
Quantitative Analysis Of Intrusion Detection
Systems: Snort and Suricata

Joshua White, Thomas Fitzsimmons, James Licata, and Jeanna Matthews

Clarkson University, Potsdam NY 13676, USA,
whitejs, fitzsitd, licataja, jnm@clarkson.edu

Abstract. Any modern organization that is serious about security de-
ploys a network intrusion detection system (NIDS) to monitor network
traffic for signs of malicious activity. The most widely deployed NIDS
system is Snort, an open source system originally released in 1998. Snort
is a single threaded system that uses a set of clear text rules to instruct
a base engine how to react when particular traffic patterns are detected.
In 2009, the US Department of Homeland Security and a consortium
of private companies provided substantial grant funding to a newly cre-
ated organization known as the Open Information Security Foundation
(OISF), to build a multi-threaded alternative to Snort, called Suricata.
Despite many similarities between Snort and Suricata, the OISF stated
it was essential to replace the older single-threaded Snort engine with a
multi-threaded system that could deliver higher performance and better
scalability. Key Snort developers argued that Suricata’s multi-threaded
architecture would actually slow the detection process. Given these com-
peting claims, an objective head-to-head comparison of the performance
of Snort and Suricata is needed. In this paper, we present a compre-
hensive quantitative comparison of the two systems. We have developed
a rigorous testing framework that examines the performance of both
systems as we scale system resources. Our results show that a single
instance of Suricata is able to deliver substantially higher performance
than a corresponding single instance of Snort, but has problems scaling
with a higher number of cores. We find that while Suricata needs tuning
for a higher number of cores, it is still able to surpass Snort even at 1
core where we would have expected Snort to shine.

Keywords: Network Intrusion Detection Systems, Snort, Suricata, OISF,
Security, Multi-threaded Performance, Scaling

1 Introduction

Network Intrusion Detection Systems (NIDS) capture and inspect network
traffic for signs of malicious or unauthorized activity. NIDS can be compared on
many dimensions including performance, scalability, ability to detect different
kinds of attacks, ease of use, the responsiveness of the development community
to requests for new features, documentation quality, and many others. In this
paper, we focus specifically on comparing the performance and scalability of two



2

of the most widely deployed NIDS: Snort and Suricata. Keeping up with all
the traffic on a busy network is a performance intensive activity. If the NIDS
is unable to keep up with the traffic in real-time, then uninspected packets are
either dropped causing problems for legitimate traffic or allowed to flow causing
problems for security.

In both Snort and Suricata, a base engine is controlled by a set of rules. Each rule
describes network activity that is considered malicious or unwanted by specifying
the content of network packets. Each rule also specifies an action to be taken
in case a packet is suspect, such as raising an alert or dropping the packet. The
base engine must read each raw packet from the network and quickly compare
it against all the rules loaded into the system to determine what action to take.

In this section, we expand a bit on the history of both Snort and Suricata.

1.1 Snort

Snort is a free open source, NIDS. Originally released in 1998 by Martin Roesch
as a lightweight cross-platform network sniffing tool (around 1200 lines of code),
it has evolved into a powerful and full-featured intrusion detection and pre-
vention product. Snort is a successful example of the open source development
methodology in which community members contribute source code, bug reports,
bug fixes, documentation and related tools.

In November 1999, Roesch published “Snort: Lightweight Intrusion Detection
for Networks” at the 13th Annual LISA Conference. He detailed his work creating
a pattern matching system for the output of the Snort sniffer [2]. Soon after pre-
processors for protocol normalization where added to the Snort engine. This
allowed a single rule to be applied to any variation of a protocol.

Today, Snort is one the most popular security tools of all time [6, 7, 4, 5].
According to the Snort web site, it is actually the most widely deployed intrusion
prevention technology in the world [3].

Sourcefire Inc., a company founded in 2001 by Martin Roesch, manages the
development of Snort and offers commercial products based on Snort. They also
research the newest threats and develop rules for detecting them. The newest
rules are available by paid subscription immediately and then released to all
registered users after 30 days.

1.2 Suricata

In 2009, the US Department of Homeland Security, along with a consortium
of private companies, provided substantial grant funding to a newly created
organization, the Open Information Security Foundation (OISF). The grant was
to build an alternative to Snort, called Suricata. Suricata was first released in
2010 and the current version 1.1.1 was released in December 2011.



