Quantitative Aptitude - Remainders

Ravi Handa

Handa Ka Funda

Updated On 31 ${ }^{\text {st }}$ July 2015

Handa Ka Funda

PREFACE

Hi,
I am Ravi Handa, founder of www.handakafunda.com
I have an online course for CAT Preparation that is available here: http://handakafunda.com/online-cat-coaching/ In case you are interested in my online course for CAT preparation, use coupon code REMAINDERS to get 101 Rs. off.

The central idea behind making this PDF is that I want to help students who spend (waste?) too much time on calculating quantitative aptitude questions based on remainders. Quite often, they ask the same as doubts on public forums such as Quora / Facebook / Pagalguy. I have tried to cover a variety of questions in this PDF and I hope that after you go through this ebook, you will never face a problem with remainder questions again. Let me add, remainders isn't really an important topic from CAT perspective.

Hope you enjoy this ebook and I look forward to your feedback.
Cheers,
Ravi Handa
Founder, www.handakafunda.com
ravihanda@gmail.com
+91-9765142632

Handa Ka Funda

Basic Divisibility Rules

1) How do I find the remainder when 12345678910 ... 99100 is divided by $\mathbf{1 6}$?

Answer: The divisibility test of $2^{\wedge} n$ is that you need to check the last ' n ' digits of the number.
To find out the remainder from 16 , you need to check the last 4 digits
$\operatorname{Rem}[1234599100 / 16]=\operatorname{Rem}[9100 / 16]=12$
2) Quantitative Aptitude: What is the remainder when (111...) + (222...) + (333...) + ... + (777...) is divided by 37 ?

Answer: aaa $=a * 111=a * 3 * 37$
aaa is divisible by 37
aaaa..... repeated $3 n$ number of times is divisible by 37
(1111.....1) 108 times is divisible by 37

Now, 1111... 111 (110 times) $=1111100$ (1081 s and 20 s) +11
$=\operatorname{Rem}[1111 . . .111$ (110 times) $/ 37]=11$
$=\operatorname{Rem}[2222 . . .222$ (110 times) $/ 37]=22$
$=\operatorname{Rem}[7777 . . .777$ (110 times) $/ 37]=77$

So, we can say that
Remainder when (111...) + (222...) + (333...) + ... + (777...) is divided by 37
$=\operatorname{Rem}[11+22+33+44+55+66+77 / 37]$
= Rem [308/37]
$=12$
3) What is the highest possible value of ' n ' for which ($\mathbf{3}^{\wedge} 1024$) - $\mathbf{1}$ is divisible by $\mathbf{2}^{\wedge} n$?

Answer: We should try and split down the number to something a little more manageable by using the simple idea of

```
a^2 - b^2 = (a + b)(a-b)
3^1024-1
= (3^512-1)(3^512 + 1)
= (3^256-1)(3^256 + 1)(3^512 + 1)
= (3^128-1)(3^128 + 1)(3^256 + 1)(3^512 + 1)
```

$=(3-1)(3+1)\left(3^{\wedge} 2+1\right)\left(3^{\wedge} 4+1\right)\left(3^{\wedge} 8+1\right) \ldots\left(3^{\wedge} 512+1\right)$

This was fairly simple, right?
Now is where the slightly more creative part begins.
There are 11 terms given above and all of them are even
10 of these terms have an even power of 3
$\operatorname{Rem}\left[\left(3^{\wedge} 2 n+1\right) / 4\right]=\operatorname{Rem}\left[\left((-1)^{\wedge} 2 n+1\right) / 4\right]=\operatorname{Rem}[(1+1) / 4]=2$
$=$ Terms with even powers of 3 are not divisible by 4

So in the 11 terms, 10 are not divisible by 4 .
= Each of those 10 terms will give me 1 power of 2
$=$ The 11th term, which is $3+1=4$ will give me 2 powers of 2
$=$ Total powers of $2=n=10 * 1+2=12$
4) What is the remainder when

12345678910111213141516171819202122232425262728293031323334353637383940 4142434481 is divided by 45 ?
Answer: We need to find out Rem [1234.....434481/45]

This looks a little difficult if you do not any theorems for finding out remainders. Let us take a simpler approach and break down the problem into smaller parts.

These type of questions become really simple if you understand the concept of negative remainders. Always try and reduce the dividend to 1 or -1 .
$45=9 * 5$

Let us find out the remainders separately and combine them later

Rem [1234.....434481/9]
The divisibility test of 9 is to divide the sum of the digits by 9 .
The sum in this case is $1+2+3 \ldots 43+44+81=44 * 45+81$
We can see that this is divisible by 9
$=$ The number is divisible by 9
$=\operatorname{Rem}[1234434481 / 9]=0$

Rem [1234.....434481/5] = 1 (It only depends on the last digit)

Handa Ka Funda

So, our answer is a number which leaves a remainder of 1 when divided by 5 and is divisible by 9 .
Consider multiple of 9 ,
9 , does not leave a remainder of 1 from 5 . Invalid.
18 , does not leave a remainder of 1 from 5 . Invalid.
27 , does not leave a remainder of 1 from 5 . Invalid.
36 , leaves a remainder of 1 from 5 . Valid. (This is our answer)
5) What is the remainder when 123456 \qquad 4647484950 is divided by $\mathbf{1 6}$?
Answer: To find out the remainder from $2^{\wedge} n$, we just need to look at the last ' n ' digits.
Rem [123... 484950 / 16]
$=\operatorname{Rem}[4950 / 16]$
$=6$
6) What is the remainder when $\sum_{k=1}^{100} K$! is divided by 18 ?

Answer: We have to find out Remainder of $\sum_{k=1}^{100} K!$ when divided by 18 .
$=\operatorname{Rem}[(1!+2!+3!. . .100!) / 18]$
$6!$ is divisible by 18
7 ! is divisible by 18

100 ! is divisble by 18
$=$ We have to find out $\operatorname{Rem}[(1!+2!+3!+4!+5!) / 18]$
$=\operatorname{Rem}[(1+2+6+24+120) / 18]$
$=\operatorname{Rem}[153 / 18]=9$
7) What is the remainder when the infinite sum $(1!)^{2}+(2!)^{2}+(3!)^{2}+\cdots$ is divided by 1152?
Answer: We have to find out the remainder when $(1!)^{2}+(2!)^{2}+(3!)^{2}+\cdots$ is divided by 1152
$1152=2^{\wedge} 7$ * $3^{\wedge} 2$
$=(6!)^{\wedge} 2$ is divisible by 1152
$=$ All ($n!$) 2 are divisible by 1152 as long as $n>5$
So, our problem is now reduced to
$\operatorname{Rem}\left[\left((1!)^{2}+(2!)^{2}+(3!)^{2}+(4!)^{2}+(5!)^{2}\right) / 1152\right]$
$=\operatorname{Rem}[(1+4+36+576+14400) / 1152]$
$=\operatorname{Rem}[15017 / 1152]$
= 41

Handa Ka Funda

8) What is the remainder when $3^{\wedge} 21+9^{\wedge} 21+27^{\wedge} 21+81^{\wedge} 21$ is divided by ($\left.3^{\wedge} 20+1\right)$?

