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Chapter 2
Linear and Nonparametric Quantile
Regression

Quantile regression estimates can be presented in tables alongside linear regression
estimates. A possible advantage of this approach to presenting quantile regression
results is that it is easy to compare the values of the coefficients and standard errors
with OLS estimates and across quantiles. As we have seen, quantile estimates
actually contain far more information than can be presented in simple tables. The
estimates imply a full distribution of values for the dependent variable. It also is
easy to show how changes in the explanatory variables affect the distribution of the
dependent variable.

The objective of this chapter is to provide some intuition for quantile regression
estimates. Some simple Monte Carlo examples help to clarify issues related to
interpreting quantile regression. I also provide an introduction to nonparametric
estimation of quantile models. Nonparametric estimation turns out to be remark-
ably easy to implement in a quantile regression framework, and the results can be
presented in a quite straightforward in a set of graphs.

2.1 Linear Quantile Regression: Simulated Data

The intuition behind quantile regression is easy to illustrate using a simple simulated
data set. The raw data are shown in Fig. 2.1. To make the graphs easier to read, the
single explanatory variable, x, is limited to the set of integers from 1 to 10. Each
integer occurs 200 times in the simulated data set, leading to 2,000 observations in
total. The base regression line is simply y ¼ 10� 0:5 � xþ u. To ensure an R2 of

approximately 0.80 for the regression, I set varðuÞ ¼ 0:25 � varðxÞ � ð1�R2Þ
R2

¼ varðxÞ=16 ¼ 0:5159. After drawing 2,000 values of u from a normal distribution,
the raw data look like a classic regression scatter: a clear, downward-sloping
function with no systematic tendency toward unusually high or low values around
the base regression line. The regression estimates are presented in the first column of
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results in Table 2.1. The estimates are very close to the true coefficients, and they are
estimated quite accurately, with low standard errors and an R2 of (as expected)
approximately 0.8. The red line in Fig. 2.1 is the estimated regression line.

The estimated quantile regression lines for the 10, 50, and 90 % quantiles are
shown in Fig. 2.2, and the coefficient estimates are presented in Table 2.1. To get
some intuition for the interpretation of these lines, it actually is easiest to consider
a fully nonparametric estimator that takes advantage of the fact that the explan-
atory variable is limited to 10 integers. Each value of x is associated with
200 values of y. At each x, we can order the values of y from lowest to highest. To
estimate the value of y for the 10 % quantile for x ¼ 1, the nonparametric esti-
mator would simply pick out the value of y for which 10 % of the values are lower
and 90 % are higher, i.e., the 20th value. Similarly, the 50 % quantile would pick
the value for which half the values of y at x ¼ 1 are lower and half are higher—the
100th of our 200 ordered observations at x ¼ 1. Finally, the 90 % would pick the
180th value of y at x ¼ 1. We then repeat the procedure for values of y associated
with x ¼ 2, x ¼ 3, and so on. After connecting the dots, the resulting 10, 50, and
90 % nonparametric quantile regression lines would look virtually identical to the
lines shown in Fig. 2.2.

The nonparametric procedure cannot be applied so readily to more realistic data
sets in which x is continuous. Since it is possible that no two values of x are
identical when the variable is continuous, it clearly is not possible to identify the
10th percentile of values of y for given values of x. The intuition carries over to the
continuous case, however. A quantile regression line can be thought of as finding
the straight line that comes closest to connecting the series of points associated
with a given percentile value for y at each value of x.

The fact that the estimated quantile regression lines are parallel in Fig. 2.2 is a
direct result of having a constant variance for the errors (and thus for the
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Fig. 2.1 Homoskedastic data
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dependent variable). Since the errors are drawn from a normal distribution and
the variance is the same at each value of y, the true quantile lines are parallel, and
the estimated lines will be close to parallel except in a case where quite unusual
values are drawn for the errors, u.