3

Although all code is original, Suricata developers have made no attempt to
disguise the many ways in which they are borrowing from the Snort architecture.
They readily acknowledge Snort as “our collective roots”. Suricata can even be
used with the same rule sets used by Snort.

1.3 Snort vs. Suricata

With the wide success of Snort, it is natural to wonder what would motivate the
development of another similar open source system. One of the primary reasons
was concern for the performance limits of Snort’s single threaded architecture.
When Snort was built, it was designed to run on the most popular computers of
the time, 32-bit single core systems. While many improvements have been made
to Snort over the past 14 years, the base engine has remained single-threaded.

The task of comparing multiple network packets against a large list of intrusion
detection rules certainly appears to be a highly parallelizable task for which
modern multi-core systems would be well suited. Still, there has been substantial
public debate about the need for a multi-threaded engine. OISF president, Matt
Jonkman, argues that a multi-threaded engine is essential for high performance
and scalability, but that there has been no commercial motivation for anyone
in the Snort community to invest in rewriting the core engine from scratch.
[22] He stated that “the money goes to management/forensics consoles, rules,
and big fast boxes” [23]. On the other hand, Martin Roesch, founder of Snort
and Sourcefire, argued that the multi-threaded architecture would actually slow
detection rather than make it faster [22]. The performance of Suricata’s specific
implementation of a multi-threaded architecture has also been criticized. For
example, Roesch had called Suricata “a clone of Snort that performs worse at
taxpayer’s expense” and SourceFire’s Vulnerability Research Team has reported
that the performance of Suricata “isn’t just bad; it’s hideously, unforgivably
bad” [23].

Beyond questions about performance and the fundamental need for a multi-
threaded architecture, Matt Jonkman, OISF founder, cites concerns about the
Snort development process [25] as significant factors in the development of Suri-
cata. 1 Unlike many open source projects that have commercial offerings, Source-
fire has not forked a separate commercial version of Snort under a dual-license
model [26]. As a result the community version of Snort is tightly controlled by
Sourcefire and it is difficult to get insight into the Snort development process,
bug tracking information or future roadmap. In addition, developers outside
Sourcefire have a difficult time submitting bug fixes. Jonkman offers up the ex-
ample of Will Metcalf, now OISF QA lead, who discovered 35+ major bugs in
1 Jonkman clarifies that the various reasons cited for the development of Suricata are

not necessarily the same as what motivated the Department of Homeland Security
(DHS) and many private companies to contribute backing to the project[25]. Instead,
it was both government and industry need for innovation in the IDS world [27].



4

Snort over the past 3 years. When Metcalf tried to contribute code to fix these
bugs, he reports that his contributions went unacknowledged by the Snort devel-
opment team and that a number of the flaws still remain. Any developers that
do succeed in contributing code to Snort must also sign over the rights to that
code to Sourcefire rather than simply releasing it under an open source license.
In the case of Suricata, the OISF owns the copyright and the software can not
be commercialized because the foundation is a non-profit organization [25]. 2

While the focus of this paper is performance and scalability, it is also worth
briefly mentioning some other differences between Snort and Suricata. There are
certainly differences in features. For example, Suricata includes some innovative
features such as the ability to automatically detect common network protocols
even when they are used on non-standard ports. Similarly, Snort contains fea-
tures unavailable in Suricata, including some features required in classified envi-
ronments such as the option of hiding the rules being used for inspecting network
traffic. In addition, since Suricata is newer and less widespread, there are fewer
resources documenting installation procedures and configuration options than
there are for Snort.

2 Related Work

Given the contentious debate regarding performance of Snort and Suricata, it
is surprising that little side-by-side comparison data has been published. One
paper with similar objectives to our own was “A Comparitive Analysis of Snort
and Suricata Intrusion Detection Systems” by Eugene Albin [13]. Albin presents
three experiments in comparing the performance of Snort and Suricata: using
live network traffic, static pcap files, and testing ruleset functionality using Pyt-
bull. Albin used a VMware ESXi hosted virtual machine for the majority of
his work and states that this may have contributed to the potential skewing of
packet rates when compared to a physical machine. The systems were tested
in a network environment where Snort was already deployed and tuned for the
hardware resources. This may have given Snort an advantage.

