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Stand level spatial distribution is a fundamental part of forest structure that influences 

many ecological processes and ecosystem functions. Vertical and horizontal spatial 

structure provides key information for forest management. Although horizontal stand 

complexity can be measured through stem mapping and spatial analysis, vertical 

complexity within the stand remains a mostly visual and highly subjective process. 

Tools and techniques in remote sensing, specifically LiDAR, provide three 

dimensional datasets that can help get at three dimensional forest stand structure. 

Although aerial LiDAR (ALS) is the most widespread form of remote sensing for 

measuring forest structure, it has a high omission rate in dense and structurally 

complex forests. In this study we used terrestrial LiDAR (TLS) to obtain high 

resolution three dimensional point clouds of plots from stands that vary by density and 

composition in a second-growth Pacific Northwest forest ecosystem. We used point 

cloud slicing techniques and object-based image analysis (OBIA) to produce canopy 

profiles at multiple points of vertical gradient. At each height point we produced 



segments that represented canopies or parts of canopies for each tree within the dataset. 

The resulting canopy segments were further analyzed using landscape metrics to 

quantify vertical canopy complexity within a stand.  

Based on the developed method, we have successfully created a tool that utilizes three 

dimensional spatial information to accurately quantify the vertical structure of forest 

stands. Results show significant differences in the number and the total area of the 

canopy segments and gap fraction between each vertical slice within and between 

individual forest measurement plots. We found a significant relationship between the 

stand density and composition and the vertical canopy complexity. The methods 

described in this research make it possible to create horizontal stand profiles at any 

point along the vertical gradient of forest stands with high frequency, therefore 

providing ecologists with measures of horizontal and vertical stand structure. 

Key Words: Terrestrial laser scanning, canopy structure, landscape metrics, aerial laser 

scanning, lidar, calibration, Pacific Northwest
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1. Introduction 

 

Stand structure is defined as the spatial arrangement of the components of vegetation (Lincoln et al. 

2003). Forest stands can be described by horizontal and vertical structure. Horizontal structure represents a 

spatial distribution of individual trees and vertical structure describes the spatial vertical distribution of canopy. 

The vertical structure of tree communities is formed by the variations in growth forms or tree physiognomy 

(Kimmins 1997). There are many variables that cause variability in stand vertical and horizontal structure, most 

important being stand age, succession stage, and composition. 

Stand structure is not static; it is a constantly changing part of forest ecosystem. Forests are continuously 

subject to disturbances at many scales, ranging from death of an individual tree within a stand to high severity 

fires that wipe out large forest communities. The diversity of type and frequencies of natural disturbances lead 

to a high diversity of structural conditions: from even-aged, single species stands to multi-age, compositionally 

diverse, multilevel canopy forest structures.  Stand structure reflects ecosystem’s resistance and resiliency to 

disturbance. An ecosystem’s recovery from a disturbance is one of the factors that determine the structural 

arrangement of trees as the stand progresses through the stages of development from stem initiation to stem 

exclusion, to vertical and horizontal diversification (Van Pelt 2007).  

The spatial pattern of tree distribution within a stand is particularly important as it is a key factor in 

predicting and modeling a stand’s potential resistance to a disturbance. It has been shown that stands that are 

less dense with randomly distributed trees are less susceptible to the spread of insect damage. Trees that are 

clumped together and whose canopies intersect are much more likely to facilitate the spread of spruce budworm 

and mountain pine beetle (Campbell et al. 2007). Diverse vertical structure creates fuel ladders that are 

important in predicting fire dynamics potential on the landscape (Cruz et al. 2003). Assessing stand horizontal 

and vertical structure can help predict the stands susceptibility to various types of disturbances.  
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The change in stand structure is highly important in creating habitat for a variety of animals. Each particular 

structure offers unique habitat features. Forest canopy vertical structure and distribution can provide key 

information for avian habitat modeling. Many habitat suitability models depend on canopy structure and stand 

density. For example a habitat suitability model that was built for black capped chickadees includes a 

combination of tree heights and canopy closure (Schroeder, 1983). Certain species of birds prefer to nest in 

canopies of various structures and densities, for example endangered marbled murrelets solely depend on older 

canopies with complex and very particular branch structure for finding suitable nesting platforms. Red tree 

voles and other small canopy dwelling mammals depend on canopy structure with high connectivity as it allows 

for their movement from tree to tree within their range. Maintaining structural diversity within forest 

ecosystems is extremely important for maintenance and promotion of high landscape-level wildlife diversity.  

Canopy structure can also be linked to stand productivity both above and below ground (Kirsch 2013).  

Canopy distribution along a height gradient can provide us with canopy porosity, light attenuation, and 

correlated with understory biomass. The ability to quantify canopy structure gives researchers and land 

managers valuable knowledge about habitat suitability and arms the policymakers with very important 

information in attempts to strike a balance in protecting the endangered species and their habitat while 

managing the forest resources. 

 

1.1 Background 

 

1.1.1 Forest Structure 

 

 The importance of structural complexity in forest ecosystems and diversity have been 

acknowledged, where the increasing structural complexity in forests enhance their ecological complexity and 

therefore the foundation for maintaining high biodiversity (Rapp, 2003, Michel and Winter, 2009). We can use 

vertical structure complexity to describe stand level canopy dimensions which are useful in many forest 

management decisions including wildlife habitat value and monitoring forest health. There are many ways that 



3 

 

 

 

canopy dimensions can be measured in the field. Crown dimensions are also used to estimate multiple 

parameters including crown competition factor, crown density, crown surface area, live crown ratio, volume.  

Measuring crown parameters in the field can be a challenging and time consuming task, often prone to high 

measurement error. Crown diameters can be measured for individual trees within the plot by projecting the 

perimeter of the crown vertically to the ground and taking measurements of these projections. This method is 

extremely time intensive and is difficult in higher density forests with multi-layered canopies, due to visibility 

restrictions. Various instruments that measure the projection of crowns in the plot exist (e.g. right-angle prism 

densitometer or a spherical crown densitometer), where devices measure a reflection of the canopy directly 

above and where a slight change in viewing angle can significantly over or underestimate the canopy cover 

estimates (Fiala et al. 2006). 

 Crown diameters can also be measured using remote sensing techniques. There are some commercially 

available instruments that can be used for obtaining canopy structural information indirectly. These sensors can 

be categorized into linear and hemispherical. One of the oldest and widely used is the use of vertical aerial 

photographs, or hemispherical photographs, where the crown cross-sectional area is calculated from the formula 

for the area of a circle using either the average of the maximum and the minimum crown diameters, two 

diameters at right angles, or from the maximum diameter and another at right angles to it (Richardson et al. 

2009).  
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Figure 5. A graphic representation of the Pacific Northwest forest in a vertical diversification stage. The blue 

line represents the canopy structure that can be obtained with ALS and the red line represents the canopy 

structure complexity that is omitted by ALS and can be captured and quantified by TLS. Illustration by Robert 

Van Pelt 

 

 

1.1.2 Remote Sensing 

 

Remote sensing is the science and art of obtaining information about an object, area, or phenomenon 

through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon 

under investigation (Lillesand et al. 2008). Remote sensing links spatial patterns and ecological processes at 

multiple scales: spectral, spatial and temporal. Remote sensing has facilitated great advances in the mapping, 

modeling and understanding of ecosystems. There are two types of remote sensing: passive and active. Typical 

and most widely used type of remote sensing in ecosystem studies is passive optical remote sensing from aerial 

photography and satellite imagery (Goward and Williams 1997). Photogrammetric remote sensing techniques 
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have been very successful at classifying and mapping the ecosystem components such as landforms, water 

bodies and vegetation. Aerial imagery has been used to map forest stands and fragmentation of forests. Active 

remote sensing involves the use of active sensors, such as radar or lidar, which transmit their own energy and 

then record the signal reflected back to the sensor from the target.  

