
Behaviours are typical quantitative traits. They are
driven by epistatic networks of multiple segregating
genes with PLEIOTROPIC effects, which necessitates the
use of statistical analyses in describing behavioural
phenotypes1,2. Behaviours are also exquisitely sensitive
to environmental variation, enabling a wide range of
behavioural phenotypes to be produced by genetically
identical individuals. Understanding the genetic archi-
tecture of a given behaviour requires the identification
of all contributing genes and knowledge of how these
genes interact as functional ensembles. In addition to
identifying the genes that are essential for manifestation
of a behaviour, we must also determine which of these
genes contribute to naturally occurring phenotypic
variation in behaviour, as polymorphisms that account
for this variation form the substrate for evolutionary
change.

Until recently, hopes of accomplishing these daunt-
ing tasks might have seemed unrealistic. However,
recent advances in quantitative genetic and functional
genomic technologies are now rapidly bringing these
goals within reach. Special attention must be paid to
controlling the genetic background and accounting for
the effects of environmental variation and sexual
dimorphism in behavioural phenotypes.

Drosophila melanogaster presents an excellent model
for studying the genetic architectures of complex traits,
including behaviours. The D. melanogaster genome has
been sequenced3, the organism is extremely amenable
to genetic manipulation, and extensive public data-
bases and genetic resources are available (for exam-
ple, see the FlyBase website). Of great importance for
the study of behaviour, D. melanogaster also provides the
ability to rapidly generate large numbers of genetically
identical individuals and rear them under controlled
environmental conditions.

In the last few decades, mutagenesis approaches have
identified several key genes that control behaviours in 
D. melanogaster, including the pioneering discoveries of
dunce 4 and rutabaga5, which are implicated in memory
and learning, and the period gene, which regulates circa-
dian locomotor activity6. Behaviours, however, are
orchestrated through ensembles of many interacting
genes, which contribute to the manifestations of behav-
iours to different extents. Early studies in which individ-
ual genes with large effects on specific behaviours were
identified have provided isolated pieces of a puzzle, the
completion of which requires the synthesis of tradi-
tional molecular genetic and quantitative genetic analy-
ses. The advent of the genomic era has enabled this
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QUANTITATIVE TRAIT LOCI 

(QTLs). One of many genetic
loci affecting variation in a
complex trait (for example,
behaviours, some aspects of
morphology, resistance to
environmental stress). QTLs
have individually small effects,
are sensitive to environmental
variation, and are initially
identified by statistical
association of trait phenotypes
with polymorphic molecular
markers.

PHOTOTAXIS

Movement towards a light
source.

GEOTAXIS

Movement upwards or
downwards, which requires the
perception of and response to
gravity.

CIRCADIAN LOCOMOTOR

BEHAVIOUR

Variation in endogenous
locomotor activity that depends
on time of day.

been developed to quantify many complex behav-
iours in D. melanogaster (FIG. 2). For example, court-
ship behaviour can be quantified by measuring
courtship latency (the time to initiate courtship) and
copulation latency (the time to copulation)7,8; larval
foraging behaviour can be quantified by measuring for-
aging track lengths9 (FIG. 2a); olfactory avoidance behav-
iour can be measured by the number of animals that
migrate away from a repellent odourant10 (FIG. 2b); and
aggression can be measured by quantifying the number
of aggressive encounters during a defined time period11.
Classic experiments in behavioural genetics have
involved clever apparati designed to quantify PHOTOTACTIC

behaviour12, GEOTACTIC behaviour13, CIRCADIAN LOCOMOTOR

BEHAVIOUR6, learning and memory4,5,14, and ethanol
sensitivity15–17 (FIG. 2c).

Complex behaviours are modular; for example,
courtship and mating behaviour require recognition,
orientation, locomotion, wing vibration and, ultimately,
copulation9,18. Phenotypic variation in any one of these
components will affect courtship and mating behaviour.
Many assays measure only one aspect of a behaviour,
which might not always be sufficient for correct evalua-
tion of the phenotype. For example, flies that show
aberrant avoidance responses to repellent odourants10

could be impaired not only in olfaction but also in loco-
motion, and this should be evaluated using a different
assay. Similarly, ‘learning and memory mutants’ identi-
fied using OLFACTORY CONDITIONING PARADIGMS4,5,14,19,20 might
be impaired for olfaction, rather than being specifically
impaired for learning and memory. Investigators who
carry out these studies are well aware of this. So, experi-
ments that measure a behavioural trait within the con-
text of a particular assay are always designed with this
caveat in mind; behavioural components that are not
directly measured might nonetheless affect the animal’s
performance.

Controlling genetic background
Differences in genetic background can profoundly affect
behavioural phenotypes. For example, CANTON-S FLIES will
consistently jump in response to a small amount of
odourant21, whereas jump responses are seldom
observed with Samarkand flies10. Furthermore, intro-
duction of a single P-ELEMENT in a defined genetic back-
ground causes widespread transcriptional alterations22,
indicating that single polymorphisms might profoundly
affect transcriptional profiles, and emphasizing the
importance of controlling genetic background when
analysing genes and genetic networks that mediate
behaviours. So, the most powerful experimental designs
for genetic analyses of behaviours in D. melanogaster
involve the construction of genetically identical lines: for
example, CO-ISOGENIC single P-element insertion lines 
for mutational analyses, and RECOMBINANT INBRED LINES

(RILs) for QTL mapping. For mutations resulting
from the insertion of a P-element, PHENOTYPIC REVERSION

and TRANSGENIC RESCUE experiments to confirm that the
P-element causes the mutant phenotype by disrupting
the candidate gene must be conducted in the same 
co-isogenic background.

integration by facilitating the large-scale discovery of
novel genes that contribute to behaviours, and has made
it possible to analyse how these genes are organized in
genetic networks.

Here, we review methods for the genetic analysis of
complex behaviours in D. melanogaster, and provide
guidelines for the design of mutant screens, the map-
ping of QUANTITATIVE TRAIT LOCI (QTLs), and other genetic
analyses of complex behaviours. We first discuss the
design of behavioural assays, and then examine how
genetic background, environmental factors and sexual
dimorphism should be taken into account. We also out-
line strategies for identifying genes that contribute to
behaviours, using the complementary approaches of
mutagenesis and mapping of genes that contribute to
naturally occurring variation. Finally, we describe
genetic and genomic approaches to organize behav-
ioural genes into functional networks, and discuss the
prominence of epistasis and pleiotropy.

Assay design
FIGURE 1 shows an overview of experimental strategies
used for studying the genetics of complex behaviours
in D. melanogaster. The starting point of any genetic
analysis of behaviour is to develop a quantitative assay.
Whereas such assays might sometimes, out of neces-
sity, be complex, ideally they should be simple enough
to enable large and rapid screens. Simple assays have

Assay design

Selection QTL mapping

High-resolution mapping

Quantitative complementation

Candidate-gene identification

Linkage-disequilibrium mapping

Mutant screens

Transcriptional profiling

Tests for epistasis; assessment of
sex effects and pleiotropy

Figure 1 | Experimental strategies used in quantitative genetic analyses of behavioural
traits in Drosophila melanogaster. The first step is the design of a simple and reproducible
behavioural assay. One strategy is then to carry out large-scale mutant screens for genes that
contribute to the behaviour. Epistatic interactions, effects attributable to sexual dimorphism and
pleiotropy can subsequently be evaluated, and effects of mutations in these genes on the
transcriptome can be assessed. As an alternative to screening, mapping studies that capitalize
on phenotypic variation can be used to identify regions containing quantitative trait loci (QTLs) that
contribute to variation in behaviour. QTL intervals can be refined by high-resolution mapping, and
quantitative complementation testing can then be used to identify candidate genes. Linkage
disequilibrium analysis can then identify polymorphisms within the candidate gene that contribute
to the observed phenotypic variation. In a third strategy, artificial selection can be used to
generate populations that differ widely for the behavioural trait. The genes that give rise to these
differences in the selected populations can be identified either by QTL mapping or by
transcriptional profiling.
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comparing the phenotypes of the Gal4–UAS offspring
with the phenotypes of F1 individuals derived from the
GAL4 parental line crossed to the original transposon-
free host strain in which the UAS-transgene construct
was introduced (for example, REF. 25).

Sample sizes
Behaviours are highly sensitive to environmental vari-
ation — even genetically identical individuals reared
under controlled environmental conditions will
exhibit variation in their behaviours (see below). This
necessitates measuring many individuals from each
line to give a statistically accurate estimate of the
mean genotypic effect.

