC2 instances. Finally, based on the experimental

benchmarking on the local cluster and on the Cloud instances, the model is updated to reflect the

real system performance. Thus for each instance type, a pricing linear model based on linear

regression analysis is computed. The model parameters are selected based on the two steps. First

26

automated stepwise selection is performed and then from the meaningful parameters detected,

the ones that are the most representative in the model via. R2 shrinkage are manually assessed.

Among many parameters evaluated, it was established that the significant ones are: Processor

speed (GFLOPS), Memory size (GB), Disk Size (GB) and number of GPU cores. This means

that even though not all the cluster nodes have a perfect cloud instance match, it was still

possible to determine what would be its equivalent price on EC2 if that matching instance was

available. This information is later used to assess the interest of operating a given node class

regarding renting an on demand instance with the same performance on the cloud. In both

experiment sets, it was observed that for the same number of cores, the performance reached is

generally the same but with a theoretical performance more than doubled for EC2 regarding gaia.

This largely impacts the reached vs. theoretical ratio that is quite low for EC2. The results of the

updated cost model showed that operating a local HPC platform is more cost effective on the

hourly rate.

In contrast to traditional cluster computing systems, the workload in a cloud platform is much

more heterogeneous, complex and dynamic and may pose special challenges for benchmarking

efforts. These challenges arise from the characteristics of cloud file systems, including (1)

system complexity, which makes it difficult to develop request processing models; (2) workload

heterogeneity and dynamicity, which hamper efforts to identify representative workload

behavior; (3) high data volume and large cluster scale, which make it challenging to replay the

workload and reproduce system behavior; and (4) rapid system evolution, which requires

benchmarks to accommodate changes in the underlying systems. Therefore, it is still challenging

to generate realistic I/O workloads. System developers often use traditional file system

benchmarks and make inaccurate assumptions on workload generation, yielding to misleading

results. To address this problem, two-week I/O workload trace in a production cloud

infrastructure at Alibaba Cloud Computing, which is one of the biggest cloud providers in Asia,

was investigated [76]. One of key observations in earlier studies was that the request arrivals do

not follow a Poisson process. Another was that the request arrival process presents multiple

periodicities. The authors proposed a flexible framework iGen to mimic I/O request arrivals. One

of the salient features of the iGen is that the request arrival process is modeled by three statistics

properties, request arrival rate, inter-arrival time distribution, and request periodicity. According

to these properties, the iGen can determine the sequence of requests and the inter-arrival time

27

between two subsequent requests. The iGen model was then used to emulate a real workload that

collected from Alibaba cloud platform. Experimentation results were synthesized and validated

through a case study and it was employed that the request arrivals observed in the Pangu, showed

high accuracy of the iGen.

This authors in [77] reported an early-stage performance evaluation that followed the Cloud

Evaluation Experiment Methodology (CEEM) to benchmark GCE and also compared it with

Amazon EC2. By employing four popular benchmarks, the study exhibited the fundamental

performance of four GCE types, and also compared them with nine Amazon EC2 types to help

understand the elementary capability of GCE for dealing with scientific problems. Based on the

experimental results and analyses, the potential advantages of, and possible threats to applying

GCE to scientific computing were analyzed. For example, GCE would be particularly suitable

for applications that require frequent disk operations, while it may not well support single VM-

based parallel computing. Following the same evaluation methodology, even different evaluators

would be able to replicate and/or supplement this fundamental evaluation of GCE. Moreover,

according to the outcome of this study, researchers and engineers can establish suitable GCE

environments to carry out sophisticated and scientific case studies.

The private cloud is one typical cloud deployment model which is operated solely for a single

organization, whether managed internally or by a third party. It usually hosts a number of

corporate workloads, such as financial management, human resource management, internal mail,

project management, development and test and so on, shared and accessible by different

organization departments. It may also host a business critical customer-facing main website for a

business. Workload isolation becomes very important when it mixes the internal utilities and

externally visible applications. When coming to the “cloud” world, traditional benchmarks

cannot serve the needs. A cloud benchmark needs to reflect not only the runtime performance as

a traditional benchmark does, but also one or more cloud specific attributes, such as elasticity,

deployment, resiliency and recovery. A cloud benchmark generally consists of a group of

heterogeneous applications or traditional benchmarks (also called workloads) running in parallel,

and representing typical customer usage of a cloud environment within a particular use case. The

drivers simulating client loading of the workloads must include a variety of load behaviors, such

as fixed load, periodically changing load level, spiky load changes and so forth, and even more

28

complicated changes of transaction type mixtures. Additionally, the cloud benchmarking

typically requires a number of simulated activities, including periodical deployment and removal

of workloads or virtual machines, planned virtual machine or storage migrations, undesirable

malicious attacks, unexpected VM failures or middleware failures and so forth. One way of

defining benchmark metrics is based on observations of the internal mechanisms in a cloud. For

example, an elasticity evaluation may be based on measuring a resource provisioning interval in

the cloud. However, a more meaningful evaluation should be based on user-centric metrics. A

user centric metric is a component metric that can be directly measured, calculated and compared

by the cloud users, including workload consumers or the users who deploy and manage the

workload life cycles (workload deployers, managers, maintainers, and so on). Therefore, user

centric metrics are not applicable to the simulated activities that are not visible to the cloud user,

for example infrastructure-level operations and tasks. Three different kinds of workload are

introduced in [78]. Each workload represents current customer applications and system usage

within a particular domain. The workloads appropriately exercise all aspects of the system

hardware (CPU, memory, network and disk) and software (hypervisor, operating system,

middleware). The workloads integrated into the benchmark are Tradelite (a variation of the

DayTrader benchmark), the web service facet of SOABench, and TPC-E using an internal IBM

DB2 kit. Each workload has different performance characteristics and architectural

characteristics. Instead of monitoring the cloud's internal events, they can be directly measured

and calculated by the cloud users. They are the key to ensure that the cloud service provider

delivers the agreed terms of services to the cloud consumer.

The main costs associated with the hypervisor layer are its enter-and-exit operations, which can

entail significant overhead, particularly for I/O processing (including disk and network I/Os).

Different hypervisors implement I/O virtualization in different ways. Xen moves all the device

drivers to Dom0, an initial domain started by the Xen hypervisor on boot and performs I/O

processing on behalf of all guest VMs, while VMware installs device drivers in the hypervisor

layer. Either approach results in some performance overhead. Another cost source is resource

contention among co-located VMs. Virtualization promises some isolation among co-located

VMs, so that the execution of one VM doesn’t affect another VM’s performance. The isolation

mechanism works well for CPU and memory sharing, but it’s less effective for shared resources

such as processor caches (some VMs might use a lot of cache space, which can eventually affect

29

collocated VMs’ performance).The third cost source is complex virtualization operations such as

live migration and virtual clusters, which incur performance overheads for the related VMs. Pre-

copy migration, a technique that implements live migration of VMs and is widely used in both

VMware and Xen hypervisor, creates several overheads. The popular benchmarks for

virtualization environments such as SPECvirtsc2010, VMmark, and vConsolidate have two

limitations: they measure only the server consolidation scenario’s performance and leave other

important scenarios (such as live migration and virtual clusters) untouched; and they have fixed,

inflexible benchmark workloads that can’t be configured on demand to satisfy different user

requirements. To address the insufficiencies of existing benchmarking methods, a three-layer

strategy fully is proposed in [79] to evaluate VM system performance. It includes a benchmark

suite to measure various virtualization scenarios and an automated performance testing toolkit. It

can collect performance data from the hardware, hypervisor, and VM layers. A new benchmark

suite, Virt-B, is introduced that helps users understand the virtualization overhead of typical

scenarios, including single machine virtualization, server consolidation, VM mapping, live

migration, and virtual clusters. Finally, the toolkit implementation for automating the

performance testing process is presented through several case studies. It is concluded that the

proposed scenario-based three-layer benchmark method is an effective and efficient solution to

comprehensively quantify the performance overheads and detect potential performance

bottlenecks of VM systems.

An analysis of the performance of an I/O-intensive real scientific workflow on cloud

environments using makespan (the turnaround time for a workflow to complete its execution) as

the key performance metric is investigated in [80]. In particular, the impact of varying the

storage configurations on workflow performance is assessed when executing on Google Cloud

and Amazon Web Services. The study was aimed to understand the performance bottlenecks of

the popular cloud based execution environments. Experimental results showed significant

differences in application performance for different configurations. They also revealed that

Amazon Web Services outperforms Google Cloud with equivalent application and system

configurations. The Montage workflow, a well-known astronomy application, was used as a

benchmark to quantify application performance. The Montage workflow is composed of

thousands of computing jobs and manages over 20,000 data transfers. The instances of Montage

on different storage deployment configurations were executed in both cloud systems.

30

Performance metrics such as makespan were then collected to compare the efficiency of these

systems. This comparison unveils significant performance differences among configurations

revealing the impact of the bottlenecks in the storage configuration. A remarkable difference

between the application’s performance on both cloud systems was also noticed despite the

similarity of the execution environments (in terms of VM types and software) and configurations

used. The study results revealed that the standard cloud environments may present performance

issues for running I/O-intensive workflows. In particular, for workflows that operate over a large

number of small files, the performance may be poor, as noticed for the Montage workflow. It

was identified that overhead incurred on individual file transfer tends to be the culprit as well as

the performance measures obtained from workflow runs on Amazon are up to 44% faster than

runs conducted on Google.

Table 2.2 provides a comparison of above cited literature based on some study variables.

Table 2.2: Comparison of Different Cloud Benchmarking Studies

Study Model Cloud

Providers

Method Tools Metrics Comparative

Validation

CloudBench [73] Automated

Performance

Benchmarkin

g

Amazon EC2,

GoGrid,

Rackspace

Experiment TPC-W General

Performance

evaluation

None

Benchmarking

for Maximising

Performance

[74]

Weight

Based

Amazon Experiment bonnie++,

lmbench,

sysbench

memory and

process, local

communication,

computation

and storage

Case study

EC2 vs. in-

House HPC [75]

Amazon EC2

vs local

cluster

performance

comparison

Amazon Experiment IOZone Computation

and storage

evaluation

None

iGen [76] Customized

workload

generator

Alibaba Cloud

Computing

Experiment iGen Cloud file

system

evaluation

K-S test

31

2.3.1 Benchmarking Frameworks

Different benchmarking techniques and methodologies have been proposed in the literature. In

this section, the most relevant studies are reviewed and discussed:

Performance of

Google

Compute [77]

Google

Compute

Engine vs

Amazon EC2

Performance

Evaluation

Google

Compute,

Amazon EC2

Experiment Iperf, Ping,

STREAM,

Bonnie++,

NPB-MPI

Communication

, Memory,

Storage and

Computation

performance

evaluation

None

Benchmarking

Private Cloud

[78]

Automated

Performance

evaluation

based on user

centric

metrics

Not mentioned Experiment Workload

generation tools

for DayTrader,

SOABench,

TPC-E

benchmarks

Baseline,

elasticity, and

deployment

performance

evaluation

None

Virt-B [79] Automatic

benchmark

suite for

single and

virtual

cluster

Local

Datacenter

Experiment SPECjbb,

IOzone,

Sysbench,

Webbench

Performance

evaluation of

single machine

virtualization,

server

consolidation,

VM

mapping, live

migration, and

virtual clusters

None

I/O-Intensive

Workflow on

Google and

Amazon [80]

I/O-Intensive

Workflow

benchmarkin

g between

Amazon and

Google

Clouds

Amazon,

Google

Experiment Montage,

Pegasus

workflow

management

system

Performance

evaluation of

disk I/O and

network

benchmarking

None

32

2.3.1.1 CloudCmp [32]

Migration of legacy systems to current state of the art is a challenging issue for industry

practitioners and enterprise developers. CloudCmp is a framework aimed to estimate the cost and

performance of legacy systems while porting and deploying it over the cloud. Three phases were

involved in this process: In the service benchmarking phases, six cloud vendors (including

Google AppEngine , Amazon AWS, Microsoft Azure , GoGrid, and Rackspace) were selected

considering the web application deployment features necessary for cloud computing services.

Four types of service benchmarking were applied including elastic compute cluster, persistent

storage, intra-cloud networking, and wide-area delivery networking. Every cloud provider was

assessed for performance and associated cost by running a collection of benchmarking test

application. Since portability was a key concern in this environment, cloud services were tested

using SPECjvm2008 Java benchmarking toolkit. The performance of individual services was

tested by measuring starting and finishing time while cost effectiveness was measured by the

cost per task. Server response time was measured by the time a VM was requested and when the

VM was provisioned. However, this metric is limited considering the fact that not all services

allow scaling request in this way. To measure the performance of storage system, total time to

insert random records from data table was measured. This test showed the correlation between

table size and disk operation which has a significant effect on the performance. Two types of

network services were tested in this framework: Inter-cloud network was tested using iperf tool

to establish a paired connection between two ends, measured available bandwidth and response

time while wide area network was tested by sending ICMP ping requests to calculate network

latency and packet loss. The second phase of application workload collection was aimed to

represent workload of a user’s legacy application. It was concluded that this can be achieved by

collecting the application’s request traces and driving an execution path for each request. In the

final phase of performance prediction, each cloud provider profile and representation of

workload was used as a measure for legacy applications to predict total running time and total

cost of running time.

2.3.1.2 CloudStone [81]

CloudStone is a University of California, Berkeley open source project aimed at characterizing

workload of social network websites using web 2.0 applications. The goal is to provide a

33

benchmark for investigating fair performance assessment of implementation decisions under

different deployment environments. The framework offers various AMI’s (virtual machine

image files compatible with Amazon’s Elastic Compute Cloud) to facilitate the workflow.

Cloudstone is based on three components: Olio, a work load generator and social event calendar

that may support thousands of online users. A collection of open source tools for database and

metric formulation for experimenting Olio on Amazon EC2 and a set of parameters for

calculating the cost per month of applications under deployment.

The cloud benchmarking approach reflects the overall transaction performance of one specific

application running over the cloud. The benchmarking results are intended to show the

maximum number of users that can be served with one setup consisting of a virtual machine

type and software configuration [29]. Furthermore, Cloudstone does not define a procedure to

evaluate the cost of virtual machine migration [82].

2.3.1.3 HiBench [83]

HiBench, originally proposed by Intel Company, is a Hadoop benchmarking suite involving

BigData storage and processing. It is aimed to characterize and evaluate Hadoop’s parallel

computing component (MapReduce) and database component (HDFS). A total of 11 workloads

tasks were chosen for benchmarking including microbenchmarks, web search tasks, machine

learning tasks, and HDFS benchmark. Different workload schemes are presented including

WordCount, TeraSort , Bayesian Classification, K-means Clustering as an input to evaluate

Hadoop performance. Although HiBench benchmark suite includes a wider variety of jobs, yet it

fails to capture the different job mixes and job arrival rates that one would expect in production

MapReduce clusters [84].

2.3.1.4 Yahoo Cloud Serving Benchmark (YCSB) [85]

Yahoo Cloud Serving Benchmark is a framework for benchmarking different cloud database

storage and distributed data serving systems such as Cassandra, HBase, and PNUTS. YCSB

emulates a synthetic workload generator that can be parameterized to vary the read/write ratio,

access distributions. It was originally designed to evaluate Key-Value stores and hence primarily

designed for single key operations or scans [86]. It can be configured on scalable serving system

for database operations (read, insert and delete). Based on these operations, it measures database

performance for throughput and response time. The framework consists of two layers: First layer

(performance) is for general performance evaluation and here, latency is calculated as throughput

34

is increased. The Second layer- (scaling) analyses system performance through scale-up and

elastic speedup by adding more machines to the system. Five different types of random

workloads were used including Workload A (50 percent reads and 50 percent updates),

Workload B (read heavy workload), workload C (read only), Workload D (read latest) and

workload E (short ranges). The YCSB package includes a standard workload executor for the

core package to test the measures of performance, scalability and elasticity of serving servers.

2.3.1.5 CloudSuite [87]

CloudSuite is a benchmarking suite for scale-out datacenter services involving massive amounts

of human-generated data. Scale-out workloads have many inherent characteristics that place

them in the distinct class of desktop, parallel and traditional server workloads. These workloads

operate across a large number of machines to process large datasets that usually do not share any

state. In the research study, performance counters were analyzed for micro-architecture behavior

for a wide range of scale-out workloads. Key sources of inefficiencies in frontend core and L2

cache, data-access and bandwidth were analyzed and identified. The results show significant

over-provisioning of core micro-architectural resources as well as out-of-order execution elides

stalls due to memory accesses. The results also suggest that the memory system behavior is

closely related to traditional online transaction processing work-loads such as TPC-C, TPC-E

and web backend. However, the workloads differ considerably from online transaction

processing such as TPC-C. Further research in this area will result in widening the mismatch

between the scale-out workloads and future server processors.

Table 2.3 provides a comparison of above cited literature based on some study variables. As

shown in the table, CloudCmp supports both IaaS and PaaS platforms while all other frameworks

are aimed at benchmarking a single cloud deployment model. Elasticity and Scalability is mostly

achieved using load balancers or by using speed-up/ scale up of the scaling tier of the

framework. Task, Throughput, instruction cache and read/ modify latencies are the core metrics,

being evaluated by these frameworks.

35

Table 2.3: Comparison of Different Benchmarking Techniques

Variable CloudCmp

[32]

CloudStone
[81]

HiBench

[83]

YCSB

[85]

CloudSuite

[87]

Objective Execution of

applications

on cloud

Model web

2.0 behavior

in cloud

computing

Hadoop

(Map-

reduce)

applications

Benchmarking

cloud systems

Workload

management

Elasticity/

Scaling

Response

time for

provisioning

new instances

Load

Balancer

------ Speed up/

Scale up

Storage Disk I/O for

inserting /

fetching

random

entries

Database HDFS Different

workload

distribution

iSCSI

storage

array

Metrics Task latency

through

SPECjvm

2008

Response

Time

Throughput,

resource

utilization

and job

execution

speed

Read/ Modify

latency

Bandwidth,

memory

utilization,

instruction

cache,

execution

time

Experimentation Variable

Instances

Amazon EC2 Hadoop

Cluster

Operational

servers

Operational

servers

Platform IaaS/

PaaS

IaaS PaaS PaaS IaaS

36

2.3.2 Benchmark Applications

Different Industry standard tools are available to benchmark computing systems. In this section,

the most widely used tools are discussed.

2.3.2.1 SPECjvm [88]

This tool is developed for testing and benchmarking software systems’ performance especially

web services under platform independent Java Runtime Environment (JRE). It contains a set of

test suits, based on file I/O, network I/O and other application computations to measure CPU,

operating system and memory sub-system performance.

The tool is focused on performance evaluation of the hardware processor and memory subsystem

of single application under Java Runtime Environment execution. It has low dependency on file

I/O while network bandwidth related operations are not part of the benchmark. Application

workload for the benchmarks mimics multiple general purpose application computations which

are applicable to measure Java performance on a variety of client server based application

environment.

2.3.2.2 Open-Source Benchmarking [89]

The Phoronix Test Suite is one of the comprehensive benchmarking toolkits for measurement of

qualitative and quantitative test cases. With over 450 test profiles and 100 test suites, the tool

supports stress testing of system, processor, graphics, memory and network related performance

assessment. If a particular test is missing in the repository, it is automatically downloaded and

installed.

A variety of test suites are available to benchmark target system performance that includes but

are not limited to monitoring CPU, graphics, memory subsystem, disk I/O, ray-tracing

application benchmarks and battery power consumption. The test profiles also support cascading

test profiles whereby an existing profile can be extended.

2.3.2.3 The DaCapo Benchmarks [90]

This toolkit is designed to assess CPU and memory related performance metrics. Developed

under Java platform, it consists of a set of open source testing applications with different

workload for performance evaluation. It introduces time series and statistical metrics for

37

measurement of static and dynamic properties such as code complexity, code size, heap

composition, and pointer mutations.

The framework is aimed at a client-side applications environment that can be widely used to

provide a compelling focus with minimal dependences for the community’s innovation and

optimizations as compared to other synthetic benchmarks. Experimental results have

demonstrated that DaCapo benchmarks show much richer lifetime behaviors than SPEC

[91].

2.3.2.4 IOzone Filesystem Benchmark [92]

IOzone is aimed to measure and generate a variety of file I/O operations for file system analysis

of different operating systems. It supports I/O operations for read, write, re-read, re-write, read

backwards, read strided, fread, fwrite, random read, pread ,mmap, aio_read and aio_write. By

using the broad performance coverage for multiple operating systems including Linux, Solaris,

MAC OS X and Windows, users can decide a more balanced platform that suits their application

requirements.

2.3.2.5 Bonnie++ [93]

Bonie++ is a testing tool for experimenting a number of storage and file system operations. It

simulates the usage of programs like Squid, INN, or Maildir format email by creating, deleting

and reading a set of files with storage in GBs to measure file system performance. For RAID

arrays storage devices, Bonnie++ supports multiple types of IO operations at the same time. It

has also the facility to test more than 2G of storage on a 32bit or 64 bit machines.

2.3.2.6 Cachebench [94]

Cachebench is a benchmarking suite for measuring memory sub-system performance. The novel

features of tool are building different test cases, execution and result generation using GNUPlot.

Cachebench supports 8 different read, write and read/modify/write tests with features like

automated build test, execution and result processing, safe from aggressive optimizing compilers.

It mimics the performance of multiple levels of system cache present to establish peak

38

computation rate given optimal cache reuse and to verify the effectiveness of high levels of

compiler optimization.