Quantile regression becomes more interesting when the errors are not homos-
kedastic. Figure 2.3 shows the raw data for a simulated data set in which the
variance is lower at higher values of the explanatory variable. The estimated OLS
regression line, which is shown in blue, is nearly identical to the (red) quantile
regression line for the median. The coefficient estimates are shown in Table 2.2.
Again, we can think of the 10 % quantile regression line as a linear approximation
to the set of 10th percentiles for the values of y at each value of x, the 90 %
quantile lines as the set of 90th percentiles, and so on.

OLS produces a single set of coefficient estimates. The blue line shows the
expected value of y given values for x, i.e., the conditional mean. It is nearly
identical to the 50 % quantile regression line because the errors are drawn from a
symmetric distribution. The slope is much steeper at the 90 % quantile than at the
10 % quantile, however. The slope of the 90 % line indicates how the value of

Table 2.1 Regression results for homoskedastic data

Variable OLS Quantile
10 % 50 % 90 %

Constant 9.9673
(0.0339)

9.1036
(0.0520)

9.9094
(0.0413)

10.8698
(0.0546)

x -0.4954
(0.0055)

-0.4992
(0.0095)

-0.4900
(0.0063)

-0.4949
(0.0084)

Notes Standard errors are in parentheses below the estimated coefficients. The R2 for the OLS
regression is 0.8049. The number of observations is 2,000
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y changes with x as we move along the 90th percentile of the distribution of values
of y at each value of x. The slope of the 10 % quantile regression line shows how
the value of y changes with x along the 10th percentile of the distribution of values
of y at each value of x. The fact that the slope of the 90 % quantile regression line
is much steeper than the 10 % line indicates that the lines are converging as
x increases. In other words, the distribution of y values is less spread out at high
values of x than at lower values, i.e., the variance of the dependent variable is
lower at higher values of the explanatory variables.

It is important to recognize that this interpretation of the quantile regression
results is not the same as saying that x leads to greater declines in y at high values
of the dependent variable. This misleading interpretation of quantile results, which
is common in the literature, leads to statements such as ‘‘the quantile regression
results suggest that education adds more to the earnings of high-wage workers,’’ or
‘‘greater levels of pollution cause greater declines in the price of high-priced
homes.’’ Points a and b in Fig. 2.3 show why these statements may be misleading.
Point a is associated with a high value of x on the 90 % quantile regression line,
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Fig. 2.3 OLS and quantile
estimates for heteroskedastic
data

Table 2.2 Regression results for heteroskedastic data

Variable OLS Quantile
10 % 50 % 90 %

Constant 10.0034
(0.0694)

6.7859
(0.0934)

10.1007
(0.1398)

13.1599
(0.0917)

x -0.4973
(0.0112)

-0.2551
(0.0112)

-0.5124
(0.0167)

-0.7334
(0.0107)

Notes Standard errors are in parentheses below the estimated coefficients. The R2 for the OLS
regression is 0.4972. The number of observations is 2,000
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while point b represents a low value of x on the 50 % quantile regression line. The
value of the dependent variable is lower at point a than at point b. The 90th
percentile value of y for x ¼ 10 is 5.85, the 50 % percentile of values for x ¼ 1 is
9.44, and the median value of y for the full sample of 2,000 observations is 6.87.
Thus, it is not the case that an increase in x leads to a greater decline in y whenever
y is high. The steeper slope at the 90 % quantile indicates that increases in x lead to
greater declines in y along the 90 % quantile of y values than on the 50 % quantile,
conditional on the values of x.

Sometimes it also is useful to summarize how the spread in the distribution of y
changes with x by graphing the difference between quantile regression estimates.
In this simple Monte Carlo study, the graphs reveal no new information: the
difference between the 10 and 90 % quantile regression estimates do not vary with
x for the data set with constant variance, but the lines draw closer to one another as
x increases for the heteroskedastic data set. The ‘‘iqreg’’ command in the statistical
software package Stata makes it easy to test whether the differences between
quantile regression estimates are different across quantiles. Table 2.3 presents the
results for differences between the (a) the 10 and 90 % quantiles and (b) the 25 and
75 % quantiles. For the homoskedastic data set, the coefficients for x are not
statistically different from one another across either the 10 and 90 % or the 25 and
75 % quantiles. The differences are significantly different for both sets of quantiles
for the heteroskedastic data.