How large is the required sample size? The answer
must take into account the phenotypic variation —
which is composed of genetic and environmental varia-
tion (or, in the case of isogenic lines, only environmental
variation)24 — and the probabilities of detecting spuri-
ous associations (false positives) or discarding signifi-
cant associations (false negatives). Let us assume that we
want to detect a quantitative difference in behaviour
between a line that is homozygous for a mutation and
another line that is homozygous wild type24. The rela-
tionship between the number of individuals that
must be tested and the size of the difference in behav-
iour to be detected, for standard false-positive and false-
negative significance thresholds, is illustrated in FIG. 3.
Note that as the magnitude of the effect falls, the num-
ber of individuals needed to detect it rises exponentially.
Most segregating QTLs have effects that require samples
of 500–2,000 individuals in order for them to be
detected.

Confounding environmental variation
As noted above, studies of D. melanogaster behav-
ioural genetics typically involve screening hundreds to
thousands of individuals. The design of such labour-
intensive experiments requires careful consideration of
the effect of common environmental variation on the
expression of behaviours. The quantitative-genetic con-
cept of common environment refers to any environ-
mental condition that causes phenotypes of individuals
reared within it to be more similar to each other than to
individuals reared in different common environments.
D. melanogaster reared in the same vial experience a
common spatial environment, whereas those measured
at the same time experience a common temporal envi-
ronment. Different observers or handlers represent
another source of common environmental variation.

As an example, consider a case in which variation in
behaviour among 500 D. melanogaster lines is to be
analysed, measuring 20 individuals per line for a total of
10,000 measurements. It might seem sufficient to simply
determine how many flies could be accurately measured
in a typical working day, and score all 20 flies from ‘x’ lines
per day until all were measured. However, daily fluctua-
tions in temperature, humidity and barometric pressure
contribute to variation in behaviour that would be erro-
neously ascribed to genetic differences between lines.
Furthermore, most behaviours require locomotion, and

Transgenesis in D. melanogaster often involves the
use of a binary expression system, such as the Gal4–UAS
(upstream activating sequence) system. This system
involves transactivation by the yeast Gal4 transcription
factor of a transgene that has been cloned behind the
GAL4 promoter UAS23. Flies expressing the transgene
are derived by crossing a line expressing Gal4 in a spe-
cific pattern (the Gal4 driver line) to a second line that
carries the UAS-transgene construct. Hybrid stocks con-
taining both the transgene and the GAL4 driver are
often derived from parental stocks with different genetic
backgrounds. The effects of this can be controlled by

OLFACTORY CONDITIONING

PARADIGM

An experimental procedure in
which subjects learn to avoid a
particular odour through the
pairing of exposure to that
odour with an aversive stimulus,
such as an electric shock.

CANTON-S FLIES

A standard wild-type 
D. melanogaster strain,
genetically different from
Samarkand (another standard
wild-type D. melanogaster
strain)

P-ELEMENTS

A family of transposable
elements that are widely used as
the basis of tools for mutating
and manipulating the 
D. melanogaster genome.

CO-ISOGENIC LINES

Homozygous lines that differ
only by the presence of a single
mutation.

RECOMBINANT INBRED LINES 

A population of fully
homozygous lines derived by 
20 or more generations of
full-sibling mating from the F2

derived from a cross between
two different inbred lines. Each
line comprises ~50% of each
parental strain in different
combinations.

PHENOTYPIC REVERSION

Demonstration of restoration of
the wild-type phenotype by
construction of an allele in
which a P-element associated
with a mutation has been
precisely excised.

TRANSGENIC RESCUE

Restoration of the wild-type
phenotype in a mutant
background by a construct
containing the wild-type copy 
of the gene that has been
introduced into the genome by
germ-line transformation.

B
a c

b

Figure 2 | Simple behavioural assays that are amenable to
high-throughput screening. a | Naturally occurring
polymorphisms in larval foraging behaviour can be readily
quantified by measuring track lengths of feeding larvae.
‘Rovers’ (lower image) will migrate long distances on their food
source, whereas ‘sitters’ (upper image) feed in a restricted
area. These two distinct behaviours are due to polymorphisms
in the foraging gene, which encodes a cyclic GMP-dependent
protein kinase9,84 (image courtesy of M. B. Sokolowski,
University of Toronto, Canada). b | Assay for olfactory
avoidance behaviour. Single-sex groups of five flies are placed
in a vial with marked compartments. A repellent odourant is
introduced on a cotton wool swab, the vial is placed
horizontally, and after a 15 second period the number of flies 
in the compartment farthest from the odour source is counted
at 5-second intervals. Ten counts are averaged to obtain an
avoidance score. This 1-min assay can then be repeated
several times to obtain a reliable quantitative statistical
measurement of the behaviour for a given genotype10. c | Alcohol
sensitivity can be quantified by measuring knock-down time in
an ‘inebriometer’. This is a 122cm-long vertical glass column,
which contains a series of slanted mesh partitions to which flies
can attach. Flies are introduced in the top of the column and
exposed to ethanol vapours. As they lose postural control, they
fall through the column. The elution time can be used as a
quantitative measure of alcohol intoxication15.
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randomizing lines across days. Alternatively, common
environmental variation can be explicitly accounted for
by taking replicate measurements of flies of the same
genotype emerging from different vials, and at different
times. For example, one could measure x lines per week
(a block), with 4 individuals per replicate vial, per line,
for each of 5 days. BOX 1 describes how the statistical
technique of analysis of variance (ANOVA) can be used
to analyze the results from such experimental designs
and to determine how much of the observed variation is
due to common environmental effects. Another com-
mon design is to include multiple measurements for a
standard control genotype for each block, and to express
scores for the genotype as deviations from the mean
obtained for the control32.

Genotype by environment interactions
The variation in mean performance across a range of
environments (for example, different temperatures) in a
behavioural assay of individuals of a single genotype is
called the environmental sensitivity of the genotype24

(FIG. 4). Different genotypes often vary in their environ-
mental sensitivities, a phenomenon called genotype by
environment interaction24 (FIG. 4), and this can lead to
difficulties in replicating the results of behavioural
assays. A classic demonstration of this comes from an
experiment in which eight different inbred strains of
mice were tested in six behavioural assays at three differ-
ent locations33. Despite extensive efforts to use exactly
the same strains and apparati, there were striking differ-
ences in performance of the different strains in the dif-
ferent test environments33. It should be noted that many
robust behaviours are reproducible in different labora-
tories. In addition, when different results are obtained
in different laboratory environments these discrepan-
cies do not necessarily cast doubt on their validity, but
rather establish genotype by environment interaction
as a sensitive property of the trait under study.

Sexual dimorphism in behavioural traits
A significant source of phenotypic variation in behav-
iour is the effect of sex. Male and female flies have gener-
ally not been separated in behavioural assays, or in the
subsequent analyses of their results, except when sex-
specific behaviours, such as courtship and mating
behaviour, have been analysed. Differences between
males and females (sexual dimorphism) in mean phe-
notypic values of quantitative traits, including behav-
ioural traits, are common10,34–37, both at the level of
mutational10 variation and naturally segregating varia-
tion34. Furthermore, differences at the level of trait phe-
notype are re-capitulated at the level of transcription,
and 50% or more of the D. melanogaster transcriptome
exhibits sex-biased expression38–40. Whereas in whole
flies such observations might be attributed to differen-
tial expression in the gonads, significant sexual dimor-
phism is also evident when RNA is extracted from 
D. melanogaster heads22,41.

Variation in sexual dimorphism is equivalent to
genotype-by-sex interaction, and can occur if a muta-
tion or QTL affects only one sex (sex-specific effects),

locomotor activity varies throughout the day, with peaks
early in the morning and in the late afternoon6,26–29. In
addition, two independent studies found circadian pat-
terns in the expression of more than a hundred genes30,31,
showing that networks of genes under circadian control
overlap with those that subserve many biological
processes, including behaviours. This emphasizes the
importance of controlling for variation in circadian
rhythms in the quantitative analysis of behaviour, which
can be achieved by restricting behavioural measurements
to one of the peak periods of activity.

Common spatial and temporal environmental varia-
tion can be accounted for by strict randomization across
environments, or by direct estimation. The former strat-
egy requires that each of the 20 individuals tested per
line in the example above comes from a different
replicate vial (the spatial environment), and that only
one individual per line is measured on any one day,
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Figure 3 | Sample sizes required in genetic analyses of complex behaviours. The minimum
numbers of individuals (n) that are required to detect a quantitative difference in a behavioural trait
between two genotypes are shown, as calculated using standard statistical theory82. The false-
positive and false-negative error rates used in the calculations were 0.05 and 0.1, respectively. Effect
sizes are given in within-genotype standard deviation units (σ). Values of n are shown for effect sizes
in the ranges 0.05σ–0.8σ (a) and 0.2σ–1.0σ (b). Consider mating behaviour as an example. If the
within-genotype variance of copulation latency is 16 min2, one would need a sample size of 84
individuals per genotype to detect a 2-min difference (0.5σ) in copulation latency between them.
However, if the within-genotype variance in copulation is 100 min2, a total of 525 individuals per
genotype would be required to detect a 2-min difference (0.2σ) in copulation latency between them.
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Box 1 | Analysis of variance 

General principles
Analysis of variance (ANOVA) is a key statistical tool in quantitative genetics. In essence, it is an expansion of the
standard Student’s t-test, which assesses the statistical significance of differences between the mean values of two data
sets relative to the variance within each. ANOVA allows multiple comparisons and divides the observed variance among
its contributing sources; that is, it quantifies to what extent variation attributable to each factor — for example
genotype, age, sex, experimental treatment — contributes to the overall variation around the mean.