One of the chief differences between Albin’s work and this research, was an
unquantified and varying component of background traffic that limits the re-
peatability of his tests. For example, Albin’s second experiment shows a graph
comparing the performance of both Snort and Suricata showing live network traf-
fic varied between runs. Albin points out that there was no consistency across
runs in terms of traffic type and traffic volume. Albin’s use of PytBull in his
later experiments also appears to have also been done while connected to a live
network, causing traffic encountered to be potentially susceptible to the same
inherent network variability.
2 The OISF views Suricata as the first of many projects and intends to be a safe place

for long term open source projects to reside without developers needing to fear that
the project will become closed or their contributions unacknowledged.



5

3 Methodology

The goal of this paper is to present a thorough, repeatable, quantitative, apples-
to-apples comparison of the performance of Snort and Suricata. Our experiments
were conducted on a flexible hardware platform that allowed us to scale the
hardware resources actively available. We ran our experiments with pcap traces
to ensure repeatability and are providing all of our scripts and traces to encourage
others to run the test suite on their own hardware.

In this section, we describe in detail the ways in which we varied each aspect of
our testing. We varied the number of cores used, the rulesets used, the configura-
tion of each IDS and the workload used. The script we developed for our testing
consists of approximately 3000 LOC and is available at our project webpage [21].
Our basic methodology could easily be extended to include more workloads via
additional pcap traces, additional rulesets and additional configuration settings.
The same test suite could also be used on any hardware platform for which Snort
and Suricata are available.

For each test, we capture a variety of metrics including packets per second
(PPS) as processed by each IDS, the amount of memory used by the IDS pro-
cess(es) and the CPU utilization. To capture PPS measurements, we use builtin
reporting functions in each IDS. For Snort, we enabled the perfmonitor function
as described in the perfmon performance profiling guide [35]. Suricata has a sim-
ilar functionality known as statistical logging that is enabled by default. Using
the snort.conf and suricata.yaml files we set both engines to output statistics
to their respective log files in 1 second intervals. To capture memory usage and
CPU utilization measurements, our scripts parsed the output of the standard ps
command on Linux and extracted the memory usage and CPU usage information
for the IDS process(es).

3.1 Varying the Hardware Resources

The test system consisted of an AMD 8439 Opteron class processor and a 4
socket by 4 Memory Bank motherboard. Table 1 describes the details of the
hardware platform we used. We were able to vary the number of CPU cores
actively used in each experiment.

We would like to encourage others to use our testing scripts and pcap files
to run tests in their own hardware environment.This is the best way to gauge
actual performance differences before choosing an IDS system.



6

Table 1. Details Of Hardware Testing Platform

White Box Super Micro Server

RAM 48 GB DDR2 Memory (ECC)

CPU 24 Core AMD (4 x 6 Core Opteron 8439 2.8 GHz)

CPU Bus AMD Hypertransport 57.6 GB/ps Comm

Memory Controller NUMA 12.8 GB/ps to closest 12GB Memory Bank

L1 Cache 128 KB Per Core

L2 Cache 512 KB Per Core

L3 Cache 6 MB Per CPU, shared

Disk 1.5 TB SATA II

3.2 Varying the Rulesets

Emerging Threats is an open source community that was initially created to
support an open Snort ruleset. Currently this group produces rulesets compatible
with both Snort and Suricata. The Emerging Threats Open Ruleset (ET-Open)
consists of contributions from community members and is freely available for
download [8].

Emerging Threats, also produces a professional ruleset (ET-Pro). In the ET-
Pro ruleset, each item contains a rule portion that is optimized for Snort, a rule
portion that is optimized for Suricata and an alert portion that is shared by both
engines. Items in the ET-Pro set do not necessarily migrate to the ET-Open set
overtime. They are a seperate set that are optimized for Snort and Suricata
by the Emerging Threats team. A home user license for the ET-Pro ruleset is
currently $35 annually and a enterprise user license is $500 annually per sensor.
They offer volume licenses on a case by case basis for organizations requiring
over 10 sensors.

The Sourcefire Vulnerability Research Team (VRT) produces the official rule
set for Snort. New rules released by the VRT are free to the community after
approximately 1 month. They are available immediately upon release through
various subscription models. Personal licenses cost $29.99 and business licenses
start at $399/sensor [28].