2.4. Taxonomy of Large Scale Resource Management Frameworks

The modern day advancement is increasingly digitizing our lives which has led to a rapid growth

of data. Such multi-dimensional datasets are precious due to the potential of unearthing new

knowledge and developing decision making insights from them. Analyzing this huge amount of

data from multiple sources can help organizations to plan for future and anticipate changing

market trends and customer requirements. While the Hadoop framework is a popular platform

for processing larger datasets, there are a number of other compute infrastructures, available to

use in various applications domains.

Big Data applications might be viewed as the advancement of parallel computing, but with the

important exception of the scale. The scale is the necessity arising from the nature of the target

issues: data dimensions largely exceed conventional storage units, the level of parallelism needed

to perform computation within a strict deadline is high and obtaining final results require the

aggregation of large numbers of partial results. The scale factor, in this case, does not only have

the same effect that it has in classical parallel computing, but it surges towards a dimension in

which an automated resource management and their exploitation is of significant value [95].

An important consideration of modern applications is the massive amount of data that needs to

be processed. Such data usually originate from different sets of devices (e.g., public web,

business applications, satellites or sensors) and procedures (e.g., case studies, observational

studies or simulations). Therefore, it is imperative to develop computational architectures with

even better performance to support current and future application needs. Historically, this need

for computational resources was provided by high-performance computing (HPC) environments

such as computer clusters, supercomputers, and grids. In traditional owner-centric HPC

environments, internal resources are handled by a single administrative domain [96] . Although

organizations usually prefer to store their most sensitive data internally (on-premises), huge

volumes of big data (owned by the enterprises or generated by third-parties) may be stored

externally, some of it may already be on a cloud. Retaining all data sources behind the firewall

39

may result in a significant waste of resources. Analyzing the data where it resides either

internally or in a public cloud data center makes more sense [97], [98].

The primary object of the section is how to classify different big data resource management

systems. We use various evaluation metrics for popular big data frameworks from different

aspects. We also identify some key features which characterize big data frameworks as well as

their associated challenges and issues and hence the need for a more generic framework that

supports massively large data handling considering the scalability and elasticity specific

requirements of application domain.

While the Hadoop framework is a popular platform for processing huge datasets in parallel batch

mode using commodity computational resources, there are a number of other compute

infrastructures that can be used in various applications domains. The primary focus of this

section is to investigate popular big data resource management frameworks which are commonly

used in cloud computing environment. Most of the popular big data tools available for cloud

computing platform, including the Hadoop ecosystem, are available under open source licenses.

2.4.1 Hadoop

Hadoop [35] is a distributed programming and storage infrastructure based on the open-source

implementation of the MapReduce model [99]. MapReduce is the first and current de-facto

programming environment for developing data-centric parallel applications for parsing and

processing large datasets. The MapReduce is inspired by Map and Reduce primitives used in

functional programming. In MapReduce programming, users only have to write the logic of

Mapper and Reducer while the process of shuffling, partitioning and sorting is automatically

handled by the execution engine [99], [100]. The data can either be saved in the Hadoop file-

system as unstructured data or in a database as structured data [101]. Hadoop Distributed File

System (HDFS) is responsible to break large data files into smaller pieces known as blocks. The

blocks are placed on different data nodes, and it is the job of the NameNode to notice what

blocks on which data nodes make up the complete file. The NameNode also works as a traffic

cop, handling all access to the files, including reads, writes, creates, deletes, and replication of

data blocks on the data nodes. A pipeline is a link between multiple data nodes that exists to

handle the transfer of data across the servers. A user application pushes a block to the first data

40

node in the pipeline. The data node takes over and forwards the block to the next node in the

pipeline; this continues until all the data, and all the data replicas, are saved to disk. Afterwards,

the client repeats the process by writing the next block in the file [102].

YARN is the core Hadoop service to provide two major functionalities: Global resource

management (ResourceManager) and Per-application management (ApplicationMaster). The

ResourceManager is a master service which controls NodeManager in each of the nodes of a

Hadoop cluster. It includes a scheduler, whose main task is to allocate system resources to

specific running applications. All the required system information is tracked by a Resource

Container which monitors CPU, storage, network and other important resource attributes

necessary for executing applications in the cluster. The RessourceManager has a slave

NodeManager service to monitor application usage statistics. Each deployed application is

handled by a corresponding ApplicationMaster service. If more resources are required to support

the running application, the ApplicationMaster requests the NodeManager and the NodeManager

negotiates with the ResourceManager (scheduler) for the additional capacity on behalf of the

application [35].

2.4.2 Spark

Apache Spark [32], originally developed as Berkeley Spark, was proposed as an alternative to

Hadoop. It can perform faster parallel computing operations by using in-memory primitives.

A job can load data in either local memory or a cluster-wide shared memory and query it

iteratively with much a great speed as compared to disk-based systems such as Hadoop

MapReduce [99]. Spark has been developed for two applications where keeping data in memory

may significantly improve performance: Iterative machine learning algorithms and interactive

data mining. Spark is also intended to unify the current processing stack, where batch processing

is performed using MapReduce, interactive queries using HBase and the processing of streams

for real-time analytics using other frameworks such Twitter’s Storm. Spark offers programmers a

functional programming paradigm with data-centric programming interfaces built on top of a

new data-model called Resilient Distributed Dataset (RDD) which is a collection of objects

spread across a cluster stored in memory or disk [100]. Applications in Spark can load these

RDDs into the memory of a cluster of nodes and let the Spark engine automatically manage the

partitioning of the data and its locality during runtime. This versatile iterative model makes it

41

possible to control the persistence and manage the partitioning of data. A stream of incoming

data can be partitioned into a series of batches and is processed as a sequence of small-batch

jobs. The Spark framework allows this seamless combination of streaming and batch processing

in a unified system. To provide rapid application development, Spark provides clean, concise

APIs in Scala, Java, and Python. Spark can be used interactively from the Scala and Python

shells to rapidly query big datasets.

2.4.3 Flink

Apache Flink is an emerging competitor of Spark which offers functional programming

interfaces, much similar to Spark. It shares many programming primitives and transformations in

the same way as what Spark does for iterative development, predictive analysis and graph stream

processing. Flink is developed to fill the gap left by Spark, which uses a mini-batch streaming

processing instead of a pure streaming approach. Flink ensures high processing performance

when dealing with complex big data structures such as graphs. Flink programs are regular

applications which are written with a rich set of transformation operations (such as mapping,

filtering, grouping, aggregating and joining) to the input datasets. The Flink dataset uses a table-

based model, therefore application developers can use index numbers to specify a particular field

of a dataset [99], [100].

Flink is capable to achieve high throughput and a low latency, thereby processing a bundle of

data very quickly. It is designed to run on large-scale clusters with many thousands of nodes, and

in addition to a standalone cluster mode, Flink provides support for YARN. For distributed

environment, Flink chains operator subtasks together into tasks. Each task is executed by one

thread [33]. Flink runtime consists of two types of processes: There is at least one JobManager

(also called masters) which coordinate the distributed execution. It schedules tasks, coordinate

checkpoints and coordinate recovery on failures. A high-availability setup may involve multiple

JobManagers, one of which one is always the leader, and the others are standby. The

TaskManagers (also called workers) execute the tasks (or more specifically, the subtasks) of a

dataflow/ buffer and exchange the data streams. There must always be at least one TaskManager.

The JobManagers and TaskManagers can be started in various ways: directly on the machines as

a standalone cluster, in containers, or managed by resource frameworks like YARN or Mesos.

42

TaskManagers connect to JobManagers, announcing themselves as available, and are assigned

work.

2.4.4 Storm

Storm [34] is a free open source distributed stream processing computation framework. It takes

several characteristics from the popular actor-model and can be used with practically any kind of

programming language for developing applications such as real-time streaming analytics, critical

work flow systems and data delivery services. The engine may process billions of tuples each

day in a fault-tolerant way. It can be integrated with popular resource management frameworks

such as YARN, Mesos, Docker and many others. Apache Storm cluster is made up of two types

of processing actors: Spouts and Bolts.

• Spout is connected to the external data source of a stream and is continuously emitting or

collecting new data for further processing.

• Bolt is a processing logic unit within a streaming processing topology, each bolt is responsible

for a certain processing task such as transformation, filtering, aggregating and partitioning.

Storm defines workflow as directed acyclic graphs (DAGs), called topologies with connected

Spouts and Bolts as vertices. Edges in the graph define the link between the bolts and the data

stream. Unlike batch jobs being only executed once, Storm jobs run forever until they are killed.

There are two types of nodes in a Storm cluster: Nimbus (master node) and Supervisor (worker

node). Nimbus, similar to Hadoop JobTracker, is the core component of Apache Storm and is

responsible to distribute load across the cluster, queue and assign tasks to different processing

units and monitor execution status. Each worker node executes a process known as the

supervisor which may have one or more worker processes. Supervisor delegates the tasks to

worker processes. Worker process then creates a subset of topology to run the task. Apache

Storm does rely on an internal distributed messaging system, called Netty, for the

communication between nimbus and supervisors. Zookeeper manages the communication

between real-time job trackers (nimbus) and supervisors (storm workers).

43

2.4.5 Comparative Analysis of Large Scale Resource Management Frameworks

Big data in cloud computing, a popular research trend, is posing significant influence on current

enterprises, IT industries and research communities. There are a number of disruptive and

transformative big data technologies and solutions that are rapidly emanating and evolving in

order to provide data-driven insight and innovation. Furthermore, modern cloud computing

services are offering all kinds of big data analytics tools, technologies and compute infrastructure

to speed up the data analysis process at an affordable cost. Although many distributed resource

management frameworks are available nowadays, the main issue is how to select a suitable big

data framework. The selection of one big data platform over the others will come down to the

specific application requirements and constraints that may involve several tradeoffs and

application usage scenarios. A brief comparison of big data frameworks is presented in table 2.4.

Table 2.4: Comparison of Big Data Frameworks

Framework

Attribute

Hadoop Spark Storm Flink

Current Stable

Version

2.8.1 2.2.0 1.1.1 1.3.2

Batch Processing Yes Yes Yes Yes

Computational

Model

Map-reduce Streaming(micro

-batches)

Streaming(micro

-batches)

Supports

continuous flow

streaming, micro-

batch, and batch

Data Flow chain of

stages

Directed acyclic

graph

Directed acyclic

graphs (DAGs)

with Spouts and

Bolts

controlled cyclic

dependency graph

through machine

learning

Resource

Management

YARN YARN/ Mesos HDFS (YARN)/

Mesos

Zookeeper/YARN/

Mesos

Language Support All major Java, Scala, Any Java, Scala, Python

44

languages Python and R programming

language

and R

Job Management/

Optimization

MapReduce

approach

Catalyst

extension

Storm-YARN/

3rd party tools

like Ganglia

Internal optimizer

None (3Interactive Mode rd Interactive Shell

party tools

like Impala

can be

integrated)

None Scala Shell

Machine Learning

Libraries

Apache

Mahout/ H2O

Spark ML and

MLlib

Trident-ML/

Apache SAMOA

FlinkML

Maximum

Reported Nodes

(Scalability)

Yahoo

Hadoop

Cluster with

42,000 nodes

8000 300 Alibaba customized

Flink Cluster with

1000s of nodes

Hadoop MapReduce has a clear edge on large-scale deployment and larger dataset processing.

Hadoop is highly compatible and interoperable with other frameworks. It also offers a reliable

fault tolerance mechanism to provide a failure-free mechanism for over a long period of time.

Hadoop can operate on a low-cost configuration. However, Hadoop is not suitable for real-time

applications. It has a significant disadvantage when latency, throughput and iterative job support

for machine learning are the key considerations of application requirements.

Apache Spark is designed to be a replacement for batch-oriented Hadoop eco-system to run-over

static and real-time datasets. It is highly suitable for high throughput streaming applications

where latency is not a major issue. Spark is memory intensive and all operations take place in

memory. As a result, it may crash if enough memory is not available for further operations

(before the release of Spark version 1.5, it was not capable of handling datasets larger than the

size of RAM and the problem of handling larger dataset still persists in the newer releases with

different performance overheads). Few research efforts, such as Project Tungsten, are aimed to

45

address the efficiency of memory and CPU for Spark applications. Spark also lacks its own

storage system so its integration with HDFS through YARN or Cassandra using Mesos is an

extra overhead for cluster configuration.

Apache Flink is a true streaming engine. Flink supports both batch and real-time operations over

a common run-time to fulfill the requirements of Lambda architecture. However, it may also

work in batch mode by stopping the streaming source. Like Spark, Flink performs all operations

in memory, but in case of memory hog, it may also use disk storage to avoid application failure.

Flink has some major advantages over Hadoop and Spark by providing better support for

iterative processing with high throughput at the cost of low latency.

Apache Storm was designed to provide a scalable, fault tolerance, real-time streaming engine for

data analysis what Hadoop did for batch processing. However, the empirical evidence suggests

that Apache Storm proved to be inefficient to meet the scale up/ scale down requirements for

real-time big data applications. Furthermore, since it uses micro-bath stream processing, it is

neither very efficient where continuous stream process is a major concern nor it provides a

mechanism for simple batch processing. For fault-tolerance, Storm uses Zookeeper to store the

state of the processes which may involve some extra-overhead and may also result in message

loss. On the other hand, Storm is an ideal solution for near real-time application processing

where workload could be processed with a minimal delay with strict latency requirements.

Guenter et al. [103] conducted a conceptual survey on stream processing systems. However,

their discussion was focused on some basic differences related to real-time data processing

engines. Dilpreet et al. [104] provided a thorough analysis of big data analytics platforms that

included Peer-to-peer networks, Field programmable gate arrays (FPGA), Apache Hadoop

ecosystem, High-performance computing (HPC) clusters, Multi-core CPU and Graphics

processing unit (GPU). Sara et al. [105] focused on machine learning libraries and their

evaluation based on ease of use, scalability and extensibility. C.L. Philip et al. [106] discussed

big data problems, challenges and associated techniques and technologies to address these issues.

Several potential techniques including cloud computing, quantum computing, granular

computing and biological computing were investigated and the possible opportunities to explore

these domains were demonstrated. However, the performance evaluation was discussed only on

theoretical grounds. A taxonomy and detailed analysis of the state-of-the-art in big data 2.0

46

processing systems was presented in [107]. The focus of the study was to identify current

research challenges and highlight opportunities for new innovations and optimization for future

research and development. Marcos et al. [108] reviewed multiple generations of data stream

processing frameworks that provide mechanisms for resource elasticity to match the demands of

stream processing services. The study examined the challenges associated with efficient resource

management decisions and suggested solutions derived from the existing research studies.

However, the study metrics are restricted to the elasticity/ scalability aspect of big data streaming

frameworks.

As shown in table 2.5, performance evaluation of these resource management frameworks is a

key research issue in on-going research in big data domain and it needs further investigation to

cover application specific data requirements and challenges.

Table 2.5: Comparison and Application Areas of Related Research Studies

Study

Reference

Data Model Resource

Frameworks

Study Features Evaluation/

Ranking

Methodology

[103] Data Stream

Processing

Systems

Storm, Flink,

Spark, Samza

A brief comparison

of resource

frameworks

��

[104] Batch and Stream

Processing

Systems

Horizontal scaling

systems such as

Peer-to-Peer,

MapRedce/MPI,

Spark and Vertical

Scaling Systems

such as: CUDA

and HDL

Comparison of

horizontal and

vertical scaling

systems

Theoretical

comparison of

resource

frameworks

[105] Batch and Stream

processing

Engines

MapReduce,

Spark, Flink,

Storm as well as

machine learning

Machine learning

libraries and their

evaluation

mechanism

Performance

comparison

with respect to

machine

47

libraries learning toolkits

[106] Batch and Stream

processing

frameworks

Hadoop, Storm

and other big data

frameworks

In-depth analysis of

big data opportunities

and challenges

��

[107] Batch and Stream

processing

frameworks

Hadoop, Spark,

Storm, Flink, Tez

as well as SQL,

Graph, Bulk

Synchronous

Parallel Model

Analysis of current

open research

challenges in the field

of big data and the

promising directions

for future research

�

[108] Stream

processing

engines

Apache Storm, S4,

Flink, Samza,

Spark Streaming

and Twitter Heron

Classification of

elasticity metrics for

resource allocation

strategies that meet

the demands of

stream processing

services

Evaluation of

elasticity/

scaling metrics

for stream

processing

systems

2.5. Scope and Positioning of the Research Study
In cloud, provisioning of computing resources is offered in the form of virtual machines (VMs),

being deployed on physical computing nodes on pay-per use pricing policy. Cloud providers

specify their offerings to the clients on hourly, monthly, semiannual and annual basis with

different performance indicators measured by themselves. Mostly these indicators don’t provide

comprehensive information about overall performance of virtual machines. For instance, a 4 GB

standard instance from Rackspace is offered with 2 vCPU (weighted based on the size of the

server), 4 GB RAM, 400 Mb/s network, 160 GB system disk with good disk I/O. For quantitative

analysis of cloud performance and associated monetary cost, a comparison is generally required

between cloud providers with similar VM specification. A much similar instance of Amazon

t2.medium is offered with 2 vCPU, 4 GB memory with low to moderate network performance.

For choosing a best-fit cloud provider, the user needs a good understanding of mapping from

48

low, moderate and good in terms of disk I/O and network performance. However, because of the

over-provisioning of cloud resources and underlying hardware, these are not necessarily the

decisive indicators [29], [109]. The characterization and evaluation of cloud providers is the first

step to understand what instances are more appropriate for a particular set of applications.

Providing a benchmark and ranking methodology for investigating fair performance assessment

of implementation decisions under different deployment environments is necessary to compare

current variety of cloud providers [109].

The aim of the research study is to improve the decision accuracy while choosing a cloud

provider for a given set of user preferences. The evaluation process helps to measure instance

configuration in an objective way to find the most suitable ones based on benchmarking as well

as real world experimentation to filter, select and monitor the VMs across multi-cloud

environment based on QoS requirements of user jobs. Since cost and deadline are two key

considerations in such an environment [110], [111], the analysis of price vs. performance of

different cloud providers is proposed through the broker based resource provisioning framework

to allow scientific community to find the most cost effective virtual machines that fit their

application needs as well as reduce overall cost. From the earlier literature, it is evident that

broker enabled QoS ranking, negotiation and monitoring framework based on user level QoS

requirements that determine users’ needs and utility is still a missing area of research which is

addressed in this research study.

49

Chapter 3: Broker based Resource Provisioning Framework
In this chapter, a basic mechanism for representing and measuring QoS of IaaS computing

resources across multiple clouds is described. In this proposed approach, the broker acts on

behalf of the consumer to process all the SLA management tasks. Considering the issues

involved while selecting a best-fit IaaS candidate among a set of cloud providers, we propose a

mathematical model for cloud ranking as well as a framework based on job management, SLA

negotiation, service provisioning and resource management is discussed in this chapter.

3.1 Background
Normally, user requirements can be categorized in two types: obligatory/critical of highest

priority and trivial requirements with comparatively low priority [40]. The designed framework

allows service filtering based on QoS requirements and then calculating providers’ ranking based

on performance of cloud infrastructure along with previous job experience to select the ‘right

cloud provider’ for a particular set of quality attributes required to satisfy incoming job

requirements. In this model, a higher ranked cloud provider for a particular set of quality

attributes has more probability to be selected as compared to low ranked cloud providers.

However, if the required minimum level (or in some cases the maximum level such as server

response time) of critical QoS requirements does not meet the job quality constraints, the

provider is removed from the list without taking into account the overall rank value of the cloud

provider.

In virtual cloud, cloud provider, underlining public cloud infrastructure, and cloud service

provider realizing cloud resources/ services may be different vendors. Resources of other cloud

providers are normally borrowed to meet end user requirements. Cloud service provider does not

itself own networking or data center resources. A cloud consumer can construct virtual cloud by

leasing virtual machines from the cloud providers. A central entity (also known as broker or

mediator, global cloud agent/coordinator) performs or facilitates multiple clouds to share

resources. Cloud broker acts as an intermediary between service consumers and producers.

Cloud consumers can find best provider and service through the matchmaking process of cloud

broker.

The primary design goal of the proposed system is to facilitate user job execution by automating

the entire process on hand and achieve economic efficiency on the other hand. The core

50

components of the system are cloud customizer broker at user end and server side cloud provider

component.

A cloud broker may also provide customers with some additional services, encryption and

transfer of consumer data to the cloud and monitoring data life cycle management. Such broker

is known as cloud enabler or cloud aggregator. Sometimes a broker integrates cloud services on

behalf of customers to work together and sells the services under their own brand; such broker is

known as cloud customizer or white label cloud service [112].

In this study, the cloud customizer involves following phases:

� Job Admission: Jobs are submitted by the users along with necessary information

including task(s) to be executed, budget, deadline, QoS parameters etc.

� Runtime Estimation phase: When a job is submitted, the broker estimates the job

characteristics and schedule amount of processing nodes considering the workload

requirements.

� Discovery phase: Cloud customizer queries a list of resource/ service providers that

satisfies the requirements.

� Resource Selection: Checks individual resource / service provider to confirm the service

requirements. The cost of executing a task is obtained by querying cloud provider. A final

priority order list is generated after confirming each individual provider.

� Scheduling Module: This upper layer scheduling module is responsible for creation of the

virtual machine pool according to actual state information of the user job. Based on the

priority order, the module aims to complete job within budget and deadline constraints.

