
Quantitative Trading System

Denis Andrey Ignatovich
denis.ignatovich@mccombs.utexas.edu

May 5, 2006

Abstract

My interests are in the study of market microstructures, that is, how
trading takes place in the markets and how those markets are organized.
Models are designed to describe aspects of these organizations and one
needs flexible toolsets for model description and performance analysis.
The current step in my research is an implementation of a quantitative
trading system. Not only is this a challenging systems engineering project,
but also a powerful mechanism for data analysis and trade algorithm
description.

Trading Model is defined as an investment tool comprised of buy and
sell recommendations. These recommendations are much more complex
than simple price change forecasts. They must be taylored to the investor
in terms of his/her risk exposure, past trading history, and the market
microstructure with its own constraints on the trade execution. A trading
model has three main components:

• Generation of the trading recommendations.

• Accounting of the simulated transactions and their price impacts.

• Generation of the model statistics by the performance calculator.

A Trading System is, in turn, an environment where users define and,
through execution feedback, adjust their trading models. An essential
part of the system is the user-interface: it must be eloquent enough to
allow an ease-of-use and, at the same time, powerful to describe most
sophisticated trading algorithms. As in forecasting or other applications,
trading models rely heavily on the quality of financial data. This con-
straint on the Trading System, a supply of the tick-by-tick data, is just an
example of the multitude of requirements of a functional real-time trading
environment.

Thie following paper describes an implementation of a quantiative
trading system designed to incorporate features representative of a com-
mercial grade trading environment. The system that I propose includes
programmatic access to the underlying execution framework, powerful
Python-based algorithm description environment, real-time data support,
and mathetmatical interfaces, including support for ARCH-based equity
volatility models.

This paper, in part, fulfills the degree requirement for Bachelor of
Science in Computer Sciences (Turing Scholars Option).

1

Contents

1 Introduction 2

2 System Model 3

3 System Architecture 4
3.1 Overview . 4
3.2 QuantWorld . 5
3.3 Interface . 5
3.4 Trading Model . 8
3.5 Matrix . 9
3.6 ControlCenter . 10
3.7 Data Server . 10

3.7.1 Functionality . 10
3.7.2 Database Schema . 11

3.8 Implementation . 11

4 Application 11
4.1 Introduction . 11
4.2 Optimal Risky Portfolios . 13
4.3 CMT & CAPM . 14
4.4 Index Models . 16
4.5 Data Filtering and VWAP Calculation 17
4.6 GARCH-based Volatility Calculation 17
4.7 Complete Algorithm . 18

5 Future Work 19

6 Acknowledgements 19

References 19

1 Introduction

Quant is an algorithmic trading system. Using Python, users define data
analysis and trading algorithms. The destinction is that former operate on in-
homogeneous time series (tick data) and publish results to trading algorithms,
that make trade decisions for portfolios they are responsible for. Users create
portfolios by specifying their descriptions and initial capital. A portfolio may be
managed by the PortfolioManager (part of TradingModel, please see below) that
simply updates portfolio positions with the user manually modifying their com-
position weights. Alternatively, the user will assign a custom trading algorithm
that would make the decisions automatically upon receiving signals of new data
arrival. R-statistical environment provides the many necessary computational
tools for making informed decisions.

2

2 System Model

QuantWorld ’s synthetic trades Designing solution to an engineering prob-
lem must start with analyzing the requirements in terms of input data, preci-
sion/algorithm running complexity, and results’ presentation. In the case of
Quant, there is an important issue of quality data: real-world trading systems
rely on fast and precise trade information (and recently with the introduction
of NYSE’s OpenBook, even the specialists’ books) for decision making. Lack of
access to this level of data forces numerous assumptions on the part of the trader
designing the algorithms. Yahoo! Finance provides 20-minute delayed price in-
formation distributed once per minute. It is the most commonly used source of
financial data outside of the commercial realm, and due to the economic con-
straints of this project, it will service us with the foundation of our trade data.
The necessary environment for the trade algorithm execution must provide the
most up-to-date price information. The transition from Yahoo! Finance data
to our algorithm environment (TradingModel) is supplied by QuantWorld, a
component outside the trading system that simulates high-frequency data gen-
eration. The simulation will result in synthetic ticks containing bid/ask, price,
and volume information distributed according to the parameters set by the user.
The necessity of this price generation is specific to the author’s use of the sys-
tem, and therefore QuantWorld ’s residence outside of the system allows for an
substitution of a pricing information feed accomodating purposes of another
user.