Table 2 summarizes the rulesets we used in our testing.



7

Table 2. Ruleset Details

Ruleset Name Version # Of Rules

ET-Open Ruleset 6953 16179

ET-Pro Ruleset 8101424752816199 13154

Snort VRT Ruleset Nov 2011 18038

3.3 Varying the Configuration

We tested both Snort and Suricata in their default, out-of-the-box configuration
as a baseline. We also experimented with varying some of the configurarion
settings. In the results section, we refer to performance optimized configurations
of both Snort and Suricata and in thise section we describe in detail what that
entails.

In the case of Suricata, configuration changes were done by changing some
end-user configuration parameters in the suricata.yaml file and not by compil-
ing in any special acceleration options, such as PF Ring, that may have added
additional performance. The parameter max-pending-packets specifies the max-
imum number of packets that Suricata can process simultaneously. It has a
default value of 50. In the performance optimized tests of Suricata, we set this
value to its maximum 65535 packets. This setting is the maximum hard limit
for this value due to the packet pool being a lockless ringbuffer that can contain
USHRT MAX. USHRT MAX is the maximum value that can be stored in an
unsigned short variable. Setting this value to its maximum is supposed to in-
crease performance substantially on a multi-core/threaded system as indicated
in discussions on the Suricata wiki/mailing lists [13, 15, 18, 17, 19].

Suricata additionally allows for the run-modes to be changed. In the perfor-
mance optimized tests of Suricata, we have changed the run-mode from its de-
fault value of auto to autofp. AutoFP or Automatic Flow Pinned mode is an
Intel technology for a multi-threaded environment that can guarantee all pro-
cesses related to a single packet of data reside on a single core [17]. If a packet
requires multiple threads either for pre-processing or rule comparison, overall
performance can be hindered if the threads reside on physically different cores.
This is caused by time delays necessary for copying the data between cores. Aut-
oFP ensures that if packets are all part of a single flow they will be processed
on the same core if the process is specifically doing flow based work.

In the case of Snort, we switched the ac-bnfa-nq (Aho-Corasick Binary NFA)
mode that Snort uses to search the payload for specific strings to simple ac (Aho-
Corasick) mode. According to many sources this method uses more memory then
the default mode but when used can increase performance significantly [29, 30,
31, 32]. We also modified Snorts max-pkt-time and set it to 1000, which mean
that any packet taking more then 1000 usec to process is dropped. In many



8

situations when a network has large bursts of traffic or sensors don’t have enough
available memory this modification could potentially result in a large number of
dropped packets [29, 33, 34].

3.4 Varying the workload

In order to vary the workload presented to the IDS, we used a variety of pcap
trace files. The pcap traces we used came from two sources. Our largest data set
consisted of the 2010 iCTF Conference “Attacks Against Litya” network capture
that consisted of 67GB of captured network traffic (23.7 GB compressed). This
network capture was taken during the conference contest in which participants
attacked the fictitious “nation of Litya, ruled by the evil Lisboy Bironulesk.”
[14] The scenario and network service design forced the participants to attack
the infrastructure of Litya, much like a critical infrastructure nation state cyber
attack.

The second set of pcap files we created outselves by using tcpdump to cap-
ture runs of specific PytBull traffic [9]. Pytbull is an open source IDS testing
framework. It allows the user to test specific payloads and traffic against dif-
ferent IDS and different rulesets. Pytbull was used to target specified payloads,
allowing us to analyze the performance of Snort versus Suricata. The traffic gen-
erated by each of the tests were captured in pcap format and replayed for each
configuration by our testing script.

Table 3 summarizes the set of pcap files we used in our testing.

Table 3. PCap File Details

pcap Test Name Description # Of Packets Size

iCTF Conf. Workload Real Production Workload 818178784 67 GB

Client-side Attacks Client-side Download Attacks 3786 6.1 MB

Test Rules Basic Ruleset Testing 245167 22.5 MB

Bad Traffic Non-RFC Compliant Packets 2152 3.7 MB

Fragmented Packets Various Fragmented Payloads 2459 4.4 MB

Multiple Failed Logins Track Multiple Failed Logins 1200 1.8 MB

Evasion Techniques (ET) Detection of Various (ET) 52323 21.6 MB

Shell Codes Ability to Detect Shell Codes 8200 15.4 MB

Denial Of Service Ability to Detect DoS Attempts 3312 2.3 MB

Pytbull All TCPDump of All Pytbull Runs 308067 63.2 MB

4 Results

We ran a total of 8600 tests. Specifically, we tested 10 workloads (as shown in
Table 3), 4 rulesets (ET-Open, ET-Pro, VRT and No ruleset), 4 configurations