Answer: $3^{\wedge} 21+9^{\wedge} 21+27^{\wedge} 21+81^{\wedge} 21$
$=3^{\wedge} 21+\left(3^{\wedge} 21\right)^{\wedge} 2+\left(3^{\wedge} 21\right)^{\wedge} 3+\left(3^{\wedge} 21\right)^{\wedge} 4$
$=x+x^{\wedge} 2+x^{\wedge} 3+x^{\wedge} 4$
where $x=3^{\wedge} 21$

Now, $3^{\wedge} 21=3\left(3^{\wedge} 20\right)=3\left(3^{\wedge} 20+1\right)-3$
$=\operatorname{Rem}\left[3^{\wedge} 21 /\left(3^{\wedge} 20+1\right)\right]=-3$
$=\operatorname{Rem}\left[x /\left(3^{\wedge} 20+1\right)\right]=-3$

We can use this to find out out answer
$\operatorname{Rem}\left[\left(x+x^{\wedge} 2+x^{\wedge} 3+x^{\wedge} 4\right) /\left(3^{\wedge} 20+1\right)\right]=(-3)+(-3)^{\wedge} 2+(-3)^{\wedge} 3+(-3)^{\wedge} 4$
$=-3+9-27+81=60$
9) Is 2222^7777+7777^2222 divisible by 101 and 99?

Answer: Dividing by 101
2222 is divisible by $101(22 * 101=2222)$
= Any power of 2222 is divisible by 101

7777 is divisible by 101 (77*101 = 7777)
= Any power of 7777 is divisible by 101

If two number are individually divisible by 101, their sum is also divisible by 101.
$=2222^{\wedge} 7777+7777^{\wedge} 2222$ is divisible by 101

Dividing by 99
If a number is divisible by 11 and 9 , it will be divisible by their LCM or 99 .
$2222^{\wedge} 7777+7777^{\wedge} 2222$ is divisible by 11 because the number in the base are individually divisible by 11 .

Now, let's check divisibility from 9
$\operatorname{Rem}\left[2222^{\wedge} 7777\right.$ / 9] $=\operatorname{Rem}\left[(-1)^{\wedge} 7777\right.$ /9] $=\operatorname{Rem}[-1 / 9]=8$
$\operatorname{Rem}\left[7777^{\wedge} 2222 / \mathrm{p}\right]=\operatorname{Rem}\left[1^{\wedge} 7777\right.$ / 9] $=\operatorname{Rem}[1 / 9]=1$
$\operatorname{Rem}\left[2222^{\wedge} 7777+7777^{\wedge} 2222 / 9\right]=\operatorname{Rem}[1+8 / 9]=\operatorname{Rem}[9 / 9]=0$
$=2222^{\wedge} 7777+7777^{\wedge} 2222$ is divisble by 9

Handa Ka Funda

So, the number given to us is divisible by both 11 and 9
$=2222^{\wedge} 7777+7777^{\wedge} 2222$ is divisible by 99
10) What is the remainder when 1212121 ... (up to 300 digits) is divided by 99 ?

Answer: To find out the divisibility for 99, we need to add the digits in blocks of two from right to left.
As a matter of fact for 999...n times, we need to add the digits in blocks of ' n ' from right to left.

So, for 12121212.... 300 digits,
Sum of digits in blocks of two $=12+12+12 \ldots .150$ times $=1800$

Rem [121212... 300 digits/ 99]
$=\operatorname{Rem}$ [1800 / 99]
$=18$
11) What is the remainder when 2222..... 300 times is divided by 999 ?

Answer: To check divisibility by 999, check the sum of the digits taken 3 at a time

Sum of the digits of 222.... 300 times (taken 3 at a time)
$=222+222+222 \ldots 100$ times
$=22200$
$\operatorname{Rem}[22000 / 999]=222$
12) What is the remainder when $123,123, \ldots$ (up to 300 digits) is divided by 999 ?

Answer: To find out the divisibility for 999, we need to add the digits in blocks of three from right to left.
As a matter of fact for 999...n times, we need to add the digits in blocks of ' n ' from right to left.

So, for 123123123.... 300 digits,
Sum of digits in blocks of three $=123+123+123 \ldots .100$ times $=12300$

Rem [123123123... 300 digits / 999]
= Rem [12300 / 999]
$=312$

Handa Ka Funda

Binomial Theorem

1) Remainder when $\mathbf{2 5 \wedge 1 0}$ is divided by 576 ?

Answer: We need to find out the remainder of $25^{\wedge} 10$ when divided by 576 .
Please note that $576=24^{\wedge} 2$
There are couple of methods of solving this.

Using Binomial Theorem
$25^{\wedge} 10=(24+1)^{\wedge} 10$
In the expansion, there will be 11 terms where the powers of 24 will vary from 0 to 10 . If the power of 24 is greater than or equal to 2 in a term, that term will be divisible by 576
The terms that will not be divisible by 576 are the terms that have powers of 24 as 0 or 1.

Those terms are
10C1*24^1*1^9 + 10C0*24^0*1^10
$=10 * 24^{*} 1+1^{*} 1^{*} 1$
$=241$

So, Rem [25^10/576] = 241

Handa Ka Funda

Simplifying the dividend (Direct)

1) What is the remainder when $\mathbf{1 5}^{\wedge} \mathbf{2 0 1 0}+\mathbf{1 6}^{\wedge} \mathbf{2 0 1 1}$ is divided by $\mathbf{7}$?

Answer: Here we need to know that:
$\operatorname{Rem}[(a+b) / c]=\operatorname{Rem}[a / c]+\operatorname{Rem}[b / c]$
$\operatorname{Rem}[(a * b) / c]=\operatorname{Rem}[a / c] * \operatorname{Rem}[b / c]$

Keeping that in mind:
$\operatorname{Rem}\left[15^{\wedge} 2010 / 7\right]=\operatorname{Rem}\left[1^{\wedge} 2010 / 7\right]=1$

Rem[16^2011/7]
$=\operatorname{Rem}\left[2^{\wedge} 2011 / 7\right]$
$=\operatorname{Rem}\left[2^{\wedge} 2010 / 7\right]^{*} \operatorname{Rem}[2 / 7]$
$=\operatorname{Rem}\left[8^{\wedge 670 / 7]}\right.$ * 2
$=1 * 2=2$
$\operatorname{Rem}\left[\left(15^{\wedge} 2010+16^{\wedge} 2011\right) / 7\right]=1+2=3$
2) What is the remainder when $30^{\wedge} 40$ is divided by 7 ?

Answer: Rem [30^40 / 7]
$=\operatorname{Rem}\left[2^{\wedge} 40 / 7\right]$
$=\operatorname{Rem}\left[2^{\wedge} 39 * 2 / 7\right]$
$=\operatorname{Rem}[8 \wedge 13$ * $2 / 7]$
$=\operatorname{Rem}\left[1^{\wedge} 13\right.$ * $\left.2 / 7\right]$
$=\operatorname{Rem}[1 * 2 / 7]$
$=2$
3) How do I solve for the remainder of (19^98)/7?

Answer: Rem [19^98/7]
$=\operatorname{Rem}\left[(-2)^{\wedge} 98 / 7\right]$
$=\operatorname{Rem}\left[2^{\wedge} 98 / 7\right]$
$=\operatorname{Rem}\left[2^{\wedge} 96\right.$ * $\left.2^{\wedge} 2 / 7\right]$
$=\operatorname{Rem}\left[8^{\wedge} 32\right.$ * $\left.4 / 7\right]$
= Rem [1 * 4 / 7]
$=4$

Handa Ka Funda

4) What is the remainder when $\mathbf{7 \wedge 2 0 1 5}^{\mathbf{2}}$ is divided by 9 ?