Data vs. Trading Algorithms Many operations performed by the users’
algorithms would be quiet common data handling tasks. Thus, the decision to
provide two algorithmic interfaces was raised by the need to factor out redundant
tasks. The Matrix runs data-analysis algorithms and publishes the results for
the trading algorithms.

UserInterface The UserInterface handles the task of informing the trader of
not only the status and performance of his/her trading algorithms, but also pro-
vides a flexible means of their manipulation and adjustment. From my personal
experiences in the industry, I have learned the ingenuity of Microsoft Excel ’s
interface. Many plug-ins to Excel form the foundation for decision making on
Wall Street, and in my opinion, a successful system would incorporate these
paradigms. At the same time, there are many tasks requiring programmatic
accessibility. For this purpose, I have adopted PyCute’s model of a QT built-in
command line parser for the interface. The control mechanism provided with
the command line (or shell) entails priority execution mechanism such that any
of the user commands vital to the system are executed before any data manip-
ulation.

Summary The following are the main abstract goals of the system that served
me as guides for the implementation:

interchangable data feed

real-time execution

flexible algorithm environment

3

3 System Architecture

3.1 Overview

Considering the constraints of a real-time system, components working on
independant tasks must operate as individual threads. With this decision in
mind, the next question was the method of facilitating communication between
them. The most simple solution was to provide each component with a mes-
saging queue and provide all other components with a reference to that queue.
Whenit produced stock data, for example, the Matrix would create a thread
that would wait for a notification of release of Trading Model ’s queue and then
insert the data. During the next iteration in the execution loop, Trading Model
would wait on its queue and process the data. With the numerous references
and deadlocks, I began to look for a different solution. After discussing the issue
with Dr. Lavender, he recommended a publisher/subscriber model. I researched
several implementations for Python and stopped on Netsvc for several reasons:
for the most part, it is written in Python (no overhead code or installations
needed with future deployment) and it has a very clean interface, yet enough to
cover my requirements.

Netsvc package is used in two dimensions: (1) HTTP Daemon serves Remote
Procedure Calls between the User Interface and the ControlCenter, and (2)
Message Dispatcher runs the Publisher/Subscriber model internal to the system.
The components communicate via several channels separated on the type of
communication: data, messages, and commands. All messages sent within the
system are of the following format:

(source, commType, args)

where:

source - string identifying component sending the message

commType - string indicating communication type (‘message’, ‘data’, or ‘com-
mand’)

args - tuple to be further parsed by the receiver

Messages are published through instantiating an object of the class Netsvc.Service
and calling its method, publish with the message content and the intended chan-
nel. Components receive messages from a particular channel by, similarly, in-
stantiating an object of the class Netsvc.Service and specifying the channels for
subscription and callback methods for message handling. The callback methods
insert messages onto a thread-safe queue that the component polls in its thread
loop.

Component Descriptions:

Broker - receives trade requests and simulates the ’price impact’ function.
That is, user does not necessarily receive stocks at the price they are
listed. Trading algorithms must account for this. Parameters of the impact
simulator are set by the admin, similarly to the QuantWorld settings.

4

ControlCenter - the main component. It is responsible for starting/maintaining
the other modules and servicing user requests submitted via RPC. It also
aggregates data for the GUI output: stock data, system messages, requests
results, and debug information.

TradingModel - creates/loads/runs user trading algorithms. When an algo-
rithm makes a trade request, the model checks the parameters against
current positions (do not sell more than currently have, unless short posi-
tions are allowed).

