
© ZeroStack Inc. | zerostack.com© ZeroStack Inc. | zerostack.com

Quantifying the Noisy Neighbor
Problem in Openstack

Ajay Gulati, Nodir Kodirov, Gautam Kulkarni

OpenStack Summit - Austin, TX - April 28, 2016

© ZeroStack Inc. | zerostack.com 2

Motivation

● Private clouds are meant to run diverse workloads
● A cloud requires consolidation of various resources

○ Shared storage (distributed or over SAN/NAS)
○ Shared networking (host and switch level)

● It gets more critical as over-commitment increases

Application level performance is the ultimate objective
● We try to answer three questions

○ Is there a contention problem in a cloud environment?
○ How quickly does it appear?
○ What are the best practices to reduce contention?

© ZeroStack Inc. | zerostack.com 3

● We used an Openstack cloud deployment with
○ Local and distributed/shared storage
○ Networking using Neutron and OVS

● We did micro- and macro-evaluation to study workload
contention
○ Micro-benchmarks

■ Network
■ Storage

○ Macro-benchmarks: enterprise workloads
■ Hadoop Terasort
■ Jenkins job to compile Linux kernel

● Control plane performance

Scope of this Talk

© ZeroStack Inc. | zerostack.com 4

Outline

● Experimental setup

● Stress tool: design and implementation

● Storage, network performance evaluation

● Application performance evaluation
○ Hadoop Terasort

○ Jenkins job to compile Linux kernel

● Control plane performance

© ZeroStack Inc. | zerostack.com

Experimental setup

© ZeroStack Inc. | zerostack.com 6

ZeroStack: Controller-less Architecture

© ZeroStack Inc. | zerostack.com 7

● Minimum building block is 2U node
● Each 2U node has 4 servers
● Each server has

○ 2 sockets with 8 core Intel Xeon E5-2600
○ 4 x 1 TB HDD
○ 2 x 800 GB SSDs
○ 2 x 10Gbps NICs

(but we used one NIC in this study)

● OpenStack cloud on Kilo

Experimental setup

Symmetric hardware and cloud architecture
makes results translate linearly

© ZeroStack Inc. | zerostack.com 8

Stress Tool
● ZeroStack has an OpenStack client in Golang
● Designed and implemented a stress tool using the Golang client
● The tool uses Openstack APIs to set up rich test configurations
● For example

○ Create VMs across different hosts, with same or different subnets
○ Support diverse network topologies
○ Support volume creation across different storage pools/backends
○ Run benchmarks (iperf, ioblazer, fio) within VMs
○ Collect results, analyze and plot them in an automated manner
○ Measure API call performance

● Use Heat Orchestration Template for deploying workloads (Hadoop,
Jenkins)

© ZeroStack Inc. | zerostack.com

Micro-benchmarking: Storage

© ZeroStack Inc. | zerostack.com 10

● ZeroStack exposes 4 types storage pools
○ Local SSD

○ Local HDD

○ Reliable SSD

○ Reliable HDD

● Reliable pools: tolerate disk and host failures
○ Default replication factor is 3

Cloud storage pools

© ZeroStack Inc. | zerostack.com 11

Storage Performance Setup

● Used ioblazer, fio, iometer
○ well-suited for virtualized env.

● Benchmark parameters
○ block size (4K, 16K, ..., 64K)
○ queue depth (8, 16, ..., 128)
○ sync/async(buffered)
○ read/write (0, 30, 70, 100%)
○ sequential/random pattern

● Collected over thousand data points
● This talk highlights only some of the data points
● Used X-large KVM VM

© ZeroStack Inc. | zerostack.com 12

Single VM: sequential vs. random 100% read

Sequential workload: can use either SSD or HDD backend
Random workload: use SSD based pools

random workload

© ZeroStack Inc. | zerostack.com 13

Single VM: random 70% read, 30% write

SSD backend should be used for random workloads

© ZeroStack Inc. | zerostack.com 14

Two VMs: random 70% read, 30 % write

Both VMs get good performance, since storage is not saturated
There is some variance though across hosts: need to control further
using storage QoS

© ZeroStack Inc. | zerostack.com 15

Lessons on storage contention

● Use SSD based pools for random workloads and to
avoid VM contention
○ HDD cannot deal well with I/O blender effect

● Have both kinds of pools (local and shared) in your
environment
○ No need to use reliable storage for apps with in-built replication

e.g. Hadoop, Cassandra
● Always consume local SSD/HDD from the host where

VM resides
○ e.g., create nova filter to do it

© ZeroStack Inc. | zerostack.com

Micro-benchmarking: Network

© ZeroStack Inc. | zerostack.com 17

Network VM setup

● Combination of different host and
OpenStack network/subnet
○ same host, same subnet
○ same host, different subnet
○ different host, same subnet
○ different host, different subnet