9

(default and performance optimzied configurations of both Snort and Suricata
as discussed in section 3.3) and 10 settings for the number of available cores
(1,2,3,4,5,6,8,12,18,and 24). Each of these 1600 variations were run 5 times each.
In addition to these 8000 tests in which each IDS processed packets directly
from the pcacp files, we also ran another 600 tests in which we used a separate
machine to read the pcap files and play them onto the network segment for
processing by the IDS.

At the time of our testing, we used the most recent versions of Snort and
Suricata were pulled from available repositories and used. The versions used
were as follows: Snort v2.8.5.2, and Suricata v1.0.2.

4.1 Snort vs. Suricata Defaults

Figure 1 shows a baseline comparison of Snort and Suricata. Both Snort and
Suricata are shown in their default out-of-the-box configuration and they are
both using the exact same set of rules, the ET-Open Ruleset. The workload
used is the 2010 iCTF Conference trace.

The y-axis shows the average Packets Per Second (PPS)while the x-axis shows
the number of CPU cores used. Based on Albin’s study and on other known
opinions about the performance of Snort and Suricata, we expected that Suricata
would not perform as well as the mature Snort on a single core, but would
eventually out-perform Snort as additional cores were made available. However,
Suricata outperformed Snort even at 1 core. Initial releases of Suricata may
have had lower performance, but if so, these results indicate substantial efforts
at tuning.

Snort’s performance is flat as we add additional cores because the single
threaded architecture is unable to take advantage of the additional cores. Suri-
cata’s performance initially increases as cores are added, but peaks between 2
and 4 cores and then drops off substantially as more cores are added. This does
not reflect well on Suricata’s promise of high scalability. In some sense, it is not
surprising that Suricata is tuned for 2-4 cores as that is a common configuration.
However, we would not have expected to see performance decrease as more cores
are added. As described in the methodology section, we used an AMD/DDR-2
systems cerca 2009. In the future, we would like to repeat our experiments on
newer multicore systems to see if that would change the results.

To validate our methodology of using pcap files, we also ran our tests using a
separate machine to replay the pcaps onto the network at various speeds rather
than reading the pcap file directly into the IDS under tests. These live traffic
tests were done by replaying packets from the ICTF 2010 capture at the rate
which they were originally captured at. The packets were rewritten to make use
of the 10.10.1.0/24 network configuration that our systems were set to. Both



10

Fig. 1.

Snort and Suricata were set to monitor this IP range and our interface was set
to promiscuous mode. As the tests show our maximum Suricata performance
was around 95,000 PPS.3 We attribute this jump in performance compared to
Suricata running in PCAP read mode to issues we suspect exist with both read
latency and disk I/O.

Overall, there is little difference in the results with live traffic replay. Reading
the traces from the pcap eliminates the need for a separate replay machine
and thus reduces the complexity of the experimental infrastructure. It is also
interesting to note that when reading the pcap files directly there is no possibility
of dropped packets because the system reads the input as fast as it can process
it and no faster. This improves repeatability of the tests. In the remainder of the
tests, we read packets directly from the pcap traces.

4.2 Varying the Rulesets

Figure 2 explores the impact of different rulesets using the same iCTF workload.
In addition, to Snort and Suricata baseline measurements with the ET-Open
ruleset that was shown in Figure 1, we add three additional lines - one for

3 Many IDS Studies use PPS as the primary metric for measuring performance of a
system. Some however, may prefer a metric of Gbps especially when deploying a
system in a known network configuration. For our live tests we replayed traffic from
a recorded dataset which had varying packet sizes. We set a fixed maximum trans-
mission unit (MTU) size of 9600 Bytes for our 10GigE Interface. In the event that all
packets being replayed were at the MTU of 9600 Bytes it would take approximately
139,000 PPS to reach 10 Gbps.