Matrix - ‘listens’ for the trade data submitted by QuantWorld, processes it,
and performs additional user-specified operations, and then publishes re-
sults onto the network. The goal was to factor out common data opera-
tions used by several algorithms.

DataServer - stores trade data and any modifications to the current system
state (new users, new algorithms, etc.)

Both the UI and QuantWorld were developed using QT’s Designer. It is a
great tool for constructing user interfaces that uses a middle language to describe
forms in an implementation-independent way. After the Designer produces an
XML description of the application, it is translated into Python class using
pyuic that is used to derive GUI applications. An issue came up with signal
interrupts for network communication while using QT’s main event loop and
signal handling methods. QT’s messaging mechanism was incompatible with
other signal handling utilities, uncluding the Netsvc package. The bypass was
to simply rely on the Http RPC methodology. Trolltech is scheduled to release
a flexible interface for custom signal handlers in the upcoming QT version.
However, due to the open source nature of the Python implementation of Qt,
it is unlikely this feature would be available for Python users any time soon.

3.2 QuantWorld

QuantWorld provides the necessity of a trading system: access to real-time
data (synthetic). The user inserts companies he/she wishes to simulate, Quant-
World then queries Yahoo! Finance for their information. Every two minutes,
QuantWorld polls the latest price for every company in the list. Between the
update-periods, a Monte Carlo simulation ‘produces’ trades based on the latest
price. The user can adjust both trade generation frequency and volatility. The
trades are published onto the network for the Matrix to process. The frequency
ranges from 1 to 120, or at maximum twice a second. A schedule is created ev-
ery two minutes for each individual security in the list: based on the frequency,
the times when a company will trade are randomly picked and marked in the
schedule. For the next two minutes, the timer signal will call on a routine every
half second and would compare the current time against stocks’ schedules, and
generate trades in cases of a match.

3.3 Interface

The User Interface connects to the system via HTTP, thus user can login
from any place in the world with an Internet connection. There are three main

5

Figure 1: Quant System Architecture
6

Figure 2: QuantWorld v1.0

components: command shell, messaging window, and the display. Derived from
Python’s Cmd Class, command shell provides programmatic access to the sys-
tem. Initially, only the login command is visible to the user. He/she may type
‘help’ to view the full list of commands available. By typing ‘help’ followed by
name of the comman, usage examples and detailed information are printed out.
When the user enters a command, it is first parsed and checked for correct for-
matting, and then sent to the system (through a central point in the interface)
along with additional user information. After successfully logging in (request is
verified with the database), user’s Workspace is initialized containing the stocks
he/she is following on the display and the algorithms with respective portfo-
lios loaded. Any changes to the Workspace are stored within the system, thus
should the connection fail, data will be recovered.

Messaging screen echoes messages within the system (debugging informa-
tion, if the option is selected, and system warning messages) and prints results
of commands that user submitted. UI has an internal timer that executes ev-
ery half of a second. On the timer event, UI asks the ControlCenter for the
latest messages and resets the messaging queue in the system. For example,
these include results of all portfolios’ listing (with their descriptions, algorithms
running it, current positions, etc.), the output will appear in the messaging
window. System warnings and debug stream (if this option is set) are routed
here as well.

The display is split into three pages: the matrix, stock visualization, and
strategies’ screen. The Matrix is an Excel spread-sheet like form with continu-
ously updated company information (latest price, moving average, transaction
volume, etc.), as well as results of any custom data analysis algorithms. The

7

user’s workspace maintains the list of companies and other data tracked in the
matrix, and any modifications are performed through the shell. Stock visual-
ization is a real-time graph (PyQWT) of a given time-series. Strategies page
follows the user’s portfolios. Information related to status of the algorithm, its
perfomance, and exceptions that might have occured are shown here as well.