The principle of ANOVA can be illustrated with reference to the figure above, which depicts two different scenarios of
variation in a behavioural trait within and between five distinct genotypes. The question of interest is whether there is a
significant difference between the five genotypes. The ANOVA model used to determine this is Y = µ+ G + Er, where Y
is the observed value for each individual,µ is the overall mean value, G is the effect of genotype, and Er is the variance
within each genotype. The effect of genotype will be significant if the variance between the mean value of the behaviour
between genotypes is greater than the variance in the behaviour within genotypes. In other words, G will be significant
if the behaviour of individuals of a given genotype is more similar to each other than to individuals of a different
genotype. In the example shown in the figure, the effect of genotype would be significant in situation 1, but not in
situation 2.

Examples of ANOVA models used in quantitative behavioural genetics 
Example 1. An ANOVA model designed to take account of common spatial and temporal environmental variation
when evaluating behavioural differences for a single sex between multiple genotypes is Y = µ+ B + G(B) + R(G) + Er.
The other terms of the model partition the environmental variance between blocks of time (B), different genotypes
within blocks (G) and replicate vials within genotypes (R). Here, Er represents the average environmental variance
within replicate vials. This model evaluates the effects of the different genotypes as deviations from the block means,
taking account of the common temporal environmental variation, and averaged over the mean of all replicate vials,
taking account of the common spatial environmental variation.

Example 2. The magnitude of a genotype by environment interaction effect (FIG. 4) can be estimated in an
experimental design in which the behaviour of each of several genotypes is assessed in several defined environments
(for example, temperature, different locations). The simplest model for a single sex is: Y = µ+ G + E + G×E + Er. This
model evaluates whether there are differences in behaviour between genotypes (G), averaged over all environments,
and whether there are differences in behaviour between environments (E), averaged over all genotypes. The genotype
by environment interaction (G×E) is the extent to which the performance of a particular genotype in a given
environment deviates from the performance predicted by the average performance of that genotype across all
environments, and the average effect of that environment across all genotypes. Er is the average variance within
genotypes and environments. Sex can also be considered a specific environment in which the genome operates. The sex
environment and genetic interactions with sex (S) can be evaluated in the analogous model: Y = µ+ S+ G + G×S + Er.

Example 3. ANOVA models can be constructed for any number of effects. For example, whole-genome expression arrays
can be assessed for males and females (S), between different genotypes (G) and in different environmental treatments or
tissues (T ). The ANOVA model for such an experiment, applied to each gene on the array, would partition variation
among the main effects and their interactions as follows: Y = µ+ S + G + T + S×G + S×T + G×T + S×G ×T + Er. In this
way, we can evaluate not only the extent to which transcript abundance varies between sexes (averaged over genotypes
and treatments), genotypes (averaged over sexes and treatments) and treatments (averaged over sexes and genotypes),
but also the extent to which there is genotype by sex and genotype by environment interaction for transcript
abundance.

For a comprehensive discussion of ANOVA models, see REF. 82.
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with subtle, quantitative effects on behaviour can be
done if the mutations are introduced in co-isogenic
backgrounds. This approach is highly effective, both for
the identification of first mutations in predicted genes
that affect behaviour, and for uncovering novel
pleiotropic effects of known genes on behavioural phe-
notypes10,45,46. The large Exelixis collection of co-isogenic
P and piggyBac insertions will be an invaluable resource
to the fly community in this regard47.

Sample sizes of 50 or fewer individuals in primary
screens of thousands of lines might not be large enough
to detect effects of less than 0.7 standard deviation units
(FIG. 3, inset). It is advisable to perform preliminary
screens to determine which mutant lines exceed pre-
scribed confidence intervals from the overall mean32;
these lines can then be re-tested with larger sample sizes
to remove false positives.

Mapping genes affecting natural variation 
QTL mapping presents a complementary approach to
mutant screens that exploits naturally occurring allelic
variation to identify genes that affect behaviour. These
studies also give insights into the evolutionary forces
responsible for maintaining natural genetic variation for
behavioural traits. Regions defined by an initial genome
scan can be further refined by high-resolution recombi-
nation mapping or deficiency COMPLEMENTATION TESTS.
After narrowing the QTL intervals, candidate genes can
be identified and validated through quantitative com-
plementation tests. Finally, LINKAGE DISEQUILIBRIUM (LD)
mapping can identify the molecular polymorphisms
that define QTL alleles (FIG. 1). These mapping strategies
are described in more detail in this section.

affects both sexes but to different degrees (sex-biased
effects), or affects both sexes but in opposite direc-
tions (sex-antagonistic effects)42. Sex-antagonistic
effects for behaviours that are components of fitness
are of particular interest, as opposite effects in males
and females lead to the maintenance of genetic varia-
tion at such loci in natural populations43. Clearly, an
appreciation of the genetic architecture of behaviours
requires that the sexes be measured separately, where
appropriate (FIG. 4).

Mutant screens
Mutant screens for behavioural genes are far more labo-
rious than those for mutations with large qualitative
effects, such as homozygous-lethal or sterile mutations.
Dissection of genetic networks that drive behaviours
requires the analysis of hypomorphic mutations that
often elicit subtle phenotypic effects, which are sensitive
to environmental variation1,2,44. This necessitates the
measurement of behavioural phenotypes for multiple
individuals carrying the same mutation, which first
requires establishing stocks for each homozygous viable
mutation.

Until recently, most publicly available mutant lines
have come from various genetic backgrounds and often
harbour several additional mutations in addition to the
mutation that is under investigation. As the segregating
variation within these strains is often of the same order
of magnitude as the mutational effect under analysis,
this precludes or complicates screens for behavioural
effects. At the very least, it imposes a limit to the magni-
tude of the mutational effect that can be reliably
detected. However, highly sensitive screens for mutations

COMPLEMENTATION TESTS

In classical genetics, two
mutations with the same
phenotype are said to
complement if their F1 hybrid is
wild type, and fail to
complement if the F1 hybrid
exhibits the mutant phenotype.
Failure to complement can arise
if the mutations are alleles of the
same locus, or are alleles of
different loci that interact
epistatically in the same genetic
pathway.

LINKAGE DISEQUILIBRIUM

Non-random association of
gene frequencies at two or more
polymorphic loci in a
population; that is, alleles of two
different genes are not present
together in gametes in the
frequencies predicted by the
product of their frequencies.
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Figure 4 | Genotype by environment interaction. If different genotypes vary in the magnitude or direction of their
environmental sensitivities, this is considered genotype by environment interaction. a | Phenotypic values for genotypes 
A and B in two different environments. The phenotypic value for B is greater than for A, but the relative differences in the two
environments are the same, giving rise to parallel reaction norms (the lines connecting the phenotypic values in each
environment) that indicate an absence of genotype by environment interaction. b | Both genotypes perform equally well in
environment 1, but the phenotypic value of genotype B is substantially greater than that of genotype A in environment 2,
indicating genotype by environment interaction. c | This shows a more extreme scenario in which the reaction norms cross,
as genotype A performs better than genotype B in one environment, but in the other environment genotype B outperforms
genotype A. The presence of genotype–environment interaction in panels b and c would be detected by a significant
genotype by environment interaction term in a factorial ANOVA of the data (BOX 1). Note that the same analysis pertains to
sexual dimorphism, as each sex can be considered a different environment.
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Complementation analyses. Once QTL regions have
been identified, complementation analyses can be used
to narrow the QTL interval and identify candidate
genes. D. melanogaster geneticists are in the privileged
position to be able to quickly nominate candidate genes
for further study by using quantitative complementa-
tion tests to deficiencies and mutations. Quantitative
deficiency mapping involves crossing the two parental
lines used to map the QTLs using publicly available
deficiencies that span each QTL region. Failure of a defi-
ciency to complement the QTL alleles occurs when the
difference in behaviour between the two parental strains
is greater in the genetic background of the DEFICIENCY

CHROMOSOME than in the background of the BALANCER

CHROMOSOME56. Failure to complement can occur if the
deficiency exposes a QTL in the two parental strains
with different allelic effects on the trait, or if there is
epistasis between the deficiency chromosome and
other QTLs affecting the trait in the parent strains. In
either case, the deficiency can be said to uncover a
QTL affecting the trait, but the mode of action (allelic
or epistatic) will not be known until further tests are
done. The use of overlapping deficiencies can map
QTLs to sub-centimorgan intervals48,56.