1.1.2.1 LIDAR 

1.1.2.1.a Aerial Light Detection and Ranging (LiDAR) 

Technological advancements in the field of remote sensing including the development and implementation 

of hyperspatial Light Detection and Ranging (LiDAR) and hyperspectral remote sensing are driving the 

discipline to new frontiers of forestry applications.  LiDAR is one of the active optical remote sensing 

technologies and is a great tool for extracting information about vertical and horizontal canopy structure by 

measuring distance by time-of-flight using pulsed laser light (Bufton 1989). According to Lefsky et al 2002, 

there are two main types of LIDAR systems used in remote sensing of vegetation, wafevorm-recording and 

discreet return. Waveform-recording systems measure the vertical distribution of the intercepted canopy 

surfaces and the underlying ground surface within a single footprint using high-speed digitization of the 

backscattered return from a short duration laser pulse (Harding et al. 2001). Discreet –return LIDAR systems 

measure the distances to one or a few surfaces in a small diameter spot from which the backscattered laser 

energy exceeds a detection threshold (Parker et al.2004). The three dimensional nature of LiDAR data makes it 

possible to detect and isolate individual and clusters of trees (Hyyppa et al., 2001; Persson et al., 2002; Samberg 

and Hyyppa, 1999). Sumnal et al. 2012, have successfully used both small-footprint discreet return and full 

waveform aerial LiDAR to estimate forest inventory parameters. Discreet-return LIDAR has been widely used 

in terrain  mapping (Baltsavius 1999), but it has also been used for research of vegetation canopies (Rithchie et 

al. 1993; Parker and Russ 2004).  
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1.1.2.1.b Terrestrial LiDAR  

 

Although the ALS has been widely used in estimating the ecosystem parameters, the use of TLS in 

forest ecology and ecosystems studies is a rather new and under-developed area. Although ALS is great at 

capturing coarse estimates of stand vertical structure over large areas it falls short at capturing the complexities 

of structure that are associated with multi-layered canopy of vertically and horizontally structurally complex 

stands of Pacific Northwest. Terrestrial LiDAR is great at capturing stand structure from ground up and 

compensates ALS at certain level.   

Due to its highly detailed three dimensional quality, TLS data holds great potential for highly accurate 

estimates of forest’s vertical and horizontal structural components both on the individual tree and stand levels. 

The use of TLS in forest practices is a relatively new development. The potential of terrestrial lidar scanners for 

plot vegetation characterization has been tested by a number of researchers with varying degrees of success. 

Most of the previous studies of vegetation using TLS have been focusing on extracting individual tree 

parameters such as diameter at breast height (DBH), height, height to live crown, crown diameter etc. 

(Hopkinson et al., 2004; Moskal and Zhen, 2001; Pueschel, 2013). Many attempts were made to reconstruct 

individual trees by creating three dimensional models from the high density point clouds. Watt and Donoghue 

2005 were able to successfully measure DBH, upper stem diameters and branch intermodal distance in dense 

Sitka spruce plantations using TLS. Jupp et al. 2009 were able to measure leaf area index (LAI) using a cutting 

edge Echindna scanner, which is a full waveform recording, multi-view, angle scanning lidar system. The same 

instrument was used to retrieve forest stand structural parameters, including mean DBH, stem count density, 

basal area, and above-ground woody biomass with very good accuracy in New England conifer and hardwood 

forest stands (Yao et al., 2011). Liang et al. 2012 successfully (73% accuracy) attempted to automate the stem 

mapping using TLS in relatively dense mixed forest of Finland. Antonorakis et al. 2009 were able to use TLS 
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point cloud to determine the roughness of vegetation with different structure characteristics for use in resistance 

equations and flood modeling, by creating voxel based representations of leafless tree structures in poplars.  

The common theme for the previous studies in attempt to characterize forest structure from TLS is the use 

of individual tree parameters approach. Although this approach works well in many stands it is very difficult to 

apply in dense and multi-layered stands of Pacific Northwest. The complex vertical and horizontal structure of 

conifer and mixed stands cause difficulties in separating individual tree canopies even with multiple vantage 

points high resolution stitched scans, therefore increasing the uncertainty within canopy structure parameters. A 

different approach that focuses on quantifying canopy structure on the plot or even stand level is needed. Here I 

use the combination of both TLS and ALS to quantify the structure and distribution of multi-layered complex 

canopy of the dense stands of Pacific Northwest. 

 

 

 

1.1.3 Calibration of ALS with TLS 

 

There are several limitations to the utility of aerial LIDAR alone for the investigation of canopy 

structure. The relatively large diameter laser beam size (0.5-1m) means that for closed canopies it will be 

intercepted by the canopy surface and will not penetrate through the top layer to adequately describe canopy 

structure beyond the surface. It is very common to simply discard second and third returns from the discreet-

return dataset to simply build a canopy surface model out of first returns and to estimate canopy structure 

(See Figure1.).  Terrestrial LIDAR provides the structural information that is missed by the aerial systems, 

where it captures canopy structure from beneath the canopy, but has a difficult time penetrating through the 

entire canopy for accurate canopy surface estimates. Although TLS systems are good at quantifying canopy 

structure along a vertical gradient it is often limited to small areas. Terrestrial LIDAR units are often bulky 

and cannot be carried for long distances. The scanner systems are also stationary and require some time for 
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each acquisition. The active scanning time depends on the type of the scanner and the desired resolution and 

quality of the point clouds. The data acquisition time is dependent on the number of scans needed for the 

accurate representation of the plot, minimizing error due to obstruction by vegetation. Hopkinson et al. 2013 

have successfully established a relationship between the TLS derived (Echidna Validation Instrument) LAI 

profile and ALS foliage percentile distribution in mature eucalyptus forests of New South Wales, Australia. 

The TLS approach works well for acquiring canopy structure information on a small scale and is not 

practical for large area acquisitions. However highly detailed three-dimensional canopy structure 

information derived from small areas with TLS systems can be used to calibrate the structural information 

collected with aerial systems. The resulting model can be then further used to quantify and interpolate 

canopy structure over large areas and provide necessary information to answer a number of landscape level 

ecological questions.   

 

 

1.2 Research Goals and Objectives 

 

The main goal of this study is to use remote sensing techniques to quantify stand level canopy structure. 

Specifically to develop a method that uses TLS point cloud to accurately quantify canopy vertical and 

horizontal distribution within each of the study plots. The idea is to utilize TLS derived datasets in such a 

manner that makes it unique to TLS, to take advantage of the full potential of the tree dimensional spatially 

explicit datasets provided by the scanner. The goal is to come up with a relatively simple method of accurately 

quantifying a stand’s canopy structure that can be easily applied for a wide array of ecosystem studies. To 

achieve this goal I indentified the following objectives: 

 

1) Develop a method of processing a TLS point cloud of a plot that helps us estimate canopy spatial 

distribution along a vertical gradient of the stand. 
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2) Describe and quantify the canopy distribution along a vertical gradient using landscape/patch metrics. 

3) Explore the variability of canopy structure complexity within and between stands. 

4) Explore the change in canopy structure complexity with changes in stand’s composition, density and 

aboveground biomass. 

 

Second goal of this research is to explore the possibility of using canopy structure metrics obtained with 

TLS to model the structure components obtained using ALS 

1) Apply an above mentioned method to ALS point cloud data 

2) Explore the vertical gradient results for both and determine the optimal height at which both TLS and 

ALS describe the canopy structure 

3) Develop a model that can be used to calibrate canopy structure derived from ALS using canopy structure 

metrics derived from TLS point cloud data. 

2. Methods 
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Figure 6. Flow chart for canopy vertical and horizontal structure quantification and comparison of TLS versus 

ALS approach. 

 

2.1 Study Area 

 

 

Panther Creek watershed is a 2300 hectare forested watershed in the coastal mountain range of Oregon, 

USA. Panther Creek watershed (45°18’ N, 123°21’ W) is at an elevation of 100-700 m. Panther Creek 

Watershed (PCW), is located in the Yamhill County, Oregon, approximately 80 km west of Salem, OR and 

about 57 km southeast of Portland. Annual precipitation is about 150 cm. The forests are mainly planted or 

natural stands of Douglas fir, with significant amounts of western hemlock, western red cedar, grand fir, red 

alder, big leaf maple and several other species. Tree heights are up to 60 meters. Management intensity 

throughout the watershed has been variable, with varying planting densities, and both thinned and unthinned 

regimes. The ecoregion is classified as “Cascade mixed forest”. It is in the eastern part of the coastal range 
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physiographic province of Oregon state. The forests of northwestern Oregon belong to mesic temperate 

coniferous type. The environment is mild and extremely favorable for forest development. The study area is 

dominated by native species: Pseudotsuga menziesii (Mirb.) Franco, Tsuga heterophylla (Raf.) Sarg., Thuja 

plicata Donn ex D. Don, Acer macrophyllum Purs., and Alnus rubra.  

Panther Creek Watershed is part of US Bureau of Land Management (BLM) intensive Panther Creek 

experimental research program. The collaborative research projects involve over thirty agencies and companies 

with interests in broader questions of forest management and ecosystem management (Flewelling, 2012). (Fig. 

3.A) The study area spans 5,580 acres and represents a natural, previously managed, heterogeneous forest 

ecosystem.  