Figure 3: Quant User Interface

3.4 Trading Model

TradingModel is the center of algorithm execution. It maintains a pool of
threads available for user algorithms, a list of currently loaded portfolios and
the PortfolioManager, a semi-algorithm that merely updates positions of port-
folios not managed by any user algorithms. When the algorithms make a trade
recommendation, they publish it for TM to verify parameters of the trade. If
the recommendation is valid, TM publishes trade request to the Broker without
waiting for the reply; otherwise, request is ignored. Furthermore, it subscribes
to all data coming from the Broker and when trade result is known, sends a
message to the algorithm. Record of all resulting trades is maintained for each
algorithm and performance analytics sent back to the User Interface.

There are several potentially dangerous moments when transferring control
from an algorithm (when the user requested it to stop) to the PortfolioManager
or when just creating a new portfolio. I implemented a library system to limit
access to any portfolio to only one thread at a time. TM manages all transitions
and maintains a status variable (secured under a conditional variable) for each
portfolio. For example, when the user sends a command to stop execution of
an algorithm, the managed portfolio must be released and handed off to the
PortfolioManager for position updates. TM will first check the status of the
algorithm, and it will send a ‘stop’ command if it is currently running. When the

8

algorithm parses that command, it will cease all operations and send a request
of transfer back to the TM. After processing the transfer request, the portfolio
will be added into the PortfolioManager ’s influence.

Figure 4: Trading Model UML

3.5 Matrix

As stated above, the Matrix processes trade data published by the Quant-
World. Its structure is similar to the TradingModel : a listener object subscribes
to the data feed and inserts trades onto the queue. The Matrix Thread then
distributes trade data among the data analysis algorithms that, in turn, process
it and publish their results via ‘data’ channel. The format for submission is a
dictionary that contains two fields, ‘ticker’ and ‘type’, and an arbitrary number
of data values. As there are no shared objects, the implementation is fairly
straight forward. The interface for inserting/removing algorithms is similar
to TM ’s. Specifically, commands are published with destination ‘Matrix’ that
specify the Python code for the algorithm and the owner’s userId. A new thread

9

is created with access to the incoming data and the algorithm information is
backed into the database.

Figure 5: Matrix UML

3.6 ControlCenter

ControlCenter is the only component that is not derived from a thread. Its
purpose is to provide access to the system and maintain ‘sanity’ of the com-
ponents. After it starts up the exchange server, messaging dispatcher, and
threads running the components, it communicates with them only via pub-
lisher/subscriber architecture. On the side of UserInterface, it creates an Http-
Daemon and exports several methods via RPC:

command (user, func, args) - central method that matches request with an
operation and dispatches command to the component

checkConnection (user) - returns status of the user within the system

setupWorkspace - initializes user’s workspace: loads the list of stocks tracked
through UI, loads portfolios and algorithms

retrieveMessages - returns internal system messages and resets the messaging
queue

retrieveShellMessages - returns messages labeled for shell output (results
from user requests to components) and also clears the queue

retrieveStockData - returns latest stock information as specified by the workspace

retrievePortData - returns user’s portfolio and algorithm information

3.7 Data Server

3.7.1 Functionality

The DataServer stores all changes to the system state into MySQL server.
This includes all communication except system and shell messages. Since the

10

Figure 6: ControlCenter UML

MySQL server is, in fact, a server, it would be redundant to provide an interface
within DataServer for information retrieval, as the components maintain their
own connections.

3.7.2 Database Schema

3.8 Implementation

Implementation of this project is the result of many trials and errors. I am
very glad that I have chosen Python as the primary language, it has provided el-
egant ways of connecting numerous different components. Netsvc Python pack-
age is a big recent change: initially the inter-component communication resided
on several producer/consumer oriented queues. Race conditions and deadlocks
became an issue and Netsvc publisher/subscriber model really made the differ-
ence. R-environment for statistical computing, and RSPython - its interface
to/from Python, greatly expanded functionality of the system.