11

Suricata and one for Snort in which each one uses the ET-Pro Ruleset that is
tuned specifically for its use and one for Snort with the VRT Ruleset that is
also specifcally tuned for its use. Suricata sees some modest performance gain
between 1 and 4 cores from the ET-Pro Ruleset, but overall our results show little
performance difference in the use of one ruleset over the other. Once again, the
performance of Snort is flat as additional cores are added and the performance
of Suricata peaks between 2 and 4 cores.

It is worth noting that differences in ruleset can cause substantial difference
in performance. System administrators are warned of the possible impact of
adding poorly written custom rules. However, we saw little difference between
the rulesets even though ET-Open rules are contributed by community members
and ET-Pro rules are professionally tuned. The ET-Open set is still vetted by
the Emerging Threats team and would presumably not contain any excessively
expensive rules.

Fig. 2.

Figure 3 compares the Snort and Suricata baseline measurements to two ad-
ditional lines showing the performance when no rules are loaded. Clearly this
is an unrealistic configuration as no one would bother running an IDS without
any IDS rules. However, it does shed some light on the scalability of the en-
gine as the size of the ruleset changes. The difference in performance for Snort
with no rules is substantial ( 26648 PPS (no rules) vs 7683 PPS (with ET-
Open rule set)) or roughly 3.4 times faster then with a ruleset. Suricata also
sees a performance difference at 1 and 2 cores, but the percentage difference is



12

substantially lower. Interesting, Suricata with different rulesets performs almost
identically from 3 cores to 24 cores. It is possible that the same bottleneck that
is reducing Suricata’s performance as the number of cores increase is also hid-
ing the performance impact of increasing ruleset size. This data suggests that
Suricata is indeed realizing some additional scalability with ruleset size due to
its multi-threaded approach.

Fig. 3.

4.3 Varying the Configuration

Figure 4 explores the impact of configuration options on tuning the perfor-
mance of an IDS. We compare our baseline Snort and Suricata measurements
(default configuration) to the performance optmized configurations of each IDS
as described in the methodology section (for Sucuricata, run-mode to autofp
and max-pending-packets to 65535 and for Snort, ac mode and max-pkt-time
to 1000). With these settings, there was a substanial performance increase in
the number of PPS that Suricata is able to process (up to 6X). However, even
with the tuning, there was still a substantial decrease in performance as cores
were added. Snort showed little improvement from the performance optimized
configuration.

In Figures 5, we shift from examining average packets per second to CPU uti-
lization. The y-axis shows average CPU utilization. With 24 cores, the maximum
value is 2400% or 24 cores are 100% utilized. The results of the using the ET-
Open Ruleset with both Snort and Suricata in their default and performance



13

optimized configurations. Snort remained consistent at 100% across all config-
urations. Snort was limited to a single thread and was using 100% of the CPU
on its assigned core. The default configurations of Suricata showed a gradual in-
crease in CPU utilization as more cores were added. The performance opitimized
configuration of Suricata is similar but shows a more pronounced leveling of CPU
utilization between 4 and 12 cores.

Fig. 4.

Average CPU utilization, and maximum CPU utilization are shown in Figure
5. Base Suricata, without performance optimization had a gradual increase in
maximum CPU utilization as more cores were added, but never used more than
4 full cores (400%). Suricata, with performance optimization was able to use
nearly all 24 cores ( 2400%) at times, but recall from Figure 5 that its average
running 24 cores remained around 3 cores with full utilization ( 300%). This
indicates that while Suricata is able to use additional CPU resources at times,
there is little evidence to suggest an effective, common case use of parallelism as
more and more cores are added. A dip in maximum CPU utilization from 8 to
12 cores is also shown.

We also took a look at the average memory usage for both Snort and Suricata.
As in Figure 5, Figure 6 shows results using the ET-Open Ruleset with both
Snort and Suricata in their default and performance optimized configurations.



14

Fig. 5.



15

Snort used the least memory and not surprisingly, the amount of memory used
did not vary with the number of available cores. The performance optimized
configuration of Snort used substantially more memory as expected. Both the
base and optimized configurations of Suricata show increasing memory usage
as more cores are used. As with Snort, the optimized configuration of Suricata
showed substantially more memory usage than the base configuration. Using
more memory to obtain higher performance can be a good tradeoff. The machine
we used had 48 GB of memory and on average our tests used less than 700 MB.



16

Fig. 6.