Answer: Rem [7^2015 / 9]
$=\operatorname{Rem}\left[(-2)^{\wedge} 2015 / 9\right]$
$=\operatorname{Rem}\left[4 *(-2)^{\wedge} 2013 / 9\right]$
$=\operatorname{Rem}\left[4^{*}(-8)^{\wedge} 671 / 9\right]$
$=\operatorname{Rem}[4 * 1 / 9]$
$=4$
5) What is the remainder when $2014 \wedge 2015$ is divided by 9 ?

Answer: Rem [2014^2015 / 9]
$=\operatorname{Rem}\left[(-2)^{\wedge} 2015\right.$ / 9]
$=\operatorname{Rem}\left[4 *(-2)^{\wedge} 2013\right.$ / 9]
$=\operatorname{Rem}\left[4^{*}(-8)^{\wedge} 671 / 9\right]$
$=\operatorname{Rem}[4 * 1 / 9]$
= 4
6) What is the remainder when $\mathbf{2}^{\wedge} \mathbf{2 0 0 3}$ is divided by 17 ?

Answer: Rem [2^2003 / 17]
= Rem [2^2000 * 8 /17]
$=\operatorname{Rem}[16 \wedge 500$ * $8 / 17]$
$=\operatorname{Rem}\left[(-1)^{\wedge} 500 * 8 / 17\right]$
$=\operatorname{Rem}[1 * 8 / 17]$
$=8$
7) What is the remainder when ($1 \mathbf{1 0}^{\wedge} 27+37$) is divided by $\mathbf{1 7}$?

Answer: Rem [(16^27+37)/17]
$=\operatorname{Rem}\left[16^{\wedge} 27 / 17\right]+\operatorname{Rem}[37 / 17]$
$=\operatorname{Rem}\left[(-1)^{\wedge} 27 / 17\right]+3$
$=-1+3$
$=2$
8) What is the remainder when $\mathbf{7 \wedge 1 2 1 ~}^{\text {12 }}$ is divided by 17 ?

Answer: Rem [7^121 / 17]
$=\operatorname{Rem}[7 \wedge 120$ * $7 / 17]$
$=\operatorname{Rem}[49 \wedge 60$ * $7 / 17]$
$=\operatorname{Rem}\left[(-2)^{\wedge} 60 * 7 / 17\right]$

Handa Ka Funda

$$
\begin{aligned}
& =\operatorname{Rem}\left[16^{\wedge 15 * 7 / 17]}\right. \\
& =\operatorname{Rem}\left[(-1)^{\wedge} 15 * 7 / 17\right] \\
& =\operatorname{Rem}[(-7) / 17] \\
& =10
\end{aligned}
$$

9) What is the remainder when $\mathbf{3 0 \wedge} 100$ is divided by 17 ?

Answer: Rem [30^100 / 17]
$=\operatorname{Rem}\left[(-4)^{\wedge} 100 / 17\right]$
$=\operatorname{Rem}\left[16^{\wedge} 50 / 17\right]$
$=\operatorname{Rem}\left[(-1)^{\wedge} 50 / 17\right]$
$=\operatorname{Rem}[1 \wedge 50 / 17]$
= 1
10) What is the remainder when $54 \wedge 124$ divided by 17 ?

Answer: Rem [54^124 / 17]
$=\operatorname{Rem}\left[(3)^{\wedge 124} / 17\right]$
$=\operatorname{Rem}\left[81^{\wedge} 31 / 17\right]$
$=\operatorname{Rem}\left[(-4)^{\wedge} 31 / 17\right]$
$=\operatorname{Rem}\left[(-4)^{\wedge} 30\right.$ * (-4) / 17]
$=\operatorname{Rem}\left[(16)^{\wedge} 15^{*}(-4) / 17\right]$
$=\operatorname{Rem}\left[(-1)^{\wedge} 15\right.$ * (-4) / 17]
$=\operatorname{Rem}[(-1) *(-4) / 17]$
$=4$
11) What is the remainder when $21^{\wedge} 875$ divided by 17 ?

Answer: Rem [21^875 / 17]
$=\operatorname{Rem}[4 \wedge 875 / 17]$
$=\operatorname{Rem}\left[4 * 4^{\wedge} 874\right.$ / 17]
$=\operatorname{Rem}\left[4^{*} 16^{\wedge} 437 / 17\right]$
$=\operatorname{Rem}\left[4^{*}(-1)^{\wedge} 437 / 17\right]$
$=\operatorname{Rem}[4 *(-1) / 17]$
$=\operatorname{Rem}[-4 / 17]$
$=13$
12) What is the remainder when $\mathbf{1 7}^{\wedge} \mathbf{2 0 0}$ is divided by $\mathbf{1 8}$?

Answer: These type of questions become really simple if you understand the concept of negative remainders. Always try and reduce the dividend to 1 or -1 .
Rem [17^200 / 18]

Handa Ka Funda

```
= Rem [ (-1)^200 / 18]
= Rem [1 / 18]
= 1
```

13) What is the remainder when $\mathbf{2}^{\wedge} \mathbf{3 3}$ is divided by $\mathbf{2 7}$?

$$
\begin{aligned}
& \text { Answer: } \operatorname{Rem}\left[2^{\wedge} 33 / 27\right] \\
& =\operatorname{Rem}\left[32^{\wedge} 6^{*} 8 / 27\right] \\
& =\operatorname{Rem}\left[5^{\wedge} 6^{*} 8 / 27\right] \\
& =\operatorname{Rem}\left[125^{\wedge} 2 * 8 / 27\right] \\
& =\operatorname{Rem}\left[(-10)^{\wedge} 2^{*} 8 / 27\right] \\
& =\operatorname{Rem}[800 / 27] \\
& =17
\end{aligned}
$$

14) What's the remainder when $\mathbf{2}^{\text {^ }} 99$ is divided by $\mathbf{3 3}$?

Answer: Rem [2^99 / 33]
$=\operatorname{Rem}\left[2^{\wedge} 4\right.$ * $\left.2^{\wedge} 95 / 33\right]$
= Rem [16 * 32^19 / 33]
$=\operatorname{Rem}\left[16\right.$ * $\left.(-1)^{\wedge} 19 / 33\right]$
$=\operatorname{Rem}[(-16) / 33]$
= 17
15) What is the remainder when $\left(71^{\wedge} 71+71\right)$ is divided by 72 ?

Answer: Rem [(71^71 + 71)/72]
$=\operatorname{Rem}\left[71^{\wedge} 71 / 72\right]+\operatorname{Rem}[71 / 72]$
$=\operatorname{Rem}\left[(-1)^{\wedge} 72\right]+(-1)$
$=(-1)+(-1)$
=-2
$=70$

Handa Ka Funda

Simplifying the dividend (Multiple divisors)

1) What is the remainder of $\left(2^{\wedge}(90)\right) / 91$?

Answer: We have to find out Rem [2^90/91]

This looks a little difficult if you do not any theorems for finding out remainders. Let us take a simpler approach and break down the problem into smaller parts.

These type of questions become really simple if you understand the concept of negative remainders. Always try and reduce the dividend to 1 or -1 .
$91=7 * 13$

Let us find out Rem[2^90/7] and Rem[2^90/13]
We will combine them later.