2.2 Simulating the Distribution of the Dependent Variable

In general, the conditional quantile function for y given a set of variables X can be
written:

QyðsjXÞ ¼ XbðsjXÞ ð2:1Þ

where 0\s\1. So far, we have limited our attention to a small number of values
for the quantile, s. Focusing on values such as s = 0.10, 0.50, and 0.90 provides
useful information about the distribution of the dependent variable given values of
X, but it certainly does not provide a complete picture of the full distribution of y.

Table 2.3 Tests for differences in coefficients across quantiles

Variable Constant variance data set Declining variance data set

90–10 % 75–25 % 90–10 % 75–25 %

Constant 1.7663
(0.0714)

0.9526
(0.0460)

6.3724
(0.1234)

3.8544
(0.1426)

x 0.0044
(0.0114)

-0.0027
(0.0074)

-0.4781
(0.0146)

-0.2811
(0.0188)

Note Standard errors from 100 bootstrap replications are shown in parentheses
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One way to use quantile regression estimates to simulate the distribution of the
dependent variable is to draw randomly from possible values of s and then esti-
mate a separate quantile regression for each value of s. For example, we might
draw 1,000 values of s from a uniform distribution ranging from 0 to 1, i.e.,
s�Uð0; 1Þ. If we let J represent the number of draws from the U(0,1) distribution,
then we have:

bQyðsjjXÞ ¼ XbbðsjjXÞ; j ¼ 1 ð2:2Þ

With J estimates of the conditional quantile in hand, a standard kernel density

function can be applied to XbbðsjjXÞ to estimate the density function for the
dependent variable.

Since quantile estimates are generally fairly smooth across s, drawing multiple
values of s from a U(0,1) distribution is a very inefficient way of constructing the
density function. Using a limited range of value for s is more efficient. For
example, we might restrict the estimates to s ¼ 0:02; 0:03; . . .; 0:97; 0:98,
s ¼ 0:02; 0:04; . . .; 0:96; 0:98, or a still more limited set of values for s that pro-
vides good coverage of the set of permissible values for s. Since quantile estimates
are likely to have very high variances at extreme values of s such as 0.01 or 0.99, it
generally is a good idea to trim the extreme observations if a grid of values is used
for s.

Figures 2.4 and 2.5 show estimated coefficients for the homoskedastic data set
for s ¼ 0:02; 0:03; . . .; 0:97; 0:98;. Figures 2.6 and 2.7 are the corresponding
graphs for the data set with variances that decline with x. Note the very small
range of estimates for the slopes for the homoskedastic data. These estimates

imply 97 values for XbbðsjjXÞ for each observation for both data sets. Thus, we

have 97 9 2,000 = 194,000 implied values for bQyðsjjXÞ both data sets. Kernel
density estimates for these two large set of estimates leads to the density function
estimates shown in Fig. 2.8. Kernel density estimates for the actual values of y are
also shown in Fig. 2.8. The quantile estimates are remarkably close to the kernel
density estimates for the actual values of the dependent variables.

2.3 The Effect of a Discrete Change in an Explanatory
Variable

Unlike standard linear regression, quantile regressions imply interesting effects of a
change in the value of an explanatory variable for the full distribution of y. Consider
a simple-two variable model, y ¼ b0 þ b1x1 þ b2x2 þ u. If we want to know the
effect of changing the value of x2 from 1 to 2, then the OLS estimates are simply
yðx2 ¼ 1Þ ¼ b0 þ b1x1 þ b2 and yðx2 ¼ 2Þ ¼ b0 þ b1x1 þ 2b2. The distribution of
y values simply reflects the distribution of x1, and the distribution shifts to the right
by 2b2if b2 is positive and to the left by j2b2j if b2 is negative. The implications of
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OLS estimates are even less interesting for a model with a single explanatory var-
iable: the change in the value of the explanatory variable simply identifies another
point on the regression line.

