
Quantitative trading and
backtesting

28 July 2016

CERN Finance Club

c.laner@cern.ch

Contents

1) Introduce quantitative trading and

backtesting from a theoretical point of view

2) Show how to implement in Python a

backtesting environment for simple trading

strategies

2

Quantitative trading

► Also called systematic trading or algorithmic trading

► Creates a set of rules to generate trade signals and
risk management of positions with minimal manager
intervention

► Attempts to identify statistically significant and
repeatable market behaviour that can be exploited to
generate profits

► Low-frequency (weekly, daily) through to high-
frequency (seconds, milliseconds...)

3

Quantitative trading system

► Four major components of a quantitative trading
system:

1) Strategy identification

2) Strategy backtesting

3) Execution system

4) Risk management

► Focus on first two, last two won’t be covered here

4

Strategy identification

► Research strategies in blogs, forums, journals, etc. For
example:

► Journal of Investment Strategies

► Quantpedia.com

► Many more (GIYF)

► Many of these strategies are either not profitable anymore
or only slightly profitable (they get “crowded” or
“arbitraged away”)

► Key to making them highly profitable is to build on them,
e.g. adapt them to new market conditions or optimise
their parameters

5

Strategy identification

► Two main categories of strategies:

► Trend-following: Trades on momentum, i.e. on the basis
of the slow diffusion of information

► Mean reversion: trades on the deviation of a stationary
time series (price or spread) from its expected value

► Range of trading frequencies

► Low frequency trading (LFT): days-years

► High frequency trading (HFT): intraday

► Ultra high frequency trading (UHFT): seconds-
milliseconds

► High frequency trading requires detailed knowledge of
market microstructure (how the order book and exchange
work)

6

Backtesting

► Once a strategy is identified, need to test its performance
using historical data as well as out-of-sample data

► Data

► Many types: fundamental, OHLC, sentiment, news

► Many frequencies: intraday, daily

► Many instruments: equities, futures

► Many sources: many are expensive, but there are a few good
free sources, e.g. Yahoo Finance, Quandl

► Qualities of good data:

► Clean and accurate (no erroneous entries)

► Free of survivorship bias (see next slide)

► Adjusted for stock splits and dividends

7

Backtesting
► Biases

► Biases tend to inflate performance. A backtest is likely an upper
bound on the actual performance

► Optimisation bias

► Over fitting the data as a result of too many free parameters

► Strategy will fail with real data

► Lookahead bias

► Introduction of future information into past data

► e.g. using the day’s high/low, calculating a parameter using
data that would not have been available at the time

► Survivorship bias

► Using only instruments which exist at present

► Companies that went bankrupt would have made your
performance worse

8

Backtesting
► Transaction costs

► Backtest performance is inflated if transaction costs are not modelled
appropriately

► Commissions/fees

► A commission is paid to the broker for every transaction

► Bid-ask spread is also important, especially for illiquid instruments

► Slippage

► Price difference between time of trade signal and time of order fill

► Depends on the volatility of the asset and the latency between the
trading system, the broker and the exchange

► Especially important for HFT

► Market impact

► Placing large orders can “move the market” against you

► May want to break the transaction into smaller chunks
9

Execution and risk management

► The last two components of a quantitative trading system
would entail a whole other talk. Very briefly:

► Execution system

► Generates trades in real time

► Provides an interface to the broker (e.g. via an API)

► Risk management

► Decides how to act on trade signals

► Controls leverage

► Assigns capital to trades or strategies as optimally as
possible

10

Analysing performance

► Some common measures of performance

► Compounded growth rate

► Usually annualised, gives the average annual return

► Volatility

► Usually annualised, given by the standard deviation of annual
returns

► Measure of risk

► Sharpe ratio

► Measure of reward/risk ratio

► Usually annualised and measured with respect to a benchmark b
(e.g. risk-free rate or S&P500)

11

Analysing performance
► Some common measures of performance

► Drawdown

► A period of time in which
equity is below the highest
peak so far

► Can calculate maximum
drawdown and maximum
drawdown duration

► Alpha, Beta

► Fit a straight line (security characteristic line) to strategy returns
against the returns of a benchmark (e.g. S&P or “the market”)

► Beta is the gradient – the variance/correlation with respect to the
market i.e. gives a measure of systematic risk (want beta ~ 0)

► Alpha is the intercept – the excess return over the market, i.e. a
measure of performance (want large positive alpha)

12

Python backtester

► Let’s put this into practice with Python

► My backtesting code:

► www.github.com/Xtian9/QuantCode *

► Disclaimer: Very simple and incomplete

► Feel free to use it or contribute!

► Makes use of pandas, numpy, and matplotlib

► Employs vectorised calculations as opposed to an ‘event-
loop’ (so less realistic as a simulation, but handy for doing
quick research)

13

* Inspired by:
www.quantstart.com
www.github.com/quantopian/pyfolio

http://www.github.com/Xtian9/QuantCode
http://www.quantstart.com/
https://github.com/quantopian/pyfolio

Python backtester

► Components of the backtester

► Data handler

► Downloads OHLC data from Quandl

► Strategy

► Generates signals for each day

► +1 long, -1 short, 0 cash (no position)

► Portfolio

► Generates/rebalances positions

►e.g. assign equal dollar weights to all assets

► Computes returns (potentially for risk management)

► Analyser

► Analyses the performance of the backtest

►e.g. equity curve, Sharpe ratio, etc.

► Still missing: transaction costs, risk manager…
14

Moving average crossover

► Let’s look at a “hello world” example strategy

► Moving average crossover

► This is a momentum strategy

► Strategy rules:

► Create two simple moving averages (SMA) of a price series with
different lookback periods, e.g. 9 days and 200 days

► If the short MA exceeds the long MA then “go long”

► If the long MA exceeds the short MA then “go short”

15

Long Short

Config file

16

► backtests/macross/macross_cfg.py

► Choose trading parameters: tickers, dates, frequency, window lengths

► Initialise strategy, portfolio, analyser and backtest classes

► Run the backtest!

Data handler

► The DataHandler class fetches data from Quandl and returns a

pandas DataFrame of prices, e.g.

► The Backtest class then creates empty signals and weights
DataFrames that need to be filled by the Strategy and
Portfoflio classes, respectively

17

Strategy class
► strategies/macross.py

► Create a MovingAverageCrossoverStrategy that inherits from Strategy

► Implement a generate_signals method that fills in the signals

DataFrame

18

Portfolio class

► portfolios/equalweights.py

► Create a EqualWeightsPortfolio that inherits from Portfolio

► Implement a generate_positions method that fills in the
weights DataFrame

► If weights sum to 1, total return of portfoflio is the weighted
average of the assets’ returns

 19

Analyser class

► analysers/performance.py

► Generic Analyser that computes performance measures like

Sharpe ratio, drawdown etc. and makes performance plots like
equity curve etc.

► Can also create and add additional Analyser sub-classes to the

backtest

20

Analyser class

► Performance plots

21

Outlook

► Would like to expand on this to build a more sophisticated
quantitative trading system with many improvements:

► Event-driven backtesting

► Realistic handling of transaction costs

► Risk management framework

► GUI?

► Real time execution

► As well as doing actual quant research

► Would anyone like to work on this together?

► We could set up a quant trading or quant research
arm within the club

22

Bibliography

► Michael H. Moore

► www.quantstart.com

► Ernest P. Chan

► Quantitative Trading: How to Build Your Own
Algorithmic Trading Business

► Ernest P. Chan

► Algorithmic Trading: Winning Strategies and Their
Rationale

23

http://www.quantstart.com/