 

 
 

Figure 7. A. Map of Oregon State and location of the Panther Creek Watershed. B. Locations of TLS plots 

within the PCW study area, where the yellow dots represent plots that have been scanned from 4 locations and 

blue dots represent plots that have been scanned from the center location only. The blue dots represent plots 

with slopes over 30 degrees. Due to topography these plots were scanned from center locations only. The map 

of Oregon was created by www.maps.com.  

A 

B 

http://www.maps.com/
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2.2 Terrestrial Laser Scanning 

  

 Terrestrial laser scanning (TLS) data was obtained using Leica ScanStation II scanner. Leica 

ScanStation II is a pulsed, dual-axis compensated, very-high speed laser scanner, with survey-grade accuracy, 

range, and field-of-view (Leica Geosystems, Switzerland). Due to high laser occlusion in forested plots the data 

was collected from 4 locations within the plot, center and three additional locations on the edges of the plot (see 

Figure 4.) Scanner was placed at 4 locations within the plot, consecutively, starting with the center scan A (Sa). 

Edge scan locations were placed 17 meters away from the center of the plot, where Scan B (Sb) is due magnetic 

north (0 degrees) from the center, Scan C (Sc) is at 120 degrees and Scan D (Sd)  is placed at 240 degrees. 

Targets were placed 10 meters away from the center scan in locations that could be visible from all the scan 

locations. The center of the plot scan (scan A) was a 360 degree scan with 2 centimeter at 20 meters resolution 

with the dual compensator turned off. Edge scans, Sb, Sc, and Sd scanned 120 degrees looking towards the 

center of the plot, with 2 cm at 20 m resolution with the dual compensator turned off for time efficiency purpose 

(Zhang et al. 2011). 
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Figure 8. TLS scanner set up schematic for a “full scan” scanning in forested environments of dense Pacific 

Northwest forests. The purpose of multiple scan locations within the plot is to minimize the laser shadow effect 

and obtain a good 3D representation of the entire plot. (Moskal 2011, unpub.) 

 

2.3 Aerial Laser Scanning 

 

Aerial laser data was collected for the entire study area on July 15
th

 2010. Aerial laser scanning data was 

acquired using Leica ALS60 sensor mounted on Cessna Caravan 208B. The Leica ALS60 scanner was set to 
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acquire ≥ 150,000 laser pulses per second and flown 900 meters above ground level, with a scan angle of ± 14 

degrees from nadir. (see Table. 1). The native pulse density over terrestrial surfaces is ≥ 8 pulses per square 

meter. Aircraft position described as x, y, and z was measured twice per second (2 Hz) by an onboard 

differential GPS unit. Aircraft pitch, roll and yaw were measured 200 times per second (200 Hz) from an 

onboard inertial measurement unit (IMU).  

Sensor Leica ALS60 

Survey Altitude (AGL) 900 m 

Pulse Rate ˃105 khz 

Pulse Mode Single 

Mirror Scan Rate 54 Hz 

Field of View 28 ˚ (±14˚ from nadir) 

Roll Compensated Up to 20˚ 

Overlap 100% (50% side-lap) 
 

Table 1. Aerial LiDAR survey specifications (Watershed Sciences Incorporated, 2010).  
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Figure 9. Three dimensional point cloud of Panther Creek Watershed colored by RGB values from NAIP 

imagery. (Watershed Sciences Inc., 2010) 

 

2.4 Field Data Collection 

 

Thirty five field-based vegetation plots were established and measured during summer of 2009 and 36 

additional vegetation plots were established during summer of 2010, during summer of 2011, 8 additional plots 

were established. During summer of 2011 46 out of earlier established vegetation plots were scanned using 

Terrestrial LiDAR.  

 

 

 

2.5 Derivation of Variables 

 

2.5.1 Terrestrial Lidar Point Cloud Processing 

 

Raw TLS point clouds were stitched together at reference target points using Leica Cyclone software 

(Leica Geosystems, Switzerland). Combined point clouds for the plots were then exported in ASCII format for 

further processing. Fusion software (McGaughey, 2008) was used to clip the terrestrial point clouds to the 16 

meter radius circular plot extent. As the Leica Scanstation 2 is a single return signal system the points that 

represent the ground must be filtered manually. For the purpose of digital terrain model (DTM) creation, the 

point cloud was further filtered to extract points that were associated with the ground. A surface model was 

created using the ground filtered points with 0.5 meter resolution to create a DTM. Digital terrain model 

represents the micro topography of each plot (see Figure 6.) and is further used in normalizing the height of 

trees and other vegetation within the plot for the changes in height due to topography.  
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Figure 10. Digital terrain model of one of the study plots. 

 2.5.2 Plot Point Cloud Slicing and Canopy Surface Creation 

 

To sample the entire plot canopy structure at various points along the vertical gradient the TLS point 

cloud was extracted at 6 locations throughout the canopy (see Figure 7). The canopy profiles were extracted at 

equal intervals within each plot, with first “slice” starting at the lowest height to live crown. The size of the 

interval varied between the plots as the plots varied in the tree height distribution. The thickness of extracted 

“slices” is 2 meters to make sure that the point cloud resolution is sufficient enough to accurately represent the 

segment of canopy at each height point (See Figure 8).  

The canopy surface models (CSM) were then created for each canopy profile (6) for all the plots (26), 

totalling in 156 canopy surface models. Canopy surface models were created with Fusion software 

(McGaughey, 2008) using a 5 cm cell size (see Figure 9B.5). Such a small resolution of the CSM is necessary 

to accurately capture the shape, size and distribution of canopy. A smaller cell size would be preferrable, 

however due to extremely long processing times the minimum resolution of 5 cm was chosen.  

16 
m 

DTM of plot (16m radius), 
cell size – 0.5 m 
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Figure 11.  TLS point cloud slicing schematic 
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Figure 12. Plot TLS point cloud canopy slice: from top left to bottom right are the heights represent the lowest 

and the highest points of each slice for that particular plot.  

 

2.5.3 Canopy Segmentation and Classification 

 

 Canopy surface models for all the canopy slices were used for canopy segmentation and classification. 

For this process object based image analysis (OBIA) was used. Object based image analysis is a method of 

classification involving delineation (segmentation) of similar pixels into discreet objects and is followed by the 

classification of those objects into themes or classes. An assumption of OBIA is that a landscape is made up of 

homogeneous patches which can be separated by their features (spectral signatures, height, texture, etc.). This 

analysis was performed using eCognition Developer software, which is a powerful environment for object-

based image analysis, and is used in earth sciences to develop rule sets, based on algorithms, for the automatic 

analysis of the remote sensing data.  
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 A surface model for each height gradient for all the study plots (n=156) were used for canopy 

segmentation in eCognition developer software. The segmentation algorithm used multiresolution segmentation 

to segment canopy surface models. For multiresolution segmentation the following parameters were used:  scale 

parameter – 10, shape parameter – 0.5, compactness parameter – 0.5. These parameters were determined based 

on trial and error process and knowledge of the segmentation algorithm. The scale parameter is directly related 

to the size of the desired objects, with the larger number representing larger objects, the shape and compactness 

parameters both represent the shape of the objects, where the higher shape weights create segmentation based 

on shape of the objects as opposed to their spectral properties and compactness parameter represents the 

roundness of the objects. In this case the shape of the objects was not of much significance as we were simply 

separating the canopy segments from gaps. These segments were then classified into two classes: canopy and 

gap, the classification was based on the height information that is encoded in the surface model. All objects with 

NoData values were classified as Gap and objects with any kind of height information were classified as 

Canopy (Figure 9A.). The resulting classified objects were then merged together to create continuous patches of 

canopy and gaps (see Figure 9B.6). Canopy and gap polygons of canopy patches were exported as vector files 

into ArcGIS for further analysis.  
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Figure 9A. Object based image analysis, canopy surface segmentation and classification process, where pixels 

(5 cm) of canopy surface (top left) created from the TLS point cloud are aggregated into meaningful objects 

(top middle) and resulting objects with positive height information are classified as canopy (top right). 

Individual objects that have been classified as canopy are then further merged to create canopy segments that 

represent individual canopies or multiple overlapping canopies within the plots (bottom left). After the canopy 

objects are merged, the remaining segments are classified as gaps (bottom middle) and objects with gap 

classification assigned to them are then merged together as well (bottom right). 
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Figure 13B. Visual representation of the TLS point cloud processing: 1) raw point cloud of the plot; 2) DTM 

created by filtering ground points and creating a surface; 3) slicing the plot at six locations along the height 

gradient; 4) isolation of each plot’s canopy slice; 5) creating a high resolution canopy surface model for each 

slice; 6) segmentation and classification of the canopy using OBIA. 

