

Ricardo Mouro Pinto, PhD

Instructor in Neurology

Massachusetts General Hospital Harvard Medical School

PacBio East Coast User Group Meeting June 28, 2017

RMOUROPINTO@MGH.HARVARD.EDU

Huntington's disease (HD)

• HD is a neurodegenerative disorder caused by the expansion of a CAG repeat tract in exon1 of the HTT gene¹

HTT exon 1

$\geq 40 \rightarrow H_{1}$	untington's Dise	ease					
36-39	\rightarrow reduced pen	etrance					
27-3	35 → premutati	ion					
\leq 26 \rightarrow normal							
	CAG						

- HD is characterized by progressive neuronal cell death associated with mood swings, choreic movements and progressive dementia
- Anticipation: earlier age of onset from one generation to the next

- 1. The Huntington's Disease Collaborative Research Group (1993) Cell, 72 (6): 971-83
- 2. Harvard Brain Tissue Resource Center

Inverse correlation of age at neurologic onset and mutant CAG repeat length

Gusella, J.F. and MacDonald, M.E. (2009) Genome Med 1 (8): 80

HD Age at Onset GWAS

Cell Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease

Genetic Modifiers of Huntington's Disease (GeM-HD) Consortium* *Correspondence: gusella@helix.mgh.harvard.edu http://dx.doi.org/10.1016/j.cell.2015.07.003

- MLH1 variants with nominal significance
- Pathway analysis implicates multiple DNA repair/handling genes

Mismatch repair and CAG instability

Mouro Pinto, R. et al (2013) PLoS Genet. 9(10):e1003930

Somatic CAG instability in HD patient postmortem brain

Kennedy et al, 2003. Hum. Mol. Genet. 12, 3359-67

GeneScan analysis

PCR product size

GeneScan analysis

Small-pool PCR

Swami, M. et al (2009) Hum Mol Genet, 18 (16): 3039-47

CAG repeat length vs HD age of onset

Somatic CAG expansions in the brain are

associated with earlier age of HD onset

MLH1 variant effect on HD onset and somatic CAG expansions

- Suggestive effect of *MLH1* rare variant but not enough samples
- SP-PCR too laborious and not cost effective

Complexity reduction increases the number of on-target reads

Complexity Reduction Library and Sequencing Yield

Complexity Reduction	Input Genomic DNA	Final SMRTbell Yield	% Yield	CCS Reads	On- Target Reads	% Reads On- Target
None	18.0 µg	6.7 μg	37.2%	44,031	945	2.15%
2 R.E.	20.0 µg	3.0 µg	15.0%	51,806	2609	5.04%
4 R.E.	20.0 µg	1.6 µg	8.0%	45,676	4335	9.49%

Coverage across genome

• BamHI-EcoRI SB library prep and Cas9 enrichment experiment:

	HTT control	HTT1	HTT2	НТТ3	HTT4
Input gDNA	-	4 µg	4 µg	4 µg	4 µg
BamHI-EcoRI SB	Pre-made SB	2.4 μg	0.9 µg	1.8 µg	0.9 µg
Input for Cas9 exp.	1 µg	1 µg	0.9 µg	1 µg	0.9 µg

• 1 SMRTcell sequencing with P6C4 and 6hr movies

Samala Nama	SMR <u>T</u> Cells▼	Total Reads ♥	Polymerase Reads			Reads Of Insert		
Sampie Name			Length 븆	Quality 븆	Mbases 븆	Length 븆	Quality 븆	Mbases 븆
Cas9_HTT_ctrl_P6C4_6hr	1	17119	10228	0.83	175.1	2936	0.87	50.3
Cas9_HTT1_P6C4_6hr	1	21136	11888	0.83	251.3	3233	0.88	68.3
Cas9_HTT2_P6C4_6hr	1	26823	13633	0.83	365.7	3321	0.89	89.1
Cas9_HTT3_P6C4_6hr	1	28935	13325	0.83	385.6	3403	0.89	98.5
Cas9_HTT4_P6C4_6hr	1	24327	13366	0.83	325.2	3187	0.89	77.5

CAG_repeats

Mutated BamHI site on the Normal Allele in HTT2 Sample

HTT target locus

1.3-1.6 kb

CAG repeat sizing in HD patient post-mortem brain

No bias observed in terms of capturing WT vs HD alleles

Strong correlation with previous data

Single molecule resolution

Interruptions and polymorphic proline repeat

• Disadvantages

- Need significant amount of gDNA (>5ug)
- More susceptible to gDNA quality
 - postmortem brain: variable time to collection

Advantages

- No apparent length-relared bias
- Ability to detect large CAG alleles
- Sequence-level resolution
 - repeat interruptions?
 - cis-modifiers: phased alleles
 - polymorphic proline repeat and other variants

Acknowledgements

• CGM:

- Vanessa Wheeler
- James Giordano
- Jong-Min Lee
- Marcy MacDonald
- Jim Gusella
- CGM Genotyping Core

• PacBio:

- Tyson Clark
- Yu-Chih Tsai
- Jonas Korlach
- Igor Vilfan
- Thang Pham
- Michael Weiand

Harvard NeuroDiscovery Center

COLLABORATING TO CURE NEUROLOGIC AND PSYCHIATRIC DISEASE

Accelerating therapeutic development for Huntington's disease

National Institute of Neurological Disorders and Stroke