� Resource monitoring: This module of broker continuously monitors secured resources

against service abruption, violation of SLA, QoS and so on.

� Resource switchover: In case of service abruption or low QoS, provisioning of resources

is re-evaluated to meet QoS and deadline constraints

� Release of Resources: Unused resources are released after successful execution of job

After provisioning of required resources, broker continuously monitors foreign cloud provider

for server availability and other quality attributes. In case of successful job execution, broker

receives feedback from the foreign cloud provider or a risk alert is generated in case of any

51

violation of SLA agreement. If QoS requirements are not satisfying SLA agreement, foreign

cloud provider is penalized for an agreed penalty which is returned to home cloud provider. In

this model, broker also takes into account migration strategies when a foreign CP is not

responding to avoid SLA violations. Figure 3.1 illustrates the process of resource provisioning:

Fig. 3.1: General Process of Resource Provisioning, adapted from [2]

3.2 Negotiation Mechanism
A system model is considered that consists of a set of cloud providers { S1, S2, …, Sn }mediated

through a broker. Each cloud provider offers m type of VM instances { VM1, VM2, …, VMm },

52

each of which offers different CPU cores, disk storage and memory size. The incurred cost of a

cloud provider Si by ��	 for provisioning each VM of type VMj

In case of resource requirement, a home CP submits VM provisioning request, denoted by { r

and resource offered price by

�	 .

1,

r2, …, rm}, where rj represents resource request for VMj

3.2.1 Assumptions

. At the time of job completion, CP has

to pay � �	 .
	
	 =1 .

The required assumptions in the selection process of foreign CP are as follows:

1. Every CP in the member clouds has the capacity to offer spare resources.

2. Only a pre-defined set of VM instances are offered.

3. Both providers and consumers are interested to maximize their objective of resource

utilization without direct cooperation with each other (not peer-to-peer federation model).

Several negotiation strategies have been proposed in the literature [41], [113]. The basic steps of

proposed negotiation process are as under:

Step 1: CPs in the member clouds provide the prices and SLA terms of their resources

which is stored in the broker repository.

Step 2: Home CP submits a job (VM request) to the broker with all QoS parameters q

Step 3:
j .

Broker filters the job requirements and provides home CP a list of best-fit cloud

providers to accept one of the candidate foreign cloud provider.

Step 4: Upon acceptance, an agreement is established and resource is provisioned.

Step 5: SLA monitoring engine periodically examines any violation of SLA.

Step 6: If any serious violation of SLA is found, an alarm is generated by the SLA event

generator of the SLA enforcement engine and it is notified to the enforcement

engine of SLA; broker updates the foreign CP reputation ranking with a negative

rating and starts from step 2 for migration strategy.

Step 7: Broker evaluates job performance with required QoS constraints.

Step 8: A notification is sent to home CP about job completion and agreement is terminated.

To reduce cost and avoid over-provisioning of resources, exact matching mechanism is used

wherever possible in step 3. However, if this is not possible, an alternative exists:

53

Step 3* If an exact match is not available, the broker must select a VM instance among a

large number of dominating VM instances that may be available on several member

clouds (stochastic least differential capacity).

:

Each CP is assigned an initial reputation rating which is stored in reputation repository. Based on

the job experience and performance, this rating is dynamically updated for a provider involved as

a foreign CP. In case of SLA violation, an additional operation is performed as under:

Step 7* If actual CP performance violates SLA constraint, broker updates reputation

repository with a negative rating for the CP otherwise it updates with positive rating.

:

The migration strategy, specified in step 7*

The primary objective of global federation marketplace is to provide a resource sharing platform

for profit maximization of individual clouds by maximum utilization of resources within SLA

constraints as well as perform well in social welfare [

, is the process of replacement of a CP with another

one when a risk alarm is generated or when a foreign CP is not responding.

114], [115]. The maximum profit obtained

when clouds operate in federation, known as maximum utility, can be defined as:

� (�, �) = ��� �� � ��� � ��� � ��� ��
�=�

�
�=� � (1)

where ��	 represents the VM instances of type VMj from provider Si.

Once the agreement is established, a resource provisioning request, along with associated SLA,

is submitted to SLA manager by the consumer. SLA manager dispatches this request to

deployment manager to create and start requested resources. Deployment manager is responsible

for interaction with other cloud providers for on-demand resource provisioning. Deployed VMs

can be stopped or resumed at any time upon consumer request (within time frame of SLA). Once

an agreement is terminated, all the created resources are released by the Cloud platform.

Figure 3.2 depicts the architecture of VM placement across multi-cloud:

54

Fig. 3.2: Architecture of VM placement across Multi-cloud, adapted from [40]

3.3 IaaS Metrics for CP Ranking
IaaS metrics can be classified in four categories: Compute metrics, Memory Hierarchy, Network

metrics and Storage metrics. In this study, few more metrics, apart from the metrics being

proposed by [32] , are added for performance evaluation of the proposed broker based resource

provisioning framework :

3.3.1 Compute

CPU Processing is a common performance benchmark for applications involving intensive

workload. Processing performance is much dependant on clock speed, number of CPU cores and

type of hardware.

Metrics Speed of VM, vCPU, outage length, availability, instance reboot time, execution time,

server latency/ response time, Operating System, scaling latency.

3.3.2 Memory Hierarchy

Memory is the core element that determines the processing speed of an application. Many

scientific and business applications are extremely dependant on memory system performance.

55

Under heavy memory contention, the memory latency may increase two or three times. Thus, the

increasing performance gap between processors and memory systems imposes a memory

bottleneck for such applications [116].

Metrics: Memory read/modify/write access time.

3.3.3 Network

Network performance determines how fast a VM can communicate with other clients over a

network. Unlike most cloud storage and database applications, which are comparatively more

tolerant to delay and jitter, media applications are far more demanding. The network delay with

large jitter degrades user received media quality of latency sensitive multimedia applications

[117], [118]. Hence, cloud providers with better network performance in terms of throughput vs.

latency play a key role in the success of such business applications.

Metrics: availability, network latency, available bandwidth, response time, throughput.

3.3.4 Storage

Considering the nature of cloud computing environment where scientific applications and

business workflows continuously involve storage I/O operations, it is important to determine

how quickly storage devices allow applications to interact with data or files.

Metrics: input/output operations per second (IOPS), max restore time (backup), average access

time, throughput.

Most of the cloud vendors guarantee performance of compute metrics at hypervisor level and

these metrics are not reflected in service level agreements. On the other hand, network metrics

are mostly reflected in SLA at data center level which are not specific to any particular user or

consumer [119].

3.4 Metrics Evaluation

3.4.1 Server Latency/ Response Time (Compute)

Whenever a new VM request is made, a new instance of VM is provisioned, initialized and new

IP is assigned to this instance. The time taken by this process, between a resource request and

response, is referred as server latency/ response time which is formulated as:

�� = ��!" � ��!#�$�#! (2)

56

so, average response time of n measurements is:

� � % (&')*
'=� /&+�� (3)

Where ti is the time for IaaS instance to get available, tmax

3.4.2 Outage Length (Compute)

is the maximum acceptable time to

complete this request and n is the total number of requests.

Server Outage length (downtime), represented as a sum of the downtimes during a calendar

period of normally one month is given as [120]:

� -'
*
'=� (4)

3.4.3 Memory Bandwidth (Compute)

A measure of peak memory bandwidth performance to identify how quickly operating system

can get data into and out-of memory for processing.

3.4.4 Speed of VM (Compute

Effective VM speed in MHz, can be calculated using SPECint, SPECfp benchmarks.

)

3.4.5 Scaling Latency (Compute)

Scalability refers to the ability to accommodate large loads or change in workload by

provisioning of resources at runtime. This can be further categorized as scale-up (by making

hardware stronger) or scale-down (by adding additional nodes). Throughput capacity gain by

scalability, represented as �, can be measured as [121]:

0(35)
0(#) (5)

Where s is the number of VM instances and T(s) is the throughput function.

3.4.6 Availability (Compute)

Availability, the percentage of time a server is up, is given by [121]:

(�$�67 8� ���!)� (�$�67 9$:� ���!)
�$�67 8� ���!

(6)

57

3.4.7 Throughput (Network)

A throughput measurement (mi=OPS) is the number of network I/O operations (file download /

upload) over a specific time ti .

121

Based on multiple throughput measurement, throughput metric

can be formulated for read or write requests. Average throughput per second can be measured as

[]:

T = �; R =
� ��

�
�

� ��
�
�

3.4.8 Network Latency

(7)

Network latency is mostly measured by average ICMP ping time.

3.4.9 Network Availability
Network availability can be measured as [122]:

0$�67 ���8�!# $< 8����! $< 6 >!�?��! �!�:$�@
 �$�67 ���8�!# �� �A! >!�?��! �$��A

(8)

3.4.10 Input/ Output Operations per Second (Storage)

IOPS (input/output operations per second) is a common performance measurement for the

maximum number of reads and writes operations and the mix of sequential and random access

patterns to non-contiguous storage locations. Calculation of IOPS is based on the three factors:

average latency, average seek time and disk rotational speed. For a single storage disk, IOPS can

be calculated as [123]:

�
 �BCD�EC 5CCF &'+C + �BCD�EC H�&C*IJ

(9)

However, mostly multi-disk arrays are used in cloud environment so the same is formulated as:

(KL&�H MNOP × % SUV-) + ((KL&�H MNOP × % WSMKU) × SVM- MN OC*�H&J) (10)

3.5 QoS based Ranking Algorithm

In this study, past heuristics are used to predict the future quality conformance of a CP. For a

particular CP Si offering a set of quality attributes qj, the feedbacks from the past performance

58

using benchmarking and job execution experience over a time period T are collected. The

proposed algorithm is extended from the one provided in [124]. Following two definitions are

the fundamental concepts, used in this study.

3.5.1 Definition 1

The quality indicator value X��
� of a cloud provider Si at time t in satisfying a quality requirement

qj 124is given as []:

 Y��
� = (Z��

� � [��
�)/ [��

� [0, 1] (11)

where _�	
` is the normalized value that of qij that was delivered by Si in the past and a�	

` is what Si

 b
 > 0, �g
h�gj�k��h �q ��u�h� `�k�
�j�qhx ykz{h

< 0, �g
h�gj�k��h �q zj}h� `�k� `�h
�j�qhx ykz{h
~ #6�!

� (12)

promised to deliver at time t.

Cloud indicator value can be:

3.5.2 Definition 2

A quality feedback report by broker monitoring component is a vector { Si , t , R } where R is a

pair-wise vector of conformance of { qij

In case, in-house resources of home cloud provider are not enough to satisfy incoming job

requests, a job request is submitted to broker along with a vector of QoS requirement { q

, X�	
` }.

j , uj, lj }

where the attribute qj is the QoS requirement, uj represents the priority of QoS attribute and lj

124

is

the minimum (or in some cases maximum) QoS requirement needed by home CP. Different

complex ranking techniques are proposed in the literature; in this study additive weighting

scheme is used which results very close to other complex ranking techniques [], [125].

The QoS rank of a CP, Si

124

, in fulfilling all quality criteria is defined by the following weighted

sum []:

59

 �� 8�.���. �.Z��

��
"� �� �

� 8�"� ��
(13)

Where

The normalized value of � _�	�̀ represents Si capacity for providing quality requirement qj. It is

calculated as the difference between evaluated QoS delivery of _�	�̀ and required minimum (or

maximum) quality criteria li

� Z��
��= (Z��

�� - l

as required by the home cloud provider:

i)/ li

��	 represents the degree of match and is the similarity proportional weight between q

(14)

ij provided

by Si and the required quality concept qj

���= �
�. ~ "�� � "�

~. � �< "�� �# �$�! �!�!�67 �A6� "�
~ $�A!�:�#!

� (15)

Although cloud providers with higher quality of services should given more priority but this is

not a case here. To reduce cost and get accurate QoS promised claims, cloud servers who provide

exact match to the required incoming jobs are ranked relatively higher.

. It can be calculated as:

For each incoming job request, all cloud providers are parsed for the evaluated QoS and a QoS

matching table, consisting of a ��jq 	 vector of {Sij , ��	 , _��	 }, is constructed as list of CPs

meeting a particular quality requirement according to their matching weights. Resource selection

and ranking algorithm for a list of ‘L’ cloud providers is presented as under:

60

AAllggoorriitthhmm:: QQooSSbbaasseeddRRaannkkiinngg ((CCPPLLiisstt CCPP,, QQuuaalliittyyRReeqquuiirreemmeennttss QQ))

� CPList is the list of cloud providers, Q is the list of requirements that needs to be satisfied in order to

successfully execute a particular job

1: enqueue the list of QoS required values from Q: CPq={ [q1 , u1, l1],…, [qs , us, ls

�Initially the quality score for all cloud providers will be zero

] }

2: Score [Sij

�Now parse each cloud provider S

] = 0.0

i for the required quality attribute q

3: for each quality requirement q

j

j in CPq

4: for each Cloud provider S

do

ij

�First confirm whether there is any available data for the required quality attribute q

in CP do

j which is provided by

cloud provider Si

5: Parse the list ��jq 	 of qj for S

6: if S

ij

ij

�Get the relative quality score of cloud provider S

is matched then

i for meeting the quality attribute qj

7: w

ij =weight (qj , qij

�Now calculate the evaluated capacity for QoS delivery of quality attribute q

)

j

8: QoSScore

as calculated in eq. 14

Partial= wij. (_��	 – lj j)/ l

�Aggregate the quality of service score for the current requirement as well as the previously calculated

requirement from the list Q

j

9: Score [Sij] = Score [Sij] + (uj / �uj). QoSScore

10: else

Partial

�If a particular cloud provider does not satisfy the required quality criteria, remove it from the list

11: Delete Sij

12: end if

from CP

13: end for

14: end for

�Finally, return the prioritized list of providers

15: Return the sorted list of Score [Sij]

61

3.5.3 Algorithm Complexity Analysis

The above algorithm is composed of two parts. For the worst case scenario of selection process

(lines 3-14) with n quality concepts, the algorithm will have to process a list of l total providers

for p possible providers with quality concepts meeting user requirements. This results in worst-

case complexity of �(�. z.
). Considering that provider list is constant, the final worst-case

complexity is �(�). In second part of algorithm (line 15), merge sort is used for prioritizing the

list of providers which has a complexity of �(� zju �), so the total worst case complexity of

proposed algorithm by using the additive property of big � is:

�(�) + �(* HLE *) = �(* HLE *) (16)

3.6 Proposed Framework
The proposed cross-layer design consists of three modules; each can directly communicate with

other, whenever required. Job Management Module is responsible for job admission, negotiation

and provisioning of resources based on the feedback from ranking module. When the negotiation

is successfully completed, Service Level Agreement is established between consumer and

producer which specifies the Service Level Objectives based on QoS. SLA management module

is responsible for monitoring the violations of SLA. In case of violation, alarm notifier will

trigger an alarm and the event will be stored in violation data repository. Based on this violation

data repository and CP catalog, which stores the promised QoS by each provider, QoS rank of

each CP is calculated by the ranking module. The proposed framework is given in figure 3.3.

62

Fig. 3.3: Proposed Framework for QoS based Ranking in federated Cloud

3.6.1 Job Management Module

This module is responsible for managing the requests from the consumer of cloud federation

along with their SLAs and negotiation contracts to interact with the match maker module in

order to invoke resource provisioning mechanism between the consumer and provider which

suits best to the requirements specified in form of SLA.

Four further subcomponents in this module are:

3.6.1.1 Negotiation Engine

This is an important component of the Job management module. With the negotiation terms, the

strategies that need to be adopted in form of penalties in case of SLA violations from the cloud

provider are mostly referred [41]. Moreover, this component is solely negotiating the QoS

parameters such as availability, bandwidth, storage and so on, that are to be required by the

consumer from the provider after the one time negotiation settlement with the provider along

with their priorities. This also covers the cost factors for the resources that will be utilized once

the settlements have been made. The contents of negotiation terms are exchanged in XML

schema of SLA.

63

3.6.1.2 Resource Manager

This module ensures the provisioning of resources by the provider to its consumer once the

request is initiated by the job management module taking into account the negotiation terms and

settlements. The degree of provisioning SLA assurance however is evaluated by the SLA

manager.

3.6.1.3 Deployment Manager

It is responsible for creation of the virtual machine pool according to actual state information of

the user job. Based on the QoS requirements, the module aims to complete job within budget and

deadline constraints.

3.6.1.4 Resource Migration Service

In case of early termination or service interruption due to low QoS, provisioning of resources is

re-evaluated to meet QoS and deadline constraints. Necessary measures would be taken to

migrate the VM resources to the subsequent best matched cloud provider.

3.6.2 Ranking Module

Since in-house cloud platform was not available for this research study, the proposed framework

and policies were evaluated on real test-bed experiments. The experiments were conducted on

different VM instances leased from the three cloud providers. Multiple data-centers of the three

cloud providers were used to calculate average performance estimation. Our price-performance

analysis model differs from the one, proposed in [126], as instead of calculating a simple product

of average scores, we take into considerations several other factors, associated with their relative

weights. For QoS calculation, the following model is proposed:

Consider a system model which consists of n cloud providers {�1, �2, …, �� R }. Each cloud

provider offers m type of VM instances {��1, ��2, …, �� R }, each of which offers different

CPU cores, disk storage and memory size. To compare performance of VMs, it is needed to

assign weights to each top level evaluation metric (�) and associated benchmarking tools (})

taking into account their relative importance of each benchmarking experiment j. Each VM

instance is compared term by term correspondingly for k set of benchmarking tools for

evaluation of benchmarking metrics. The performance score is computed for each benchmarking

64

experiment j. However, since a benchmarking tool may consist of l number of benchmarking test

cases, the performances score (Pj) for each of the experiment is calculated as under:

O� = � �!$�!�!����!6�(�!#�_�6#!_#�$�!)7

�=� (17)

The price factor should also be incorporated in eq. 17 as a VM with high utilization cost will

usually provider better performance results so performance comparison should be made on equal

ground. Hence, �, the price-performance ratio is introduced in this study, so that VMs with

different configuration and pricing schemes may be accurately compared:

�� =
O�

�� (18)

where C represents the VM cost. Finally, overall score for a particular benchmarking experiment

is computed as under:

��� × ��� + ��~~ � ��� × O� (19)

where �	 modifier is the sensitive factor of price-performance analysis and may vary for

different experiments. For each benchmark, the utility values of VM instance y�	 are computed

that depicts the performance of a particular VM with respect to a particular benchmarking result.

The utility value is normalized so that � y�	
z
	 =1 =1 and y�	 � [0, 1]. The overall aggregation of

utility values ��	 is then calculated as a sum of all y�	 for every evaluation metric. Finally, the

utility function g���	 � associated with VM instance i is constructed as follows:

<� ��� = � ?��
7
�=� ¡ ¢� (20)

VM instances with higher value of utility functions are ranked higher as compared to instances

with lower score.

3.6.3 SLA Management Module

Service level agreement is defined as: “a contract between a cloud provider and a cloud

consumer, with details related to the provisioned resources along with the price charged, and the

associated quality attributes while ensuring the use of provisioned resources provided by the

CP” [50]. SLAs are composed of service level objectives (SLOs) that define quality attributes

65

such as availability as well as associated penalty in case of SLA violations. SLAs are used as a

driving force for negotiation between different cloud providers. In this framework, SLAs of

different cloud providers are created by benchmarking their QoS aspects and based on the user

requirements, the candidate best fit cloud provider is selected. SLAng [127], a XML based

language for specification of QoS aspects of service level agreements, is extended to provide a

negotiation mechanism between different cloud providers.

3.6.3.1 SLA Service Management

This module checks individual resource providers to confirm the service requirements based on

the schema in figure 3.4. The proposed schema is a group of SLOs that is derived for network,

storage, memory and computing quality attributes. The first set of service level objectives

defined in schema is related to the computing capacity of the resources followed by storage,

network and memory. Attributes that are associated with the computing requirements are CPU

cores, VM speed, availability, OS type, cost and boot time of VM instances. Quality metrics like

Input/ Output operations per second and latency are also taken in account while representing the

storage set of terms. Upload/ download speed and ping are other important attributes while

representing the network set of requirements in SLA. Provider’s location attribute is given in the

schema in order to represent the geographical boundary of a particular datacenter so that resource

outsourcing may be achieved with minimal latency using the most nearest data centers.

Figure 3.4 outlines the proposed schema to represent different parameter settings for QoS

metrics. For instance, the xs element namespace identifier for QoS category CPUPerformance is

used to add a vocabulary for the CPUPerformance related six QoS metrics which are then later on

declared using float, byte and string data types. Each category of metrics can be either must

required once in a new job submission (maxOccurs = 1) or may not be part of a job requirement

(minOccurs = 0). For instance, a network bound steaming job may only require network related

metrics and any other QoS metrics may be assumed with default settings.