 

2.5.4 Extraction of Canopy Metrics 

 

The idea behind this particular method is that once we have our spatially explicit canopy distribution 

maps for each study plot we can treat that canopy as a hypothetical “landscape” and extract landscape metrics 

from the image. The landscape metrics provide us with a way to quantitatively characterize spatial patterns of 

canopy structure within forest stands. The term “landscape metrics” generally is referred to indices developed 

for categorical map patterns. Landscape metrics are algorithms that quantify specific spatial characteristics of 

patches, classes of patches or landscape mosaics (McGarigal and Marks 1995). For the purposes of this research 
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a slightly different approach to scaling was taken. A landscape is defined as a study plot and a patch is defined 

as tree canopy or part of tree canopy (see Figure 10). The landscape metrics in this case were used to 

characterize the configuration of individual canopy patches and the distribution and density of those patches on 

the landscape, which in the case of this study is study plot. In use of patch metrics in describing the forest 

canopy structure three major components were focused on: metrics describe size and shape, patch composition 

and the spatial configuration of the canopy patches.  

The simplest measure of configuration is patch size, which represents a fundamental attribute of the 

spatial character of a patch. In fact many landscape metrics either incorporate or are directly affected by the 

patch size. Many landscape and patch metrics exist and many of them are quite redundant. Patch shape 

complexity relates to geometry of patches: are they simple or complex? Regular or convoluted?  Shape is 

extremely difficult to quantify as there are an infinite number of shapes that a patch can have, hence the shape 

metrics usually quantify the overall shape complexity. Commonly the shape indices are standardized to a more 

simple Euclidean shape as circle or square using fractal dimensions or perimeter-to-area ratios, where the higher 

the value of shape complexity the greater the departure from the regular Euclidean shapes. For this study mean 

perimeter-area ratio (MPAR) and mean patch fractal dimension (MPFD) were used. Mean perimeter-area ratio 

is a pretty straight forward shape complexity measure that accounts for both size and shape and number of 

patches on the landscape, where MPAR=sum of each patches perimeter/area ration divided by number of 

patches. Mean patch fractal Dimension is also a measure of shape complexity, where mean fractal dimension 

approaches one for shapes with simple perimeters and approaches two when the shapes are more regular.  

The patch composition is referred to the landscape features associated with the variety and abundance of 

patch types within a landscape, without considering the location of patches within the mosaic. There are many 

ways to measure composition, including patch evenness, and patch diversity. For the measure of relative canopy 

patch diversity Shannon’s Diversity Index (SDI) was used. Shannon’s Diversity Index is defined as a measure 
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of relative patch diversity, where the index will equal zero when there is only one patch in the landscape and 

increases as the number of patch types or proportional distribution of canopy patch types increases. Shannon’s 

Evenness Index (SEI) was used to measure canopy patch distribution and abundance. Shannon’s Evenness 

Index is equal to zero when the observed patch distribution is low and approaches one when the distribution of 

patch types becomes more even. Please see Table 2 for a summary of canopy patch metrics used in this study; a 

detailed description is also available in the List of Definitions.  

 

Figure 14. Canopy distribution maps (canopy polygons segmented and classified in eCognition) for one of the 

study plots 

 

 



24 

 

 

 

Metric 
Name Description Units 

SDI Shannon's Diversity Index  -  

SEI Shannon's Evenness Index  -  
AWMSI Area Weighted Mean Shape Index  -  
MSI Mean Shape Index  -  
MPAR Mean Perimeter to Area Ration m/ha 
MPFD Mean Patch Fractal Dimension  -  
AWMPFD Area Weighted Mean Patch fractal Dimension  -  
TE Total Edge M 

ED Edge Density m/ha 

MPE Mean Patch Edge M 
MPS Mean Patch Size Ha 
NumP Number of Patches  -  
MedPS Median Patch Size Ha 
PSSD Patch Size Standard Deviation  -  
TLA Total landscape Area Ha 

 

Table 2. List of patch metrics used to describe canopy structure derived from TLS point clouds. These were 

used to create a response variable matrix for analyses. 

  

2.6  Field Plot Metrics 

  

2.6.1 Density 

 

To properly capture the variability in stand density and composition a few plot biometrics were selected. 

There are multiple ways to measure stand density, e.g. number of trees per unit area (trees/ha) or basal area 

(BA). However for the purposes of describing stand structure it is important to account for number and size of 

trees. Therefore stand density index (sdi) (Reineke 1933) was used to describe stand density for the purposes of 

this study. Reineke’s sdi is a function of quadratic mean diameter and a number of trees per unit area: 

   sdi=No(Do/10)
1.605

 

where No is observed trees per unit area and Do is the observed quadratic mean diameter. 
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Stand diversity index was further classified into three classes: low, medium, and high. The criteria described in 

Table 3. below was chosen as the classification scheme. 

 

 

sdi Type Category 

170-310 Low 1 

310-448 Med 2 

448-586 High 3 
 

Table 3. sdi classification scheme 

 

2.6.2 Composition 

 

 The study plots are dominated by Douglas fir, with a few conifer/deciduous mix plots. For the purpose 

of this study the plots have been classified into two stand type categories: Type I - Douglas fir, where the 

volume of Douglas fir exceeds 80% of the total tree volume; Type II - conifer-deciduous mix, where deciduous 

species such as red alder and big leaf maple are present with coniferous species such as Douglas fir, western red 

cedar and western hemlock. Out of 26 plots, 6 plots were classified as type II and 20 plots – type I. 

 

2.6.3 Aboveground Tree Biomass and Canopy Mass 

 

Forest biomass is a useful measure in assessing change in forest structure and estimation of carbon 

content, as the changes in forest biomass density is directly brought on by changes in forest structure due to 

natural succession, human activities, and natural impacts such as wildfire and insect damage. Biomass density is 

also a useful variable for comparing structural and functional attributes for forest ecosystems across a wide 

range of environmental conditions. Forest biomass is defined as the total amount of aboveground living organic 

matter expressed as oven-dry tons per unit area. For the purposes of this study aboveground biomass is defined 

as amount of mass stored in aboveground components of live trees and will be referred to ABG from here on. 
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There are multiple formulas that exist for calculating ABG. In this study species and region specific formulas 

were used from BIOPAK software (Standish et al., 1985) 

 

 

CommonName CODE Biomass Equation* Description 

Douglas fir PSME BAT = 37.3 + 139.3 * DBH^2 * HT Total Aboveground Biomass 
big leaf maple ACMA ** *** 

red alder ALRU BAT = 4.8 + 206.5 * (DBH)2 * HT Total Aboveground Biomass 

Western red cedar THPL BAT = 40.4 + 96.9 * (DBH)2 * HT Total Aboveground Biomass 

Western hemlock TSHE BAT = 29.8 + 155.8 * (DBH)2 * HT Total Aboveground Biomass 

grand fir ABGR BAT = 30.2 + 146.9 * (DBH)2 * HT Total Aboveground Biomass 

 

Table 4. List of Biopak formulas used to calculate aboveground tree biomass at Panther Creek watershed 

*Total Aboveground Biomass (kg) equation using DBH (m) and Height (m). 

** Total Aboveground Biomass for ACMA (g) comprises of multiple equation for various parts of the tree 

using DBH (cm): BAT=BFT+BSW+BBL+BBD+BSB 

BAT=(EXP(3.14276+1.617*LN(BDH))+EXP(3.4148+2.723*LN(DBH))+EXP(2.67176+2.43*LN(DBH))+EX

P(4.7918+1.092*LN(DBH))+EXP(2.3338+2.574*LN(DBH) 

*** BAT – Total Aboveground Biomass; BFT – Total Foliar Biomass; BSW – Stem Wood Biomass; BBL – 

Live Branch Biomass; BBD – Dead Branch Biomass; BSB – Stem Bark Biomass 

 

 

CommonName CODE Biomass Equation* Description 

Douglas fir PSME ln(BCT) = 4.36933 + 2.0083 * ln(DBH) Live and Dead Crown 
big leaf maple ACMA ln(BCL) = 4.0543553 + 2.1505 * ln(DBH) Total Live Crown 

red alder ALRU ln(BCL) = 2.3429553 + 2.6232 * ln(DBH) Total Live Crown 

Western red cedar THPL ln(BCT) = 5.03476 + 1.8289 * ln(DBH) Live and Dead Crown 

Western hemlock TSHE ln(BCL) = 5.207522 + 1.7502 * ln(DBH) Total Live Crown 

grand fir ABGR ln(BCT) = 5.56272 + 1.6839 * ln(DBH) Live and Dead Crown 

Pacific madrone ARME ln(BCL) = 3.0136553 + 2.4839 * ln(DBH) Total Live Crown 

 

Table 5. List of Biopak formulas used to calculate canopy biomass at Panther Creek watershed. 