4 Application

4.1 Introduction

One of the interesting features of Quant is the separation of data handling
and trading algorithms. In the following example, we will incorporate several
components of Quant to solve a relatively common task in the world of finance:

11

Figure 7: SQL Schema

12

portfolio optimization. Two data sources are available to us: (1) the historical
prices (courtesy of Yahoo! Finance) for volatility calculation, and (2) real-time
trade data supplied by QuantWorld for the current returns and correlations.
Since we’re given heterogeneous (inhomongeneous) time series, i.e. irregularly
spaced, we will compute volume-weighted average price (VWAP) for normal-
ization of each series (this will provide us with a common point of reference for
all of the stocks in the portfolio). The next step would be to take the histor-
ical prices and run Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model to compute conditional variance (risk) for the series. Once we
have both of these results, we will run quadratic optimization to determine the
best weights’ allocation for our portfolio.

4.2 Optimal Risky Portfolios

Our goal is to efficiently construct a diversified portfolio of equity securities.
By efficiently, we mean deriving the most out of the risk we infer from making
our investments. There are two sources of risk to our portfolio: market (or
systematic) and firm-specific. Every security has exposure to systematic risk, it
is inherent to all stocks traded in the market. The effect of diversification, how-
ever, is derived from combining securities whose firm-specific risks offset each
other. For example, when oil futures’ prices rise, an oil company’s stock price
will rise, while high-tech’s may fall. This effect is the foundation of diversifica-
tion and in the next several sections we will look at tools allowing us to describe
composition of portfolios such that we minimize the non-systematic risk and at-
tain highest-possible return per unit of risk. The concept of diversification was
presented by Harry Markowitz in his “Portfolio Selection” article in Journal of
Finance, 1952 [15] as part of his Modern Portfolio Theory.

The model started out by making numerous unrealistic assumptions:[3]

1. Potential investments are derived from a probability distribution of ex-
pected returns.

2. Wealth has a diminishing marginal utility.

3. Decisions are made based on expected return and risk.

4. Risk is a function of variance of past returns.

5. Investors are rational: from a set of investments at the same risk level,
they will prefer one with the highest return.

We will now proceed by examining the basic units we will use to further
develop our models. Average of the underlying stocks’ returns measures return
of the overall portfolio.

rp = w1r1 + w2r2

Non-linearity of the portfolio’s risk (as shown below for a two-asset portfolio)
will provide us with the key for diversification:

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2Cov(r1, r2)

13

The last term in the equation will be negative for stocks that historically
offset each other’s risks, that is, to some extend, they move in opposite direc-
tions. Therefore, overall portfolio risk will be less than just the weighted average
of the two. The effect of their combination is illustrated in Figure: Effects of
Diversification, where there are several portfolio opportunity sets for different
levels of correlation. In theoretical finance, the more risk an investment entails,
the higher return the investor will seek and vice versa. The ratio of return to
risk varies with different assets; that taken together will provide us with ratio
for our portfolio. Our goal is to derive weights, or fractions of overall capital
invested in individual assets, such that we derive the most return per unit of
risk. US Government Treasury Bills, or T-bills, are considered risk-free assets,
and they symbolize the minimum absolute return an investor should seek. We
will come back to this concept when we discuss CAPM, a model that addressed
combination of the risk-free asset and MPT’s efficient portfolio.

Efficient frontier is a set of portfolios, such that, for any risk level, the
portfolio with the highest return is included in this set. “Alternatively, the
frontier is the set of portfolios that minimize the variance for any target expected
return” [4]. Given our set of securities, MPT suggests forming a portfolio that
would lie on the efficient frontier.

One of the limitations of MPT is the reliance on expectation of securities’
returns. The issue is the assumption of efficient markets. We do not have any
information that is not already available to the general public. Thus, only the
historical data is available to us, but we must form expectations of the future
returns.