Quantile regression estimates can have interesting implications for the distri-
bution of y values even in a model with a single explanatory variable. Consider a
model with k explanatory variable in addition to the intercept. After estimating
quantile regressions for J quantiles, the predicted values for quantile sj are simply:
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bQyðsjjXÞ ¼ bb0ðsjÞ þ bb1ðsjÞx1 þ . . .þ bbkðsjÞxk; j ¼ 1; . . .; J ð2:3Þ

I have simplified the notation by replacing bðsjjXÞ with bðsjÞ, but it should be
clear that the estimates depend on the observed values of X. Even in the single-
explanatory case where k = 1, the implied effect of changing x1 from d0 to d1

produces J separate values for

bQyðsjjX; x1 ¼ d0Þ ¼ bb0ðsjÞ þ bb1ðsjÞd0 þ . . .þ bbkðsjÞxk; j ¼ 1; . . .; J ð2:4Þ
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bQyðsjjX; x1 ¼ d0Þ ¼ bb0ðsjÞ þ bb1ðsjÞd1 þ . . .þ bbkðsjÞxk; j ¼ 1; . . .; J ð2:5Þ

With J quantiles and n observations, Eqs. (2.4) and (2.5) imply nJ values for the

conditional quantile functions. Since bb1ðsjÞ is not constant, the conditional
quantile functions imply a full distribution of values for y even when x1 is the only
variable in the model.

Consider the effects of changing the single explanatory variable x from 2 to 5 to
8 in our two simulated data sets. After estimating 97 quantile regressions for the
assumed values of s (i.e., for s ¼ 0:02; 0:03; . . .; 0:97; 0:98Þ), we have 97 estimated

values of both bb0ðsÞ and bb1ðsÞ. Thus, we have 97 values for bb0ðsÞ þ dbb1ðsÞ,
where d takes on the values of 2, 5, and 8, in turn. We then can calculate kernel
density estimates for these three sets of quantile regression predicted values.

The results are shown in Figs. 2.9 and 2.10. For the homoskedastic data,
increases in the value of x simply shift the distribution of y parallel to the left. The
results appear much different for the heteroskedastic data set. As x increases, the
distribution shifts to the left but also becomes much less variable.

Two points are worth emphasizing about these results. First, OLS would simply
predict three separate points for each of these cases—one when x = 2, one for
x = 5, and another for x = 8. Second, the same results are actually implicit in
Figs. 2.4, 2.5, 2.6, 2.7 and, to a lesser extent, in Tables 2.1 and 2.2. The implied
effects of changes on in the explanatory variable are much, much more evident
when the set of quantile regression estimates is summarized in distribution form,
as in Figs. 2.9 and 2.10. A very complex set of results is transformed into very
easy-to-read graphs.
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2.4 Nonparametric Quantile Regression

So far we have only considered linear quantile regressions. As I discussed in
Chap. 1, nonparametric quantile regressions can sometimes produce much more
accurate predictions. Despite their apparent complexity, nonparametric versions of
quantile regression are actually quite easy to estimate. The idea is to approximate
the results locally with a series of quantile regression that are estimated using a
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subset of the observations that are close to a set of target values, with more weight
placed on observations that are close to the target points.

In a model with a single explanatory variable, x, the target points are a set of
values, xt, where t ¼ 1; . . .; T . For each target point, define a set of weights that
decline with distance, up to some maximum. At larger distances, the weight is set
to zero. Any kernel weight function is suitable. Common choices are shown in
Table 2.4. For this table, Z � ðx� xtÞ=h, where h is the ‘‘bandwidth.’’ In the case
of a fixed bandwidth, h is simply a constant such as Silverman’s Rule of Thumb

bandwidth, h ¼ 1:06 varðxÞ�1=5. A more common choice when analyzing spatial
data set is to use a ‘‘window’’ of observations to set a value of h that varies across
target points. For example, a window size of 30 % means that ht is the 30 %
quantile of jx� xtj. In this case, 30 % of the observations receive weight when
estimating the quantile regression for target point xt, and ht is the maximum
distance from the target point of any observation receiving weight.