*The equations are based on the Biopak database. The mass is calculated in grams using diameter at breast 

height in centimeters.  
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Code Variable Units Mean StDev Min Max 

Tph trees per hectare 
trees per 
hectare 585.1 294.9 237.5 1337.5 

plot.can.mas.kg plot canopy mass kg 5111.9 1735 2184.7 8621.3 
qmd.cm quadratic mean diameter cm 39.9 14 16.4 69.1 
Sdi stand density index  -  361.4 95.6 170.4 586.3 
avg.hgt.m average height m 28 7.3 13 48.4 

avg.hlc.m average height to live crown m 17.6 6.1 5.3 37.1 

ba.m2.ha basal area m2/ha 61.1 21 27.1 102.7 

vol.m3 volume m3 481 143.4 231.1 841.2 
abg.t.ha above-ground biomass tons/ha 421.4 218.8 130.3 924.2 

 

Table 6. Summary of explanatory variables used for analyses. The explanatory variables were derived from the 

measurements collected by the crew in the field. 

 

 



28 

 

 

 

 

 

 

 

Table 7.  Environmental variables derived from the field measurements summarized by plot. 
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2.6.4 Processing Aerial LiDAR 

 

Aerial lidar point clouds for the 26 study plots were extracted for the plot extent (16 meters in radius)  from the 

raw LAS point cloud data using clipdata function in Fusion (). The clipped point clouds were then normalized 

by height using a 1 meter digital terrain model (DTM) provided by the vendor (Watershed Sciences Inc., 

Corvallis, OR). The normalized point clouds were used to extract point cloud parameters for each plot. This was 

done using cloudmetrics function in Fusion. The cloudmetrics output is extensive and includes metrics that 

describe the point cloud density, intensity, signal return break down and many others. For the list of cloud 

metrics used for the purposes of this study please see Appendix C. 

2.7 Analysis 

 

2.7.1 Stand Structure from TLS 

 

By using the canopy metrics we can look at how the canopy structure changes with stand density, 

composition, and even begin looking at how aboveground tree biomass relates to stand vertical and horizontal 

structure. The data for this research comes from multiple sources and has taken on a multidimensional format. 

The first set of data are plot measurements that have been collected by crews on the ground. These data include 

tree heights, DBH, height to live crown, X and Y locations of each tree, etc. The second set of metrics that were 

used in this research was derived from the allometric measurements collected in the field (explanatory variables 

see Table 6) and were classified as the plot environmental metrics. Finally the third set of variables was 

estimated using the landscape metrics that from here on will be referred to as canopy metrics. These include 

metrics and indices that quantify canopy shape, size and distribution along a height gradient for each plot. The 

multidimensionality of the datasets also stems from the resolution differences. The data ranges from individual 

tree to plot level metrics to metrics that describe within the plot variability in canopy structure. 
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After the initial look at the distribution of canopy within each slice category between the plots it was 

clear that for some of the plots the slice 1 (at the lowest point of the canopy) had a very high point density and 

very high canopy patch area, which lead to believe that those were the plots with very dense and tall understory 

and that it was getting incorporated into the tree canopy segments. Additionally, plots with high stand density 

had canopy slices 5 and 6 (two top slices of the canopy) with very low point density. This can be attributed to 

laser’s inability to penetrate through very dense tree structures. Due to the above-mentioned reasons, only slices 

2, 3 and 4, that represent the middle section of the canopy height gradient were used for further analysis. For the 

purpose of this study the data was organized in the following fashion: The main matrix contains the patch 

metrics that represent shape, size, and distribution of the canopy (Table 2.) for 26 plots and 3 slices. The 

secondary matrix is a data frame that consists of plot level explanatory (environmental) variables for 26 plots; 

these include, but are not limited to variables that describe stand composition, density and mass (Table 6.) 

Canopy metrics describe various characteristics of the canopy structure and come in multiple units and 

indices. Adjustment of data by standardizing the response variable matrix is necessary for further analysis. The 

data were relativized by column range, where the maximum value in a column was set to 1 and minimum value 

was set to 0 and all other elements were calculated as proportions between these two values. The dissimilarity 

matrix for the primary response variables was calculated using Euclidean distance method, because the 

community data in this case is derived in one way or another from various measurements of geometric 

distances. All following analyses were performed using R statistical software (R Core Team, Vienna, Austria, 

2012). 

An ordination technique helps reduce the number of dimensions while accounting for as much 

variability in the original dataset as possible. To combine correlated variables to reduce the dimensionality of 

the dataset Principal Component Analysis (PCA) was used (Craine et al. 2002; Summerville et al. 2006) using 

prcomp()function  in RStudio (RStudio, 2012, Boston, MA), package vegan (Oksanen et al. 2012). Each 
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variable was scaled to unit variance, to ensure that all variables contribute equally to the results. To identify the 

number of principal components to use for further analysis a scree bar plot of eigenvalues was created and 

examined. The PCA results and the loadings for each variable were examined and interpreted for the principal 

components that explained the largest portion of variance.  

Sums of squares multivariate regression tree analysis (SS-MRT) was used to further investigate the 

relationship between the canopy structure and plot characteristics and to identify the key environmental 

variables that drive the relationship. The SS-MRT was performed using multivariate partitioning mvpart and 

MVPARTwrap (Therneau et al., 2012) packages in RStudio, using the standardized matrix of response variables 

and raw environmental variables. The SS-MRT was run performing 100 cross-validations and 100 multiple 

cross-validations, using “mrt” (multivariate regression tree) method and the sum of squares were calculated 

using Euclidean distance (sum of squares about the mean). The size of the tree was selected manually after 

performing the cross validation and examining the relative and cross-validated relative errors. The tree with 3 

nodes was chosen for further investigation.  

To compare canopy structure between 6 slices for all the study plots PERmutational Multivariate 

Analysis of Variance (PerMANOVA) was used. PerMANOVA was ran with 9999 permutations using 

Euclidean distance measure. For data analysis statistical software RStudio, specifically vegan package for the 

multivariate analysis, was used. For the response variables first three principal components from PCA 

ordination were used. 

To test the canopy structure differences among the canopy slices, pair-wise contrast comparisons were 

performed. The contrasts were tested using PerMANOVA with 9999 permutations and Euclidean method for 

distance measure.  



32 

 

 

 

To further investigate the relationship of canopy structure variability and explanatory variables an 

Analysis of Variance (ANOVA) was used to identify significant differences between principal components 

(PC1, PC2, and PC3) and the environmental variables derived from plot measurements. 

To visualize the canopy metrics for all of the slices and plots a Non-metric Multidimensional Scaling 

(NMDS) ordination approach was used. To choose the number of dimensions the analyses were rerun with 

different dimensions to identify the effect of dimensionality on stress. This was done using RStudio and vegan 

package. After evaluating the NMDS Scree plot 3 dimensions were chosen (stress value=0.03), number if 

iterations = 9999, for the NMDS ordination. The Euclidean method for distance measure was chosen.  

 One of the goals of this study is to investigate the possibility of calibrating canopy structure from ALS 

with canopy metrics derived from terrestrial scanner point clouds. Due to the inherently different sampling 

density and vantage points it is important to understand what parts of the stand the two methods are sampling 

and how. The comparison of the point cloud distributions between the ALS and TLS was done on a subsample 

of the plots that represent the variability in forest structure present on the landscape, from high density, even 

aged, homogeneous stand to heterogeneous and low density stands. Due to the stark differences in point cloud 

densities the point densities (see Figure 11) within each slice had to be standardized by total number of points 

within the plot.  
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Figure 11 A. Differences in point cloud densities between the TLS and ALS. Raw point counts for 5 sample 

plots from TLS scans (B.) and ALS scans (C.) 

 The standardized point cloud densities from ALS and TLS for 6 canopy slices were visualized by 

plotting the average normalized point densities for each slice. The intersection point between ALS and TLS 

average point distribution was determined along the height gradient and designated as an optimum average 

height where the ALS and TLS data share the same amount of points, i.e. similar amount of canopy. This 
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approach helps eliminate the extra data layers and solely focus on the height profile where ALS and TLS 

intersect, which optimizes the calibration process.  