Figure 8: Effects of diversification in a simple two-asset portfolio

4.3 CMT & CAPM

Capital Markets Theory was introduced by William Sharpe (Jack Treynor,
John Litner, and Jan Mossin also arrived at the theory independently) in 1964
and was based on Markowitz’s MPT of twelve years earlier. The model starts
out with the same set of assumptions as MPT and adds severl others [3]:

1. Investors form their portfolios on the MPT’s efficient frontier.

14

Figure 9: Forming an efficient frontier

2. As noted above, there is an asset with zero risk (T-Bill), and investors
may borrow and lend at its rate.

3. Investors have homogeneous expectations of future returns.

4. All investors share the same investment horizon.

5. The operating microstructure has no transaction costs.

6. The interest rates (that dictate, among other things, the risk-free rate)
are constant.

7. All investments are properly priced (no arbitrage opportunities).

As stated above, MPT dictates that the only portfolios we would like to
form are on the efficient frontier. But how would one account for the risk-free
asset that is visualized on the return (vertical) axis? As it turns out, if we think
about how portfolio variance and return are computed and combine our efficient
portfolio with a risk-free asset, a new efficient frontier will form. Let i denote
our portfolio on the efficient frontier. If we combine it with a risk-free asset, the
return will equal:

E(Rport) = wRF (RFR) + (1− wRF)E(Ri),
and σ2

port = w2
RF σ2

RF + 2wRF (1− wRF)rRFiσRF σi.

But, by definition, risk-free rate has zero variance and its covariance with
any asset would be zero, we therefore derive the following definition:

σport = (1− wRF)(2)σ2
i

This linear relationship provides us with means of stepping out of our ef-
ficient frontier by shifting capital in/out of our efficient portfolio and invest-
ing/leveragin the risk-free asset. We still have to keep in mind the return-to-risk
ratio. When we look at all of the possible lines or opportunities of combining
efficient portfolios with the risk-free asset, we will notice that there is one that

15

will dominate all others in terms of that ratio. This line is referred to as Cap-
ital Market Line (CML) and is formed by two points: the risk-free rate and
the tangency portfolio on the efficient frontier. The latter is called the Market
Portfolio and since the markets are in equilibrium, it combines all assets in the
world (including those not traded).

If we wish to increase the return of our overall portfolio, we simply borrow
at the risk-free rate and reinvest the proceeds into the Market Portfolio. The
result will dominate the portfolio on the efficient frontier. Even though this
notion of a portfolio combined of all assets in the world, and that is further
complicated by the assumption of markets in equilibrium, we will later use it to
derive a model we can easily implement.

Capital Asset Pricing Model (CAPM) understands that every asset should
be as close to the CML as possible. And derives the source of risk of an asset
as its measure of variances with the Market Portfolio, β.

E(ri = rf + βi[E(rM − rf]
where: β = Cov(ri, rM)/σ2

M

Beta can be viewed as a systematic measure of risk[3]. Since covariance of an
asset with itself is just the variance, β of the Market Portfolio is 1. Assets with
β above 1 are considered more volatile than the market and vice versa. This
linear relationship forms the Security Market Line and it provides a measure
of the market-required rate of return. An analyst may compare this expected
return against his own expectations to determine whether the asset is priced
correctly. The importance of CAPM to our cause is the relationship between
risk and expected return of a security, and in the next section we will tie in past
returns to arrive at a solution to our goal of portfolio optimization.

4.4 Index Models

Risk is probability that investor’s return will deviate from the expectation,
as commonly measured by standard deviation of the returns. We will start
out by discussing risk structure of an equity security. Under the Single-Index
Security (SIS) Model, risk is divided into two components: systematic and firm-
specific. Fluctuations in the market (as measured by S&P500, for example) as
a whole dictate performance of individual stocks. This relationship is described
as exposure to systematic risk and is part of an investment in every security
varying with the measure of sensitivity, β. SIS seeks to derive an estimate of
expected return for a given secruty by combining all macroeconomic factors into
one component, a measure of the market. The equation defines expected return
as a linear regression on the market measure (S&P 500).

Ri = αi + βiRM + ei

Ri - rate of return on security

αi - the stock’s expected return if the market is neutral, that is, its excess
return is zero

βiRM - component of the excess return attributed to the overall market

ei - unexpected component due to events specific to this security only

16

This equation looks very similar to the one describing excess return using
CAPM. In fact, we can combine the two in order to form a model that would
use the historical data. The results will be the necessary expected returns for
the Capital Market Theory.