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="QoSModel">
<xs:complexType>
<xs:sequence>
<xs:element name="Compute">

66

<xs:complexType>
<xs:sequence>
<xs:element name="CPUPerformance" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:float" name="Availability"/>
<xs:attribute type="xs:byte" name="CPUCores"/>
<xs:attribute type="xs:byte" name="VMSpeed"/>
<xs:attribute type="xs:float" name="Cost"/>
<xs:attribute type="xs:string" name="OS"/>
<xs:attribute type="xs:byte" name="BootTime"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Storage" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:short" name="DiskSpace"/>
<xs:attribute type="xs:byte" name="IOPS"/>
<xs:attribute type="xs:byte" name="Latency"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Network" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:byte" name="Upload"/>
<xs:attribute type="xs:byte" name="Download"/>
<xs:attribute type="xs:byte" name="Ping"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Memory" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:byte" name="RWM"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

67

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Mutual">
<xs:complexType>
<xs:sequence>
<xs:element name="Violation_Clauses">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="Compensation"/>
<xs:attribute type="xs:string" name="Exclusion_Clauses"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Provider">
<xs:complexType>
<xs:sequence>
<xs:element name="Id">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="Slo_ID"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element type="xs:string" name="Name"/>
<xs:element type="xs:string" name="DataCenter"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Fig. 3.4: SLA Schema for QoS Metrics

68

The flow of events for SLA management process, based on the negotiation process as presented

in section 3.2, is shown in figure 3.5. A list of SLAs for each cloud provider is parsed against

any incoming job request and SLAs with the best matched configuration are returned to cloud

consumer. Upon acceptance by consumer, an agreement is established and resource is

provisioned.

Fig. 3.5: SLA Negotiation Process for Job Submission

3.6.3.2 Resource Monitoring Module

This module continuously monitors secured resources against service abruption and violation of

SLA. Taking into consideration the existing studies on SLA violation [128], [129], the flow of

events is as under:

4 The module is invoked when the agreement is signed between home and foreign cloud

providers on agreed upon QoS terms.

5 A small monitoring component is installed at the foreign cloud provider end to collect

necessary statistical usage and evaluation data.

6 Monitoring component periodically updates the broker about usage data.

7 If case of any SLA violation, an alarm is triggered which is handled by alarm manager. The

details of violation is recorded and compared against allowed threshold given in rule set. In

69

case of severe violation, resource switchover takes place and the VM is migrated to the

candidate cloud provider.

Figure 3.6 presents the job termination process where a provisioned resource is requested to be

terminated by cloud consumer. Although cloud consumers have the privilege to terminate any

VM at any instance of time, however, the process is necessary to collect any violation of

negotiation terms and provides a mechanism for developing a repository of violation data and

thus a better ranking mechanism, required for future job satisfaction. Upon the consumer request,

broker requests the monitoring component to exchange all execution and violation data. If

foreign CP performance violates SLA constraints, broker updates reputation repository with a

negative rating for the CP otherwise it updates with positive rating. Broker also notifies the

foreign cloud provider to acknowledge the job termination which is then passed on to the

consumer.

Fig. 3.6: SLA Monitoring and Termination Process

The ruleset is a repository of SLA rules along with allowed threshold. A part of rule-set is given

in figure 3.7.

<?xml version="1.0"?>

<ruleset version="1.0+">

70

<rule ref="Compute.Availability">

<properties>

<property name="threshold" value="-10%" />

<property name="action" value="preempt" />

<property name="message" value="Serious violation of availability SLO. Resource will

be preempted." />

</properties>

</rule>

<rule ref="Network.Download">

<properties>

<property name="threshold" value="-15%" />

<property name="action" value="warning" />

<property name="message" value="Warning. Violation of network bandwidth SLO" />

</properties>

</rule>

</ruleset>

Fig. 3.7: SLA Violation Rule-set

Some rules are critical and violation of such rules may be resulted in resource preemption.

However, some rules are non-critical in nature and foreign cloud provider may be warned for a

pre-defined number of times before any further action is taken place.

71

Chapter 4: Implementation
In this chapter, the implementation detail of the designed framework is discussed. In the

subsequent sections, the benchmarking methodology along with necessary tools is discussed,

followed by experimental design and the proposed evaluation strategies.

4.1 Benchmarking Methodology
Since simulation results and data extraction from the studies conducted earlier do not present the

actual figures to benchmark a particular cloud vendor, so different cloud vendors are evaluated

on the real testbed experiments. The experiments were conducted on different 64-bit Linux VM

instances, given in table 4.1, leased from the three cloud providers. Necessary statistical data for

benchmarking was collected after a series of experiments conducted in a time span of two month.

Multiple datacenters of the three cloud providers were used to calculate average performance

estimation.

Table 4.1: List of VM instances used for Experimentation

Ref. ID Cloud

Provider

VM instance vCPU Memory

(GB)

Cost

(US$)

Storage

(GB)

A1GB Amazon t2.micro 1 1 $0.013 EBS

A4GB Amazon t2.medium 2 4 0.052 EBS

A15GB Amazon m3.xlarge 4 15 0.266 2 x 40 SSD

RS1GB Rackspace 1 GB Standard 1 1 0.06 40 RAID

RS 4GB Rackspace 4GB Standard 2 4 $0.24 160 RAID

R7.5GB Rackspace 7.5GB Compute v1 4 7.5 $0.23 50 ESB

G1GB Google g1-small 1 1.7 0.01 10240 SSD

G3.8GB Google n1-standard-1 1 3.75 $0.050 10240 SSD

G13GB Google n1-highmem-2 2 13 $0.126 10240 SSD

72

Tables 4.2-4.5 show the list of benchmarking tools used in the experiments:

Table 4.2: Network Benchmarking Tools

Tool Supported Metrics

iperf [130] Network bandwidth, throughput

ping Network latency

speedtest-cli [131] Network bandwidth

Table 4.3: CPU Benchmarking Tools

Tool Supported Metrics

Dacapo [90] CPU execution time

SPECjvm2008 [88] CPU execution time

Phoronix Test Suites [89] CPU execution time

Table 4.4: Storage Benchmarking Tools

Tool Supported Metrics

iozone [92] Throughput, Disk I/O

bonnie++ [93] Storage latency, Disk I/O

Table 4.5: Memory Benchmarking Tools

Tool Supported Metrics

Cachebench [94] Memory read/modify/write access time

Ubench [132] Memory throughput

4.2 Implementation Technologies
A two-fold cross validation experimentation strategy is used to evaluate the proposed

framework. Real test-bed experiments are expensive, both terms of time and cost and hence first

simulation environment was used to ensure the effectiveness of designed broker based resource

provision framework. Based on simulation results, the evaluation policies were reassessed and

then a series of experimentations, as presented in sections 5.4.1 and 5.4.1, were performed on

real cloud providers. Table 4.1 presents the list of tools used during the experimentation process.

73

Table 4.6: Tools used in Simulation of the Proposed Framework

Tools Usage

CloudSim

(version 3.0)

CloudSim is a Java based Infrastructure as a Service toolkit to simulate

data centers, virtual machines, hosts and job management in cloud

computing environment. It can be used to simulate resource scheduling,

cloud pricing and policy management within cloud or inter-cloud

environment [133].

To simulate cloud computing environment, virtual machine

provisioning mechanism as well as brokering policies were extended in

order to evaluate the designed framework.

CloudReports

(version 1.0)

CloudReports is a GUI wrapper built on the top of CloudSim to provide

better graphical and visual representation of simulation environment.

The tool provides additional analysis and reporting charts and metrics

to synthesize simulation results [134]. Some components of

CloudReports were extended to match the scenario of inter-cloud

environment.

Hiberante ORM

To ensure better reliability of simulation results, it is necessary to

repeat simulation experiments more than once. It, therefore, becomes

necessary to save and retrieve the state of simulation objects (virtual

machines, hosts, job preferences and policy mechanism) when a series

of experiments take place. Hibernate ORM was used to map object

states in database to ensure data persistence and reliability of

experiments [135] .

CloudSim simulation is based on the configuration of datacenters, hosts and virtual machines.

Datacenters are responsible for creating and managing hosts while VMs are created within hosts.

74

Consumer issues requests for number of required VMs and associated tasks in form of Cloudlets.

Figure 4.1 depicts the multi-cloud simulation environment developed in CloudSim toolkit.

Fig. 4.1: Cloud Simulation Environment

The default policy for DataCenterBroker is based on RoundRobin scheduling where resources

are randomly allocated and workload is divided in different datacenters. To implement the

designed framework, the DataCenterBroker class was extended to manage resource provisioning

and scheduling policies. A broker extension was developed to divide workload according to user

QoS requirements for optimal resource allocation. The cost model of CloudSim was also

extended to calculate VM utilization cost per hour which is not implemented in CloudSim

simulator. VM allocation policy was also modified to provide an inter-cloud outsourcing and

migration mechanism for different datacenters. Workload management as well as resource

leasing and migration across multiple datacenters provide an effective and reliable resource

management strategy where every stakeholder is at win-win situation. The architecture of

extended CloudSim toolkit is presented in figure 4.2.

75

Fig. 4.2: Architecture of Extended CloudSim

The proposed policies were simulated by executing simulation several times using CloudReports.

A set of experiments were performed and following variables were measured for synthesizing

and calculating experimental results:

1. Cost

2. Processing load

3. Time

Upon a job submission, user is requested to provide job QoS preferences to classify incoming

tasks as CPU/ network/ storage/ memory intensive as shown in figure 4.3. If local cloud

resources are insufficient to meet incoming job demands, resources from other cloud providers

are leased based on user preferences. The negotiation and brokering strategies are discussed in

chapter 3.

76

Fig. 4.3: Job Preferences for SLA Management

Real testbed experiments were performed using Apache jclouds while Cloudharmony API was

invoked to collect necessary usage and performance statistics of different cloud vendors. Table

4.2 presents the list of tools, used during the testbed experiments while the broker based testbed

prototype is shown in figure 4.4.

Table 4.7: Tools used in the Experimentation of the Designed Framework

Tools Usage

Apache jclouds

(version 1.8)

Apache jclouds is a multi-cloud toolkit, developed to provide

a common interface for cloud specific features such as

managing VM instances, load balancing and data storage

across multi-clouds [136]. A GUI based interface was

developed to perform necessary experiments in a user

friendly way.

77

Cloudharmony API

Cloudharmony is aimed at providing reliable and updated

performance analysis about availability, network outages, and

performance analysis for various cloud providers [137].

BLAST+

BLAST+ (Basic Local Alignment Search Tool) is a

command line utility for comparing biological sequence

information such as the different proteins or the nucleotides

of DNA sequences. The tool enables users to compare a

search sequence query against a database of sequences to

identify sequence that resemble with source query sequences

under a specific threshold [138].

GNU Parallel

GNU parallel is a command line utility for Unix like

operating systems. It allows users to execute shell scripts in

parallel [139].

Fig. 4.4: JClouds Experimentation Setup

78

4.3 QoS Evaluation Policies
To evaluate the designed framework, following policies were derived in order to evaluate the

designed model:

4.3.1 Local Resource Allocation

As the name indicates, local resource allocation policy is used by autonomous cloud

providers for placement of VM instances from the job pool. This policy is quite simple to use

and no federation is required in this case. It ensures the notion of unlimited VM instances

availability as long as VM pool is not fully occupied. However, further VM requests crossing the

availability of the resources in the job pool are not entertained under the local resource

allocation. This may result in less profit and higher denial of service for new incoming jobs.

The providers’ profit acquired at a certain period of time £`, using these policies is

determined as:

 ¤�$<���(£�) = ¥!?!�8!�(£�) � ¦$#�_$<_§�!�6����_ �#�(£�) (21)

and ¥!?!�8!�(£�) = ��(£�). �_����!_�!�_A$8��. £� (22)

where,

Revenuep,

4.3.2 Broker based Outsource oriented Resource Allocation

is obtained by multiplying the number of VMs allocated to tasks requested by the

client and VM price per hour for a certain period of times. Cost_of_Operating_VM is the cost

required to keep the nodes up in the datacenter during a certain period of time. The provider

gains profit only if Revenue (£`) > Cost_of_Operating_VMs(£`) in datacenter.

In order to maintain a better reputation and to entertain excessive on-demand requests from the

clients, this policy can be used by the cloud service providers. This policy accommodates the

broker based resource provisioning model as proposed in the framework for cloud federation.

Hence, this policy solves the issue of denial of service in earlier policies. If in-house resources of

home cloud provider are not enough to satisfy incoming job, resources from foreign cloud

providers are leased based on the QoS requirements of home cloud provider. The policy also

79

ensures that the cost charged by the provider of the spare resource should be less than the one

charged by the provider to its client for revenue perspective. Also the quality metrics required by

the cloud provider must be satisfied accordingly for resources being leased. The revenue in this

case, can be calculated from the number of outsourced VM by the provider as Revenueo

 ODL¨'&L(£&) = SCBC*©CL(£&) � �L5&_L¨_N©&5L©DICª_«�5L(£&) (23)

The provider will be in benefit if the outsourced VM instances would be less in price than the

one offered by the provider in his own datacenter. Although an exception would be the case

when provider may sometimes face a loss in revenue just to maintain the reputation of the

services provided to the clients, as the price of outsourced VM may vary at times or a provider is

accommodating the purchase from the expensive cloud provider in federation due to lack of

spare resources from the other cloud providers to avoid any SLA violation for regular users.

. Thus,

the profit will be computed as:

4.4 Workload Generation

Cloud computing environment is inherently different from cluster and grid computing,

being operated by R& D institutes and government agencies and workload traces are made

available to researchers and general audience. Clouds are mostly operated by private venders and

no public workload dataset is available for IaaS cloud computing platform [140]. For a generic

workload model, the following three workload patters are mostly used by researchers [141]:

1. Uniform: Under this workload pattern, incoming job arrivals are mostly constant

and a steady pattern is observed

2. Discrete/ Continues Distribution: In this scenario, job request rate is either

increased or decreased at a gradual pace and discrete/ continuous deviation

pattern may be observed

3. Workload Spikes: Such a pattern is also known as flash crowd or resource burst.

In such an interval, large spikes of resource demands is anticipated that may affect

overall provisioning of resource provisioning policies and VM placement

mechanism. This may be a result of workload variation during day vs. nights,

weekdays vs. weekends or any special occasions.

80

Poison distribution was used for discrete/ continuous workload patterns. However, workload

pattern follow a log-normal like distribution instead of the poison process when request arrivals

are not independent [76]. Motivated by this, we adapted the workload model proposed in [8] and

[142] to generate realistic load streams during spikes. This model considers four time periods: t0,

t1, t2 and t3. Incoming job requests arrive at a uniform rate until a resource burst is experienced

at t0. During the first phase, as shown in figure 4.5, a resource spike is observed and resource

demand is anticipated as more and more resource requests arrive during a relatively shorter

period of time, till it reaches to a maximum level at t1. The phase, known as Ramp-up, can be

presented as:

Ramp-up= t1 - t0 (24)

Fig. 4.5: Large Spike of Resource Demand

After Ramp-up, resource demand remains steady for a period till t2. This phase is known as

steady phase:

Steady-phase= t2 – t1 (25)

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 21 25 30 35 40 45 50 55 60 65 70 80 85 90 100 105 110 115 120

workload multiplication factor

workload with a spike

Time (sec)

81

In steady phase, job arrival rate is proportionally equal to job completion rate. Finally, the

demand for resources gradually decreases and a normal workload pattern is again observed at t3.

The phase is known as Ramp-down:

Ramp-down= t3 – t2

As shown in figure 4.6, time values and a scale-up factor U generate overall resource spike. The

normal workload pattern is multiplied by a shape parameterization factor�
 is set to 1.0 during

normal workload before t

(26)

0. During spikes (between t0 and t1), �
 gradually increase to U and

remains unchanged until t2. During ramp-down phase, �
gradually decreases until it reaches 1.0

at t3

Fig. 4.6: Time Interval Distribution of Resource Spike

.

The final workload model is presented in the figure 4.7. Based on the workload pattern studies

for cloud computing [140], [143], higher workload pattern was generated on weekdays as

compared to lower number of requests during weekends to increase or decrease the data center

load. Since we intend to study the behavior of the cloud resource provisioning policies in

different situations of the load, the incoming job request load may exceed over 100% to reflect

excess resource demands that may not be accommodated by using datacenter capacity. Lease or

not to lease will be a key consideration for assessing the impact of cost, trust and goodwill. For

������	
 ����������	�
 �����
 ���
 ���
 ���
 ��
 ��
 ��
 ����
 ��
 ���
 �����
 �	�
 ����
 ����
 �	���

spikes were added to test the workload distribution of the system. However, number of incoming

job requests during weekends were almost half of the normal load during the weekdays. It is

82

worth mentioning that unlike real cloud environments, where resource demands can be obtained

by analyzing usage history data (and the resultant value will be a specific threshold), cloud

resource demand simulation initially starts up with zero workload and gradually warms up. Since

the initial values are of little significance, these values, although considered in results, are not

displayed in the workload model. The code for Poisson distribution is presented in Appendix-I.

Fig. 4.7: Proposed Workload Model for Simulation

125

100

75

50

25

0

 Time (days)

Tue

L
o

ad
 %

Wed Thu Fri Sat Sun

83

Chapter 5: Results & Discussion
In this chapter, first benchmarking results based on the four categories of metrics, discussed in

earlier sections, are presented. In the second section, simulation results are presented while

finally online experimentation results are presented in the last section of the chapter.

5.1 Benchmarking Results
Based on the literature, the three IaaS cloud providers were evaluated using the following

categories of metrics: Compute, Memory Hierarchy, Network and Storage. Necessary statistical

data for benchmarking was collected after a series of experiments conducted in a time span of

one month. Multiple datacenters of the three cloud providers were used to calculate average

performance estimation.

5.1.1 CPU Benchmarking

CPU Processing is a common performance benchmark for applications involving intensive

workload. Processing performance is much dependant on clock speed, number of CPU cores and

type of hardware. It is generally believed that VM instances with large number of CPU cores

provide much better performance in terms of server execution and response time. However,

experimentation results somehow depict that no significant performance gain was observed

between VM instances with 2 vCPU and 4 vCPU compute instances. A maximum of 10-15% of

performance variation was found between switching small instances to comparatively better

server grade hardware. For instance, Decapo CPU benchmarking resulted in only 8% of

performance gain while switching from Amazon t2.medium to Amazon m3.xlarge. Figures 5.1-

5.3 present benchmarking results of Decapo, SPECJVM and Phoenix test suites respectively.

Experimentation results demonstrate that Amazon m3.xlarge outperforms all other instances in

terms of CPU performance.

A15GB outperformed other VM instances in terms of performance (as shown in figure 5.1a) but

with relatively higher cost as compared to A4GB. However, the performance analysis, as

presented in section 3.6.2, shows that A4GB instances are much more promising than other VM

instances when the price versus performance score is taken into consideration (shown in figure

5.1b). Scientific applications, due to their inherently multi-threaded distributed nature, can

significantly reduce computational cost by leasing such inexpensive VM instances instead of

investing in relatively expensive VM instances with partial gain in overall performance.

84

(a) Benchmarking Result (b) Price-performance score, � = 5
Fig. 5.1: Benchmarking Result of Decapo Test suite

The price-performance comparison of all VMs, based on ranking procedure as outlined in section

3.6.2 and derived from figure 5.1 (b), is given in table 5.1.

Table 5.1: Decapo price-performance Analysis (� = 5)

VM RS 4GB R7.5GB G3.8GB G13GB A4GB A15GB

RS 4GB 1:1 1.5:1 1.6:1 1: 1.2 4:1 1.9:1

R7.5GB 1.5:1 1:1 1.1:1 1:1.8 2.7:1 1.3:1

G3.8GB 1:1.6 1:1.1 1:1 1:1.9 2.6:1 1.2:1

G13GB 1.2:1 1.8:1 1.9:1 1:1 4.8:1 2.3:1

A4GB 1:4 1:2.7 1:2.6 1:4.8 1:1 1:2.1

A15GB 1:1.9 1:1.3 1:1.2 1:2.3 2.1:1 1:1

In table 5.1, each score is a ratio between two cloud providers. For instance, the score 1.5:1 of

second column in first row shows that RS 4GB performance result is 1.5 times lower than

R7.5GB. The most extreme ratio was between A4GB and G13GB with 1:4.8.

Scientific applications are inherently CPU and memory intensive and they often push computing

resources to its full potential [144]. The sub-benchmarks of SPECjvm2008 are components of

real world applications intended to test overall performance of modern CPU architecture and

memory sub-system. Figure 5.2 depicts benchmarking results in ops/min (operations per minute)

of three different test cases: Compiler for throughput measurement to reflect overall performance

of the system, SciMark workload to test JVM code optimization targeted at L2 cache and

85

memory subsystem and Crypto sub-benchmark with AES workload for performance testing of

encryption and decryption protocols.

(a) Benchmarking Result (b) Price-performance score, � = 10

Fig. 5.2: Performance Classifications of three SPECJVM Test cases

As shown in Table 5.2, the most extreme ratio for SPECJVM benchmark was 5:1 among

RS 4GB and A4B with 5:1.

Table 5.2: SPECJVM price-performance Analysis (� = 10)

VM RS 4GB R7.5GB G3.8GB G13GB A4GB A15GB

RS 4GB 1:1 1.6:1 2.1:1 1.4:1 5:1 2.1:1

R7.5GB 1:1.6 1:1 1.3:1 1:1.2 3.2:1 1.3:1

G3.8GB 1:2.1 1:1.3 1:1 1:1.5 2.6:1 1:1

G13GB 1:1.4 1.2:1 1.5:1 1:1 3.8:1 1.5:1

A4GB 1:5.3 1:3.2 1:2.6 1:3.8 1:1 1:2.5

A15GB 1:2.1 1:1.3 1:1 1:1.5 2.5:1 1:1

The Phoronix Test Suite is built for benchmarking real world applications and hardware

performance comparisons including processor, system, memory and graphic performance. Bullet

is a physics engine to simulate virtual environment that incorporates laws from the physical

world. Figure 5.3 presents the experimentation results of 3000 fall bullet physics engine. The

score of such experiments are inverted as VMs with better hardware configuration complete the

simulation in relatively lesser time. The results are interesting and somehow differ from the

earlier two CPU experiments as G3.8GB performed slightly better than A4GB in price-

performance analysis.