Rem [2^90/7]
$=\operatorname{Rem}\left[\left(2^{\wedge} 3\right)^{\wedge} 30 / 7\right]$
$=\operatorname{Rem}[8 \wedge 30 / 7]$
$=\operatorname{Rem}[1 \wedge 30 / 7]$
$=1$
$\operatorname{Rem}\left[2^{\wedge} 90 / 13\right]$
$=\operatorname{Rem}\left[\left(2^{\wedge} 6\right)^{\wedge} 15 / 13\right]$
$=\operatorname{Rem}[64 \wedge 15 / 13]$
$=\operatorname{Rem}\left[(-1)^{\wedge} 15 / 13\right]$
=-1 from 13
$=12$

So, our answer is a number which leaves a remainder of 1 when divided by 7 and it should leave a remainder of 12 when divided by 13 .

Let us start considering all numbers that leave a remainder of 12 when divided by 13
$=12$ (leaves a remainder of 5 from 7 . Invalid)
$=25$ (leaves a remainder of 4 from 7. Invalid)
$=38$ (leaves a remainder of 3 from 7 . Invalid)

Handa Ka Funda

$=51$ (leaves a remainder of 2 from 7 . Invalid)
$=64$ (leaves a remainder of 1 from 7. Valid. This is our answer)
2) What is the remainder when $128^{\wedge} 1000$ is divided by 153 ?

Answer: We have to find out Rem [128^1000/153]

This looks a little difficult if you do not any theorems for finding out remainders. Let us take a simpler approach and break down the problem into smaller parts.

These type of questions become really simple if you understand the concept of negative remainders. Always try and reduce the dividend to 1 or -1 .

```
153 = 9*17
128^1000 = 2^7000
```

Let us find out Rem[2^7000/9] and Rem[2^7000/17]
We will combine them later.
$\operatorname{Rem}\left[2^{\wedge} 7000 / 9\right]$
$=\operatorname{Rem}\left[2^{\wedge} 6999 \times 2 / 9\right]$
$=\operatorname{Rem}\left[8^{\wedge} 2333 \times 2 / 9\right]$
$=\operatorname{Rem}\left[(-1)^{\wedge} 2333 \times 2 / 9\right]$
$=\operatorname{Rem}[(-1) \times 2 / 9]$
$=-2$ from 9
$=7$

Rem[2^7000/17]
$=\operatorname{Rem}\left[16^{\wedge} 1750 / 17\right]$
$=\operatorname{Rem}\left[(-1)^{\wedge} 1750 / 17\right]$
= 1

So, our answer is a number which leaves a remainder of 7 when divided by 9 and it should leave a remainder of 1 when divided by 17.

Let us start considering all numbers that leave a remainder of 1 when divided by 17
$=18$ (leaves a remainder of 0 from 9 . Invalid)
$=35$ (leaves a remainder of 8 from 9 . Invalid)
$=52$ (leaves a remainder of 7 from 9 . Valid. This is our answer)

Handa Ka Funda

3) What is the remainder when $15^{\wedge} 40$ divided by 1309 ?

Answer: We have to find out Rem [15^40/1309]

This looks a little difficult if you do not any theorems for finding out remainders. Let us take a simpler approach and break down the problem into smaller parts.

These type of questions become really simple if you understand the concept of negative remainders. Always try and reduce the dividend to 1 or -1 .
$1309=7 * 11 * 17$

Let us find out Rem[15^40/7], Rem[15^40/11] , and Rem[15^40/17]
We will combine them later.
$\operatorname{Rem}\left[15^{\wedge} 40 / 7\right]$
= Rem [1^40/7]
= 1

Rem[15^40/11]
$=\operatorname{Rem}[4 \wedge 40 / 11]$
$=\operatorname{Rem}\left[256^{\wedge} 10 / 11\right]$
$=\operatorname{Rem}\left[3^{\wedge} 10 / 11\right]$
= Rem [243^2/11]
$=\operatorname{Rem}\left[1^{\wedge} 2 / 11\right]$
= 1
$\operatorname{Rem}[15 \wedge 40 / 17]$
$=\operatorname{Rem}\left[(-2)^{\wedge} 40 / 17\right]$
$=\operatorname{Rem}\left[16^{\wedge} 10 / 17\right]$
$=\operatorname{Rem}\left[(-1)^{\wedge} 10 / 17\right]$
= 1

So, our answer is a number which leaves a remainder of 1 when divided by 7,11 , and 17 Such a number is 1 itself and that is our answer.

Handa Ka Funda

Finding Last Digit / Last Two Digits

1) What is the last digit of $1273^{\wedge} 122$!?

Answer: Last digit of $1273^{\wedge} 122$!
$=$ Last digit of $3^{\wedge} 122$! (Because last digit of the number depends only on the last digit of the base and not the other digits)
$=$ Last digit of $3^{\wedge} 4 n$ (Last digits of powers of 3 move in cycle of 4 . The cycle is $3,7,9$, and 1. 122 ! is a multiple of 4 , so it can be written as $4 n$)
$=1$
2) $K=1!+2!+3!\ldots+19!$. What would be the last digit of K ?

Answer: $K=1!+2!+3!\ldots .19$!
Last digit of $K=$ Last digit (1!) + Last digit (2!) + Last digit (3!) ... Last digit (19!)
Last digit (1!) = 1
Last digit (2!) $=2$
Last digit (3!) $=6$
Last digit (4!) $=4$
Last digit (5!) $=0$
Last digit (6!) $=0$

Last digit (19!) = 0

Please note that Last digit ($n!$) such that $n>4$ will be 0

Last digit of $K=1+2+6+4+0+0+0 \ldots 0=3$
3) What is the remainder when $N=(1!+2!+3!+4!+\ldots 1000!)^{\wedge} 40$ is divided by 10 ?

Answer: We have to find out remainder of $(1!+2!+3!\ldots 1000!)^{\wedge} 40$ from 10
$=$ We have to find out last digit of $(1!+2!+3!\ldots 1000!)^{\wedge} 40$

Last digit of n ! where $\mathrm{n}>4$ will be 0 and will have no impact on the answer.
$=$ We have to find out last digit of $(1!+2!+3!+4!)^{\wedge} 40$

Handa Ka Funda

> Last digit of $(1!+2!+3!+4!)^{\wedge} 40$
> $=$ Last digit of $(1+2+6+24)^{\wedge} 40$
> $=$ Last digit of $33^{\wedge} 40$
> $=$ Last digit of $3^{\wedge} 40$
> $=$ Last digit of $81^{\wedge} 10$
> $=$ Last digit of $1^{\wedge} 10$
> $=1$
4) How do you find the remainder when $\mathbf{7 \wedge}^{\boldsymbol{2}} \mathbf{2 6}$ is divided by $\mathbf{1 0 0}$?

Answer: Finding out the remainder from 100, is the same as finding out the last two digits of a number
Last two digits of $7 \wedge 1$ are 07
Last two digits of 7^2 are 49
Last two digits of 7^3 are 43
Last two digits of $7^{\wedge} 4$ are 01
After this, the same pattern will keep on repeating.
So, $7^{\wedge}(4 n+1)$ will end in $07,7 \wedge(4 n+2)$ will end in $49,7 \wedge_{\wedge}(4 n+3)$ will end in 43 , and $7 \wedge 4 n$ will end in 01
$7^{\wedge} 26=7 \wedge(4 n+2)$ will end in 49
$=\operatorname{Rem}\left[7^{\wedge} 26 / 100\right]=49$
5) What is the remainder when 787^777 is divided by 100?