Until recently, the interpretation of these tests was
compromised because the available deficiencies were
generated in different genetic backgrounds, which often
contained visible morphological mutations, and the
breakpoints were only defined cytologically. The use and
precision of deficiency complementation has been
greatly advanced by the DrosDel and Exelixis collections
of small deletions with molecularly defined breakpoints
that are induced in isogenic backgrounds57.

After the QTL interval has been narrowed and the
number of possible candidate genes has been reduced
by complementation analyses to deficiencies, comple-
mentation tests to all genes in the region for which
mutants are available can identify candidate genes for fur-
ther study. Quantitative complementation tests to muta-
tions follow the same procedure and logic as deficiency
complementations48,58. Again, the Exelixis collection of
co-isogenic P and piggyBac insertions will facilitate this
approach47.

Linkage disequilibrium mapping. Linkage disequilib-
rium mapping capitalizes on historical recombination
and can be used both to determine whether candidate
genes are associated with variation in a behaviour in a
natural population and to identify polymorphisms
that contribute to this variation24. The method is
based on establishing statistically significant associa-
tions between sequence variants in candidate genes
and phenotypic values. The resolution of the method
depends on local recombination rates, the number of
generations following the mutation event, population
demography, and the density of polymorphic markers
surveyed. In regions of normal recombination in 
D. melanogaster, LD decays rapidly within several hun-
dred bp59, which provides enough resolution to identify
candidate genes and, ultimately, QUANTITATIVE TRAIT

NUCLEOTIDES (QTNs)58.

QTL mapping. The first step is to map genetic regions
containing one or more QTLs that affect variation in
behaviour. This can be carried out by LINKAGE MAPPING

using polymorphic molecular markers in mapping pop-
ulations derived from two genetically divergent inbred
strains1,2. Given the low heritability of most behaviours,
the most efficient experimental design is to allow
recombination to occur between two parental strains by
generating an F2 and then creating RILs by inbreeding
the F2 for 20 generations or more. As for mutagenesis
screens, the ability to obtain replicate measurements
from multiple genetically identical individuals from
each RIL greatly increases statistical power for mapping
QTLs. In the past, we and others have used this method
to map QTLs affecting variation in olfactory behav-
iour48, courtship song49 and male mating behaviour8.
Statistical methods that account for multiple QTLs50

and that use PERMUTATION to determine the appropriate
experiment-wise false-positive error rates51 are now
regarded as standard.

There are two challenges for mapping QTLs that affect
complex behaviours. The first challenge relates to genetic
sampling, as the QTLs that have been mapped so far
encompass only a tiny fraction of naturally occurring
variation. When carrying out QTL mapping, it is neces-
sary to use a genetic base that is as broad as possible to
build a complete picture of the variation affecting a par-
ticular trait. This can be accomplished by deriving a large
number of inbred lines from a natural population and
screening them for the trait of interest to identify extreme
phenotypes.Alternatively, one could construct lines that
have undergone artificial selection for increased or
decreased expression of the behaviour. Selection has the
advantage that mean trait values are likely to be pushed
far beyond the range seen in the initial population.
Guidelines for the design of artificial selection experi-
ments are well-established24 and include: starting with a
large base population that has been recently derived
from nature, to ensure that most common alleles affect-
ing the trait have been sampled; replicating all selection
lines; including replicate control lines to assess INBREEDING

DEPRESSION and to account for fluctuations in the environ-
ment at each generation; minimizing the effects of GENETIC

DRIFT during selection by maximizing population size; and
stopping selection after approximately 25 generations,
after which spontaneous mutations are expected to
contribute to the response to selection52–54.

The second challenge is to map QTLs to the level of
contributing genetic loci. Achieving this by standard
RECOMBINATION MAPPING alone requires vast numbers of
recombinants, and an ultra-high-density map of poly-
morphic molecular markers. In the past, the number of
available markers has been limiting, but large numbers
of easily scored SNPs and length variants have been iden-
tified recently55, and additional polymorphisms can be
readily found by direct sequencing. Increasing the num-
ber of recombination events can be achieved by con-
structing very large F2 or BACKCROSS mapping populations
(10,000 individuals or more), or large ADVANCED INTERCROSS

POPULATIONS, from which new and large populations of
RILs can then be developed.

LINKAGE MAPPING

Markers that are physically close
to a locus of interest segregate
‘tightly’ with the locus and will
statistically be more closely
associated with the observed
variance of a trait. This property
can be used to detect association
in a population between a
genetic marker and a locus that
contributes to a particular
phenotype.

F2

A segregating generation of an
intercross between F1 individuals
derived from two parental lines.

PERMUTATION TESTING

A method for obtaining
appropriate significance
thresholds for data sets in which
multiple statistical tests are
performed. The original analysis
is repeated many times on data
sets generated by appropriate
random scrambling of the
original data, generating an
empirical distribution of the test
under the null hypothesis.

INBREEDING DEPRESSION

The reduction in viability and
fertility of inbred offspring
compared with outbred offspring.

GENETIC DRIFT

Also known as random drift.
A phenomenon whereby the
frequency of a gene in a
population changes over time
owing to random sampling in
finite populations.

RECOMBINATION MAPPING

Determining the order and
location of genes on a
chromosome in terms of the rate
of recombination between them.
When applied to QTL mapping,
the position and effect of the
QTL is inferred by linkage
disequilibrium of the trait
phenotype with the genotype of
flanking molecular markers.

BACKCROSS

A segregating generation in
which F1 hybrids derived from
two inbred parents are crossed to
one of those parents.

ADVANCED INTERCROSS

POPULATION

A population derived from
several generations of crosses
among F2 individuals to
maximize recombination for
high resolution QTL mapping.

DEFICIENCY CHROMOSOME

A chromosome in which a
defined region has been deleted.
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strategies to reduce the phenotypic variation that take
advantage of the ability to make replicate measurements
of homozygous genotypes. Constructing inbred lines
and measuring n individuals from each reduces the
within-line environmental standard error by the square
root of n. Genetic variation unlinked to the candidate
gene can be eliminated by substituting homozygous
wild-derived chromosomes into a common inbred
background (chromosome substitution). The power of
these approaches in D. melanogaster is illustrated by a
study in which only about 200 CHROMOSOME SUBSTITUTION

LINES were required to detect an association at a candidate
gene that accounted for 2% of the total phenotypic vari-
ation58. Finally, constructing near-isoallelic lines of the
wild-type candidate-gene alleles considerably increases
the power to detect associations with small effects60,61.

It is rare to be able to conclude definitively that a
polymorphism in a candidate gene associated with vari-
ation in a trait actually causes the variation, as spurious
LD could arise from recent ADMIXTURE. In addition, using
only a subset of polymorphic markers within the candi-
date gene leaves open the possibility that the true causal
polymorphism is in LD with the candidate site, but
actually lies outside it1,2. To alleviate the latter problem, it
will be necessary in the future to obtain full DNA
sequences of the candidate genes for each allele to iden-
tify all polymorphisms and to extend the analysis to
neighbouring genetic regions to document the extent of
LD precisely.

Transcriptional profiling
Whole-genome transcriptional profiling is another
approach that can be used to identify genes that regulate
complex behaviours. Specifically, changes in the expres-
sion of a gene in the background of single mutations
that affect a trait22, or between lines selected for different
phenotypic values of the trait62, implicate the involve-
ment of the gene in a particular behaviour. However,
transcript abundance itself is a quantitative trait, so the
design and analysis issues discussed above also pertain
to whole-genome expression analysis. Moreover, RNA
extraction, labelling and hybridization during profil-
ing experiments, as well as analysis of the signal, add
additional sources of variation.

Controlling for biological variation. To control for bio-
logical variation between individuals in microarray
experiments — that is, for confounding environmental
variation and genotype by environment interactions —
all genotypes compared on an array must be reared
simultaneously under standard conditions. Pools of 50
or more flies of each genotype are required to produce
sufficient RNA for a single hybridization, and care
should be taken to ensure that each replicate vial in
which the animals are reared is equally represented 
in the sample. As the abundances of many transcripts
show circadian variation30,31, all samples should be pre-
pared at the same time of day. At least two independent
pools of individuals, RNA extractions and hybridiza-
tions are required for each combination of factors to be
tested in the statistical analysis (BOX 1).