 
Figure 12. Canopy points (%) distribution along the height gradient (along the canopy slices (1-6)) for 5 

example plots. 
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Figure 13. Top Left: Distribution of points for TLS example plots along the height gradient. Top Right: 

Distribution of points for ALS example plots along the height gradient. Bottom Left: Distribution of TLS points 

for averaged ALS and TLS plots along the height gradient. Bottom Right: Point distribution for ALS and TLS 

point clouds for each slice along the canopy (1-6, low-high). 

 

 Two approaches were tested for calibration of ALS with TLS data sets. The first approach followed the 

methodology described in TLS processing and canopy metrics extraction and extracted the ALS point clouds at 

exactly the same locations along the canopy as the TLS slices. The resulting ALS derived canopy metrics were 

then compared to TLS derived canopy metrics and field derived plot metrics. The second approach, took into 

consideration the considerable differences in point cloud density between the two scanning methods. Instead of 

creating spatially explicit canopy patches from ALS derived point clouds, metrics directly related to the ALS 

point cloud were used (please see Appendix C., list of Cloudmetrics). These metrics represent point cloud 

statistics and incorporate height, return and intensity information for a given area. Out of a multitude of metrics 

only a few were chosen for the model building approach. These metrics were chosen based on their relevance to 

the canopy structure metrics, and are focused on the point cloud statistics that are related to percent returns for 

certain height statistics.  

 

3. Results  

 

Although for this research the focus was predominantly on canopy structure of the stands, the method 

described in this study can be applied to describe many other spatial distributions within the plot. The slicing 

and surface creating method accurately captures the spatial distribution of stand parts and quantitatively 

characterizes the attributes of the stand features on any desirable height gradient with any desirable sampling 

frequency. One can omit the canopy and slice the stand at the lower height gradients from ground to crown to 

capture the volume and distribution of understory within the plot. This kind of understory mass quantification is 
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a superior approach to the current method of vegetation transects or sampling square meter subplots that sample 

a very small part of the plot and then are further extrapolated to the rest of the surface. 

After examining the results of PCA scree plot (Figure 14) it appears logical to focus on the first three 

components. There appears to be a break in the scree plot, where each of these eigenvalues is greater than the 

mean eigenvalue, and together they explain 83% of the variance.  

 

Figure 14. Scree plot of principal component analysis (PCA), where first three principal components explain 

82.8% of variability in the canopy structure metrics.  

PC1 

PC2 

PC3 
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Figure 15. PCA Ordination, where PC1 and PC2 are the axes, and the eigenvectors represent the canopy patch 

metrics used as response variables. 

 

After examining the magnitude and directions of loadings for PC1 (Table 8) it can be concluded that 

SDI and SEI, as well as the canopy patch size standard deviation (PSSD.ha) and total canopy area (TLA.ha) are 

given somewhat equally bigger weights it therefore can be concluded that PC1 can be interpreted as a measure 

of canopy distribution (diversity and evenness) and canopy size (patch size standard deviation and total canopy 

size). The loadings for PC2 give the most weight to a canopy metric MPFD (mean patch fractal dimension) and 

MSI (mean shape index) and can be interpreted as a measure of canopy patch shape complexity. The loadings 

for the third principal component (PC3) indicate that it can be interpreted as the canopy patch total edge metric 

(TE.ha) and total number of canopy metrics (NumP) (Table 8). 
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Table 8. First three Principal Components (PC1, PC2, and PC3), and the loadings of each component for the 

response variables, here represented by the canopy patch metrics. Highlighted are the loadings for the variables 

that were used to further interpret the principal components. PC1 - canopy patch distribution and size; PC2 – 

canopy patch shape and number of patches; PC3 – canopy patches edge length and edge complexity 

Sums of squares multivariate regression tree analysis (SS-MRT) was used to further investigate the 

relationship between the canopy structure and plot characteristics and to identify the key environmental 

variables that drive the relationship. The fit of the tree was assessed using the complexity parameter (cp), and 

cross-validated relative error (CV Error=0.8).  The splits at the top of the tree are more important than variables 

that are invoked lower in the tree (Figure 16).  At the first node (starting number of observations = 77), the split 

was made at aboveground biomass, however these were the primary splits: aboveground biomass (t/ha) with 

cp=0.199, volume of trees (m3), cp=0.176, average tree height (m), cp=0.159,  number of trees per plot, 

cp=0.149, and trees per hectare, cp=0.149. The largest percent contributions of each canopy metric to the first 
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node are summarized here in descending order: SEI- 19.1%, SDI – 16.4%, MPFD – 11.7%, MedPS (ha) – 

10.9%, PSCoV – 10.7%, and TLA(ha) – 7.7%. 

 
 

Figure 16. Multivariate Regression Tree, separating the field measured explanatory variables. The tree was 

created with 3 nodes using the complexity parameter and cross validation error to assess the fit. For the list of 

metrics in the legend please see Table.1. 

The second node started with 66 observations and was made using canopy slices, these were the other 

primary splits for the second node: slice, cp=0.147, quadratic mean diameter (cm), cp=0.06, aboveground tree 

biomass (t/ha), cp=0.06, average tree height (m), cp=0.06. These are the largest contributing canopy metrics for 

the second node of the regression tree: NumP – 23.3%, ED – 12.2%, PSCoV – 11.3%, TLS – 8.5%, PSSD – 

7.6%,  and MPFD – 7.6%. The cross validation error (CV error) for the multivariate regression tree is 0.8; 

relative error is 0.69, and standard error (SE):0.085.  

The attempts to find differences in canopy structure between all the canopy slices (6) using a 

PERMANOVA test were not statistically significant. The most likely reason for this is the fact that we have 
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used all the height slices together for the analysis, and as an observation, it has been noticed that some of the 

lower canopy slices (1 and 2) incorporated points from understory in them. Additionally, in the more dense 

plots, the top two slices (5 and 6) were significantly underestimating the amount of canopy present at those 

height gradients; this is due to high density of stands occluding the path of the laser from penetrating into the 

higher canopy layers. As a result, it has been concluded that for the analysis purposes only gradient layers 3 and 

4 will be used for analysis of variance.  

Permutational multivariate analysis of variance has shown that the canopy structure significantly 

(pseudo-F(2,74)= 6.0032, p<0.0001) varies between the canopy slices along a stand height gradient.  Further 

testing the canopy structure differences among the canopy slices using pair-wise contrast comparisons revealed 

that slices 2 and 3 were not statistically significantly different from each other, however slices 3 and 4 (pseudo-

F(1,74)= 6.36, p=0.001) and slices 2 and 4 (pseudo-F(1,74)= 9.35, p=0.0002) significantly varied between each 

other (Figure 17).  
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Figure 17. NMDS ordination of plot canopy structure metrics by canopy slice, where slice 2, 3, and 4 represent 

height gradients from low, medium and high, respectively. The ordination was run using 3 dimensions, with 

stress value of 0.03, it was iterated 9999 times, using Euclidean distance measure. The statistics show the 

significance of the canopy structure difference between the slices.  

There were no significant statistical differences in canopy structure between plots with varying 

composition. Perhaps the grouping of the plots in only two types has created a very coarse separation that did 

not allow the detection of statistically significant differences. The other reason for this result is the great 

difference in the sample numbers for each category, where Type I category (n=20) is a Douglas fir dominated 

stand and Type II category (n=6) is a represented by mixed stands. Perhaps a much more sensitive 

discrimination between the stand types or species richness or a diversity index will allow for greater sensitivity 

in the analysis of variance detecting differences in canopy structure between plots of varying stand 

compositions. Additionally for better results separating the differences in canopy structure between the plots 

with variable species composition a matrix of species abundance should be used as an explanatory matrix, this 

particular approach will allow to assess the tree species community composition effects on the canopy structure.  

Stand structural characteristics, specifically, aboveground tree biomass (t/ha), quadratic mean diameter 

(cm), average height to live crown (m), average tree height (m), basal area (m2/ha) and stand density index 

were all significant predictors of stand canopy structure summarized in first three principal components (PC1, 

PC2 and PC3). (Table 9).  
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EnvVariable df Res df R² Pseudo-F p-value 

slice 1 151 0.22 42.77 0.0001*** 
plot 1 151 0.0003 0.047 0.98 
st.type 1 151 0.003 0.45 0.706 
tph 1 151 0.015 2.3 0.081 
abg.t.ha 1 151 0.036 5.65 0.0032** 
plot.can.mas.kg 1 151 0.025 3.87 0.014* 
qmd.cm 1 151 0.031 4.83 0.0055** 
sdi 1 151 0.014 2.13 0.1 
avg.hgt.m 1 151 0.032 5.04 0.0045** 
avg.hlc.m 1 151 0.032 5.05 0.0039** 
ba.m2.ha 1 151 0.023 3.58 0.0206* 

vol.m3 1 151 0.022 3.32 0.0277* 
 

Table 9. PerMANOVA results, where the response variable matrix consists of first three principal components 

and the explanatory variables can be looked up in the Table.  