86

(a) Benchmarking Result of 3000 fall
bullet Phoronix test suite (b) Price-performance score, � = 2

Fig. 5.3: Performance Classifications of three Phoronix Test cases

As given in table 5.3, the worst ratio was G3.8GB vs. R7.5GB with a performance variation of

1:7.7.

Table 5.3: Phoronix price-performance Analysis (� = 2)

VM RS 4GB R7.5GB G3.8GB G13GB A4GB A15GB

RS 4GB 1:1 1:2.2 3.4:1 1.6:1 3.4:1 1.2:1

R7.5GB 2.2:1 1:1 7.7:1 3.5:1 7.6:1 2.8:1

G3.8GB 1:3.4 1:7.7 1:1 1:2.2 1:1 1:2.8

G13GB 1:1.6 1:3.5 2.2:1 1:1 2.2:1 1:1.3

A4GB 1:3.4 1:7.6 1:1 1:2.2 1:1 1:2.8

A15GB 1:1.2 1:2.8 2.8:1 1.3:1 2.8:1 1:1

5.1.2 Network Benchmarking

Network performance determines how fast a VM can communicate with other clients over a

network. Unlike most cloud storage and database applications, which are comparatively more

tolerant to delay and jitter, media applications are far more demanding. The network delay with

large jitter degrades user received media quality of latency sensitive multimedia applications

[117],[118]. Hence, cloud providers with better network performance in terms of throughput vs.

latency play a key role in the success of such business applications. The network performance of

the three cloud providers was evaluated using iperf, speedtest-cli and ping. The results are

depicted in figure 5.4.

87

(a) Benchmarking Result (b) Price-performance score, � = 5

Fig. 5.4: Network performance of VM Instances

Table 5.4: Network price-performance Analysis (� = 5)

(a) Download analysis

VM RS 4GB R7.5GB G3.8GB G13GB A4GB A15GB

RS 4GB 1:1 1.4:1 1:3.4 1:2.3 1.5:1 1.4:1

R7.5GB 1:1.4 1:1 1:4.8 1:3.3 1:1 1:1

G3.8GB 3.4:1 4.8:1 1:1 1.5:1 5:1 5:1

G13GB 2.3:1 3.3:1 1:1.5 1:1 3.4:1 3.3:1

A4GB 1:1.5 1:1 1:5 1:3.4 1:1 1:1

A15GB 1:1.4 1:1 1:4.9 1:3.3 1:1 1:1

(b) Upload analysis

VM RS 4GB R7.5GB G3.8GB G13GB A4GB A15GB

RS 4GB 1:1 1.2:1 1:3.1 1:6.1 1.6:1 1.1:1

R7.5GB 1:1.2 1:1 1:3.8 1:7.6 1.3:1 1:1.2

G3.8GB 3.1:1 3.8:1 1:1 1:2 5:1 3.3:1

G13GB 6.1:1 7.6:1 2:1 1:1 10:1 6.6:1

A4GB 1:1.6 1:1.3 1:5 1:10 1:1 1:1.5

A15GB 1:1.1 1.2:1 1:3.3 1:6.6 1.5:1 1:1

As shown in table 5.4, both Amazon and Rackspace provide much better network performance

with notably higher download/ upload speed. Google VM instances are relatively poor in terms

of network performance and latency. The most extreme ratios 1:5, between G3.8GB and A4GB

in case of download and 1:10, between G13GB and A4Gb in case of upload were obtained in

calculation results.

88

5.1.3 Memory Benchmarking

Memory is the core element that determines the processing speed of an application. Many

scientific and business applications are extremely dependant on memory system performance.

Under heavy memory contention, the memory latency may increase two or three times. Thus, the

increasing performance gap between processors and memory systems imposes a memory

bottleneck for such applications [116]. The three cloud providers were evaluated using Ubench

and Cachebench benchmarking tools. Experimentation results are presented in figures 5.5 and

5.6. The results suggest that Google and Amazon VM instances are well optimized for memory

related operations.

(a) Benchmarking Result (b) Price-performance score, � = 2

Fig. 5.5: Ubench Memory Benchmarking Score

As summarized in table 5.5, Rackspace instances are far below in the memory related functions

and operations. Likewise CPU benchmarking, no major performance degradation was observed

between VM instances with less number of cores and memory. Comparative benchmarking

results among different cloud providers show that the most extreme ratio was between RS 4 GB

and A 4GB with 6.3:1.

Table 5.5: Ubench price-performance Analysis (� = 2)

VM RS 4GB R7.5GB G3.8GB G13GB A4GB A15GB

RS 4GB 1:1 1.3:1 3.2:1 2.2:1 6.3:1 2.7:1

R7.5GB 1:1.25 1:1 2.6:1 1.8:1 5:1 2.2:1

G3.8GB 1:3.2 1:2.6 1:1 1:1.6 2:1 1:1.2

89

G13GB 1:2.2 1:1.8 1.5:1 1:1 2.9:1 1.2:1

A4GB 1:6.3 1:5 1:2 1:2.9 1:1 1:2.3

A15GB 1:2.7 1:2.2 1.2:1 1:1.2 2.3:1 1:1

Cachebench experiments were performed for benchmarking memory system performance using

read, write, rmw, handread, handwrite, handrmw, memset,memcpy operations. From figure 5.6,

it is apparent that Amazon and Google VM instances have very identical memory performance

while the performance of Rackspace VM instances was degraded during the memory related

operations.

(a) Google 4GB

(b) Google 13GB

90

(c) Rackspace 4GB

(d) Rackspace 7.5GB

(e) Amazon 4GB

91

(f) Amazon 15GB

Fig. 5.6: Cachebench Results of three Cloud Providers

5.1.4 Storage Benchmarking

Considering the nature of cloud computing environment where scientific applications and

business workflows continuously involve storage I/O operations, it is important to determine

how quickly storage devices allow applications to interact with data or files. Experimentations

results, as shown in figure 5.7, reveal a steady IO performance for both Rackspace and Amazon,

however, performance variation of Google is a matter of discussion for future studies. The

second sets of experiments with Bonnie suggest that Rackspace VM instances outperformed

Amazon and Google. Furthermore, the two Google VM instances were failed to complete IO

operations for file size greater than 4 GB. It clearly shows that such instances are not built for

data intensive cloud applications.

Fig. 5.7: IOZone Benchmarking Results of 4GB VM instances

92

Tables 5.5- 5.8 clearly present that Rackspace instances performed much better for all file

operations ranging up to 4 GB file size performance test. Amazon instances completed most of

the operations but got stuck at 4GB file operations for a block size larger than 1024. Google

instances produced poor I/O performance results and could not even completed some of the 2GB

file operations.

For I/O benchmarking through bonnie++, data size double of the size of RAM was provided.

However, an exception was Google13GB instance which was failed on such data size and

experiments had to be restricted at a maximum of 8 GB data size. As presented in figure 5.8,

Rackspace VM instances provided better performance results while Amazon instances usage for

CPU was lesser during the same operations. Google VM instances were ranked lower in all

cases.

Table 5.6: Rackspace IOZone Results

read reread write rewrite fread randread

1048576

64 3382634 3342491 414765 1622381 3342491 3200420

128 3474879 3542198 428442 1650396 3542198 3437660

256 3474923 3613884 425441 1668508 3613884 3370747

512 3568708 3655486 422748 1674525 3655486 3609581

1024 3220115 3263166 419646 1606513 3263166 3236275

2048 3166342 3194931 421690 1587983 3194931 3201494

4096 2585597 2654133 412644 1463031 2654133 2649403

8192 2548682 2609046 412064 1461604 2609046 2611398

16384 2509041 2598688 403356 1398791 2598688 2563868

2097152

64 3278152 3345919 359845 1574608 3345919 3119587

128 3383889 3458900 350208 1618113 3458900 3374822

256 3424228 3526853 362374 1636934 3526853 3421101

512 3492896 3562217 347045 1688271 3562217 3626314

1024 3445013 3471726 362576 1635600 3471726 3455333

2048 3087488 3149921 346430 1536836 3149921 3103852

4096 2685739 2824306 334507 1435786 2824306 2770320

8192 2444680 2504014 339638 1415473 2504014 2472057

16384 2453515 2621600 327991 1439147 2621600 2619419

93

4194304

64 3275259 3352209 307455 560398 3352209 3140798

128 3416583 3534116 306743 634439 3534116 3497915

256 3616094 3701592 304603 644555 3701592 3589240

512 3633373 3709537 325815 665320 3709537 3629200

1024 3448707 3490488 310532 639957 3490488 3505940

2048 3169432 3227281 301190 642106 3227281 3304097

4096 2670099 2650404 310398 630980 2650404 2732625

8192 2510975 2621199 295546 646799 2621199 2574707

16384 2444184 2581151 298815 734278 2581151 2546598

Table 5.7: Amazon IOZone Results

read reread write Rewrite fread randread

1048576

64 7683280 7790139 1561024 2843327 7733715 7425597

128 7625398 7718243 1562168 2954019 7674230 7413469

256 6886885 7297944 1558606 2903058 7216184 7113474

512 7010885 7451880 1572599 2905390 7392919 7379609

1024 7041112 7537912 1580947 2922542 7524873 7471464

2048 7058934 7527630 1585666 2937079 7470246 7529782

4096 7039591 7603396 1579509 2932694 7410221 7574391

8192 6990282 7417194 1564600 2868599 7375513 7391938

16384 4477227 4519216 1511803 2653602 4772285 4403688

2097152

64 7624571 7737939 1564781 2861291 7636254 7342401

128 7619136 7679006 1567393 2945218 7619994 7359048

256 6955842 7229094 1570127 2867821 7272889 7040683

512 7005569 7400208 1566001 2923157 7380184 7362892

1024 7025325 7472238 1581715 2893412 7426468 7446901

2048 6992303 7568922 1587800 2938170 7534121 7533173

4096 6976387 7528137 1585369 2929502 7576987 7565921

8192 6998061 7500835 1572799 2920470 7429121 7515543

16384 4717534 4688879 1498704 2691751 4495077 4771458

4194304

64 7685057 7702841 320908 237367 7747029 7275890

128 7605748 7654761 322318 310238 7673047 7294465

256 7002515 7220764 322788 310109 7283219 7147925

512 7009886 7333265 9316 10106 7369795 7289750

94

1024 ------- ------- ------- ------- ------- -------

2048 ------- ------- ------- ------- ------- -------

4096 ------- ------- ------- ------- ------- -------

8192 ------- ------- ------- ------- ------- -------

16384 ------- ------- ------- ------- ------- -------

Table 5.8: Google IOZone Results

read reread write rewrite fread Randread

1048576

64 6697510 6837484 1554915 3214291 6136114 6422298

128 6102229 6565583 1603815 3169300 6118461 6016621

256 5682019 5842756 1628130 3172743 5712410 5658494

512 5996694 6077152 1648113 3291345 5922849 6001915

1024 6165706 6116282 1660558 3375207 5905742 5529965

2048 5689811 6133957 1649127 3341095 5906940 6164617

4096 6050499 6167798 1661041 3179284 5978093 6189830

8192 6093470 6202173 1617139 3323221 5863727 6197811

16384 5349355 5456357 1516517 2894779 5150632 5420453

2097152

64 7080690 7262363 1310443 2427523 6187930 6595291

128 6229510 6245482 1354827 2447068 5876038 5874750

256 5791190 5863847 1307913 2398689 5512901 5666815

512 6019172 6052822 1339378 2471109 5832160 5920393

1024 5873699 6033391 1346250 2444392 5924995 6051023

2048 ------- ------- ------- ------- ------- -------

4096 ------- ------- ------- ------- ------- -------

8192 ------- ------- ------- ------- ------- -------

16384 ------- ------- ------- ------- ------- -------

4194304

64 ------- ------- ------- ------- ------- -------

128 ------- ------- ------- ------- ------- -------

256 ------- ------- ------- ------- ------- -------

512 ------- ------- ------- ------- ------- -------

1024 ------- ------- ------- ------- ------- -------

2048 ------- ------- ------- ------- ------- -------

4096 ------- ------- ------- ------- ------- -------

8192 ------- ------- ------- ------- ------- -------

16384 ------- ------- ------- ------- ------- -------

(a) Rackspace 4GB

95

(b) Rackspace 7.5GB

(c) Amazon 4GB

(d) Amazon 15GB

(e) Google 4GB

(f) Google 13GB (Tested on 8GB File Size)

Fig. 5.8: Bonnie File System Benchmarking Results

5.2 Ranking Cloud Providers for Scientific Computing
For overall price-performance ranking of the three cloud providers, additive weighting scheme

was used as discussed in section 3.6.2. Scientific applications are usually hardware dependant

96

and may be compute and I/O intensive [145]- [146], compute and bandwidth intensive [147]-

[148] or compute and memory intensive [149], [150], [151]. Based on the research studies and

necessary ranking procedure as outlined in section 3.6.2, weights were assigned to each

evaluation metric as given in table 5.9.

Table 5.9 : List of Metrics and associated weights

For all VMs, the utility value against each benchmark is obtained by multiplying the relative

normalized score with the relative second level weight of the benchmark wj

109

. For every CPU

metric, the score is aggregated, resulting in cumulative utility value (Vj). The utility function is

then calculated by multiplying top level weight (Wj) by cumulative utility value. Finally, total

ranking score is calculated as a sum of utility functions for all evaluation metrics. The ranking

scores for all VMs are given in table 5.10 where RS 4GB, R7.5GB, G3.8GB, G13GB, A4GB,

A15GB are represented as VM1, VM2,…, VM6 respectively. The results clearly indicate that

A4GB outperformed all other VMs in terms of price-performance evaluation metrics, followed

by G3.8GB, A15GB, R7.5GB, 4GB, and G13GB. The final results are somehow different from

the benchmarking studies conducted earlier [], [152] as the computational cost, being the

driving factor of cloud computing model, was not considered in these studies and hence the

performance evaluation results may not be on equal ground.

Metric Top level weight(Wj Benchmark (j)) Second level (wj)

CPU 0.4

Phoronix 0.4

SPECjvm 0.4

Dacapo 0.2

Memory 0.3
Cachebench 0.6

Ubench 0.4

Network 0.15

Upload 0.4

Download 0.4

Ping 0.2

Storage 0.15
Bonnie 0.6

IOZone 0.4

97

Table 5.10: Aggregate Utility Ranking based on Performance Metrics

Metric Benchmark VM v1 V1j f(V1j 1j VM) v2 V2j f(V2j 2j VM) v3 V3j f(V3j 3j)

CPU

Phoronix 0.09 0.04

0.09 0.036

0.04 0.02

0.1 0.04

0.31 0.12

0.21 0.08SPECjvm 0.07 0.03 0.12 0.05 0.15 0.06

Dacapo 0.09 0.02 0.14 0.03 0.14 0.03

Network

Download 0.16 0.06

0.18 0.027

0.23 0.09

0.23 0.035

0.05 0.02

0.06 0.009Upload 0.18 0.07 0.23 0.09 0.06 0.02

Ping 0.23 0.05 0.25 0.05 0.08 0.02

Memory

Cachebench 0.09 0.05

0.07 0.021

0.07 0.04

0.07 0.021

0.28 0.17

0.24 0.072
UBench 0.06 0.02 0.08 0.03 0.19 0.07

Storage

Bonnie 0.23 0.14

0.22 0.033

0.19 0.11

0.18 0.027

0.08 0.05

0.12 0.018
Iozone 0.21 0.08 0.18 0.07 0.18 0.07

Total 0.117 0.123 0.179

Metric Benchmark VM v4 V4j f(V4j 4j VM) v5 V5j f(V5j 5j VM) v6 V6j f(V6j 6j)

CPU

Phoronix 0.14 0.06

0.12 0.05

0.31 0.12

0.35 0.14

0.11 0.04

0.14 0.06SPECjvm 0.10 0.04 0.39 0.16 0.16 0.06

Dacapo 0.08 0.02 0.37 0.07 0.18 0.04

Network

Download 0.07 0.03

0.05 0.008

0.24 0.10

0.26 0.039

0.24 0.10

0.22 0.033Upload 0.03 0.01 0.30 0.12 0.20 0.08

Ping 0.03 0.01 0.23 0.04 0.18 0.04

Memory

Cachebench 0.16 0.10

0.15 0.045

0.26 0.16

0.31 0.093

0.15 0.09

0.15 0.045
UBench 0.13 0.05 0.38 0.15 0.16 0.06

Storage

Bonnie 0.06 0.04

0.06 0.009

0.25 0.15

0.24 0.036

0.18 0.11

0.18 0.027
Iozone 0.04 0.02 0.22 0.09 0.17 0.07

Total 0.112 0.308 0.165

5.3 Simulation Results
For simulation setup, the workload pattern as presented in figure 4.7 was used as a reference

model. Rackspace 7.5GB VM instances was used as a reference, charged at US $0.23 per hour

with an additional cost of US$ 0.12 per GB outgoing bandwidth usage. During simulation, each

data center supported contained 15 physical servers, each capable to host a maximum of 8 VM

instances. Simulation data for a period of one week was collected. The request arrival rate varied

98

over time; during weekdays the average workload was set around 1575 VM requests while the

same was reduced to 975 for weekends. Simulation was performed for both local resource

allocation (LRA) and broker based outsource oriented resource allocation policies (BOR). A

marginally lower random probability was also assigned to job failure during the course of

execution.

Each individual simulation run was performed for one hour. In this section, simulation result for

a workload pattern with varying load is presented. Resource demand was at low during the start

and gradually increased with the passage of time. Resource surge was reached at 100% during

the mid of simulation and further job requests was denied by LRA while resource outsourcing

was started for BOR. The load pattern is given in figure 5.9.

Fig. 5.9: Resource Demand on Varying Loads

For LRA, the policy was set to utilize maximum capacity of resource pool. However, upon the

full utilization of the VM pool, further incoming requests were rejected until some VMs were de-

allocated after job completion. The resource utilization pattern is presented in the following

figure:

99

Fig. 5.10: Overall Resource Utilization of LRAI Policy

As shown in figure 5.10, the resource surge reached at maximum during the mid of simulation,

and further job requests were not entertained and hence a steady utilization graph at 100% is

achieved for a period time. However, in the end of simulation, after completion of the job cycle

for few VMs, the job pool was once again available for future job requests. Simulation results for

this one hour of experiment are given in figure 5.11.

Fig. 5.11: Results of LRAI Policy

100

As depicted in the figure 5.11, a total of 98 new VM requests were accepted while 19 VMs were

rejected during the peak workload. Total user debt was US$ 24.10 for one hour of simulation.

Execution of one job was failed but since the offered capacity did not allow migration to other

data centers, this was resulted in SLA violation and hence compensation penalty had to be paid

for such occurrences.

The BOR policy was aimed to fully utilize local resource pool as well as lease available capacity

from other cloud providers based on particular QoS requirements, whenever required. This

policy results in better economic efficiency and economics of scale. As a result, user jobs being

rejected by LRA can now be outsourced which increases overall profit of cloud providers.

During simulation, local resource pool was used till the mid of simulation where resource

demand was within the capacity of local datacenter. However, the broker component was

requested to outsource further incoming requests based QoS requirements. Before the start of

simulation, cloud user was requested to provide necessary QoS requirements which are critical to

complete job execution. The feedback was then matched with SLA of foreign cloud providers

with the reference cloud provider, Rackspace in this case. During the outsourcing phase, only

those VM instances from foreign cloud providers were selected who match with user SLA

requirements. Since foreign cloud providers cannot satisfy all such requests, few jobs were

rejected during simulations. The resource utilization pattern is presented in figure 5.12.

Fig. 5.12: Resource Utilization of BOR Policy

101

BOR policy resulted in managing resource demand above 100% and incoming job requests were

outsourced to foreign cloud providers. For the SLA requirements of this particular simulation

experiment, Amazon t2.medium was selected as a candidate cloud provider for resource

outsourcing. After the mid of simulation, where the local resources were almost fully utilized,

outsourced VM for the candidate cloud provider were leased for incoming job requests.

However, since the foreign cloud provider was also managing its own workload, some VM

requests were rejected due to relatively high resource demand within the datacenter of foreign

cloud provider. However, overall job satisfaction and resource utilization was much higher for

this particular kind of experiment. Much similar with LRA, one job was failed on the local

servers; however this job was outsourced to foreign cloud provider to avoid any SLA violation.

The results of simulation are depicted in figure 5.13.

Fig. 5.13: Simulation Results of BOR Policy

As presented in figure 5.13, a total of 112 VM requests were accommodated under this policy

and only 4 job requests were declined. Only one job failure did occur during the execution, but

this particular VM was migrated to the foreign cloud provider to avoid any SLA violation. A

total of 17 VM requests were outsourced to foreign cloud provider. Total revenue of this

simulation was US$ 26.53 while the total cost of outsourced VMs was US$ 0.98.

102

Overall revenue was calculated using billing of Rackspace, Amazon and Google.

Experimentation results were calculated through a series of iterations and normalized profit

values were calculated. Figure 5.14 presents profit for two polices for 8 hours of simulation. The

results clearly depict that since outsourcing policy results in more resource utilization, overall

revenue gain is increased as compared to local resource utilization policy.