The principle of LD mapping resembles that of stan-
dard QTL mapping. The requirements are: a sample of
individuals from a population for which quantitative
measurements of the behavioural phenotype have
been obtained; and data on molecular polymor-
phisms at a candidate gene — which can be identified
from P-element mutagenesis screens, QTL mapping or
transcriptional profiling (see below). For each polymor-
phism, a statistical test (ANOVA or student’s t-test) is
performed to determine whether differences in the trait
phenotype are associated with a molecular marker
genotype. If so, the true causal polymorphism is in LD
with the molecular marker.

Typically, LD mapping studies involve the testing of
many polymorphisms per candidate gene for associa-
tions with a phenotype. This poses a multiple testing
problem, as the probability of finding associations by
chance increases when the same data set is sampled mul-
tiple times. Permutation tests can be used to determine
an appropriate statistical threshold for the detection of
significant associations (BOX 2).

Linkage disequilibrium mapping studies require large
sample sizes. If a polymorphism in a single candidate
gene were to account for 1% of the total phenotypic vari-
ation in a trait, a sample of 2,100 individuals would be
needed for each homozygous marker genotype to detect
this effect (FIG. 3). If the alternate marker polymorphisms
associated with the trait both occurred with a frequency
of 0.5, this would require a total sample of 8,400 individ-
uals; the total sample size required would be even larger
for more extreme marker allele frequencies. However,
using D. melanogaster as a model system we can employ

BALANCER CHROMOSOME

A chromosome with one or
more inverted segments that
suppress recombination, ideally
over the length of the
chromosome. It is usually
identified in crosses by a
dominant marker, and carries at
least one recessive lethal
mutation. They allow lethal
mutations to be maintained
without selection, as the only
offspring that will be viable from
an intercross will be those that
carry the mutation and are
heterozygous for the balancer
chromosome.

QUANTITATIVE TRAIT

NUCLEOTIDE 

Molecular polymorphisms(s)
associated with naturally
occurring variation in a
quantitative trait.

CHROMOSOME SUBSTITUTION

LINE

A stock in which a single
homozygous chromosome from
one strain is introduced into the
homozygous genetic background
of a second, unrelated strain.
It is possible to construct
chromosome substitution lines 
in a few generations using 
D. melanogaster balancer
chromosomes.

Box 2 | Using permutation tests for linkage disequilibrium mapping

Typically, linkage disequilibrium mapping studies involve testing many polymorphisms
per candidate gene for associations with phenotype. Therefore, one cannot use the
standard p<0.05 criterion for statistical significance, as 5% of the tests would be expected
to be significant by chance alone. Two kinds of permutation tests, which address two
subtly different questions, can be used to solve the problem of multiple testing. The first
question is whether the candidate gene affects the behavioural phenotype. If so, one
would expect more significant genotype-phenotype associations than expected by
chance. To test this, the phenotypic data are randomly permuted among the genotypes
for each allele, that is, the phenotypes are randomly associated with the genotypes. Tests
for genotype-phenotype association are conducted on the permuted data, and the total
number of associations at p<0.05 is recorded. The process of scrambling and random
association of genotype and phenotype, followed by recording the total number of
significant associations, is repeated 1,000 times. This yields an empirical distribution of
numbers of significant associations under the null hypothesis where there is no
significant genotype-phenotype association. If the number of significant associations
observed in the analysis of the real data exceeds the 950th highest number in the
permuted data set, we can infer that the candidate gene is associated with naturally
occurring variation in behaviour83.

The second question is whether particular molecular polymorphisms in the
candidate gene are associated with naturally occurring variation in the trait. To assess
whether any single association is more significant than expected by chance, the same
permutation is done, but only the lowest p-value for each permuted data set is
recorded. Any single association with a p-value lower than the 950th lowest p-value 
in the permuted data set is associated with variation in behaviour, and is either the
causal quantitative trait nucleotide, or is in linkage disequilibrium with the causal
quantitative trait nucleotide59.
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ADMIXTURE

The mixture of two or more
genetically distinct populations.

— the experiments must be repeated with the samples
labelled with the reciprocal dyes63.Various ‘loop designs’
have been proposed, in which each member of a set of
samples is compared with a different member of the set
in such a way that each sample serves as a reference for at
least one other sample63.Whereas such designs reduce the
numbers of samples required, these analyses are not bal-
anced and do not allow an orthogonal partitioning of the
variance. They are, therefore, not recommended unless
samples are difficult to procure and cost is prohibitive.

Accounting for multiple tests. The results of statistical
analyses of transcript abundance generate a p-value for
each term in the ANOVA (for example, for sex, geno-
type, treatment and their interaction terms, see BOX 1)
for each of the elements on the array. The p-value is the
probability that nonsignificant effects will be called sig-
nificant — the false-positive rate. Given that there are
about 14,000 D. melanogaster genes to evaluate3, it is
clear that adopting the standard p<0.05 false-positive
rate is too lenient, as 700 genes would be deemed signifi-
cant by chance alone. One method to control the false-
positive rate is to reduce the p-value at which terms are
considered to be significant to 0.001 or less22; only 14
tests are expected to be this extreme by chance.

Another possible way of identifying genuine positive
signals would be to assign significance to arbitrary fold-
change cut-offs. However, as shown in FIG. 5, this
method is not suitable for this type of analysis as it
results in the identification of an extremely large num-
ber of false positives and the incorrect designation of a
large number of false negatives. Evaluating the data
according to statistical significance levels greatly
increases the reliability and sensitivity of detecting
changes in transcript abundance. Reducing the p-value
to an arbitrary level might be overly conservative, how-
ever, and controlling the false discovery rate (FDR) is
gaining acceptance as the optimal method for assess-
ing significance of whole-genome expression data64.
The FDR is the proportion of false positives among all
significant effects and, in practical terms, represents
the rate at which significant effects fail to replicate in
subsequent experiments64.

Assessment of candidate genes from profiling experi-
ments. Expression microarrays can reveal the extent of
transcriptional disruption that results from single
mutations affecting behaviours in co-isogenic back-
grounds, and also provide insights into changes in
gene expression that accompany artificial selection for
behavioural traits (FIG. 1). For example, studies on
olfactory behaviour in co-isogenic P-element insertion
lines of D. melanogaster identified 14 lines that showed
an aberrant olfactory avoidance response10. Trans-
criptional profiling of five of these mutations in smell
impaired (smi) genes and their control showed that
530 genes were significantly up- or downregulated in
one or more smi mutant backgrounds22. Similarly,
250 genes showed two-fold or greater differences in
expression between two lines selected for high and
low geotaxis behaviour62.

Statistical analysis of microarray data. Many array
analyses of changes in transcript abundance focus on
pair-wise comparisons62 and commonly use a fold-
change criterion for significance. However, experiments
often have multiple possible comparisons, for example
between males and females, different genotypes and,
possibly, different environmental conditions. ANOVA
models are therefore appropriate for the analysis of
expression microarray data (BOX 1).

Because partitioning of the variance in transcript
abundance for analysis by ANOVA requires that the
experimental design is balanced (2ijn arrays are needed
for two sexes, i genotypes, j treatments and n replicates
per sex, genotype and treatment), the number of arrays
needed to perform even a small experiment can become
large. For example, an experiment using high-density
oligonucleotide microarrays (Affymetrix GeneChips)
comparing males and females of two genotypes, with two
replicates per sex for each genotype, requires eight arrays.
Sample sizes for EST arrays must be at least doubled
because the intensity of the signal is based on competi-
tion between samples labelled with different fluorescent
dyes; to control for dye effects — that is, differential
labelling of particular cDNAs with each of the two dyes

M>F F>M

10

8

6

4

2

0
–5 0 5

p = 0.001

p = 0.01

p = 0.05

Lo
g 

(l/
p)

Figure 5 | Microarray analysis of sex-biased transcripts in Drosophila melanogaster.
Twelve replicates of RNA extracted from male (M) and female (F) heads of co-isogenic
D. melanogaster P-element insertion lines were hybridized to Affymetrix GeneChip microarrays22.
The ratio of transcript abundance for each probe set on the array for males and females was
determined. Data were analysed by ANOVA to establish p-values for determining significant
differences in expression between males and females for each probe set. The graph shows a
‘volcano’ plot, which compares p-values for differences in transcript abundance (y-axis), with
an arbitrary significance threshold based on a fold-change in transcript abundance between
each sex (x-axis). Probe sets are indicated by circles. The bottom, central and top horizontal
red lines denote thresholds of p = 0.05, p = 0.01 and p = 0.001, respectively. The vertical red
lines denote two-fold thresholds. M>F and F>M designate regions of the graph where the ratio
of expression of a gene in males is greater than in females, and vice versa, respectively. A total
of 666 probe sets are significantly different at p<0.001 (those in the area above the line
corresponding to this value); of these, only 90 had differences of two-fold or greater. The green
area contains the 576 probe sets that would have been false negatives based on a two-fold
significance threshold criterion. The orange areas would have been false positives, which do
not reach formal statistical significance at p<0.001, despite a two-fold or greater difference in
transcript abundance. Adapted, with permission, from Nature Genetics REF. 22  (2003)
Macmillan Magazines Ltd.
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HALF-DIALLEL CROSS

Construction of all possible
n(n–1)/2 heterozygous
genotypes between n
homozygous lines, excluding
reciprocal crosses.

backgrounds. To account for this, transcriptional profiles
can be analyzed by comparing F1 values to the expected
midparent values65 — that is, the predicted average values
of the two homozygous parental strains. In this case,
however, resolution becomes limited to the detection of
large additive effects, as epistasis in the F1 as a conse-
quence of the mixed genetic background from the
parental strains remains a confounding factor.