Answer: We have to find out the remainder of 787^777 divided by 100
This is the same as finding out the last two digits of 787^777

Last two digits of the answer depend on the last two digits of the base.
$=$ We need to find out last two digits of 87^777

The key in questions like these is to reduce the number to something ending in 1.
87^777
$=87^{*} 87 \wedge 776$
$=87^{*}(. .69)^{\wedge} 388$ \{Just looking at last two digits of 87^2\}
$=87^{*}(\ldots 61)^{\wedge} 194$ \{Just looking at last two digits of 61^2\}
$=87^{*}(. . .41)$ \{a number of the format ..a1^..b will end in (a*b)1\}
$=67$

Handa Ka Funda

6) What are the last two digits of $\mathbf{2}^{\wedge} \mathbf{1 9 9 7}$?

Answer: For finding out the last two digits of an even number raised to a power, we should first try and reduce the base to a number ending in 24.
After that, we can use the property
Last two digits of 24^{\wedge} Odd $=24$
Last two digits of 24^{\wedge} Even $=76$

Last two digits of 2^1997
$=$ Last two digits of $2^{\wedge} 7^{*}\left(2^{\wedge} 1990\right)$
$=$ Last two digits of $128^{*}\left(1024^{\wedge} 199\right)$
$=$ Last two digits of 28*24
$=72$

7) What are the last two digits of $\mathbf{2 ヘ}^{\wedge} \mathbf{2 0 1 2}$?

Answer: For finding out the last two digits of an even number raised to a power, we should first try and reduce the base to a number ending in 24.
After that, we can use the property
Last two digits of 24^{\wedge} Odd $=24$
Last two digits of 24^{\wedge} Even $=76$

Last two digits of 2^2012
$=$ Last two digits of $2^{\wedge} 2^{*}\left(2^{\wedge} 2010\right)$
$=$ Last two digits of $4 *\left(1024^{\wedge} 201\right)$
$=$ Last two digits of 4*24
$=96$
8) How do I find the last 2 digits of (123)^123!?

Answer: For finding out the last two digits of an odd number raised to a power, we should first try and reduce the base to a number ending in 1.
After that, we can use the property
Last two digits of (...a1)^(...b) will be [Last digit of a*b]1

Let us try and apply this concept in the given question
Last two digits of $123^{\wedge} 123$!
$=$ Last two digits of $23^{\wedge} 123$!
$=$ Last two digits of $\left(23^{\wedge} 4\right)^{\wedge}(123!/ 4)$
$=$ Last two digits of $\left(529^{\wedge} 2\right)^{\wedge}(123!/ 4)$

Handa Ka Funda

$=$ Last two digits of $(\ldots 41)^{\wedge}($ a large number ending in a lot of zeroes $)$
$=$ Last two digits of $(\ldots 01)\{$ Here I have used the concept mentioned above $\}$
$=01$
9) Find the last two digits of 2025^2052+1392^1329?

Answer: Let us break the problem into two parts.

For the first part :
Last two digits of 2025^2052
= Last two digits of 25^2052
$=25 \mathrm{I}\{$ Any power of 25 will have the last two digits as 25$\}$

For the second part:
For finding out the last two digits of an odd number raised to a power, we should first try and reduce the base to a number ending in 1.
After that, we can use the property
Last two digits of (...a1)^(...b) will be [Last digit of a*b]1

For finding out the last two digits of an even number raised to a power, we should first try and reduce the base to a number ending in 24.
After that, we can use the property
Last two digits of 24^{\wedge} Odd $=24$
Last two digits of 24^{\wedge} Even $=76$

Let us try and apply these concepts in the given question
1392^1329
= 92^1329
$=4^{\wedge} 1329$ * $23^{\wedge} 1329$
$=2^{\wedge} 2658$ * 23 * $23^{\wedge} 1328$
$=2^{\wedge} 8^{*} 2^{\wedge} 2650$ * $23^{*}\left(23^{\wedge} 4\right)^{\wedge} 332$
$=2566^{*}\left(1024^{\wedge} 265\right) * 23^{*}(\ldots 41)^{\wedge} 332$
$=56$ * 24 * 23 * 81
$=72$

So, our overall answer will be the sum of the two parts
$=25+72=97$

Handa Ka Funda

10) What are the last two digits of (86789)^41?

Answer: For finding out the last two digits of an odd number raised to a power, we should first try and reduce the base to a number ending in 1.
After that, we can use the property
Last two digits of (...a1)^(...b) will be [Last digit of a*b]1

Let us try and apply this concept in the given question
(86789)^41
= 89^41
$=89^{*} 89^{\wedge} 40$
$=89$ * (.21)^40
$=89 * 01$ \{Here I have used the concept mentioned above\}
$=89$
11) What will be the last two digits of $57 \boldsymbol{\wedge} \mathbf{~ 6 9}$?

Answer: For finding out the last two digits of an odd number raised to a power, we should first try and reduce the base to a number ending in 1.
After that, we can use the property
Last two digits of (...a1)^(...b) will be [Last digit of a*b]1

Let us try and apply this concept in the given question
Last two digits of 57^69
$=$ Last two digits of 57*(57^2)^34
$=$ Last two digits of 57*(..49)^34
$=$ Last two digits of $57^{*}(. .01)^{\wedge} 17$
$=$ Last two digits of 57*(..01)
$=57$

12) How do we find the last 2 digits of 19^39?

Answer: For finding out the last two digits of an odd number raised to a power, we should first try and reduce the base to a number ending in 1.
After that, we can use the property
Last two digits of (...a1)^(...b) will be [Last digit of a*b]1

Handa Ka Funda

Let us try and apply this concept in the given question
19^39
= 19*19^38
$=19^{*}(361)^{\wedge} 19$
$=19^{*}(\ldots 41)$ \{Here I have applied the concept given above\}
= (...79)
13) What is the remainder when $767^{\wedge} 1009$ is divided by $\mathbf{2 5}$?

Answer: Remainder of a number from 25 will be the same as the remainder of the last two digits of the number from 25.

For finding out the last two digits of an odd number raised to a power, we should first try and reduce the base to a number ending in 1.
After that, we can use the property
Last two digits of (...a1)^(...b) will be [Last digit of a*b]1

Let us try and apply this concept in the given question
Last two digits of 767^1009
= Last two digits of 67^1009
$=$ Last two digits of 67*67^1008
$=$ Last two digits of 67* $\left(67^{\wedge} 2\right)^{\wedge} 504$
$=$ Last two digits of 67*(..89)^504
$=$ Last two digits of $67^{*}\left((. .89)^{\wedge} 2\right)^{\wedge} 252$
$=$ Last two digits of 67*(...21)^252
$=$ Last two digts of 67* (...41) \{Here I have used the property mentioned above\}
$=47$

Rem [767^1009 / 25]
$=\operatorname{Rem}[47 / 25]$
$=22$
14) What are the remainders when $\mathbf{2}^{\wedge} \mathbf{2 2 2}$ and $11 \wedge 100$ are divided by $\mathbf{2 5}$?

Answer: We need to solve two questions here. In both, we need to find out the remainder from 25 . Solving both of them would be easier if we just find out the last two digits.