Fig. 5.14: Policy Comparison for 8 hour Simulation

Simulation results suggest that the policy results in 10-15% profit gain in comparison to local

resource utilization. Figure 5.15 presents total number of rejected job requests during 8 hours of

simulation. As the number of jobs being rejected increases for LRA, the chance increases to

outsource such jobs for BOR, if resources can leased from foreign cloud providers based on the

particular QoS requirements.

103

Fig. 5.15: Rejected Job Comparison of Two Polices

The workload pattern, given in figure 4.7, was used as a baseline model for simulation

experiment of one week. The workload was sliced in 24 parts for each day to simulate and log

experimentation data for synthesizing overall data. At the end, normalized statistics for each day

was recorded for both policies which are given in figure 5.16.

Fig. 5.16: Overall Resource Utilization of LRA and BOR Policies

104

Since load resource demand was anticipated at the start, both policies showed the same trend

during simulation. However, BOR managed better resource demands on one hand and resulted in

gaining users’ trust by avoiding SLA violation on the other hand.

Initially the load patterns produced same results the two policies. However, OORA showed

tendencies to accept more workload during the peaks and gain better economic efficiency.

Furthermore, it was also able to gain users’ trust and avoid SLA violations. Table 5.11

synthesizes simulation results for one week of simulation.

Table 5.11: Simulation Results of 7 days Experiments

Total Workload for 7 days: 9825 VM Requests

Policy Requests
Completed

Requests
Rejected

Requests
Outsourced

Job
Failures

SLA
Penalty ($)

Total Profit ($)

BOR 9424 401 1354 15 3.5 2156.31

LRA 7973 1746 ---- 106 24.38 1944.62

As the result suggest, BOR not only gained higher profit margin but also attained more user

satisfaction in terms of lower job rejection and failure rate. On the other hand, LRA policy may

discourage cloud users because of higher rejection and SLA violations due to job failures and

hence the reputation of such cloud provider would be affected for its regular consumers.

5.4 JClouds Testbed Results

Deployment of virtual machines across multi-cloud is a challenging issue for cloud developers as

every cloud vendor offers its own set of libraries, APIs and SDKs. One method to address this

issue is to use a portable library such as JClouds which currently supports uniform access to 30

IaaS cloud providers by encapsulating functionality in a level of common abstraction. All the

experiments were conducted on three cloud providers- Rackspace, Google Compute and Amazon

Elastic Compute Cloud. For most of these experiments, United States based cloud data centers

were utilized. For the two case studies, Amazon A15 and R7.5GB standard instance were

105

selected respectively for experimentation purposes while resource outsourcing was performed

whenever required.

Although JClouds provides a common API for all cloud providers, but the connectivity

configuration differs in case of cloud providers. Rackspace instance creation is much simpler

than the other two cloud providers as necessary user credentials are the only requirements for

VM provisioning and deployment. Figure 5.17 presents JClouds log of a Rackspace VM

instance, being created in rackspace-cloudservers-us. Upon the successful completion of the

process, linux root login details and password were returned. The 64 bit Ubuntu 14.04 LTS

(Trusty Tahr) VM machine was created using the following hardware profile:

compute1-8, name=7.5 GB Compute v1, location={scope=ZONE, id=IAD, description=IAD,

parent=rackspace-cloudservers-us, iso3166Codes=[US-VA]}, processors=[{cores=4.0,

speed=1.0}], ram=7680, volumes=[{type=LOCAL, size=0.0, bootDevice=true, durable=true}],

supportsImage=Predicates.alwaysTrue()}

Fig. 5.17: JClouds log for Rackspace VM Connection

106

However, VM deployment for Amazon and Google Compute involve few other security

mechanisms. For instance, a RSA private key pem file is required to Amazon VM instance

deployment. Although this configuration is a well suited for a centralized VM placement

scenario but it may not be applicable in distributed broker based resource provisioning

framework. To address this issue, a small shell script (Appendix A) was executed to override the

default security mechanism by authenticating user based on security credentials instead of

private key certificate. The security credentials were then provided to the coordinator of home

cloud provider for resource outsoaring. Furthermore, since each cloud provider impose necessary

restrictions on it users, for instance deployment of only 15 instances of standard 1GB VMs are

possible on a Rackspace account, multiple accounts were used to validate the designed

experimentation model.

Although monitoring tools are nowadays provided with cloud instances, however, considering

the unique and particular requirements of the monitoring system where each and every violation

had to be recorded and matched against SLOs, a small script was developed to monitor VM

performance during experimentation. The script was comprised of Linux utilities such as

VmStat, Iostat, iftop, Collectl and so on to collect necessary performance and usage statistics.

The script was prely installed on outsourced VMs, before provisioning the VMs to home cloud

provider.

5.4.1 Case Study I: Cross-Species Sequence Comparisons

Bioinformatics is an emerging interdisciplinary field of scientific research where the statistical,

mathematical, engineering and computer science models are used to analyze biological data.

Genetic similarities and differences can be compared using different bioinformatics methods.

One of the common use of bioinformatics techniques is to identify candidate genes and

nucleotides to better understand the genetic basis of disease, desirable properties and nucleic acid

and protein sequences [153]. DNA sequencing is made with aim of determining the precise

order of nucleotides within a DNA molecule. Each DNA strand is composed of four bases:

adenine, guanine, cytosine, and thymine. To determine the precise order of four bases with DNA,

different methods and tools can be used to identify precise location and sequences of genomes of

numerous types and species of life. DNA sequencing may be used to determine the sequence of

107

individual genes, larger genetic regions such as clusters of genes or operons, full chromosomes

or entire genomes. This information is useful to various fields of biology and other sciences,

medicine, forensics, and other areas of study. DNA sequencing techniques have been applied in

numerous fields including molecular biology, evolutionary biology, metagenomics, medicine and

forensics [154].

Knowledge about the sequence of genes in different species at varying evolutionary distances

helps to identify coding and functional non-coding sequences among organisms as well as

sequences that are unique for a given organism. For instance, many of the homo sapiens

(Human) genes are identical or similar to those found in other species. The comparison process

requires at least two DNA sequences, related by convergent evolution or divergent evolution

from a common ancestor to determine the level of similarity of two sequences. Hence, cross-

species sequence comparisons is a useful technique to understand genome, both in similarity and

differences, to study changes in human genomes in different diseases [155], [156]. The flow of

events for cross-species sequence analysis is presented in figure 5.18.

Fig. 5.18: Cross-species Sequence Analysis Process, adapted from [155], [156]

108

DNA sequencing is an essential resource to study health and genetic diseases in human being.

Two large genomes that have been sequenced with the human reference genome are zebrafish

and mouse genome. Zebrafish are biologically much similar to human genes which make them a

reference study model to understand genes role in different human disease. According to a

scientific study, automatic and manual annotation for more than 26,000 protein-coding genes

showed 70% of identical similarity with human protein genes to zebrafish protein genes while

84% genes associated with human diseases have a counterpart in zebrafish [157].

Different studies have revealed that zebrafish may spontaneously develop any type of tumor

known from human with similar morphology [158]. The research in genetic similarity is

advancing the understanding of muscle and organ development. Zebrafish genes have been used

to assert the evolution and formation of causal gene in muscular dystrophy disorders. These are

also helpful in for modelling paediatric diseases in 80% of cases by altering the activity of genes

in zebrafish embryos [159]. However, the process will take several years to read through the

entire human genome to locate the sequence of genes in other species which is impractical.

Hence, sophisticated tools and technological methods are required to carry out this process.

A useful bioinformatics tool in this area of research is BLAST+ (Basic Local Alignment Search

Tool) [138], to search entire genomic libraries for identical or similar sequences. The software

can be used as either a command line standalone version for local alignment search or by using

the online version of the tool. Considering the nature of workload for two genomes with a large

sequences, the search process may be much computationally expensive. For instance, On a Core

i-5 processor with 4 GB RAM, the similarity search for two small sized genomes,

zebrafish.1.protein.faa and mouse.1.protein.faa, may take computational time up to 15 hours.

This computational delay is not affordable in bioinformatics and genetic engineering applications

where organism's genomes are continuously manipulated. With the introduction of cloud

computing environment in scientific applications, single instance based BLAST cloud AMI has

been introduced by three cloud providers: Amazon Web Services (AWS), Google Compute

Engine (GCE), and Microsoft Azure. The purpose of this case study was to distribute sequence

searches across multiple instances using the designed framework, which is not currently

supported in the cloud environment.

109

5.4.1.1 Experimentation Procedure

For the experimentation purposes, VM instances of 64-bit Amazon m3.xlarge (Amazon A15)

BLAST AMI hosted on Ubuntu 12.04 were used as a reference cloud provider VMs. BLAST+

server images for Google Compute Engine were leased, when required. Since dedicated

instances for BLAST+ package are not installed on Rackspace servers, these instances were pre-

installed and configured with necessary BLAST+ packages and tools.

Each search query consisted of hundreds of FASTA sequences of zebrafish and mouse proteins

that were compared with human protein structure. These query files were hosted on a FTP server

and were parsed by GNU parallel [139] to create a parallel pipeline based on the number of

available virtual machines. A simple FASTA file with two sequences is presented in the figure

5.19.

>gi|51467976|ref|NP_001003855.1| alpha-(1,6)-fucosyltransferase [Danio rerio]

MRPWTGSWRWIALVLLAWGTLLFYIGGHLVKDSEHAPRSSRELAKILTKLERLKQQNEDLRRMAQSLRIPE

GQSDGPISS

GRLRSLEEQLSRAKQKIQSFQRLSGEGPGKDHEELRRKVENGVRELWYFVRSEVKKLPLMETGAMHKHVD

TLMQDLGHQQ

RSVMTDLYHLSQADGAGDWREKEANELSDLVQNRIMYLQNPQDCSKARKLVCNINKGCGYGCQLHHVV

YCFMIAYGTQRT

LILESQNWRYATGGWETVFKPVSDTCTDRTGASTGHWSGEAHDRDVQVVELPIVDSLHPRPPYLPLAVPE

DLAPRLQRLH

GDPSVWWVSQFVKFLVRPQAWLEKEIQETCLKLGFKHPIIGVHVRRTDKVGTEAAFHPIEEYMVHVEDHY

QSLAQRMHVD

KKRVYLATDDPSLLQEAKTKYPDYEFISDNSISWSAGLHNRYTENSLRGVILDIHFLSRTNYLVCTFSSQVC

RVAYEIMQ

TLHPDASSYFYSLDDIYYFGGQNAHNQIAIYPHQPRNSDDIPLEPGDVIGVAGNHWDGYSKGINRKTGRTG

LYPSYKVKE

KIETVKYPTYPEADKLLKKP

>gi|130487273|ref|NP_001076269.1| leucine-rich repeat-containing protein 30 [Danio rerio]

MCSKLEVLSLANNHLTGLPASLSALVGLKKLNLSHNNITHIPGCVYTMRNLVFLQLACNNLENIADQIQAL

TDLKILIVE

GNCIHSLPKMLCCLTKLELLNVDFNDIQNVPAEMHKLKRLEKLACHPLDKGLHIMHNPLLKPIKEVLDGGL

QALYCYLKAT

Fig. 5.19: FASTA File with Two Sequences

110

In figure 5.19, first FASTA query of 580 characters represents amino acid molecule type of

alpha-(1,6)-fucosyltransferase. The best identical match of this sequence with other species is

Cyprinus carpio fish with 100% similarity value. However, the FASTA sequence of

zebrafish.1.protein with human.1.protein.faa query returned very interesting pattern:

Fig. 5.20: FASTA Sequence Comparison of zebrafish.1.protein with human.1.protein.faa

Homologs of the C16orf52 gene show that this gene is conserved in chimpanzee, Rhesus

monkey, dog, cow, mouse, rat, chicken, zebrafish, fruit fly, mosquito, and frog as well as human.

Table 5.12 shows total number of sequences used during the experimentation. It is worth

mentioning that a subset of protein databases was used as complete database search was not

feasible at this stage.

Table 5.12: Total Number of Sequences

Species Number of Sequences

Human 24, 534

Zebrafish 18,314

Mouse 22, 802

Each experiment consisted of FASTA sequence comparison of the zebrafish and mouse genes

against human genes to construct region of similarity in cross species. The experimentation was

aimed at reducing overall searching time for query sequences so cost and other factors were

111

ignored. Since FASTA sequences are stored in a text format, the cloud coordinator of reference

cloud provider (Amazon in this case) parallelized the process by splitting the search query into a

chunk of 200K FASTA file to distribute the workload across multiple VM instances. These

query files were then pipelined into parallel to speed up the execution process. Each input job

file was assigned to a single core of worker virtual machines. Overall flow of events is presented

in figure 5.21.

Fig. 5.21: Bio-sequence Analysis Parallelization Pipeline for BLAST+

The SLA, as shown in table 5.13, was used to enforce service level objectives (SLOs) including

availability, incoming bandwidth, outgoing bandwidth, CPU performance and storage.

Table 5.13: SLA Monitor settings for BLAST+

SLA Objective Value Threat Threshold

Availability ����� 99.9%

Memory �!"# ----

CPU Power ��$

���%�
�	��� 90%

Storage ���"#

Incoming Bandwidth �!��
&���'� 300 Mbit/s

Outgoing Bandwidth ����
&���'� 70 Mbit/s

SLA settings suggest that a single failure of virtual machine may result in resource switchover as

real time applications may not afford resource unavailability during their execution. For the set

of experiments, ten local Amazon instances were provided while five instances from other two

cloud providers could be leased based upon the workload and job completion deadline. Table

112

5.14 shows the experimentation results of a single experiment which clearly depicts that total

execution time was reduced when more virtual machines were utilized. With one VM instance of

Amazon xlarge, the experimentation process was completed in around 8 hours while with 18

virtual machines, the experimentation time was reduced to around 44 minutes. For the

comparison purposes, two types of experiments were performed. In the first set of experiments,

referred as local cloud completion, local in-house resources were utilized and the experiments

were restricted to total number of available BLAST+ instances, which in this case, were a

maximum of ten instances. On the contrary, multi-cloud completion time scheme used cloud

outsourcing model based on the SLA requirements of the experiments. VM resources, matching

SLA requirements, were leased from other two cloud providers and the sequence comparison

queries were executed using both in-house and outsourced VMs. Experimentation was repeated

for a total of 3 times to calculate average values.

Experimentation results, as shown in table 5.14, show that the designed broker based multi-cloud

resource management framework achieved significant performance improvement by speeding up

overall job completion time. Only one instance failure on G13GB was recorded for violation of

network latency during experimentation and the VM was migrated to available Rackspace

instance for switchover. In contrast to other models, such as CloudBLAST [160] or CloudBurst

[161], which are Hadoop MapReduce based alignment models and are technology dependant, the

designed model achieved much better results by using the designed multi-cloud resource

management model.

Table 5.14: Experimentation Results of BLAST+ for two Policies

No. of virtual machines BOR Completion

Time

HH:MM:SS

LRA Completion Time

HH:MM:SSAmazon Google Rackspace

1 0 0 08:14:22 ---------same as BOR----

4 0 0 02:57:38 ---------same as BOR----

8 0 0 01:31:18 ---------same as BOR----

10 1 1 01:06:36 01:18:51

10 4 4 00:44:15 ---------same as above----

113

The results in table 5.14 also present an interesting picture of parallelism that can be achieved

during such experimentations. The resultant job completion curve tend to decrease at a sharp rate

when few virtual machines were used but with the higher increment of virtual machine instances,

very small increase was observed in parallelism. This was due to the network overhead, involved

in the worker virtual machines and the cloud coordinator within inter-cloud and intra-cloud for

transfer of query and result files. The execution curve is presented in the figure 5.22.

Fig. 5.22: Level of parallelism for different virtual machines

The BLAST+ output files were parsed by individual works and final results were stored and

synthesized at cloud coordinator end. The more number of hits shown in the results, the more

data sequences are aligned. The e-value confidence was set to 1e-50 to get the high quality

similarly aligned search sequences. Finally BLAST+ package tools were used to visualize the

similarity results which are shown in figure 5.23. The comparative protein structure distribution

which represents total number of hits, as shown in figure, clearly depicts that the three species

human, zebrafish and mouse are very much related to each other in protein structure and hence

further investigation of similarity can deepen the understanding of muscle and organ

development in human being.

114

Fig. 5.23: Similarity Distribution of Zebrafish with Human and Mouse

5.4.2 Case Study II: POV-RAY and Wikipedia Dumps

Two datasets for the real test-bed experimentation were used: POV-Ray ray tracing program

[162] for CPU benchmarking and Wikipedia dumps [163] for testing network and I/O

performance. Several iterations of standard benchmark.pov scene rendering were performed to

calculate overall CPU performance. A maximum of ten R7.5GB VM instances were used during

the course of experimentation while resources were leased from other cloud providers, if

required. Unlike the first case study, this case study was used a stress testing model where virtual

machines’ performance was expected at their peak and workload demands remained at peaks as

given in figure 4.7. Failing to meet the required execution deadline was considered as a job

failure and necessary measures were taken to resume the process on other available resources.

Experimentation was performed over a span of 4 months starting from April 2015. The output of

the standard benchmark is given in figure 5.24.

115

Fig. 5.24: Render output of benchmark.pov

The input of scene data is the definition of 3D objects, materials, lights and a camera object. One

of the major problems in ray-tracing is the large amount of computational time required for the

elaboration of the image [164]. To address this issue, parallelization pipeline technique was used

by partitioning the scene data into a sub-set of partitions. The coordinator of the home cloud

submitted initial scene tasks to every available worker VMs. Worker VMs produced the

corresponding scene data and returned the scene data to cloud coordinator which was stored and

the worker VM was assigned a new task. At peaks, when the incoming job demand was high,

resources were leased from other cloud providers. Based on the SLA of reference cloud provider,

best-matched VM instances were selected by the broker for resource outsourcing. In order to

evaluate the brokering strategy, service level objectives (SLOs) were used.

116

As a second experiment, a Java based module was developed to retrieve and parse HTML and

XML files from Wikipedia dump. The tool was primarily aimed to test network and I/O

performance.

The SLAs for both of the experiments are given in Tables 5.15 and 5.16 including availability,

incoming bandwidth, outgoing bandwidth, CPU performance and storage.

Table 5.15: SLA Monitor settings for POV-Ray

SLA Objective Value Threat Threshold

Availability �99.5% 99%

Memory �4GB ----

CPU Power �85 % (broker unit) 82%

Storage �10GB

Table 5.16: SLA Monitor settings for Wikipedia Dump

SLA Objective Value Threat Threshold

Availability �99 % 98%

Incoming Bandwidth �400 Mbit/s 300 Mbit/s

Outgoing Bandwidth �100 Mbit/s 70 Mbit/s

Storage �10GB

The monitoring component of the broker agent was responsible to monitor SLOs. Failing to

complete these SLOs resulted in SLA violations and an alarm was triggered by the monitoring

component which could, at worse, resulted in resource switchover and the executing tasks were

migrated to the candidate cloud instances.

5.4.2.1 Experimentation Results

The primary goal of the experiments was to characterize the relative performance of the

proposed broker based QoS enabled resource management framework. This was done by

experimenting the jclouds testbed on many different ensembles and comparing the scores

computed using the performance metric for execution, SLA violations, job rejection and overall

utility in terms of cost and time. Several iterations of the POV-Ray were performed on a series of

VM instances and the average execution time was recorded. Figure 5.25 depicts average

117

execution time for 1-6 VM instances which clearly shows a gradual decrease in average VM

execution time.

Fig. 5.25: Average Execution Time

Results for execution time also show that reduction in the average time taken for POV-RAY

rendering scenario involving more than ten virtual machines. After this available amount of

resources, the extra resources enable more requests to be served, however they are requested

when average execution time is high. The higher parallelism level is achieved with the extra

resources leased from other cloud providers in peak times.

Figure 5.26 shows a histogram of execution time for 140 VM instances where 17 VM instances

were leased from Amazon and only 4 VM instances were requested from Google. The frequency

distribution clearly depicts that Amazon VM instances outperformed other instances based on

execution time and hence were mostly utilized, whenever required.

118

Fig. 5.26: Frequency of POV-RAY job completion for different cloud providers

Table 5.17 summarizes overall experimentation results for two datasets. Very few SLA

violations were recorded when resources were outsourced to Amazon VM instances. However,

Google SLA violations were relatively higher, majorly resulted due to availability and deadline

issues.

Table 5.17: Total SLA Violations

Iterations
No. of Experiments

24
60

36
50

48
40

60
30

72
20

POV-RAY No. of SLA Violations
Amazon 2 (5%) 1 (4%) 3 (7%) 3 (5%) 4 (8%)

Google 1 (25%) 2 (15%) 2 (15%) 3 (10%) 5 (12%)

Wikipedia Dump No. of SLA Violations
Iterations
No. of Experiments

24
20

36
18

48
16

60
14

72
12

Amazon 0 0 0 0 0

Google 0 0 0 2 (7%) 2 (7%)

Table 5.18 presents experimentation results for four month setup. Very few job requests were

turned down by the designed broker enabled QoS based resource provisioning policy and hence

the policy resulted better, both in terms of SLA violations and economic gains, with no

compromise on performance. However, for local isolated resource provisioning scheme, job

rejection rate was much higher which resulted in relatively much less revenue.

119

Table 5.18: Comparison of Proposed Broker vs. Local Resource Utilization Policies

Scenario Policy Total Iterations Failed Revenue ($)
POV-RAY BOR 8400 52 1814

LRA 1826 1512

Wiki Dump BOR 3600 23 774

LRA 612 687

The performance comparison results of the two policies are presented in table 5.19.