Epistasis
In quantitative genetics terminology, epistasis refers to
non-additive interactions between loci that affect a
trait24. Identifying epistatic interactions is important for
gaining insights in genetic pathways or networks of
genes affecting a trait. The simplest quantitative genetic
approach to this in D. melanogaster is to evaluate epista-
tic interactions between co-isogenic mutations that
affect a trait by generating all possible transhetero-
zygotes. This method was first applied to the set of
co-isogenic P-element smi mutations described above,
revealing an ensemble of interacting genes with defined
enhancer or suppressor effects66.

A simple ANOVA of the behavioural data from such
transheterozygotes will reveal whether there is variation
among the different genotypes. If so, the data are
analysed as a HALF-DIALLEL CROSS. For each mutation, its
average phenotypic value as a transheterozygote com-
pared with all other mutations is calculated and
expressed as the deviation from the overall mean to give
a value known as the general combining ability (GCA).
The specific combining ability (SCA) of each double
heterozygote67,68 — defined as the difference between
the observed phenotypic value of the genotype from
that expected from the sum of the corresponding GCAs
of contributing mutations — is also calculated. The
SCA, therefore, estimates the magnitude of epistatic
interactions.

This half-diallel design can only be used to detect
epistasis if the mutations are co-isogenic, as the SCA
would otherwise estimate both dominance and epista-
sis. Another drawback to this design is that the number
of crosses necessary to evaluate n mutations is
n(n–1)/2, which increases exponentially as n increases.
For example, analysis of epistasis among 12 smi muta-
tions required constructing 66 transheterozygous
genotypes66.

More extensive analyses of epistasis require con-
structing all nine possible two-locus genotypes for two

In the former case, because changes in gene expres-
sion are observed in a co-isogenic background, these
changes are attributable to genes co-regulated by the smi
mutation. In the latter case, the genetic backgrounds of
the selected lines have diversified through changes in
allele frequencies. The observed expression differences
could therefore be due to genetic variation in genes
affecting geotaxis or other genes that differ between
the lines as a result of random drift, or genes that are
co-regulated by genetically variable loci.

Genes with differential transcript abundance in
genotypes exhibiting different behavioural phenotypes
are candidate genes affecting the behaviour under study.
However, genes that show transcriptional co-regulation
do not necessarily contribute to the behavioural pheno-
type. If mutations in these genes are available, one can
test whether the co-regulated candidate gene has a direct
effect on the behaviour by comparing the behaviour of
mutant and wild-type flies62. Although differences in
genetic backgrounds of most existing mutations com-
promise this approach, these can be minimized by chro-
mosome substitution and backcrossing to a common
inbred stock62. Three of the four mutations in candidate
genes tested in the study of geotactic behaviour
described above had direct effects on the trait62.

To address the question of whether genes whose
expression is co-regulated by the mutation also interact
epistatically with the mutation, quantitative complemen-
tation tests can be performed with existing mutant
stocks22 by crossing the mutations at the candidate genes
to the tested mutations and their co-isogenic control
strains22. In the study of the smi mutations described
above, 14 of 21 mutations in candidate genes tested
(67%) exhibited epistasis for olfactory behaviour — that
is, they were smell-impaired as double heterozygotes
(transheterozygotes) with a recessive smi mutation, but
not as heterozygotes in the control background22. So,
transcriptional profiling studies present an effective tool
for the discovery of new candidate behavioural genes.

Profiling of transgenic lines. Expression microarrays
can also be used to assess the consequences of targeted
overexpression of transgenes. Crossing a homozygous
GAL4 driver line with a line homozygous for the UAS-
transgene construct results in hybrid F1 offspring in
which the transgene is expressed in cells that express
Gal4 (REF 23). Often, the parental driver line and the line
containing the UAS transgene have different genetic

Table 1 | Drosophila melanogaster behavioural genes with pleiotropic effects

Gene Protein encoded Traits affected References

Shaker Voltage-gated Courtship; lifespan gustation; olfactory 19,22
potassium channel behaviour

Cryptochrome Cryptochrome Circadian rhythms; geotaxis 62,74

Pigment dispersing factor Pigment dispersing factor Circadian rhythms; geotaxis 62,74

cAMP-dependent cAMP-dependent Circadian rhythms; sensitivity to cocaine 75
protein kinase type II protein kinase type II and ethanol; ovarian development

dunce cAMP-specific Learning and memory; locomotor rhythms; 16,20,76–81
phosphodiesterase ethanol tolerance; olfaction; food search;

aggregation behaviour; female fertility; lifespan

©  2004 Nature  Publishing Group



848 | NOVEMBER 2004 | VOLUME 5 www.nature.com/reviews/genetics

R E V I EW S

epistatic networks of pleiotropic genes. This realization
raises a number of central questions. First, what is the
extent of epistasis of each gene in a network, and how
plastic are these interactions? Second, how do genetic
networks that drive behaviour change during develop-
ment? Third, how are genetic networks modified
through interactions with the physical and social envi-
ronments, and to what extent do these networks differ
between the sexes? Finally, how do genetic networks
that drive behaviours evolve? These challenges define
future areas of research for behavioural geneticists and
can be met only by careful quantification of phenotypes,
an awareness that genetic backgrounds and sexually
dimorphic effects are crucial parameters, and an
appreciation of the pleiotropy of behavioural genes.

Microarray expression studies have great promise
for determining the basis of complex behavioural
traits, but experiments performed so far have relied on
RNA from whole flies or whole fly heads. So, the
observed transcriptional profiles are composites that
are summed over different heterogeneous neuronal
subpopulations. An important challenge for the
emerging field of quantitative neurogenomics is to
develop methods to analyse transcriptional profiles in
single neurons or in homogeneous neuronal popula-
tions. Placing cell-specific genetic networks in the con-
text of neural connectivity is the next frontier in our
understanding of neural and genetic principles that
drive behaviours.

potentially epistatic loci with two alleles at each locus —
instead of only the transheterozygotes required in the
diallel method — and computing additive, dominance
and all possible epistatic effects69. Care must be taken
when applying this method to P-element insertional
mutations, as variation in the numbers of P-element
copies (from 0 in the P-element-free host strain to four
in the double mutant homozygote) could be potentially
confounding70.

Pleiotropy
Screens for quantitative effects of P-element inser-
tions10,71,72, as well as transcriptional profiling22,30,31,62,
indicate that large numbers of interacting genes affect
behaviour. This, in turn, implies massive pleiotropy, chal-
lenging the view that complex behaviours are specified
by specific dedicated regulatory genes73. Behavioural and
developmental pleiotropy is apparent from the emer-
gence of the same loci in independent mutant screens,
and also from transcriptional profiling studies that show
that most co-regulated transcripts in mutant back-
grounds represent gene products that would not be
expected a priori to contribute to the behavioural phe-
notype. Some examples of behavioural genes with
pleiotropic effects are given in TABLE 1.

Future perspectives
The emerging picture for the genetic architecture of
complex behaviours is of dynamic, overlapping,

1. Mackay, T. F. C. Quantitative trait loci in Drosophila. Nature
Rev. Genet. 2,11–20 (2001).

2. Mackay, T. F. C. The genetic architecture of quantitative
traits. Annu. Rev. Genet. 35, 303–339 (2001).

3. Adams, M. D. et al. The genome sequence of Drosophila
melanogaster. Science 287, 2185–2195 (2000).

4. Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G. & Benzer, S.
dunce, a mutant of Drosophila deficient in learning. Proc.
Natl Acad. Sci. USA 73, 1684–1688 (1976).

5. Quinn, W. G., Harris, W. A. & Benzer, S. Conditioned
behavior in Drosophila melanogaster. Proc. Natl Acad. Sci.
USA 71, 708–712 (1974).

6. Konopka, R. J. & Benzer, S. Clock mutants of Drosophila
melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116
(1971).