Remainder of the last two digits of a number from 25 will be the same as the remainder of the number from 25.

Handa Ka Funda

Rem [2^222 / 25]

Last two digits of $2^{\wedge} 222$
= Last two digits of 4*2^220
$=$ Last two digits of $4^{*} 1024^{\wedge} 22$
$=$ Last two digits of $4^{*}(\ldots 76)\left\{24^{\wedge}\right.$ Even will always end in 76$\}$
= Last two digits of (...04)
$=04$

So, Rem [04 / 25] = 4
$=\operatorname{Rem}\left[2^{\wedge} 222 / 25\right]=4$

Rem [11^100 / 25]

Last two digits of $11^{\wedge} 100=01$ \{Last two digits of (...a1)^(...b) will be [Last digit of a*b]1\} = Rem [11^100 / 25] = 1

Handa Ka Funda

Fermat's Theorem

1) What is the remainder of $57^{\wedge} 67 \wedge 77 / 17$?

Answer: Rem [57^67^77/ 17] = Rem [6^67^77/17]

Now, by Fermat's theorem, which states Rem $\left[{ }^{\wedge}(\mathrm{p}-1) / \mathrm{p}\right]=1$, we know
$\operatorname{Rem}\left[6^{\wedge} 16 / 17\right]=1$

The number given to us is $6^{\wedge} 67^{\wedge} 77$
Let us find out Rem[Power / Cyclicity] t0 find out if it $6^{\wedge}(16 k+1)$ or $6^{\wedge}(16 k+2)$. We can just look at it and say that it is not $6^{\wedge} 16 \mathrm{k}$
$\operatorname{Rem}[67 \wedge 77 / 16]=\operatorname{Rem}\left[3^{\wedge} 77 / 16\right]=\operatorname{Rem}\left[\left(3^{\wedge} 76^{*} 3^{\wedge} 1\right) / 16\right]$
$=\operatorname{Rem}\left[\left(\left(81^{\wedge} 19\right)^{*} 3\right) / 16\right]=\operatorname{Rem}\left[1^{*} 3 / 16\right]=3$
$=$ The number is of the format $6^{\wedge}(16 k+3)$
$=\operatorname{Rem}\left[6^{\wedge} 67^{\wedge} 77 / 17\right]=\operatorname{Rem}\left[6^{\wedge}(16 \mathrm{k}+3) / 17\right]=\operatorname{Rem}\left[6^{\wedge} 3 / 17\right]$
$=\operatorname{Rem}[216 / 17]=12$
2) What is the remainder when $\mathbf{2}^{\wedge} \mathbf{1 0 0 0}$ is divided by 59 ?

Answer: We have to find out Rem [2^1000/59]
As per Fermat's Theorem, $\left[a^{\wedge}(p-1) / p\right]=1$ where p is a prime number and $\operatorname{HCF}(a, p)=1$
$\operatorname{Rem}\left[2^{\wedge} 58 / 59\right]=1$
$=\operatorname{Rem}\left[\left(2^{\wedge} 58\right)^{\wedge} 17 / 59\right]=1$
$=\operatorname{Rem}\left[2^{\wedge} 986 / 59\right]=1$

Rem [2^1000/59]
$=\operatorname{Rem}\left[2^{\wedge} 986 \times 2^{\wedge} 14 / 59\right]$
$=\operatorname{Rem}[1 \times 128 \times 128 / 59]$
$=\operatorname{Rem}[1 \times 10 \times 10 / 59]$
$=\operatorname{Rem}[100 / 59]$
$=41$

Handa Ka Funda

3) What is the remainder when $\mathbf{2}^{\wedge} 89$ is divided by 89 ?

Answer: We can use Fermat's Theorem here which says
$\operatorname{Rem}\left[\mathrm{a}^{\wedge}(\mathrm{p}-1) / \mathrm{p}\right]=1$ where p is a prime number
$=\operatorname{Rem}\left[2^{\wedge} 88 / 89\right]=1$
$=\operatorname{Rem}\left[2^{\wedge} 89 / 89\right]=\operatorname{Rem}\left[2^{\wedge} 88 / 89\right] * \operatorname{Rem}[2 / 89]=1^{*} 2=2$
4) What is the remainder when $\mathbf{1 7}^{\wedge} 432$ is divided by 109 ?

Answer: We have to find out Rem [17^432 / 109]

As per Fermat's Theorem, $\left[a^{\wedge}(p-1) / p\right]=1$ where p is a prime number and $\operatorname{HCF}(a, p)=1$
$\operatorname{Rem}\left[17^{\wedge} 108 / 109\right]=1$
$=\operatorname{Rem}\left[(17 \wedge 108)^{\wedge} 4 / 109\right]=1$
$=\operatorname{Rem}[17 \wedge 432 / 109]=1$
5) What is the remainder when $17^{\wedge} 325$ is divided by 109 ?

Answer: We have to find out Rem [17^325 / 109]

As per Fermat's Theorem, $\left[a^{\wedge}(p-1) / p\right]=1$ where p is a prime number and $\operatorname{HCF}(a, p)=1$
$\operatorname{Rem}\left[17^{\wedge} 108 / 109\right]=1$
$=\operatorname{Rem}\left[\left(17^{\wedge} 108\right)^{\wedge} 3 / 109\right]=1$
$=\operatorname{Rem}\left[17^{\wedge} 324 / 109\right]=1$
$=\operatorname{Rem}\left[17^{\wedge} 324 * 17 / 109\right]=1^{*} 17$
$=\operatorname{Rem}\left[17^{\wedge} 325 / 109\right]=17$
6) What is the remainder when $\mathbf{2}^{\wedge} 1040$ is divided by 131 ?

Answer: We have to find out Rem [2^1040/131]

As per Fermat's Theorem, $\left[a^{\wedge}(p-1) / p\right]=1$ where p is a prime number and $\operatorname{HCF}(a, p)=1$
$\operatorname{Rem}\left[2^{\wedge} 130 / 131\right]=1$
$=\operatorname{Rem}\left[\left(2^{\wedge} 130\right)^{\wedge} 8 / 131\right]=1$
$=\operatorname{Rem}\left[2^{\wedge} 1040 / 131\right]=1$

Handa Ka Funda

Euler's Theorem

1) What is the remainder of (121) $\wedge(121)$ divided by 144 ?

Answer: Euler Totient (144) = 144*(1-1/2)(1-1/3) $=48$
By Euler's Theorem we can say that
$\operatorname{Rem}\left[a^{\wedge} 48 / 144\right]=1$ if a and 144 are coprime to each other
$=\operatorname{Rem}\left[a^{\wedge} 240 / 144\right]=1$
$=\operatorname{Rem}\left[11^{\wedge} 240 / 144\right]=1$

Now, we need to find out Rem [121^121/144]
= Rem [11^242/144]
$=\operatorname{Rem}\left[11^{\wedge} 240 / 144\right]^{*} \operatorname{Rem}\left[11^{\wedge} 2 / 144\right]$
$=1 * 121$
= 121

Handa Ka Funda

Taking values common from Dividend and Divisor

1) What is the remainder when 39^198 divided by 12

Answer: Rem [39^198 / 12]
= Rem [3^198 / 12]
= 3* Rem[3^197 / 4]
= 3* $\operatorname{Rem}\left[(-1)^{\wedge 197 / 4]}\right.$
= 3^{*} Rem[-1 / 4]
$=3^{*} 3$
= 9
2) What is the remainder when $\mathbf{3}^{\wedge} 164$ is divided by 162 ?