17

4.4 Varying the Workload

We experimented by different workloads and their effects on each IDS. For all
previous figures, we used the iCTF pcap trace, but here we compare two runs
with traces of individual Pytbull tests [9].

Figure 7 shows the results of running Snort with the ET-Open ruleset at 1 core
and Suricata with the ET-Open ruleset across 1, 4, and 24 cores with different
workloads. As we saw in our baseline results in Figure 1, these results demon-
strate that Suricata’s PPS throughput peaks at 4 cores on most workloads. This
is most notable on the iCTF and Evasion Techniques workloads. The Evasion
Techniques, included in Pytbull, represent a bundle of attacks, with slight mod-
ifications, made to evade an IDS. This can include obfuscating the payloads,
protocol violations, overlapping packet fragments, and more. This set of tech-
niques is made to challenge the IDS capabilities. Across almost every workload,
Suricata has better performance with the exception of the Evastion Techniques
workload at 1 and 24 cores.

Fig. 7.



18

5 Conclusion

Our results show that Suricata outperforms Snort, even on a single core, where
we expected Snort to have an advantage. However, there are problems with
the scalability of Suricata as additional cores are added. Even though Suricata
used up to a maximum of 24 full cores at some times, the average number of
cores used, peaks around 3. We also saw a surprising drop in packets per second
processing as more cores are added from 4 to 24 cores. We explored variations in
rulesets, in configuration, and in workload, but our base conclusions held across
these variations.

6 Future Work

The results we presented in this paper could be easily be augmented with
tests on additional hardware platforms, with trace of additional workloads and
using different configurations of Snort and Suricata. We plan to continue this
work ourselves, but we are also hoping that other groups will take our testing
infrastructure and use it in their own environments - with their own rulesets and
workloads. We would like to found a repository of results to which others could
contribute.

A community respository containing results of independent performance com-
parisons across many environments could help substantially in demystifying the
choice of IDS for many organizations. We hear claims of substantially higher per-
formance than we observed in our local tests, but when we ask questions about
the configuration or details of the hardware required, few details are available.
Snort considers this type of information on its products to be proprietary and it
is therefore difficult to verify independently. Running Snort in a multi-process,
parallel configuration on multiple cores requires speial preprocessing and post-
processing glue code/scripts and the hardware necessary to achieve packet per
second ratings in the GPPS range appears to require hardware priced in the
range of tens to hundreds of thousands of dollars. 4 The main Snort web page
mentions 400,000 registered Snort users and we wonder what percentage are
running Snort in such customized configurations. One goal of our paper is to
provide repeatable performance experiments in more standard/commodity en-
vironments.

4 One concrete datapoint we recevied comes from Bivio. The Bivio 7500 Series appli-
ance uses hardware stream splitting and hardware application load balancing with
custom FPGA’s to split Snort across 48 Cores (i.e. multiple instances of Snort). They
report around 10 Gbps of throughput. This 48 core solution is 8U in size, consisting
of 4 x 2U appliances ganged together, consumes 2400 Watts of power, and costs
around $100,000 per appliance. This configuration is not a Snort certified solution,
but rather a solution developed especially for the DOD community.



19

In the short term, we are especially interested in futher exploring the cause of
Suricata’s decrease in performance with more than 4 cores. We would also like to
try running both Snort and Suricata on some of the newest multi-core systems
to see how that impacts the results. Finally, we will continue to experiment
with newer versions of both Snort and Suricata as they come out as well as
additional tuning and configuration changes. We would welcome any suggestions
from Snort developers, Suricata developers or the respective user communities
on how to demonstrate the best possible performance of each IDS. As we identify
successful strategies for achieving the highest performance on both Snort and
Suricata for commodity platforms, we will update our website [21] with best
practices.

7 Acknowledgements

We would like to thank Matt Jonkman, Victor Julien and Will Metcalf of the
OISF for answering our questions happily and promptly every time. Additionally
we would like to thank Eugene Albin for answering questions we had regarding
his Graduate Thesis [13] on IDS testing. We would like to thank Bivio Net-
works for answering a number of questions about their products and how they
run parallel instances of Snort. Finally we would like to thank a member of the
Snort team that preferred to remain anonymous but whom answered questions
regarding Snort configuration, optimization and preferred deployment.