 

Canopy metrics composition had a linear positive correlation with aboveground tree biomass (t/ha) 

(pseudo-F(1,75)= 13.8, p=0.0001), and where the stand density index had a less of an effect on the variability in 

canopy structure (pseudo-F(1,75)= 3.8, p=0.015) (Figure 18). 

 
 

Figure 18.A NMDS ordination of canopy structure metrics linearly correlated with aboveground tree biomass 

(t/ha) and the PerMANOVA results showing a significant effect of aboveground tree biomass (t/ha) on canopy 
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structure. B. The NMDS ordination showing the effect of Stand Density Index (SDI) on the plot level canopy 

structure derived from TLS point cloud.  

 Direct tree measurements such as height and height to live crown and diameter had a highly significant 

effect on variability of canopy structure. The PerMANOVA results are summarized in the Table 10. 

 

Slice Plot St.Type TPH ABG QMD SDI Avg.hgt Avg.HLC BA Volume 

3PCs *** *** 

 

** *** *** * *** *** *** ** 

PC1 

 

** 

 

* *** *** * ** *** ** ** 

PC2 *** 

  

** 

 

* 

 

** ** 

  PC3 

 

*** 

    

* 

  

* * 

 

 

Table 10. PerMANOVA and ANOVA results, significance levels, where PC1 can be interpreted as canopy 

patch distribution and size, PC2 – canopy patch shape and number of patches, PC3 – canopy patches edge 

length and edge complexity 

After examining the results of ANOVAs, it can be concluded that aboveground tree biomass (F(1,75)= 

27.37, p=0.0001), quadratic mean diameter (cm) (F(1,75)= 15.22, p=0.0004) and height to live crown (F(1,75)= 

14.03, p=0.0005) had a significant effect on canopy size and distribution (PC1). Canopy patch shape and total 

number of patches within slice (PC2) varied significantly with variability in trees per hectare (F(1,75)= 8.07, 

p=0.006) and average tree height (m) (F(1,75)= 10.64, p=0.0014). Basal area (m2/ha) (F(1,75)= 6.11, p=0.015), 

stand volume (m3) (F(1,75)= 4.6, p=0.034) and stand density index (F(1,75)= 5.9, p=0.018) significantly affected 

the canopy patch edge length and edge complexity (PC3). 

Canopy structure metrics derived from TLS and ALS slices were used in attempt to find a connection 

between the two sources of remotely sensed data. The lack of any overlap and significant relationship between 

the two datasets (Figure 19) is most likely coming from the disparity in the point cloud density, where the 
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canopy surfaces created from ALS point clouds are significantly smaller and more disconnected, making it very 

difficult to directly compare the canopy structure derived from two datasets. 

 

Figure 19. NMDS ordination of canopy structure metrics for ALS and TLS derived canopy patches, it shows 

very little overlap between the two and indicates the fact that a different approach to comparing the canopy 

structure between two data sources is needed.   

 

Such disconnect in the point cloud density has prompted a different approach to calibration of ALS with 

TLS point clouds. Instead of directly comparing the canopy distributions between the two datasets, statistical 

metrics from ALS point cloud data were used to summarize the plot canopy instead and directly related to TLS 

derived canopy structure metrics. Stepwise regression model building approach was used to relate the ALS 

derived cloudmetrics to canopy structure metrics grouped into principal components that describe the canopy 

size, shape and canopy patch spatial distribution (see Table 8). As a result two simple models emerged from this 

approach. Where PC1, or canopy patch distribution and size, and PC2, canopy patch shape and number of 
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patches, are best described by linear models that are the combinations of percent 3
rd

  and 4
th

 returns. Here are 

the final models that can be used to calibrate aerial lidar with canopy metrics derived from TLS: 

PC1=19.837 * % of 3
rd

 returns + 1500.17*% of 4
th

 returns -3.798 

PC2= 124.6858 * % of 3
rd

 returns +560.6342 *% of 4
th

 returns – 2.7312 

The models above indicate that the number of 3
rd

 and 4
th

 returns are best at describing canopy structure, as 

those are the returns of laser signals that penetrate through the canopy and reflect back from the branches within 

the canopies and off of the subdominant trees that are not otherwise picked up by the first returns. First returns 

are usually used to create canopy surface models and according to the findings above they typically exclude the 

interior canopy structure and structure of complex multi-layered canopies of the Pacific Northwest forest stands. 

 

 

 

 

4. Discussion 

 

       

Spatial canopy structure of Pacific Northwest forests provides key information about the biomass 

accumulation and distribution, its contribution to biogeochemical cycling and tree physiological function. It is 

difficult to measure canopy structure and verify the accuracy of the measurements. Most of the methods 

previously used in the field require estimates derived from allometric relationships derived from DBH and 

height, or canopy parameters directly collected by the laser range finders. Canopy structure has also been 

previously described using LAI and gap fraction analysis. It is also challenging to test the accuracy of the 

canopy structure derived from TLS.  In this study I have tested the use of the terrestrial LiDAR for spatially 

explicit collection of canopy structure parameters. Structure derived from TLS was tested using structure 

components derived from field measurements. Both methods have uncertainty associated with them, field 

measurements are prone to human measurement and instrument error and TLS is very susceptible to stand 

density, both understory and overstory. Plots with dense and tall understory were problematic as the laser beam 
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was obstructed by the lower understory vegetation, especially at the larger scan angles. Plots with high tree 

density had very poor laser penetration into the higher canopy, as the laser was intercepted by the very dense, 

thicket like, young stands. Terrestrial LiDAR is more effective at capturing canopy structure in lower density, 

low understory, older, vertically and horizontally diversified stands. The laser beam was able to capture the 

canopies of individual trees and the distribution of canopy within the plot at various heights along the vertical 

gradient. The lower the plot density the more accurate the point cloud representing the canopy structure.  

 Stand density can also be derived from the TLS structure. The canopy point cloud can be extracted from 

a mid-point in the canopy and canopy metrics that indicate the size, shape and distribution vary significantly 

between plots with varying density (Figure 20.). It is important to note that if canopy structure is extracted from 

lower or higher canopy the accuracy significantly reduces, where the lower canopy may incorporate tall 

understory and high canopy is not well represented in the dense plots due to poor laser beam penetration 

through the dense and overlapping branch arrangement.  
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Figure 20. The graphic shows mid-canopy slices of three distinctive plots in respect to the tree density. The 

images with black background represent segments of the raw point clouds from TLS and images with orange 

background represent the respective canopy distribution maps generated from the point clouds, where green 

represents canopy patches and gaps are colored in orange.  

 Plot species composition is an important factor in canopy structure composition, where the plots with 

deciduous species have a much more connected canopy with higher total canopy area, and monoculture conifer 

plots had canopy with a greater number of smaller patches that were spaced evenly within the plot with higher 

gap areas in between. Even though we can visually distinguish the differences between deciduous/mixed and 

conifer plots (Figure 21.), statistically the differences in canopy structure metrics were not significant. This is 

attributed to a very low sample size of deciduous/mixed plots.   
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Figure 21. Raw point clouds for mid-canopy slices for two plots with similar densities but different 

compositions, conifer plot on the left and deciduous/mixed plot on the left.   

Connecting TLS with ALS 

 

One of the goals of this study was to investigate the potential of calibrating the laser point clouds with 

data obtained from terrestrial laser scanning. Plotting the average point distributions for both terrestrial and 

aerial lidar showed that the two datasets intersect at slice 3 and 4. Those are located in the mid canopy and 

canopy structure within mid canopy was further used as the ultimate point of comparison. After testing multiple 

approaches, it has been determined that directly comparing the canopy distribution obtained using identical 

method from both TLS and ALS does not work due to the significant differences in point cloud densities 

between the two data sources. A method that involves canopy metrics derived from spatially distributed 

“landscape” metrics from TLS and point cloud metrics from ALS, “cloudmetrics”, is a better approach. This 

derivation of canopy structure parameters can be considered independent and the differences between the point 

cloud densities are accounted for as both are standardized by the total number of points. 
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  As the result of model building approach it has been determined that the percent of third and fourth 

returns is best for predicting canopy structure. Third and fourth returns represent the returns from the laser 

pulses that have penetrated through the top of the canopy and are now reflecting from the structure within the 

canopy. Fourth returns are generally considered ground points, however in dense forested stands fourth returns 

reflect from within the canopy instead of hitting the ground. This result indicates that most commonly filtered 

out of the analysis third and fourth returns provide very valuable information about canopy structure of 

vertically and horizontally complex forests over large areas.  