Table 5.19: POV-RAY Performance Results for Two Policies

Metrics BOR LRA Improvement
Execution Time (mins) 358 610 42%

Execution & Scheduling Time (mins) 424 812 47%

Based on the results from tables 5.18 and 5.19, it can be safely concluded that the designed BOR

framework not resulted in higher gain in profit but also achieved faster execution time as

compared to the base line isolated LRA policy. The testbed results compliment the simulation

results which clearly indicate that by using the designed model, cloud providers in a federation

can utilize the resources at maximum without risking their reputation for the varying nature of

demands from their clients. Economic efficiency, which is the basic building block of cloud

computing model, is also achieved by providing a resource sharing platform based on particular

QoS requirements for better resource utilization.

5.5 Comparison with State of the Art Implementations
In this section, we provide a brief state-of-the-art about the proposed generic broker based QoS

ranking and resource selection framework. Over the last few years, many researches have been

conducted in the field of VM placement across multiple clouds for efficient resource

management. However, the majority of them deal with these aspects separately such as the issues

like negotiation [24], [25], provisioning of resources [26], [27] and resource monitoring [28] are

addressed in isolation and a comprehensive broker based framework for job placement seems to

be an important area of ongoing research.

120

A generic architecture for a Cloud service broker operating in an Inter-cloud environment is

proposed in [40]. The primary goal of the broker is to select the most suitable cloud provider

that satisfies the QoS aspects of user jobs and provide a uniform interface to manage and monitor

deployed services. There key points that make this work different from our solution are as

follows: Most of the cloud vendors guarantee performance of compute metrics at hypervisor

level and these metrics are not reflected in service level agreements. Instead of providing a

theoretical model for SLA matching such as proposed in [40], we provide a comprehensive

match making process by applying necessary benchmarking procedure to reflect near to optimal

QoS aspects for cloud ranking. Secondly, instead of just simulating the evaluation results on a

cloud simulator, we evaluated the cloud performance results on three real cloud providers which

present real world evaluation results. Thirdly, SLA schema for QoS metrics, price-performance

analysis and monitoring SLA violations are few other exceptions that are not addressed in [40].

A prototype implementation of a cloud coordinator which envisions a marketplace that enables

brokers and providers to improve performance, reliability, and scalability of elastic applications

by leveraging resources from multiple Clouds in order to seamlessly meet applications’ SLAs by

scaling them across various data centers is proposed in [165]. The architecture and design of the

coordinator is primarily focused on speeding up the application execution time and enhancing

the cloud capacity to meet shorter deadlines with the use of inter-cloud resources. However, their

work is focused on deployment of virtual machines and the strategies for job management,

monitoring and performance evaluation are not part of the cloud coordinator.

121

Chapter 6: Conclusion and Future Work

6.1 Conclusion
Quality of Service is a broad topic in the field of computer networks and distributed systems.

Although various QoS standards are available for other fields of computer networks, much

research is still needed to define QoS standards and metrics in the field of cloud computing.

Most of the contemporary researches deal with cloud providers operating in isolation which may

introduce numerous challenges. The issue of VM placement across multiple clouds was

addressed in this research to provide a resource sharing platform where the objectives of

minimizing resource rejection and efficient service level agreement management were

incorporated in the designed framework. The aim of this research study was to improve the

decision accuracy, while choosing a cloud provider for a given set of user QoS preferences. The

main objective of this research work was the development and evaluation of a QoS based

ranking framework for IaaS computing resources across multiple clouds for resource negotiation,

provisioning of physical resources, monitoring and ranking, based on job execution experience.

Cloud providers were assessed based on the performance evaluation and best-fit selection was

made to meet service level objectives. Results proved that broker based cloud federation

framework provided a win-win scenario for both cloud providers and consumers by avoiding job

denial and achieving better SLA management and resource utilization. The designed framework

also provided efficient job management among clients so the rejection of the incoming request

from the clients and SLA violations was minimal.

6.2 Contributions
The contributions made in this thesis primarily include the introduction of a new framework for

provisioning of optimal resources across multiple clouds. This was achieved through a novel

broker based QoS ranking and resource selection framework to address the issues of negotiation,

provisioning, monitoring and ranking of physical resources based on job execution experience.

To the best of our knowledge, this is the first effort in this domain that addresses these issues by

proposing a framework for QoS based ranking in federated cloud, introduces a new schema for

defining SLOs, investigates cloud price/ performance analysis and outlines the strategies for

resource monitoring and switch-over to meet SLA constraints. This dissertation has contributed

to the theory and practice of cloud computing by proposing the following:

122

1. The definition of the SLA schema and SLA service management model to represent

QoS aspects of service level objectives.

2. The development of SLA resource management module that also supports monitoring

and resource migration capabilities.

3. A price/ performance oriented QoS based ranking model to select the right cloud

provider that may meets user requirements based on service level objectives.

4. Investigation of cloud performance metrics by thoroughly benchmarking three

different cloud providers to evaluate QoS based performance patterns of different

cloud vendors.

5. Better resource selection and allocation strategies to meet user requirements and job

deadlines while optimizing time, cost and resource selection constraints.

The benefits resulting from the developed federated broker include:

� Provisioning of optimal software and hardware resources to achieve the best performance

at lower cost

� Efficient and scalable so that multiple cloud datacenters be utilized to provide

uninterrupted services of cloud platforms

� Flexibility in assigning QoS metrics to user jobs to better adjust cost, price and quality

tradeoffs

The proposed framework was validated by implementing a software prototype. The references

implementation was tested using two real world case studies involving computationally intensive

processing for performance analysis of the proposed framework. The outcomes of the study

reveal that the job execution and management can significantly be improved while preserving the

QoS at an optimal level.

123

6.3 Limitations
The thesis has presented the suggestions on provisioning of optimal software and hardware cloud

computing resources to ensure a better QoS, whereby a framework for ranking cloud providers

and monitoring SLA violations was developed. The proposed research model is validated by

using two general case studies. Since these two case studies cannot fully cover every aspect of

scientific and business applications, we cannot make any safe assumptions on the validity for

other types of user applications.

The research work presented in this dissertation is also subject to certain limitations and

assumptions. Since time was a major constraint, limiting some planned research activities which

are outlined in the future work section.

While the dynamic nature of cloud computing comes with great benefits, it may also pose certain

challenges for cloud resource broker to ensure availability and performance of deployed user

services. It will be valuable to extend the proposed framework by introducing adaption rules for

price changes and performance degradation at runtime with or without user involvement for

enforcing the SLA. Likewise, cloud reputation ratings could be further examined to analyze

their effect on different aspects of the system. Additionally, further work could be carried out to

evaluate the overheads surrounding other popular IaaS solutions such as 1 &1 Cloud,

CenturyLink and Microsoft Azure.

In addition to the QoS and pricing considerations, the match-making process could be further

enhanced to incorporate further details about network topology and memory effects in SMP

environments (effects of shared cache and memory buses) as these properties heavily influence

the data transfer performance. Besides that, strategies to predict application needs in terms of

computing resources can be investigated to meet a predefined deadline.

Different benchmarking tools were used to cover QoS aspects of multiple cloud providers. These

tools may not be sufficient to cover all possible patterns of overhead involved in virtualization

platform. Further research is required to study micro-benchmarks that are particularly aimed at

evaluating cloud performance metrics. The experiments presented in this study only cover a

subset of performance related virtualization properties. Other performance-relevant properties

such as fine-grained resource allocation using caps, shares or priorities might be an interesting

124

area of research in this particular domain. Finally, an in-depth survey of the root causes of many

of the performance related issues discovered in the study results could ascertain specific

improvements, needed to be made by cloud providers to enhance QoS specific aspects.

As a final assumption, we do not argue that our model and framework for resource management

are complete. We are however confident that in future work we can evaluate the usability of our

proposed broker based framework in different scientific applications.

6.4 Future Work
Although the research study aids IaaS resource providers and consumers by maximizing profit

and trust as well as provisioning of best-matched resources, there are still further areas to explore

in future:

� In the designed model, resource switchover takes place and the VM is migrated to

the candidate cloud provider whenever any serious violation of SLA is occurred.

However, current state of executed tasks are not saved and hence execution is

retrieved from the beginning rather than restarted from the last stable checkpoint.

Fault tolerance mechanism can be incorporated in the proposed model for better

workload and deadline management.

� Strategies for future workload prediction could be integrated in the designed

model to predict the future workload requirements of the cloud users. The two

evaluation strategies are calculating profit based on incoming job requests and

these are unable to predict future job requirements. An adaptive workload

prediction model [166], integrated with the designed framework can offer better

resource provisioning and management mechanism.

� The primary objective of global cloud federation marketplace is to provide a

resource sharing platform for profit maximization of individual clouds by

maximum utilization of resources. However, the decision about how and when a

cloud provider should trade resources with other cloud providers to maximize net

profit in long run is dynamic optimization problem and needs further research.

125

Appendix-A

Algorithm Poisson_Distribution (Knuth)

init:

L(
e)�

k(
�

p(
��

do:

k(
%
*
��

Generate uniform random number u in [0,1]

p(
+
,
��

while p > L.

return k)
��

126

Script to authenticate user based on security credentials

#!/bin/bash

Output='/etc/ssh/sshd_config'

Expression=('s/^#PermitRootLogin yes/PermitRootLogin no/' 's/PermitRootLogin

yes/PermitRootLogin no/' 's/^#PermitEmptyPasswords yes/PermitEmptyPasswords no/'

's/PermitEmptyPasswords yes/PermitEmptyPasswords no/' 's/^#PasswordAuthentication

yes/PasswordAuthentication no/' 's/PasswordAuthentication yes/PasswordAuthentication

no/' 's/^#X11Forwarding yes/X11Forwarding no/' 's/X11Forwarding yes/X11Forwarding

no/')

for i in "${ Expression [@]}"

{

sudo sed -i "$i" $ Output

}

127

References
[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation computer systems. 25(6), pp. 599-616, 2009.

[2] L. Wang, G.V. Laszewski, M. Kunze, J. Tao. Cloud computing: A perspective study. in
Grid Computing Environments (GCE) workshop.2008.

[3] The NIST definition of cloud computing, recommendations of the National Institute of
Standards and Technology. [cited July 05, 2014], Available from:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[4] R. Buyya, C.S. Yeo, S. Venugopal. Market-oriented cloud computing: Vision, hype, and
reality for delivering it services as computing utilities. in HPCC. 10th IEEE International
Conference on High Performance Computing and Communications pp. 5-13,2008.

[5] Cloud Computing. Accessed: Nov 20, 2014, Available from:
http://en.wikipedia.org/wiki/Cloud_computing.

[6] N. Turner. Cloud computing: a brief summary. Lucid Communications Limited. Available
from: http://www.lucidcommunications.co.uk/Content/whitePapers/CloudComputing.pdf.

[7] Cloud computing. [cited August 20, 2014], Available from:
http://www.explainthatstuff.com/cloud-computing-introduction.html.

[8] D.J. Armstrong, Enhancing quality of service in cloud computing through novel resource
management. 2012, University of Leeds).

[9] Amazon Web Services. Accessed: Jule 20, 2014, Available from:
http://aws.amazon.com.

[10] Enomalism Virtualized Management Dashboard Available from:
http://www.virtustream.com.

[11] Eucalyptus - Elastic Utility Computing Architecture. Accessed: November 12, 2014,
Available from: http://www.eucalyptus.com.

[12] OpenNebula - The Engine for Data Center Virtualization and Cloud Solutions.
Accessed: August 06, 2014, Available from: http://www.opennebula.org.

[13] Google Cloud Platform. Accessed: August 04, 2014, Available from:
https://cloud.google.com.

128

[14] Rackspace Cloud. Accessed: August 02, 2014, Available from:
http://www.rackspace.com/cloud.

[15] Cloud Harmony Reports. Accessed: July 22, 2014, Available from:
https://cloudharmony.com/reports/editions/state-of-the-cloud-compute/basic/state-of-the-
cloud-compute-0714.pdf.

[16] OpenStack Cloud Computing Platform. Accessed: July 24, 2014, Available from:
http://www.openstack.org.

[17] T. Vondra , J. Sedivy, Maximizing utilization in private IaaS clouds with heterogenous
load through time series forecasting. International Journal on Advances in Systems and
Measurements. 6(1), pp. 149-165, 2013.

[18] A.N. Toosi, R.N. Calheiros, R. Buyya, Interconnected cloud computing environments:
Challenges, taxonomy, and survey. ACM Computing Surveys (CSUR). 47(1), pp. 7-47,
2014.

[19] Amazon Cloud Service Goes Down... Accessed: May 19, 2014, Available from:
http://bits.blogs.nytimes.com/2012/10/22/amazon-cloud-service-goes-down-and-takes-
some-popular-web-sites-with-it.

[20] Case study: Amazon outages shake faith in the cloud. Accessed: June 09, 2014,
Available from: http://www.ft.com/cms/s/0/a5cba44c-a264-11e0-9760-
00144feabdc0.html.

[21] Techniques for implementing information services with tentant specific service level
agreements US 20140101299 A1. Accessed: June 13, 2014, Available from:
http://www.google.com/patents/US20140101299.

[22] R. Buyya, R. Ranjan, R.N. Calheiros. Intercloud: Utility-oriented federation of cloud
computing environments for scaling of application services. in Proceedings of the 10th
international conference on Algorithms and Architectures for Parallel Processing. pp.
13-31,2010.

[23] Use Cases and Functional Requirements for Inter-Cloud Computing. Technical Report,
Global Inter-Cloud Technology Forum, 2010. Accessed: July 08, 2014, Available from:
http://www.ttc.or.jp/files/8614/1214/5480/GICTF_Whitepaper_20100809.pdf.

[24] S. Hudert, H. Ludwig, G. Wirtz, Negotiating SLAs- An pproach for a generic negotiation
framework for WSAgreement. Journal of Grid Computing. 7(2), pp. 225-246, 2009.

129

[25] M. Chhetri, J. Lin, S. Goh, J. Yan, J.Y. Zhang, R. Kowalczyk. A coordinated architecture
for the agent-based service level agreement negotiation of Web service composition. in
Software Engineering Conference. pp. 90-99,2006.

[26] A. McCloskey, B. Simmons, H. Lutyya. Policy-based dynamic provisioning in data
centers based on SLAs, business rules and business objectives. in Network Operations
and Management Symposium. IEEE. pp. 903-906,2008.

[27] Q. He, J. Yan, R. Kowalczyk, H. Jin, Y. Yang, Lifetime service level agreement
management with autonomous agents for services provision. Information Sciences.
179(15), pp. 2591–2605, 2009.

[28] O. Rana, M.Warnier, T.B. Quillinan, F. Brazier. Monitoring and reputation mechanisms
for service level agreements. in 5th international workshop on Grid Economics and
Business Models, GECON '08. Springer-Verlag. pp. 125-139,2008.

[29] A. Lenk, M. Menzel, J. Lipsky, S. Tai, P. Offermann. What are you paying for?
performance benchmarking for infrastructure-as-a-service offerings. in International
Conference on Cloud Computing. IEEE. pp. 484-491,2011.

[30] K.R. Jackson. Performance of HPC applications on the Amazon web services cloud. in
2nd international conference on cloud computing. IEEE. pp. 159 - 168,2010.

[31] J. Scheuner, P. Leitner, J. Cito, H. Gall. Cloud WorkBench- Infrastructure-as-Code based
cloud benchmarking. in 6th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom’14).2014.

[32] A. Li, X. Yang, S. Kandula, M. Zhang. CloudCmp: comparing public cloud providers. in
10th ACM SIGCOMM conference on Internet measurement. ACM,2010.

[33] H.-K. Kwon , K.-K. Seo, A Fuzzy AHP based Multi-criteria Decision-making Model to
Select a Cloud Service. International Journal of Smart Home. 8(3), pp. 175-180, 2014.

[34] A. Rezgui , S. Rezgui. A stochastic approach for virtual machine placement in volunteer
cloud federations. in International Conference on Cloud Engineering (IC2E), Boston,
USA. IEEE. pp. 277 - 282,2014.

[35] S.K. Garg, S. Versteeg, R. Buyya, A framework for ranking of cloud computing services.
Future Generation Computer Systems. 29(4), pp. 1012-1023, 2013.

[36] M. Salama, A. Zeid, A. Shawish, X. Jiang, A Novel QoS based framework for cloud
computing service provider selection. International Journal of Cloud Applications and
Computing. 4(2), pp. 48-72, 2014.

130

[37] V.C. Emeakaroha, M.A. Netto, R.N. Calheiros, I. Brandic, R. Buyya, C.A.D. Rose,
Towards autonomic detection of SLA violations in cloud infrastructures. Future
Generation Computer Systems. 28(7), pp. 1017-1029, 2012.

[38] J. Tordsson, R.S. Montero, R. Moreno-Vozmediano, I.M. Llorente, Cloud brokering
mechanisms for optimized placement of virtual machines across multiple providers.
Future Generation Computer Systems. 28(2), pp. 358-367, 2012.

[39] S. Chaisiri, B.S. Lee, D. Niyato. Optimal virtual machine placement across multiple
cloud providers. in Services Computing Conference, APSCC. IEEE. pp. 103-110,2009.

[40] F. Jrad, J. Tao, A. Streit, SLA based service brokering in Intercloud environments.
CLOSER, pp. 76-81, 2012.

[41] F. Faniyi, R. Bahsoon, G. Theodoropoulos. A dynamic data-driven simulation approach
for preventing service level agreement violations in cloud federation. in International
Conference on Computational Science, ICCS 2012. pp. 1167-1176,2012.

[42] S. Bardhan , D. Milojicic. A mechanism to measure quality-of-service in a federated
cloud environment. in 2012 workshop on Cloud services, federation, and the 8th open
cirrus summit. ACM. pp. 19-24,2012.

[43] S.K. Garg, S. Versteeg, R. Buyya. SMICloud: A framework for comparing and ranking
cloud services. in Fourth IEEE International Conference on Utility and Cloud Computing
(UCC). pp. 210-218,2011.

[44] D. Bao, Z. Xiao, Y. Sun, J. Zhao. A method and framework for quality of cloud services
measurement. in 3rd International Conference on Advanced Computer Theory and
Engineering (ICACTE). IEEE. pp. 358-362

[45] Armstrong, Django, K. Djemame. Towards quality of service in the cloud. in the 25th UK
Performance Engineering Workshop.2009.

[46] ISO/IEC NP 19086-2 Metrics. Accessed: July 11, 2014, Available from:
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=67546.

[47] T. Guha, Investigation of service selection algorithms for grid services. 2009, University
of Saskatchewan.

[48] Y. Liu. QoS Computation and Policing in Dynamic Web Service Selection. in WWW2004,
New York. IEEE computer Society. pp. 66–73,2004.

131

[49] S. Ran, A model for web services discovery with QoS. ACM SIGecom Exchanges. 4(1),
pp. 1-10, 2003.

[50] Al-Ghuwairi, Abdel-Rahman, J. Cook, Modeling and Enforcement of Cloud Computing
Service Level Agreements. Technical Report, 2012.

[51] D. Tsesmetzis, I. Roussaki, E. Sykas, Modeling and simulation of QoS aware web service
selection for provider profit maximization. Simulation. 83(1), pp. 93–106, 2007.

[52] L. Zhao, Y. Ren, M. Li, K. Sakurai, Flexible service selection with user-specific QoS
support in service-oriented architecture. Journal of Network and Computer Applications.
35(3), pp. 962-973, 2012.

[53] L. Qi, W. Dou, X. Zhang, J. Chen, A QOS-aware composition method supporting cross-
platform service invocation in cloud environment. Journal of Computer and System
Sciences. 78(5), pp. 1316 -1329, 2012.

[54] L.Wu, S.K. Garg, R. Buyya, SLA-based admission control for a software-as-a-service
provider in cloud computing environments. Journal of Computer and System Sciences.
78(5), pp. 1280- 1299, 2012.

[55] S. Gogouvitis, K. Konstanteli, S. Waldschmidt, G. Kousiouris, G. Katsaros, A.
Menychtas, D. Kyriazis, T. Varvarigou, Workflow management for soft real-time
interactive applications in virtualized environments. Future Generation Computer
Systems. 28(1), pp. 193-209, 2012.

[56] J. García, D. Ruiz, A. Ruiz-Cortés, J. Parejo. QoS aware semantic service selection: An
optimization problem. in IEEE Congress on Services-Part I. pp. 384–388,2008.

[57] -�
 "�./��
 0�
 1����
 2�
 3��4�
 5�
 3��4-Cortés. A service ranker based on logic rules
evaluation and constraint programming. in 2nd ECOWS non-functional properties and
service level agreements in service oriented computing workshop.2008.

[58] J. García, D. Ruiz, A. Ruiz-Cortés. On user preferences and utility functions in selection:
A semantic approach. in Service-Oriented Computing - ICSOC 2007 Workshops, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg. pp. 105–114,2007.

[59] A. Ruiz-Cortés, O. Martín-Díaz, A. Duran, M. Toro, Improving the automatic
procurement of web services using constraint programming. International Journal of
Cooperative Information Systems. 14(4), pp. 439–467, 2005.

132

[60] Z.U. Rehman, F.K. Hussain, O.K. Hussain. Towards multi-criteria cloud service
selection. in Fifth International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing. IEEE. pp. 44-48,2011.

[61] W. Zeng, Y. Zhao, J. Zeng. Cloud service and service selection algorithm research. in
GEC '09 Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary
Computation. pp. 1045-1048,2009.