● Use iperf by varying
○ message size
○ runtime
○ protocol

VMs with the same color
are on the same network/subnet

VMs with different color
are on different network/subnet

© ZeroStack Inc. | zerostack.com 18

-9%

● Neutron with OVS and DVR
● GRE for tenant isolation
● iperf client/server VMs

○ Ubuntu 14.04, 64 bits
○ XLarge (8vCPU, 16 GBRAM)
○ 20 GB local SSD
○ results: mean of 3 runs

● Observations
○ 9% throughput drop due to

different OpenStack subnet
○ Virtual router introduces 3 more

software hops which consumes
more CPU cycles per packet

SDN Routing overhead: Same Host

© ZeroStack Inc. | zerostack.com 19

SDN Routing overhead: Different Hosts

Use same subnet as much as possible

● Similar observations
○ 12% throughput drop due to

different OpenStack subnet

● Some suggestions
○ leverage DPDK

○ explore VLAN-based provider network,

but that comes with its own limitations

-12%

© ZeroStack Inc. | zerostack.com 20

● iperf client/server VMs
○ Ubuntu 14.04, 64 bits
○ X-Large (8vCPU, 16 GB RAM)
○ 20 GB SSD
○ results: mean of 3 runs

● Observation
○ VMs on the same host provide

10x more throughput

VM network throughput on same vs. different host

Co-locate chatty VMs on the same host using smart placement policies
E.g., Affinity rules (NOT possible on public clouds)

10x

© ZeroStack Inc. | zerostack.com 21

Multi-VM network contention

● Overall network throughput
increases as we add mode
VMs, but not linearly

● Throughput is OVS bound
● GRE encap/decap

consumes high CPU

Single VM is not able to achieve 10 Gbps due to CPU saturation
Increase number of VMs for higher aggregate throughput

© ZeroStack Inc. | zerostack.com

Enterprise workloads: Jenkins

© ZeroStack Inc. | zerostack.com 23

Workload contention: Linux kernel compile

● VM specs
○ Ubuntu 14.04, 64 bits
○ X-Large (8 vCPU, 16 GB RAM)
○ 50 GB Local SSD

● Same job on a bare-metal is
faster (23 mins vs. 15 mins)

bare metal

© ZeroStack Inc. | zerostack.com 24

Do not overcommit CPU for compute-heavy workloads
Less critical for batch jobs that are not latency sensitive

Workload contention: Linux kernel compile

● VM specs
○ Ubuntu 14.04, 64 bits
○ X-Large (8 vCPU, 16 GB RAM)
○ 50 GB Local SSD

● Same job on a bare-metal is
faster (23 mins vs. 15 mins)

● Observations
○ Only 30% increase until full

CPU saturation
○ Up to 260% increase w/ CPU

overcommit of 2x

100% CPU consumption

>200% CPU consumption

bare metal

© ZeroStack Inc. | zerostack.com

Enterprise workloads: Hadoop

© ZeroStack Inc. | zerostack.com 26

Workload contention: Hadoop Terasort

● Run the job on a cluster of 4 nodes
○ one master and three slave VMs
○ all X-Large instances with a

100 GB local SSD volume
○ one salt-master VM to

orchestrate cluster creation
● Total data sorted

○ (number of clusters) x (data size)
○ e.g., (4 clusters)x(30 GB)=120 GB

● More data = more contention

+60%

Performance degrades due to storage and network contention (2 clusters)
CPU contention also kicks in (4 clusters)

© ZeroStack Inc. | zerostack.com

Enterprise workloads: Hadoop and Jenkins

© ZeroStack Inc. | zerostack.com 28

Interference is minimal when workloads stress
different resources at different times

Workload contention: Hadoop and Jenkins

© ZeroStack Inc. | zerostack.com 29

Impact on Jenkins is more than Hadoop.
Hard to predict impact on specific workload.
Need better QoS for isolation!

Hadoop only vs. Hadoop+Jenkins

+60%
+60%

+20%

© ZeroStack Inc. | zerostack.com

Control Plane Performance

© ZeroStack Inc. | zerostack.com 31

Provision additional service instances to reduce the impact
Need more visibility across services for each API call

● Evaluate impact of existing entities
to new entity creation time

● Create 30 OpenStack entities
○ Networks
○ Subnets
○ Volumes
○ VMs

● Observation
○ API completion time increases

as more objects are created

Workload contention: Hadoop and Jenkins

+5% +9%
base-case

© ZeroStack Inc. | zerostack.com 32

Conclusion

● QoS is needed to reduce contention
○ Network, Storage contention is more critical
○ CPU and memory show less performance hit

unless they are over-committed
○ We need control plane scaling
○ We also need control plane QoS to prevent API DoS attacks

● Placement policies can improve the performance
drastically

● Private cloud needs to be application-aware

© ZeroStack Inc. | zerostack.com© ZeroStack Inc. | zerostack.com

Thank You!

We are hiring: zerostack.com/careers

30 day free trial: www.zerostack.
com/tryMyCloud

Learn more: visit booth D3 www.zerostack.
com/resources