Answer: To solve this, you need to know that Rem [ka/kb] = k Rem[a/b]

We need to find out
Rem [3^164/162]
$=\operatorname{Rem}\left[\left(3^{\wedge} 4 \times 3^{\wedge} 160\right) /\left(3^{\wedge} 4 \times 2\right)\right]$
= $3^{\wedge} 4$ Rem [3^160/2]
= $3^{\wedge} 4 \operatorname{Rem}\left[1^{\wedge 160 / 2]}\right.$
$=3^{\wedge} 4 \times 1$
$=81$
3) What is the remainder when 21 ! is divided by 361 ?

Answer: Rem [21!/361]
= Rem [(21*20*19*18!)/361]
Using Rem [ka/kb] = k Rem[a/b]
= 19 Rem [(21*20*18!)/19]
Using Wilson's Theorem says For a prime number ' p ' Rem [$(\mathrm{p}-1)!/ \mathrm{p}]=\mathrm{p}-1$
$=19 \operatorname{Rem}[(21 * 20 * 18) / 19]$
$=19 \operatorname{Rem}\left[\left(2^{*} 1^{*}(-1)\right) / 19\right]$
$=19 *(-2)$
= -38
= 323

Handa Ka Funda

4) What is the remainder when $2(8!)-21(6!)$ divides $14(7!)+14(13!) ?$

Answer: We need to find out Rem [(14(7!) + 14(13!)) / (2(8!) - 21(6!))]
Let us try and simplify the divisor
2(8!) - 21(6!)
$=2 * 8 * 7!-3 * 7 * 6$!
$=16 * 7!-3^{*} 7$!
$=13 * 7$!
$\operatorname{Rem}[(14(7!)+14(13!)) / 13 * 7!]$
$=\operatorname{Rem}[14(7!) / 13(7!)]+\operatorname{Rem}[14(13!) / 13(7!)]$
= 7 ! ${ }^{*}$ Rem[14/13] +0
$=7!{ }^{*} 1$
$=7!$

Handa Ka Funda

Pattern Recognition / Cyclicity Method

Answer: Rem [32^32^32 / 7] = Rem [4^32^32 /7]

Now, we need to observe the pattern
$4^{\wedge} 1$ when divided by 7 , leaves a remainder of 4
$4^{\wedge} 2$ when divided by 7 , leaves a remainder of 2
$4^{\wedge} 3$ when divided by 7 , leaves a remainder of 1

And then the same cycle of 4,2 , and 1 will continue.
If a number is of the format of $4^{\wedge}(3 k+1)$, it will leave a remainder of 4
If a number is of the format of $4^{\wedge}(3 k+2)$, it will leave a remainder of 2
If a number is of the format of $4^{\wedge}(3 k)$, it will leave a remainder of 1

The number given to us is $4^{\wedge} 32^{\wedge} 32$

Let us find out Rem[Power / Cyclicity] t0 find out if it $4^{\wedge}(3 k+1)$ or $4^{\wedge}(3 k+2)$. We can just look at it and say that it is not $4^{\wedge} 3 \mathrm{k}$
$\operatorname{Rem}\left[32^{\wedge} 32 / 3\right]=\operatorname{Rem}\left[(-1)^{\wedge} 32 / 3\right]=1$
$=$ The number is of the format $4 \wedge(3 k+1)$
$=\operatorname{Rem}\left[4^{\wedge} 32^{\wedge} 32 / 7\right]=4$
2) What is the remainder when 32^{\wedge} (32^{\wedge} (32^{\wedge}...infinite times)) is divided by 9 ?

Answer: Rem [32^32^32... /9] = Rem [4^32^32... /9]

Now, we need to observe the pattern
$4^{\wedge} 1$ when divided by 9 , leaves a remainder of 4
$4^{\wedge} 2$ when divided by 9 , leaves a remainder of 7
$4^{\wedge} 3$ when divided by 9 , leaves a remainder of 1

And then the same cycle of 4,7 , and 1 will continue.
If a number is of the format of $4^{\wedge}(3 k+1)$, it will leave a remainder of 4
If a number is of the format of $4^{\wedge}(3 k+2)$, it will leave a remainder of 7
If a number is of the format of $4 \wedge(3 k)$, it will leave a remainder of 1

Handa Ka Funda

The number given to us is $4^{\wedge} 32^{\wedge} 32 \ldots$....

Let us find out Rem[Power / Cyclicity] t0 find out if it $4^{\wedge}(3 k+1)$ or $4^{\wedge}(3 k+2)$. We can just look at it and say that it is not $4^{\wedge} 3 \mathrm{k}$
$\operatorname{Rem}\left[32^{\wedge} 32^{\wedge} 32 . . . / 3\right]=\operatorname{Rem}\left[(-1)^{\wedge} 32^{\wedge} 32 \ldots / 3\right]=1$
$=$ The number is of the format $4^{\wedge}(3 k+1)$
$=\operatorname{Rem}\left[4^{\wedge} 32^{\wedge} 32 / 9\right]=4$
3) What is the remainder when $34 \wedge^{\wedge} 31^{\wedge} 301$ is divided by 9 ?

Answer: Rem [34^31^301 / 9] = Rem [7^31^301/9]

Now, we need to observe the pattern
$7 \wedge 1$ when divided by 9 , leaves a remainder of 7
$7^{\wedge} 2$ when divided by 9 , leaves a remainder of 4
$7^{\wedge} 3$ when divided by 9 , leaves a remainder of 1
And then the same cycle of 7,4 , and 1 will continue.
If a number is of the format of $7 \wedge(3 k+1)$, it will leave a remainder of 7
If a number is of the format of $7^{\wedge}(3 k+2)$, it will leave a remainder of 4
If a number is of the format of $7^{\wedge}(3 k)$, it will leave a remainder of 1

The number given to us is $7^{\wedge} 31^{\wedge} 301$
Let us find out Rem[Power / Cyclicity] t0 find out if it $7^{\wedge}(3 k+1)$ or $7^{\wedge}(3 k+2)$. We can just look at it and say that it is not $7^{\wedge} 3 \mathrm{k}$
$\operatorname{Rem}\left[31^{\wedge} 301 / 3\right]=\operatorname{Rem}\left[1^{\wedge} 301 / 3\right]=1$
$=$ The number is of the format $7 \wedge(3 k+1)$
$=\operatorname{Rem}\left[7 \wedge 31^{\wedge} 301 / 9\right]=7$
4) What is the remainder of $30^{\wedge} 72^{\wedge} 87$ when divided by 11 ?

Answer: $\operatorname{Rem}\left[30^{\wedge} 72^{\wedge} 87 / 11\right]=\operatorname{Rem}\left[(-3)^{\wedge} 72^{\wedge} 87 / 11\right]=\operatorname{Rem}\left[3^{\wedge} 72^{\wedge} 87 / 11\right]$

Now, we need to observe the pattern
$3^{\wedge} 1$ when divided by 11 , leaves a remainder of 3
$3^{\wedge} 2$ when divided by 11 , leaves a remainder of 9
$3^{\wedge} 3$ when divided by 11 , leaves a remainder of 5
$3^{\wedge} 4$ when divided by 11 , leaves a remainder of 4
$3^{\wedge} 5$ when divided by 11 , leaves a remainder of 1
And then the same cycle of $3,9,5,4$ and 1 will continue.