7. Greenspan, R. J. & Ferveur, J.-F. Courtship in Drosophila.
Annu. Rev. Genet. 34, 205–232 (2000).

8. Moehring, A. J. & Mackay, T. F. C. The quantitative genetic
basis of male mating behavior in Drosophila melanogaster.
Genetics 167, 1249–1263 (2004).

9. Osborne, K. A. et al. Natural behavior polymorphism due to
a cGMP-dependent protein kinase of Drosophila. Science
277, 834–836 (1997).
A classic paper, reporting the behavioural effects of
naturally occurring polymorphisms in the foraging
gene, which encodes a cGMP-dependent protein
kinase. The authors show that subtle alterations in
enzyme activity profoundly alter larval foraging
behaviour in D. melanogaster.

10. Anholt, R. R. H., Lyman, R. F. & Mackay, T. F. C. Effects of
single P-element insertions on olfactory behavior in
Drosophila melanogaster. Genetics 143, 293–301 (1996).

11. Chen, S., Lee, A. Y., Bowens, N. M., Huber, R. & Kravitz, E. A.
Fighting fruit flies: a model system for the study of aggression.
Proc. Natl Acad. Sci. USA 99, 5664–5668 (2002).

12. Benzer, S. Behavioral mutants of Drosophila isolated by
countercurrent distribution. Proc. Natl Acad. Sci. USA 58,
1112–1119 (1967).

13. Hirsch, J. & Erlenmeyer-Kimling, L. Sign of taxis as a
property of the genotype. Science 143, 835–835 (1961).
Reports one of the earliest experiments in fly
behavioural genetics. The authors demonstrate that
artificial selection can be used to generate flies that
prefer to migrate either upwards or downwards in a

geotactic maze. The selection lines reported in this
paper were used 40 years later in the transcriptional
profiling studies described in reference 62.

14. Quinn, W. G., Sziber, P. P. & Booker, R. The Drosophila
memory mutant amnesiac. Nature 277, 212–214 (1979).

15. Weber, K. E. An apparatus for measurement of resistance
to gas-phase reagents. Drosoph. Inf. Serv. 67, 91–93
(1988).

16. Moore, M. S. et al. Ethanol intoxication in Drosophila:
genetic and pharmacological evidence for regulation by the
cAMP signaling pathway. Cell 93, 997–1007 (1998).

17. Rothenfluh, A. & Heberlein, U. Drugs, flies, and videotape:
the effects of ethanol and cocaine on Drosophila
locomotion. Curr. Opin. Neurobiol. 12, 639–645 (2002).

18. Hall, J. C. The mating of a fly. Science 264, 1702–1714 (1994).
19. Dubnau, J. & Tully, T. Gene discovery in Drosophila: new

insights for learning and memory. Annu. Rev. Neurosci. 21,
407–444 (1998).

20. Waddell, S. & Quinn, W. G. Flies, genes and learning. Annu.
Rev. Neurosci. 24, 1283–1309 (2001).

21. McKenna, M., Monte, P., Helfand, S. L., Woodard, C. &
Carlson, J. A simple chemosensory response in Drosophila
and the isolation of acj mutants in which it is affected. Proc.
Natl Acad. Sci. USA 86, 8118–8122 (1989).

22. Anholt, R. R. H. et al. The genetic architecture of odor-
guided behavior in Drosophila: epistasis and the
transcriptome. Nature Genet. 35,180–184 (2003).
Quantifies the extent of transcriptional co-regulation
among a set of co-isogenic mutant lines with single 
P-element insertions that affect olfactory avoidance
behaviour and illustrates how transcriptional profiling
together with quantitative complementation tests for
epistasis can be used for gene discovery.

23. Brand, A. H. & Perrimon, N. Targeted gene expression as a
means of altering cell fates and generating dominant
phenotypes. Development 118, 401–415 (1993).

24. Falconer, D. S. & Mackay, T. F. C. Introduction to
Quantitative Genetics (Longman, Essex, 1996). 

25. McGuire, S. E., Le, P. T. & Davis, R. L. The role of Drosophila
mushroom body signaling in olfactory memory. Science
293,1330–1333 (2001).

26. Allada, R., Emery, P., Takahashi, J. S. & Rosbash, M.
Stopping time: the genetics of fly and mouse circadian
clocks. Annu. Rev. Neurosci. 24, 1091–1119 (2001).

27. Ben-Shlomo, R. & Kyriacou, C. P. Circadian rhythm
entrainment in flies and mammals. Cell. Biochem. Biophys.
37,141–156 (2002).

28. Ashmore, L. J. & Sehgal, A. A fly’s eye view of circadian
entrainment. J. Biol. Rhythms 18, 206–216 (2003).

29. Cirelli, C. Searching for sleep mutants of Drosophila
melanogaster. Bioessays 25, 940–949 (2003).

30. McDonald, M. J. & Rosbash, M. Microarray analysis and
organization of circadian gene expression in Drosophila. Cell
107, 567–578 (2001).
This paper, together with reference 31, presents the
first expression microarray analyses of a behavioural
trait in D. melanogaster. Although the observed
transcriptional profiles differ between these papers,
they both demonstrate that circadian time affects
not only expression of genes that are directly
implicated in the biological clock, but has far
reaching implications for the transcription of many
genes, including those implicated in several
behaviours.

31. Claridge-Chang, A. et al. Circadian regulation of gene
expression systems in the Drosophila head. Neuron 32,
657–671 (2001).

32. Norga, K. K. et al. Quantitative analysis of bristle number in
Drosophila mutants identifies genes involved in neural
development. Curr. Biol. 13, 1388–1396 (2003).

33. Crabbe, J. C., Wahlsten, D. & Dudek, B. C. Genetics of
mouse behavior: interactions with laboratory environment.
Science 284, 1670–1672 (1999).

34. Mackay, T. F. C., Hackett, J. B., Lyman, R. F., Wayne, M. L.
& Anholt, R. R. H. Quantitative genetic variation of odor-
guided behavior in a natural population of Drosophila
melanogaster. Genetics 144, 727–735 (1996).

35. Devaud, J. M. Experimental studies of adult Drosophila
chemosensory behaviour. Behav. Processes 64, 177–196
(2003).

36. Belgacem, Y. H. & Martin, J. R. Neuroendocrine control of a
sexually dimorphic behavior by a few neurons of the pars
intercerebralis in Drosophila. Proc. Natl Acad. Sci. USA 99,
15154–15158 (2002).

37. Helfrich-Forster, C. Differential control of morning and evening
components in the activity rhythm of Drosophila melanogaster
— sex-specific differences suggest a different quality of
activity. J. Biol. Rhythms 15, 135–154 (2000).

©  2004 Nature  Publishing Group



NATURE REVIEWS | GENETICS VOLUME 5 | NOVEMBER 2004 | 849

R E V I EW S

38. Jin, W. et al. The contributions of sex, genotype and age to
transcriptional variance in Drosophila melanogaster. Nature
Genet. 29, 389–395 (2001).

39. Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D.
L. Sex-dependent gene expression and evolution of the
Drosophila transcriptome. Science 300, 1742–1745 (2003).

40. Parisi, M. et al. Paucity of genes on the Drosophila X
chromosome showing male-biased expression. Science 299,
697–700 (2003).

41. Fujii, S. & Amrein, H. Genes expressed in the Drosophila head
reveal a role for fat cells in sex-specific physiology. EMBO J.
21, 5353–5363 (2002).

42. Rice, W. R. Sexually antagonistic genes: experimental
evidence. Science 256, 1436–1439 (1992).

43. Levene, H. Genetic equilibrium when more than one
ecological niche is available. Am. Nat. 87, 331–333 (1953).

44. Greenspan, R. J. A kinder, gentler genetic analysis of
behavior: dissection gives way to modulation. Curr. Opin.
Neurobiol. 7, 805–811 (1997).

45. Ganguly, I., Mackay, T. F. C. & Anholt, R. R. H. Scribble is
essential for olfactory behavior in Drosophila. Genetics 164,
1447–1457 (2003).

46. Kulkarni, N. H., Yamamoto, A. H., Robinson, K. O., 
Mackay, T. F. C. & Anholt, R. R. H. The DSC1 channel,
encoded by the smi60E locus, contributes to odor-guided
behavior in Drosophila melanogaster. Genetics 161,
1507–1516 (2002).

47. Thibault, S. T. et al. A complementary transposon tool kit for
Drosophila melanogaster using P and piggyBac. Nature
Genet. 36, 283–287 (2004).

48. Fanara, J. J., Robinson, K. O., Rollmann, S. M., Anholt, R. R.
H. & Mackay, T. F. C. Vanaso is a candidate quantitative trait
gene for olfactory behavior in Drosophila melanogaster.
Genetics 162, 1321–1328 (2002).