After defining weights, all that is necessary to estimate a nonparametric
quantile regression model is to provide a ‘‘weight’’ option to the qreg command in
Stata or the rq command in the R package quantreg. For example, in Stata, the
series for a target value of 2 for x would be:

gen dist = abs(x-2)
sum dist, d
scalar h = r(p25)
gen k = (1 - (dist/h)^3)^3
replace k = . if dist[h
qreg y x [aweight=k] if dist\h

Comparable commands for R are:

library(quantreg)
dist\- abs(x-2)
h=quantile(dist,0.25)
wgt\- (1 - (dist/h)^3)^3
fit\- rq(y*x,weights=wgt,subset=(dist\h))
summary(fit,cov=T)

Table 2.4 Common kernel
weight functions

Kernel Kernel function K(z)

Rectangular 1
2 Iðjzj\1Þ

Triangular ð1� jzjÞIðjzj\1Þ
Epanechnikov 3

4 ð1� z2ÞIðjzj\1Þ
Bi-square 15

16 ð1� z2Þ2Iðjzj\1Þ
Tri-cube 70

81 ð1� z3Þ3Iðjzj\1Þ
Tri-weight 35

32 ð1� z2Þ3Iðjzj\1Þ
Gaussian ð2pÞ�0:5e�z2=2

2.4 Nonparametric Quantile Regression 23



The estimates can then be repeated for a series of target points. A brute force
method for choosing target points is to use every observation in the data set as a
target. This brute force method can be very time consuming even for relatively
small data sets. A much quicker method is to take advantage of the estimated
function’s smoothness by using a set of well-defined points as the target and then
interpolating both the coefficients and standard errors to the remaining points in the
data set. Loader (1999) discusses methods for choosing target points for non-
parametric models. Loader’s locfit package in R implements these routines.

To illustrate the use of nonparametric quantile regression, consider the fol-
lowing extension of the Monte Carlo study. Instead of a linear relationship
between y and x, the base model is y ¼ 10� 0:5xþ 0:03x2 þ u, and instead of
restricting x to a set of integers, I draw 2,000 values of x from a U(0,10) distri-
bution. To make the quantile regressions different from OLS, I draw u from a v2

distribution with 10 of freedom. I then normalize the errors to have a mean of zero
and variance of varð10� 0:5xþ 0:03x2Þð1� R2Þ=R2, with R2 = 0.8. Figure 2.11
shows the resulting scatter of values for x and y. In contrast to normally distributed
errors, the v2 distributions leads to a greater cluster of points at low values of y for
any given value for x.

Both OLS and quantile regression estimates will be quite accurate when the
model is correctly specified, which in this context means using both x and x2 as
explanatory variables for y. Suppose instead that the estimating equation is
misspecified such that only x is included as an explanatory variable. Figure 2.12
shows the results of both correctly specified parametric quantile regression esti-
mates and a nonparametric version of the model that has only x as an explanatory
variable. I use a 30 % window and a tri-cube kernel to estimate the model at a set
of 14 target points chosen using an adaptive decision tree approach (Loader 1999).
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The 14 target points are 0.00, 1.25, 2.50, 3.12, 3.75, 4.37, 5.00, 5.62, 6.25, 6.87,
7.49, 8.12, 8.74, and 9.99. I then interpolate the results to all 2,000 observations in
the data set. Figure 2.12 shows that the nonparametric estimates are remarkably
accurate despite being misspecified.

Perhaps surprisingly, it is not much more difficult to simulate the distribution of
values for y for nonparametric estimates than is the case for parametric estimates.
As before, we can estimate the model for J different values of s. The estimated

coefficients for the constant, x, and x2 are bb0ðsjÞ, bb1ðsjÞ, and bb2ðsjÞ. Previously, we
had one value for each of these coefficients per value of s. Now, we have n values
for the coefficients for each value of s, so each of these terms is a vector with
n entries. After combining the J values for each set of coefficients into an

n 9 J matrix, the coefficients matrices are bb0, bb1and bb2. Similarly, combine the
values of the explanatory variables in xo (an n-vector of 1’s), x1, and x2. Then

by ¼ x00
bb0 þ x01

bb1 þ x02
bb2 is an n 9 J matrix of quantile regression predictions of

y. Treating this full matrix as a single vector with nJ entries, we use a standard
kernel density estimator to display the distribution of predicted values for y.