 

4.1 Sources of Error 

 

As with any laser terrestrial based sensor occlusion or laser shadow is a significant source of error, even 

though for this research project we tried to eliminate as much of the occlusion error as possible by scanning 

from multiple vantage points within each plot and then stitching the scans together, there is still an issue with an 

accurate representation of the plot in denser stands.  

The need to obtain the scans from multiple locations within the plot also introduces a minor error within 

the process of stitching the scans together, generally the error associated with stitching is sub-centimeter and 

does not significantly impact the results of this study.  

Weather condition during point cloud collection can impact the accuracy of the point cloud and it’s 

ability to accurately capture the three-dimensional structure of the canopy. The biggest issue arises with windy 

conditions that cause the canopy to move and therefore result in “fuzzier” scans. This can lead in a wider 

distribution of laser points and overestimate the canopy surface. It is important to make sure that data collection 

is taking place during favorable weather conditions with minimal wind speed.  

One of the major sources of error in this method is the error associated with the creation of surface over 

the points within each canopy slice along the vertical gradient within a stand. The point cloud density is quite 

high in terrestrial point cloud datasets used for this study and the point spacing is 2 cm at 20 meters. Creating a 
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surface using a 5 cm cell size over points that are spaced millimeters apart can potentially overestimate the 

canopy cover.  

 

 

 

 

5. Conclusions 

 

In summary, a robust method for extracting and quantifying plot canopy structure from TLS point 

clouds has been developed. Canopy structure can be successfully described and compared along the vertical 

height gradient using patch metrics technique on a classified point cloud surface. The differences in canopy 

structure derived from TLS point cloud between the plots with varying stand density and biomass can be 

measured using multivariate analysis techniques. Additionally, we were able to conclude that individual tree 

measurements such as tree heights, heights to live crown and tree diameter also have a significant effect on the 

canopy structure of the stand.  

Although for this research the focus was predominantly on canopy structure of the stands, the method 

described in this study can be applied to describe many other spatial distributions within the stand. The slicing 

and surface creating method accurately captures the spatial distribution of stand parts and quantitatively 

characterizes the attributes of the stand features on any desirable height gradient with any desirable sampling 

frequency. One can omit the canopy and slice the stand at the lower height gradients from ground to crown to 

capture the volume and distribution of understory within the plot. This kind of understory mass quantification is 

a superior approach to the current method of vegetation transects or sampling square meter subplots that sample 

a very small part of the plot and then are further extrapolated to the rest of the surface. 
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5.1 Future Research 

 

 

 

Terrestrial laser scanner derived canopy structure metrics can be applied in a number of ecological applications. 

The biggest interest in the use of the proposed method for canopy structure quantification has come from 

wildlife biologists for wildlife habitat assessment, specifically for protected avian species, like Marbled 

Murrelet, spotted owl, and canopy dwelling mammals, i.e. red tree voles. The next steps would be to test the 

canopy structure model in ecological applications and use the canopy metrics to predict nest suitability and 

stand occupancy by marbled murrelets.   

Foregoing the need to model the ground collected variables and treating the canopy variables as unique 

measures of canopy structure that hold great potential in assessing the habitat suitability, distribution of 

epiphytes and many more. 
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Appendix A: List of acronyms 

 

 

ASCII:  American Standard Code for Information Interchange 

BLM:  Bureau of Land Management  

GIS:  Geographic Information Systems 

GPS:  Global Positioning System 

LiDAR: Light Detection and Ranging 

TLS:  Terrestrial Laser Scanning 

ALS:  Aerial Laser Scanning 

OBIA:  Object Based Image Analysis 

CHM:  Canopy Height Model  

SDI:  Stand Density Index 

TPH:  Trees Per Hectare 

BA:  Basal Area 

MPAR: Mean Perimeter to Area Ratio 

AGB:  Aboveground Biomass 

ANOVA: Analysis of Variance 

MANOVA: Multiple Analysis of Variance 

SEI:  Shannon’s Evenness Index 

CM:   Canopy Mass 

MPFD: Mean Patch Fractal Dimension 

AWMSI: Area Weighted Mean Shape Index 

MSI:  Mean Shape Index 

PPSD:  Patch Size Standard Deviation 

SDI2:  Shannon’s Diversity Index  
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Appendix B: List of definitions 

 

 

Stand structure – spatial (vertical and horizontal) arrangement of vegetation individuals in a stand. 

Plant community composition – a list of the species that comprise a community or any other ecological unit. 

Aboveground tree biomass – quantity of aboveground living material stored in the trees within a system. 

Active remote sensing – remote sensing that uses sensors that detect reflected responses from objects that 

irradiated from artificially-generated energy sources, such as radar or LiDAR. 

Passive remote sensing – remote sensing that makes use of sensors that detect the reflected or emitted 

electromagnetic radiation from natural sources. 

Airborne Laser Scanner (ALS) – an optical remote sensing technology that measures properties of scattered 

light to find range and/or other information of a distant target. 

Point cloud – is a set of vertices in a three-dimensional coordinate system. The vertices are usually defined by 

X, Y, and Z coordinates, and are typically intended to be representative of the external surface of an object. 

Classification (Object-oriented) – a procedure that categorizes an image into classes or themes that involves 

both spectral and spatial pattern recognition. 

Object based image analysis (OBIA) – is a method of classification involving the delineation (segmentation) of 

similar pixels into a discrete objects and is followed by the classification of those objects into themes or classes.  

Landscape metrics – indices developed for categorical map patterns. Landscape metrics are algorithms that 

quantify specific spatial characteristics of patches, classes of patches, or entire landscape mosaics. 

TLS – Terrestrial laser scanning 

Richness – the number of different patch types 
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Evenness – is the relative abundance of different patch types, emphasizing either relative dominance or its 

compliment, equitability.  

LiDAR – An active sensor that records distance based on emitted laser pulses. 

LiDAR intensity - the strength of the LiDAR return signal off of a surface. 
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Appendix C: Metadata 

 

Patch Metrics Code names: 

SDI = Shannon’s Diversity Index 

SEI = Shannon’s Evenness Index  

AWMSI = Area Weighted Mean Shape Index 

MSI = Mean Shape Index 

MPAR = Mean Perimeter to Area Ratio 

MPFD = Mean Patch Fractal Dimension 

AWMPFD = Area Weighted Mean Patch Fractal Dimension 

TE =Total Edge 

ED = Edge density 

MPE = Mean Patch Edge 

MPS = Mean Patch Size 

NumP = number of patches 

MedPS =Median Patch Size 

PSCov = Patch Size Coefficient of Variance 

PSSD = Patch Size Standard Deviation 

TLA = Total Landscape Area 

CA = Class Area 

 

Coding of Environmental Matrix Variables 

 

PLOT = plot # 

St.type = stand type, 1 or 2, where 1=Doug Fir and 2=Mixed 

Tr.number  = number of trees in plot 

TPH = trees per hectare 

c.mass = Canopy density (kg)  – canopy biomass from biopak formula 

 

Agb  = above ground biomass (t/ha),  total mass within the plot (tree mass) from biopak formula 

Qmd = (cm) – Quadratic Mean Diameter, where QMD=     
2
/n), where   -observed diameter, n-observed 

number of trees per unit area 

 

Sdi = SDI (Stand Density Index) – or Reineke’s (1933) stand density index – function of quadratic mean 

diameter and number of trees per unit area SDI=No(Do/10)
1.605 

, where No – observed number of trees per unit 

area, Do – observed quadratic mean diameter. 

 

avg.hgt = average tree height (m) 

avg.hlc = average height to live crown (m) 

Ba = Basal Area (m
2
/ha) –  BA(plot)=∑BA(tree)/A(plot), where BA(tree)(m

2
)=0.00007854*DBH

2
(cm) 

 

Cloudmetrics: 

A. (All returns above 3 meters)/(Total first return) *100 
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B. First returns above 3m 

C. All returns above 3m 

D. Percent of 1
st
 returns above the mean 

E. Percent of 1
st
 returns above the mode 

F. Percent all returns above the mean 

G. Percent all returns above the mode 

H. (All returns above the mean)/(Total first returns)*100 

I. (All returns above the mode)/(Total 1
st
 returns)*100 

J. 1
st
 returns above the mean 

K. 1
st
 return above the mode 

L. All returns above the mean 

M. All returns above the mode 

N. Total 1
st
 returns 

O. Total all returns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