Handa Ka Funda

If a number is of the format of $3^{\wedge}(5 k+1)$, it will leave a remainder of 3 If a number is of the format of $3^{\wedge}(5 k+2)$, it will leave a remainder of 9 If a number is of the format of $3^{\wedge}(5 k+3)$, it will leave a remainder of 5 If a number is of the format of $3^{\wedge}(5 k+4)$, it will leave a remainder of 4 If a number is of the format of $3^{\wedge}(5 k)$, it will leave a remainder of 1

The number given to us is $3^{\wedge} 72^{\wedge} 87$
Let us find out Rem[Power / Cyclicity] t0 find out if it 3^(5k + what?)

Rem [72^87 / 5]
$=\operatorname{Rem}\left[2^{\wedge} 87 / 5\right]$
$=\operatorname{Rem}\left[2 * 4^{\wedge} 43 / 5\right]$
$=\operatorname{Rem}[2 *(-1) / 5]$
$=-2$
$=3$
$=$ The number is of the format $3^{\wedge}(5 k+3)$
$=\operatorname{Rem}\left[3^{\wedge} 72^{\wedge} 87 / 11\right]=5$
5) What is the remainder when $1!+2 * 2!+3 * 3!+4 * 4!+\ldots+12 * 12$! Is divided by 13 ?

Answer: The trick in these type of questions is often observing the pattern
$1!+2 * 2!=1+4=5=3!-1$
$1!+2 * 2!+3 * 3!=1+4+18=23=4!-1$
$1!+2^{*} 2!+3^{*} 3!+4 * 4!=1+4+18+96=119=5!-1$
$1!+2^{*} 2!+3^{*} 3!+4 * 4!+5 * 5!=1+4+18+96+600=719=6!-1$
So, we can say
$1!+2 * 2!+3 * 3!+4 * 4!+\ldots+12 * 12!=13!-1$
$=\operatorname{Rem}[(1!+2 * 2!+3 * 3!+4 * 4!+\ldots+12 * 12!) / 13]=-1=12$
6) What is the remainder of 57^67^77/17 ?

Answer: Rem [57^67^77/ 17] = Rem [6^67^77/17]

Now, by Fermat's theorem, which states Rem $\left[a^{\wedge}(p-1) / p\right]=1$, we know $\operatorname{Rem}\left[6^{\wedge} 16 / 17\right]=1$

The number given to us is $6^{\wedge} 67^{\wedge} 77$

Handa Ka Funda

Let us find out Rem[Power / Cyclicity] t0 find out if it $6^{\wedge}(16 k+1)$ or $6^{\wedge}(16 k+2)$. We can just look at it and say that it is not $6^{\wedge} 16 \mathrm{k}$
$\operatorname{Rem}\left[67^{\wedge} 77 / 16\right]=\operatorname{Rem}\left[3^{\wedge} 77 / 16\right]=\operatorname{Rem}\left[\left(3^{\wedge} 76^{*} 3^{\wedge} 1\right) / 16\right]$
$=\operatorname{Rem}\left[\left(\left(81^{\wedge} 19\right) * 3\right) / 16\right]=\operatorname{Rem}[1 * 3 / 16]=3$
$=$ The number is of the format $6^{\wedge}(16 k+3)$
$=\operatorname{Rem}\left[6^{\wedge} 67^{\wedge} 77 / 17\right]=\operatorname{Rem}\left[6^{\wedge}(16 \mathrm{k}+3) / 17\right]=\operatorname{Rem}\left[6^{\wedge} 3 / 17\right]$
$=\operatorname{Rem}[216 / 17]=12$
7) How do you find the remainder when $\mathbf{7 \wedge}^{\mathbf{2}} \mathbf{2 6}$ is divided by $\mathbf{1 0 0}$?

Answer: Finding out the remainder from 100, is the same as finding out the last two digits of a number
Last two digits of $7 \wedge 1$ are 07
Last two digits of $7 \wedge 2$ are 49
Last two digits of $7^{\wedge} 3$ are 43
Last two digits of 7^4 are 01
After this, the same pattern will keep on repeating.
So, $7^{\wedge}(4 n+1)$ will end in $07,7 \wedge(4 n+2)$ will end in $49,7 \wedge(4 n+3)$ will end in 43 , and $7 \wedge 4 n$ will end in 01
$7^{\wedge} 26=7 \wedge(4 n+2)$ will end in 49
$=\operatorname{Rem}[7 \wedge 26 / 100]=49$
8) What is the remainder when $\mathbf{7 \wedge 9 9}^{\wedge}$ is divided by 2400 and how?

Answer: Let us try doing it by the pattern recognition / cyclicity method. It can be really long if you do not get the pattern quickly. Use other methods like Euler's Totient if you do not get a pattern quickly.
$\operatorname{Rem}[7 \wedge 1 / 2400]=\operatorname{Rem}[7 / 2400]=7$
$\operatorname{Rem}[7 \wedge 2 / 2400]=\operatorname{Rem}[49 / 2400]=49$
$\operatorname{Rem}[7 \wedge 3 / 2400]=\operatorname{Rem}[343 / 2400]=343$
$\operatorname{Rem}[7 \wedge 4 / 2400]=\operatorname{Rem}[2401 / 2400]=1$

After this the same pattern will keep on repeating because you got a 1 .

Handa Ka Funda

Once we have obtained the cyclicity (number of terms in the pattern), all we need to do is to find out the Remainder of Power when divided by the Cyclicity. Whatever is this remainder, that particular value in the cycle is our answer.
In this case, power is 99 and cyclicity is 4.
Rem [Power / Cyclicity] = Rem [99/4] = 3
$=$ Our answer will be the third value in the cycle $=343$

Handa Ka Funda

Wilson's Theorem

1) What is the remainder when 97 ! is divided by 101 ?

Answer: Wilson's Theorem says for a prime number ' p '
$\operatorname{Rem}[(p-1)!/ p]=p-1$
This can be extended to say,
$\operatorname{Rem}[(p-2)!/ p]=1$

Let us use that here. We need to find out Rem [97! / 101] = r
We know from the above theorem,
$\operatorname{Rem}[99!/ 101]=1$
= Rem [99*98*97! / 101] = 1
$=\operatorname{Rem}\left[(-2)^{*}(-3)^{*} r / 101\right]=1$
$=\operatorname{Rem}[6 r / 101]=1$
$=6 r=101 \mathrm{k}+1$
We need to think of a value of k, such that $101 k+1$ is divisible by 6 .
If we put, $k=1$, we get $101+1=102$, which is divisible by 6 .
$=6 r=102$
= $r=17$
2) What is the remainder when 21 ! is divided by 361 ?

Answer: Rem [21!/361]
$=\operatorname{Rem}[(21 * 20 * 19 * 18!) / 361]$

Using Rem [ka/kb] = k Rem[a/b]
$=19 \operatorname{Rem}\left[\left(21^{*} 20^{*} 18!\right) / 19\right]$

Wilson's Theorem says for a prime number ' p ' Rem $[(p-1)!/ p]=p-1$
$=19 \operatorname{Rem}[(21 * 20 * 18) / 19]$
$=19 \operatorname{Rem}\left[\left(2^{*} 1^{*}(-1)\right) / 19\right]$
$=19 *(-2)$
$=-38$
= 323