The density functions for the actual values of y and the matrix of predicted
values are shown in Fig. 2.13. I set s ¼ 0:02; 0:03; . . .; 0:97; 0:98 for the non-
parametric quantile regressions, and used a 30 % window and a tri-cube kernel for
each quantile. To put the remarkable similarity of the two density functions into
perspective, it should be emphasized that the model is actually misspecified.
Whereas the correct set of explanatory variables includes both x and x2, the
nonparametric quantile regressions are estimated without x2.

The density functions are also easy to calculate for selected values of x. Suppose
we want to evaluate the model at x = 2, 5, and 8. Let d represent any of these values.

Then the predicted value at x = d is simply by ¼ bb0 þ dbb1 þ d2
bb2. The results are
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shown in Fig. 2.14. The distribution of y clearly shifts to the left as x increases. The
shapes of the conditional distributions change markedly—a large left tail when
x = 2, tightly clustered around 8.25 when x = 3, and double peaked when x = 8.

The nonparametric estimator can potentially be extended directly to models
with multiple explanatory variables using appropriate kernel weighting functions.
For example, a simple product kernel is often used for the two variable case:

Kð�Þ ¼ K x1�x1t
h1

� �

K x2�x2t
h2

� �

, where x1t and x2t are the target values for the two

variables. However, nonparametric estimators suffer from a ‘‘curse of
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dimensionality’’—a tendency toward high variance as the number of explanatory
variables increases.

The variance can be reduced by imposing some structure on the nonparametric
estimates. For example, suppose we are willing to impose that the coefficients are a
function of a subset of the variables, so that y ¼ XbðzÞ þ u. This version of the
model is called ‘‘conditionally parametric’’ (CPAR) because the equation sim-
plifies to a standard parametric model given values for z. The CPAR model is used
routinely in spatial models, where the coefficients are assumed to vary spatially. In
the spatial version of the model, z may represent the geographic coordinates for the
observations (e.g., longitude and latitude), or it may simply represent the straight-
line distance between each observations and the target location for estimation. A
product kernel can be used for the two-dimensional case, while simple univariate
kernels can be used for straight-line distances. The CPAR approach is commonly
used in spatial regression models, where it is often referred to as ‘‘geographically
weighted regression,’’ ‘‘locally weighted regression’’, or ‘‘local linear regression.’’

The CPAR is straightforward to apply to quantile estimation. We simply define
our kernel weighting function for the target point as k z�zt

h

� �

, and then add it to the
‘‘weight’’ options in R and Stata, using X as the set of explanatory variables. Note
that the list of explanatory variables, X, can also include the variable (or variables)
in z. Thus, we might make the weights a function of longitude and latitude while
also directly including these variables in X. Alternatively, we define z� zt to be
the straight line distance between an observation and the target point, while also
including longitude and latitude as explanatory variables in X. The advantage of
this approach when there are multiple explanatory variables it that it reduces the
variance of the estimates by focusing on the source of the variation in the coef-
ficients—spatial heterogeneity. Within a small geographic area, the model is
approximately linear. But we are not requiring that the parametric specification
hold globally throughout the sample region.

2.5 Conclusion

Although quantile regression can appear quite complicated, the results turn out to
be remarkably easy to summarize with sets of kernel density functions. Compar-
ative statics exercises can be carried out by assuming a few values for one of the
explanatory variables while keeping all other variables at their actual values.
Kernel density functions for the predicted values of the dependent variables then
show how the full distribution of y responds to discrete changes in the explanatory
variable. Unlike linear regression, these predictions produce remarkably accurate
depictions of the distribution of the dependent variable. Moreover, the approach
adapts readily to nonparametric estimation procedures. As we shall see, the CPAR
approach is well suited to quantile analysis of spatial data.

2.4 Nonparametric Quantile Regression 27