[62] S. Sundareswaran, A. Squicciarini, D. Lin. A brokerage-based approach for cloud
service selection. in IEEE 5th International Conference on Cloud Computing. pp. 558-
565,2012.

[63] Microsoft, IBM Surge Ahead of Amazon In Cloud Revenue Growth. Accessed: August
24, 2014, Available from: http://www.forbes.com/sites/joemckendrick/2014/07/28/ibm-
microsoft-surge-ahead-of-amazon-in-cloud-revenues-analysts-estimate/.

[64] CSMIC, 2011. Service Measurement Index (Version 1.0). Carnegie Mellon University
Silicon Valley, Moffett Field, CA, USA. [cited July 06, 2014], Available from:
http://csmic.org/wp-content/uploads/2011/09/SMI-Overview-110913_v1F1.pdf.

[65] Z. Yu , L. Zhang, QoS-aware SaaS Services Selection with Interval Numbers for Group
User. Journal of Software. 9(3), pp. 553-559, 2014.

[66] P. Choudhury, M. Sharma, K. Vikas, T. Pranshu, V. Satyanarayana, Service Ranking
Systems for Cloud Vendors. Advanced Materials Research. 433-440, pp. 3949-3953,
2012.

[67] Y. Zhang, H. Liu, B. Deng, F. Peng. A Reliable QoE-aware Framework for Cloud
Service Monitoring and Ranking. in 2013 International Conference on Electrical and
Information Technologies for Rail Transportation (EITRT2013). Springer Berlin
Heidelberg. pp. 401-409,2014.

[68] Z. Zheng, X. Wu, Y. Zhang, M. Lyu, J. Wang, QoS Ranking Prediction for Cloud
Services. Journal of IEEE Transactions on Parallel and Distributed Systems. 24(6), pp.
1213-1222, 2012.

[69] J.C. Luo, L. Zhen, G. Lu, L. Zhang, C.-Z. Xu, N. Sun, CloudRankD: Benchmarking and
Ranking Cloud Computing Systems for Data Processing Applications. Frontiers of
Computer Science. 6(4), pp. 347-362, 2012.

[70] T. Chauhan, S. Chaudhary, V. Kumar, M. Bhise. Service Level Agreement Parameter
Matching in Cloud Computing. in 2011 World Congress on Information and
Communication Technologies (WICT). IEEE. pp. 564 - 570,2011.

133

[71] C. Vazquez, R. Krishnan, E. John. Cloud Computing Benchmarking: A Survey. in
International Conference on Grid & Cloud Computing and Applications (GCA
2014).2014.

[72] Benchmarking. Accessed: May 07, 2014, Available from:
https://en.wikipedia.org/wiki/Benchmarking.

[73] M.B. Chhetri, S. Chichin, B.Q. Vo, R. Kowalczyk. Smart CloudBench-Automated
Performance Benchmarking of the Cloud. in Sixth International Conference on Cloud
Computing. IEEE. pp. 414-421,2013.

[74] B. Varghese, O. Akgun, I. Miguel, L. Thai, A. Barker, Cloud Benchmarking For
Maximising Performance of Scientific Applications. IEEE Transactions on Cloud
Computing, 2016.

[75] J. J. Emeras, S. Varrette, V. Plugaru, P. Bouvry, Amazon Elastic Compute Cloud (EC2)
vs. in-House HPC Platform: A Cost Analysis. IEEE Transactions on Cloud Computing,
2016.

[76] Z. Ren, B. Xu, W. Shi, Y. Ren, F. Cao, J. Lin, Z. Ye. iGen: A Realistic Request
Generator for Cloud File Systems Benchmarking. in 9th International Conference on
Cloud Computing. IEEE. pp. 343 - 350,2016.

[77] Z. Li, L. OBrien, R. Ranjan, M. Zhang. Early Observations on Performance of Google
Compute Engine for Scientific Computing. in 5th International Conference on Cloud
Computing Technology and Science. IEEE. pp. 1-8,2015.

[78] B. Sun, B. Hall, H. Wang, D.W. Zhang, K. Ding. Benchmarking Private Cloud
Performance with User-Centric Metrics. in International Conference on Cloud
Engineering. IEEE. pp. 311 - 318,2014.

[79] K. Ye, Z. Wu, B.B. Zhou, X. Jiang, C. Wang, A.Y. Zomaya, Virt-B: Towards
Performance Benchmarking of Virtual Machine Systems. IEEE Internet Computing.
18(3), pp. 64 - 72, 2014.

[80] H. Nawaz, G. Juve, R.F.D. Silva, E. Deelman. Performance Analysis of an I/O-Intensive
Workflow Executing on Google Cloud and Amazon Web Services. in International
Parallel and Distributed Processing Symposium Workshops. pp. 535 - 544,2016.

[81] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A. Klepchukov, S.
Patil, A. Fox, D. Patterson. Cloudstone: Multi-platform, multi-language benchmark and
measurement tools for web 2.0. in Cloud Computing and Its Applications.2008.

134

[82] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya. Cost of virtual machine live
migration in clouds: A performance evaluation. in Proceedings of the 1st International
Conference on Cloud Computing. pp. 254-265,2009.

[83] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang. The HiBench benchmark suite:
Characterization of the MapReduce-based data analysis. in 26th International
Conference on Data Engineering Workshops (ICDEW). IEEE. pp. 41-51,2010.

[84] Y. Chen, Workload-Driven Design and Evaluation of Large-Scale Data-Centric Systems.
2012.

[85] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears. Benchmarking cloud
serving systems with YCSB. in 1st ACM symposium on Cloud computing. ACM. pp. 143-
154,2010.

[86] A.J. Elmore, S.Das, D.Agrawal, A.E. Abbadi. Zephyr: live migration in shared nothing
databases for elastic cloud platforms. in proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. ACM. pp. 301-312,2011.

[87] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A.D. Popescu, A. Ailamaki, B. Falsaf, Clearing the clouds: a study of emerging scale-out
workloads on modern hardware. ACM SIGPLAN Notices. 47(4), pp. 37-48, 2012.

[88] SPECjvm. Available from: www.spec.org/jvm2008.

[89] Phoronix Test Suite Suites. Available from: http://openbenchmarking.org.

[90] dacapo. Available from: www.dacapobench.org.

[91] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khan, K.S. McKinley, R. Bentzur, A.
Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J.E.B. Moss, A. Phansalkar, D. Stefanovi, T. VanDrunen, D.v. Dincklage, B.
Wiedermann, The DaCapo benchmarks: Java benchmarking development and analysis.
ACM Sigplan Notices. 41(10), pp. 169-190, 2006.

[92] IOZone. Available from: www.iozone.org.

[93] bonnie. Available from: www.coker.com.au/bonnie++.

[94] CacheBench. Available from: www.icl.cs.utk.edu/projects/llcbench/cachebench.html.

[95] M. Gribaudo, M. Iacono, F. Palmieri, Performance Modeling of Big Data-Oriented
Architectures. Computer Communications and Networks. 2016: Springer.

135

[96] G. Mateescu, W. Gentzsch, C. Ribbens, Hybrid computing – where HPC meets grid and
cloud computing. Future Generation Computer Systems. 27(5), pp. 440–453, 2011.

[97] Big Data in the Cloud: Converging Technologies. [cited 2017], Accessed: August 11,
Available from:
https://www.intel.com/content/dam/www/public/emea/de/de/documents/product-
briefs/big-data-cloud-technologies-brief.pdf.

[98] E.C. Inacio , M.A. Dantas, A survey into performance and energy efficiency in HPC,
cloud and big data environments. International Journal of Networking and Virtual
Organisations. 14(4), pp. 299-318, 2014.

[99] D. Wu, S. Sakr, L. Zhu, Big Data Programming Models. In Handbook of Big Data
Technologies. Handbook of Big Data Technologies pp. 31-63, 2017.

[100] S. García, S. Ramírez-Gallego, J. Luengo, J.M. Benítez, F. Herrera, Big data
preprocessing: methods and prospects. Big Data Analytics. 1(1), 2016.

[101] BIG DATA WORKING GROUP Big Data Taxonomy. 2014.

[102] J. Hurwitz, A. Nugent, F. Halper, M. Kaufman, Big data for dummies. 2013: John Wiley
& Sons.

[103] G. Hesse , M. Lorenz. Conceptual Survey on Data Stream Processing Systems. in
International Conference on Parallel and Distributed Systems. IEEE. pp. 797-803,2015.

[104] D. Singh , C.K. Reddy, A survey on platforms for big data analytics. Journal of Big Data
2. 2(1), 2015.

[105] S. Landset, T.M. Khoshgoftaar, A.N. Richter, T. Hasanin, A survey of open source tools
for machine learning with big data in the Hadoop ecosystem. Journal of Big Data. 2(1),
2015.

[106] C.L.P. Chen , C.-Y. Zhang, Data-intensive applications, challenges, techniques and
technologies: A survey on Big Data. Information Sciences. 275, pp. 314–347, 2014.

[107] F. Bajaber, R. Elshawi, O. Batarfi, A. Altalhi, A. Barnawi, S. Sakr, Big Data 2.0
Processing Systems: Taxonomy and Open Challenges. Journal of Grid Computing. 14(3),
pp. 379–405, 2016.

[108] M.D.d. Assuncao, A.d.S. Veith, R. Buyya, Distributed Data Stream Processing and Edge
Computing: A Survey on Resource Elasticity and Future Directions. 2017.

136

[109] L. Gillam, B. Li, J. O’Loughlin, A.P.S. Tomar, Fair benchmarking for cloud computing
systems. Journal of Cloud Computing: Advances, Systems and Applications. 2(1), 2013.

[110] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski. Cost-and deadline-constrained
provisioning for scientific workflow ensembles in IaaS clouds. in International
Conference on High Performance Computing, Networking, Storage and Analysis. pp. 1–
11,2012.

[111] R.V.d. Bossche, K. Vanmechelen, J. Broeckhove. Cost-optimal scheduling in hybrid IaaS
clouds for deadline constrained workloads. in IEEE 3rd International Conference on
Cloud Computing (CLOUD). pp. 228-235,2010.

[112] Cloud broker. Accessed: July 11, 2014, Available from:
http://searchcloudprovider.techtarget.com/definition/cloud-broker.

[113] S.Selvarani , G.S. Sadhasivam, A Novel SLA based Task Scheduling in Grid
Environment. International Journal of Applied Information Systems. 1(1), pp. 14-19,
2012.

[114] H. Li, C. Wu, Z. Li, F. Lau, Virtual Machine Trading in a Federation of Clouds:
Individual Profit and Social Welfare Maximization. IEEE/ACM Transactions on
Networking,

[115] L. Mashayekhy , D. Grosu. A coalitional game-based mechanism for forming cloud
federations. in IEEE/ACM Fifth International Conference on Utility and Cloud
Computing. pp. 223-227,2012.

[116] C. Hristea, D. Lenoski, J. Keen. Measuring memory hierarchy performance of cache-
coherent multiprocessors using micro benchmarks. in ACM/IEEE 1997 Conference on
Supercomputing. pp. 45-45,1997.

[117] L. Cheng , C.L. Wang, QoS Scheduling for Latency-sensitive Cloud Applications.

[118] S.K. Barker , P. Shenoy. Empirical evaluation of latency-sensitive application
performance in the cloud. in first annual ACM SIGMM conference on Multimedia
systems. pp. 35-46,2010.

[119] Practical Guide to Cloud Service Level Agreements Version 1.0. Available from:
http://www.cloudstandardscustomercouncil.org/2012_Practical_Guide_to_Cloud_SLAs.p
df.

[120] M. Kerai. SLA Metrics, Measurement and Manipulation - Identifying flawed SLA metrics
in IT outsourcing contracts. Accessed: July 11, 2015, Available from:

137

http://www.xceedgroup.com/_literature_116197/SLA_Metrics,_Measurement_and_Mani
pulation_-_XIPWP04.

[121] M. Klems, D. Bermbach, R. Weinert. A runtime quality measurement framework for
cloud database service systems. in Eighth International Conference on Quality of
Information and Communications Technology (QUATIC). IEEE. pp. 38-46,2012.

[122] Service Level Agreement (SLA) Internet Dedicated Services. Available from:
http://www.verizonenterprise.com/resources/terms/sla-ip-vpn-dedicated-
services_en_xg.pdf.

[123] W.N. Spencer, Advances in disk technology: performance issues. Computer. 31(5), pp. 75
- 81 1998.

[124] L.H. Vu, M. Hauswirth, K. Aberer. QoS-based service selection and ranking with trust
and reputation management. in International conference on the Move to Meaningful
Internet Systems. Springer Berlin Heidelberg. pp. 466-483,2005.

[125] M. Ouzzani , A. Bouguettaya, Efficient Access to Web Services. IEEE Internet
Computing, pp. 34-44, 2004.

[126] Price-Performance Analysis of Top 10 Cloud IaaS Providers, Top 10 Cloud IaaS
Providers Comparison, North American IaaS Providers Benchmark Report. 2017
Accessed: February 18, 2017, Available from: http://connect.cloudspectator.com/2017-
cloud-iaas-providers-comparison.

[127] L.D. Davide, J. Skene, W. Emmerich. SLAng: a language for service level agreements. in
The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems. pp. 100-
106,2003.

[128] A. Sahai, V. Machiraju, M. Sayal, L.J. Jin, F. Casati. Automated SLA Monitoring for Web
Services. in 13th IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management: Management Technologies for E-Commerce and E-Business
Applications pp. 28-41,2002.

[129] V.C. Emeakaroha, M.A.S. Netto, R.N. Calheiros, I. Brandic, R. Buyya, C.A.F.D. Rose,
Towards autonomic detection of SLA violations in cloud infrastructures. Future
Generation Computer Systems. 28(7), pp. 1017–1029, 2012.

[130] iperf. Available from: https://iperf.fr.

[131] speedtest. Available from: www.pypi.python.org/pypi/speedtest-cli.

138

[132] ubench. Available from: https://archive.org/download/tucows_69604_Ubench/ubench-
0.32.tar.gz.

[133] Cloudsim. Available from: http://www.cloudbus.org/cloudsim/.

[134] Cloudreports. Available from: https://github.com/thiagotts/CloudReports/.

[135] Hibernate ORM. Available from: http://hibernate.org/orm/.

[136] Apache jclouds. Available from: https://jclouds.apache.org/.

[137] Cloudharmony API. Available from: https://cloudharmony.com/docs/api.

[138] BLAST+. Accessed: August 04, 2015, Available from:
https://blast.ncbi.nlm.nih.gov/Blast.cgi.

[139] GNU Parallel. Accessed: August 08, 2015, Available from:
http://www.gnu.org/software/parallel/.

[140] A.N. Toosi, On the Economics of Infrastructure as a Service Cloud Providers. 2014.

[141] A. Antoniou, Performance Evaluation of Cloud Infrastructure using Complex Workloads.
2011.

[142] P. Bodik, A. Fox, M.J. Franklin, M.I. Jordan, D.A. Patterson. Characterizing, modeling,
and generating workload spikes for stateful services. in Proceedings of the 1st ACM
symposium on Cloud computing. ACM. pp. 241-252,2010.

[143] A.N. Toosi, R.K. Thulasiram, R. Buyya. Financial option market model for federated
cloud environments. in IEEE/ACM Fifth International Conference on Utility and Cloud
Computing.2012.

[144] A. Fries, J.P.i.d. Mora, R. Sirvent, Java-based communication in a High Performance
Computing environment. EAS Publications Series. 45(1), pp. 103-106, 2010.

[145] D. Zhao, Z. Zhang, X. Zhou, K.W. T. Li, D. Kimpe, I. Raicu, F.S. Fusion. Toward
supporting data-intensive scientific applications on extreme-scale high-performance
computing systems. in IEEE International Conference on Big Data.2014.

[146] D.A. Reed, Scalable Input/ Output: Achieving System Balance. 2003: The MIT Press.

[147] CIO WebBusiness.

139

[148] S. Sindhu , S.A. Mukherjee. A Dynamic List Scheduling Algorithm for Scheduling HPC
Application in a Cloud Environment. Available from:
http://searchdl.org/public/book_series/AETS/7/178.pdf.

[149] Z. Zhong, V. Rychkov, A. Lastovetsky. Data partitioning on heterogeneous multicore
platforms. in IEEE International Conference on Cluster Computing (CLUSTER). pp.
580-584,2011.

[150] N.K. Govindaraju, S. Larsen, J. Gray, D. Manocha. A memory model for scientific
algorithms on graphics processors. in ACM/IEEE SC Conference.2006.

[151] R. Bader, M. Brehm, R. Ebner, H. Heller, L. Palm, F. Wagner. TeraFlops Computing
with the Hitachi SR8000-F1: From Vision to Reality. in High Performance Computing in
Science and Engineering, Munich. pp. 3-8,2002.

[152] C.B. Rodamilans, A. Baruchi, E.T. Midorikawa. Experiences Applying Performance
Evaluation to Select a Cloud Provider. in Recent Advances in Computer Engineering,
Communications and Information Technology.2014.

[153] Bioinformatics. Accessed: July 14, 2015, Available from:
https://en.wikipedia.org/wiki/Bioinformatics.

[154] DNA sequencing. Accessed: July 18, 2015, Available from:
https://en.wikipedia.org/wiki/DNA_sequencing.

[155] K.A. Frazer, L.Elnitski, D.M. Church, I. Dubchak, R.C. Hardison, Cross-species
sequence comparisons: a review of methods and available resources. Genome Research.
13(1), pp. 1-12, 2003.

[156] G.S. Gerhard, Comparative aspects of zebrafish (Danio rerio) as a model for aging
research. Experimental gerontology. 38(11), pp. 1333-1341, 2003.

[157] Zebrafish Genome Found Strikingly Similar to Humans. Accessed: July 20, 2015,
Available from: http://www.sci-news.com/genetics/article01036.html.

[158] H. Feitsma , C. Edwin, Zebrafish as a cancer model. Molecular Cancer Research. 6(5),
pp. 685-694, 2008.

[159] K. Howe, M.D. Clark, C.F. Torroja, J. Torrance, C. Berthelot, M. Muffato, S. McLaren,
The zebrafish reference genome sequence and its relationship to the human genome.
Nature. 496(7446), pp. 498-503, 2013.

140

[160] A. Matsunaga, M. Tsugawa, J. Fortes. Cloudblast: Combining mapreduce and
virtualization on distributed resources for bioinformatics applications. in IEEE
International Conference on eScience.2008.

[161] M.C. Schatz, Cloudburst: highly sensitive read mapping with mapreduce.
Bioinformatics. 25(11), 2009.

[162] Persistence of Vision Raytracer. Available from: http://www.povray.org.

[163] Wikimedia Downloads. Available from: https://dumps.wikimedia.org.

[164] A. Fava, E. Fava, M. Bertozzi, MPIPOV: a parallel implementation of POV-Ray based
on MPI. Recent Advances in Parallel Virtual Machine and Message Passing Interface.
1697, pp. 426-433, 2002.

[165] R.N. Calheiros, A.N. Toosi, C. Vecchiola, R. Buyya, A coordinator for scaling elastic
applications across multiple clouds. Future Generation Computer Systems. 28(8), pp.
1350-1362, 2012.

[166] S. Islam, J. Keung, K. Lee, A. Liu, Empirical prediction models for adaptive resource
provisioning in the cloud. Future Generation Computer Systems. 28(1), pp. 155-162,
2012.

List of Publications

Serial#

Journal Publications
Paper Title Journal Indexing/ Abstracting

1 A price-performance analysis of EC2,
Google Compute and Rackspace cloud
providers for Scientific Computing
By Saeed Ullah, M. Daud Awan, M.
Sikandar Hayat Khiyal

J. Math. Computer
Sci. 16 (2016)

ISI SCI

2 Cloud Computing Framework for
Resource Management System: A Case
Study of Cross-Species Sequence
Comparisons
By Saeed Ullah , M. Daud Awan, M.
Sikandar Hayat Khiyal

Journal of
Agricultural and

Biological
Sciences Vol. 11,
No. 7, July 2016

ISI ZooRec

3 Big Data in Cloud Computing: A
Resource Management Perspective
By Saeed Ullah , M. Daud Awan, M.
Sikandar Hayat Khiyal, IF 1.344

Scientific
Programming (18) ISI Web of Science

4 Broker based QoS Centric Resource
Provisioning Framework with Financial
Options
By Sahar Arshad, Saeed Ullah, Shoab
Ahmed Khan, M. Daud Awan and M.
Sikandar Hayat Khiyal

Journal of
Engineering and
Applied Sciences
(Vol. 10, No. 8,

May 2015)

Elsevier Scopus

Serial#

Conference Publications
Paper Title Conference Name

1 Service Provisioning of Spot Virtual
Machines based on Optimal bidding in
Cloud Computing
By Saman Safdar , Saeed Ullah , Zakia
Jalil, M. Daud Awan, M. Sikandar
Hayat Khiyal

MDSRC - 2015 Proceedings, 14-15 November,
2015 Wah/Pakistan

2 A Survey of Cloud Computing Variable
Pricing Models
By Sahar Arshad, Saeed Ullah, Shoab
Ahmed Khan, M. Daud Awan and M.
Sikandar Hayat Khiyal

Proceedings of the 10th International
Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE-
2015)

	a
	b
	b 1
	b 2

	c
	c
	ACKNOWLEDGEMENTS

	c2
	c3

	d
	e
	f
	g