References

[1]http://snort.org, December 2011.
[2]M. Roesch, “Snort: Lightweight Intrusion Detection for Networks”, 13th Annual

Systems Administration Conference (LISA), November 1999.
[3]“Snort: The De Facto Standard for Intrusion Detection and Prevention”,

http://www.sourcefire.com/security-technologies/open-source/snort, Decem-
ber 2011.

[4]SecTools.org, “Top 125 Security Tools”, http://sectools.org, December 2011.
[5]Infoworld.com, “The Greatests Open Source Software of All Time”,

http://www.infoworld.com/d/open-source/greatest-open-source-software-all-
time-776?source=fssr.

[6]J. Carr, “Snort: Open Source Network Intrusion Prevention”, Esecurity Planet,
http://www.esecurityplanet.com/prevention/article.php/3681296/Snort-Open-
Source-Network- Intrusion-Prevention.htm, June 2007.

[7]J. Koziol, “Intrusion Detection with Snort”, Sams Publishing, May 2003.
[8]Emerging Threats, http://emergingthreatspro.com, December 2011.
[9]Pytbull, http://pytbull.sourceforge.net, December 2011.
[10]Sysbench, http://sysbench.sourceforge.net/docs/, December 2011.
[11]S. Demaye, “Suricata-vs-snort”, http://www.aldeid.com/wiki/Suricata-vs-snort,

December 2011.
[12]OISF, http://www.openinfosecfoundation.org/projects/suricata/wiki, December

2011.



20

[13]E. Albin, “A Comparative Analysis of Snort And Suricata Intrusion Detection
Systems”, Naval Postgraduate School, Dudley Know Library, September 2011.

[14]iCTF pcap Dataset, “Full Packet Capture of (Attack Against Litya)”, International
Capture The Flag, http://ictf.cs.ucsb.edu/data/ictf f2010/ictf2010pcap.tar.gz ,
December 2010.

[15]https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricatayaml,
December 2011.

[16]http://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-
August/000820.html, December 2011.

[17]http://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-
February/000447.html, February 2011.

[18]http://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-
August/000820.html, August 2011.

[19]http://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-
December/001109.html, December 2011.

[20]http://www.bivio.net/public pdfs/Bivio 7000 DS.pdf, December 2011.
[21]Snort and Suricata Performance Comparison, http://www.clarkson.edu/class/cs644/ids/,

December 2011.
[22]B. Whaley, “Snort, Suricata creators in heated debate Are the open source projects

irrevocably damaged?”, Network World US, July 2010.
[23]J. Vijayan, “DHS vendors unveil open source intrusion detection engine”, Comput-

erworld, July 2010.
[24]E. Messmer, “Is open source Snort dead? Depends who you ask”,

http://www.networkworld.com/news/2010/072010-is-snort-dead.html, Net-
workWorld, July 2010.

[25]M. Jonkman, Personal Email Communication, February 13 2010.
[26]Valimaki, Mikko., “Dual Licensing in Open Source Software Industry,” Aalto Uni-

versity, Systemes d’Information et Management, Vol. 8, No. 1, pp. 63-75, 2003,
[27]Department of Homeland Security Host Program, “Suricata as an Exemplary ex-

ample of DHS innovation”, http://www.cyber.st.dhs.gov/host/
[28]Snort, VRT Subscription options, http://www.snort.org/vrt/buy-a-subscription/,

February 2012.
[29]GameLinux.org, “Some Notes on Making Snort Go Fast Under Linux”,

http://www.gamelinux.org/ page id 284, December 2011.
[30]http://lists.emergingthreats.net/pipermail/emerging-sigs/2011-

January/011641.html, January 2011.
[31]Mikelococo.com, “Capacity Planning for Snort IDS”,

http://mikelococo.com/2011/08/snort-capacity-planning/, August 2011.
[32]Snort.org, “Snort 2.9.2 Manual, Section 2.1”,

http://manual.snort.org/node16.html, 2011.
[33]Snort.org, “Snort 2.9.2 Manual, Section 2.5”,

http://manual.snort.org/node20.html, 2011.
[34]http://seclists.org/snort/2011/q2/32, April 2011.
[35]S. Sturges, “Using Perfmon and Performance Pro-

filing to Tune Snort Preprocessors and Rules”,
http://www.snort.org/assets/163/WhitePaper Snort PerformanceTuning 2009.pdf,
November 2009.