49. Gleason, J. M., Nuzhdin, S. V. & Ritchie, M. G. Quantitative
trait loci affecting a courtship signal in Drosophila
melanogaster. Heredity 89, 1–6 (2002).

50. Zeng, Z. B. Precision mapping of quantitative trait loci.
Genetics 136, 1457–1468 (1994).

51. Doerge, R. W. & Churchill, G. A. Permutation tests for multiple
loci affecting a quantitative character. Genetics 142, 285–294
(1996).

52. Hill, W. G. Predictions of response to artificial selection from
new mutations. Genet. Res. 40, 255–278 (1982).

53. Mackay, T. F., Fry, J. D., Lyman, R. F. & Nuzhdin, S. V.
Polygenic mutation in Drosophila melanogaster: estimates
from response to selection of inbred strains. Genetics 136,
937–951 (1994).

54. Rodriguez-Ramilo, S. T., Perez-Figueroa, A., Fernandez, B.,
Fernandez, J. & Caballero, A. Mutation-selection balance
accounting for genetic variation for viability in Drosophila
melanogaster as deduced from an inbreeding and artificial
selection experiment. J. Evol. Biol. 17, 528–541 (2004).

55. Berger, J. et al. Genetic mapping with SNP markers in
Drosophila. Nature Genet. 29, 475–481 (2001).

56. Pasyukova, E. G., Vieira, C. & Mackay, T. F. C. Deficiency
mapping of quantitative trait loci affecting longevity in
Drosophila melanogaster. Genetics 156, 1129–1146 (2000).
Introduces the method of quantitative
complementation mapping using deficiencies, and
demonstrates how this method can be used to narrow
QTL regions to a small number of candidate genes that
affect variation in lifespan in D. melanogaster.

57. Parks, A. L., et al. Systematic generation of high-resolution
deletion coverage of the Drosophila melanogaster genome.
Nature Genet. 36, 288–292 (2004).

58. DeLuca, M. et al. Dopa decarboxylase (Ddc) affects variation
in Drosophila longevity. Nature Genet. 34, 429–433 (2003).

Demonstrates how LD mapping can be used as a
powerful method to identify not only a candidate gene,
but also polymorphisms (QTNs) and haplotypes within
such genes that contribute to natural variation in a
complex trait, in this case lifespan.

59. Long, A. D., Lyman, R. F., Langley, C. H. & Mackay, T. F. C.
Two sites in the Delta gene region contribute to naturally
occurring variation in bristle number in Drosophila
melanogaster. Genetics 149, 999–1017 (1998).

60. Lyman, R. F. & Mackay, T. F. C. Candidate quantitative trait
loci and naturally occurring phenotypic variation for bristle
number in Drosophila melanogaster: the Delta-Hairless gene
region. Genetics 149, 983–998 (1998).

61. Robin, C., Lyman, R. F., Long, A. D., Langley, C. H. &
Mackay, T. F. C. hairy: a quantitative trait locus for
Drosophila sensory bristle number. Genetics 162, 155–164
(2002).

62. Toma, D. P., White, K. P., Hirsch, J. & Greenspan, R. J.
Identification of genes involved in Drosophila melanogaster
geotaxis, a complex behavioral trait. Nature Genet. 31,
349–353 (2002).

63. Kerr, M. K. & Churchill, G. A. Experimental design for gene
expression microarrays. Biostatistics 2, 183–201 (2001).
Contains excellent advice on the design and analysis
of expression microarrays.

64. Storey, J. D. & Tibshirani, R. Statistical significance for
genome-wide studies. Proc. Natl Acad. Sci. USA 100,
9440–9445 (2003).
Introduces assessment of the false discovery rate to
estimate false positives in transcriptional profiling
experiments. The statistical method described will
probably become the standard procedure for
microarray analysis.

65. Borrás, T. et al. Transcription profiling in Drosophila eyes that
overexpress the human glaucoma-associated trabecular
meshwork-inducible glucocorticoid response
protein/myocilin (TIGR/MYOC). Genetics 163, 637–645
(2003).

66. Fedorowicz, G. M., Fry, J. D., Anholt, R. R. H. & Mackay, T.
F. C. Epistatic interactions between smell-impaired loci in
Drosophila melanogaster. Genetics 148, 1885–1891 (1998).
Describes the first application of the half-diallel cross
design for the analysis of epistasis among
behavioural genes, and reports an unexpectedly large
extent of epistasis among 12 independently isolated
co-isogenic P-element insertion lines that affect
olfactory avoidance behaviour. This paper formed the
basis for the subsequent transcriptional profiling
study described in reference 22.

67. Sprague, G. F. & Tatum, L. A. General vs. specific combining
ability in single crosses of corn. J. Amer. Soc. Agron. 34,
923–932 (1942).

68. Griffing, B. Concept of general and specific combining ability
in relation to diallel crossing systems. Aust. J. Biol. Sci. 9,
463–493 (1956).

69. Cockerham, C. C. An extension of the concept of
partitioning hereditary variance for analysis of covariances
among relatives when epistasis is present. Genetics 39,
859–882 (1954).

70. Clark, A. G. & Wang, L. Epistasis in measured genotypes:
Drosophila P-element insertions. Genetics 147, 157–163
(1997).

71. Eberl, D. F., Duyk, G. M. & Perrimon, N. A genetic screen for
mutations that disrupt an auditory response in Drosophila
melanogaster. Proc. Natl Acad. Sci. USA 94, 14837–14842
(1997).

72. Ejima, A., Nakayama, S. & Aigaki, T. Phenotypic association
of spontaneous ovulation and sexual receptivity in virgin
females of Drosophila melanogaster mutants. Behav. Genet.
31, 437–444 (2001).

73. Baker, B. S., Taylor, B. J. & Hall, J. C. Are complex behaviors
specified by dedicated regulatory genes? Reasoning from
Drosophila. Cell 105, 13–24 (2001).

74. Williams, J. A. & Sehgal, A. Molecular components of the
circadian system in Drosophila. Annu. Rev. Physiol. 63,
729–755 (2001).

75. Park, S. K., Sedore, S. A., Cronmiller, C. & Hirsh, J. Type II
cAMP-dependent protein kinase-deficient Drosophila are
viable but show developmental, circadian, and drug
response phenotypes. J. Biol. Chem. 275, 20588–20596
(2000).

76. Kauvar, L. M. Defective cyclic adenosine 3′:5′-
monophosphate phosphodiesterase in the Drosophila
memory mutant dunce. J. Neurosci. 2, 1347–1358
(1982).

77. Levine, J. D., Casey, C. I., Kalderon, D. D. & Jackson, F. R.
Altered circadian pacemaker functions and cyclic AMP
rhythms in the Drosophila learning mutant dunce. Neuron
13, 967–974 (1994).

78. Martin, F., Charro, M. J. & Alcorta, E. Mutations affecting the
cAMP transduction pathway modify olfaction in Drosophila.
J. Comp. Physiol. A 187, 359–370 (2001).

79. Tinette, S, Zhang, L. & Robichon, A. Cooperation between
Drosophila flies in searching behavior. Genes Brain Behav. 3,
39–50 (2004).

80. Ueyama, M. & Fuyama, Y. Enhanced cost of mating in
female sterile mutants of Drosophila melanogaster. Genes
Genet. Syst. 78, 29–36 (2003).

81. Dauwalder, B. & Davis, R. L. Conditional rescue of the dunce
learning/memory and female fertility defects with Drosophila
or rat transgenes. J. Neurosci. 15, 3490–3499 (1995).

82. Sokal, R. R. & Rohlf, F. J. Biometry 2nd edn (W. H. Freeman
and Company, New York, 1981).

83. Lai, C., Lyman, R. F., Long, A. D., Langley, C. H. & Mackay,
T. F. C. Naturally occurring variation in bristle number and
DNA polymorphisms at the scabrous locus of Drosophila
melanogaster. Science 266, 1697–1702 (1994).

84. Sokolowski, M. B. Drosophila: genetics meets behaviour.
Nature Rev. Genet. 2, 879–890 (2001).

Acknowledgement
Work in the authors’ laboratories is supported by grants from the
National Institutes of Health.

Competing interests statement
The authors declare no competing financial interests.

Online links

DATABASES
The following terms in this article are linked online to:
FlyBase: http://flybase.bio.indiana.edu/
dunce | period | rutabaga

FURTHER INFORMATION
Anholt’s homepage: http://www.cals.ncsu.edu/beh_bio/anholt
DrosDel Drosophila Isogenic Deficiency Kit:
http://www.drosdel.org.uk
Mackay’s homepage:
http://www.cals.ncsu.edu/genetics/mackay/mackay.html
Access to this interactive links box is free online.

©  2004 Nature  Publishing Group