We looked at the progression from MPT and its efficient portfolios into
CAPM. In our algorithm examples, we will demonstrate how to use our trade
data to derive optimal weights for the portfolio.

4.5 Data Filtering and VWAP Calculation

The trade information we receive from QuantWorld will contain 3 compo-
nents: the purchase price, the number of shares purchased, and time of the
trade. The user may define custom algorithms that would process and then
publish the results to the trading algorithms, that in turn use them to make
decisions. The following is an example of publishing custom information onto
the network, VWAP, specifically:

Figure 10: Data Analysis Algorithm

4.6 GARCH-based Volatility Calculation

Intuitively, even from a brisk examination of financial time series, such as
S&P 500 returns, we understand that during some periods in time, investments
in some assets contain greater risk than others. “That is, the expected value
of the magnitude of error terms at some times is greater than at others” ([14]).
However the previously standard model of least squares dealt with homoskedas-
ticity or assumption that “the expected value of all error terms, when squared,
is the same at any given point” [14]. Our intuitive idea is the basis for the op-
posite. Heteroskedasticity takes into account variance in the actual error terms
(see Figure 5). Before the introduction of the ARCH model (1982), rolling
standard deviation was the primary tool for future return predictions based on
data of past 22 days (month’s work days). ARCH took that idea of equally-
averaged squared residuals of the past month, and turned it into a process
where the weights would be subject for an estimate. In 1986 Bollerslev, student
of Engle, proposed Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model that changed the weighting scheme from the past month to
one asymptotically approaching zero. The resuling model is easy to estimate
and is an effective predictor of return variance. If we consider the regression
rt = mt +

√
htεt, where rt is the current return, mt is the mean, ht is current

variance and ε is standard error, we can express the next period’s variance using
the following equation (with constants ω, α, β to be estimated):

ht+1 = ω + α(rt −mt)2 + βht = ω + htε
2
t + βt

17

Figure 11: Presence of heteroskedasticity

Several issues arise when applying GARCH models to intra-day high-frequency
data: because of difficulties of extrapolating coarse volatilities (caused by long-
term traders vs. fine) from the data, methods estimating the GARCH param-
eters rarely converge, and in most cases when they do converge, the results are
statistically irrelevant. There have been many publications on applications to
intra-day data, however they are beyoung the scope of this report and we will
implement the model on the daily volatilities incorporating several-months data.
The following code will illustrate estimation of GARCH(1,1) parameters for an
individual security:

Figure 12: Calculation of GARCH parameters

The internal library already provides for us ’qLibGARCH,’ function running
the GARCH method. But here we take the first step for creating a functional
trading algorithm: we create a new class derived from ’QuantAlgorithm’ and
write a method ’calcGARCH’ we will use later.

4.7 Complete Algorithm

We have seen the theory behind efficiently weighted portfolio, how to derive
expected returns from the historical data, and how to calculate the volatility.

18

With GARCH calculation defined above, the following is an implementation of
a portfolio optimizing algorithm:

Figure 13: Portfolio Optimization

5 Future Work

There are several projects I am interested in pursuing after I finish Quant:
(1) connecting Quant to an artificial stock market, such as the Santa Fe version,
and (2) researching the formal description of financial contracts (options, swaps,
etc.) using a functional approach and building an automated system to screen
for arbitrage opportunities.

6 Acknowledgements

I would like to thank Dr. Greg Lavender for his continuing guidance, ex-
pertise, and support that made this project a possibility, and Deutsche Bank’s
Index Arbitrage and Quantitative Strategies Groups for the invaluable experi-
ences.

References

[1] Lutz, Mark. Programming Python. Sebastopol, California: O’Reilly Media
Inc., 2003.

[2] Dacorogna, Michel, Gencay, Ramazan, Mueller, Ulrich, Olsen, Richard,
and Pictet, Olivier. Introduction to High Frequency Finance. San Diego,
California: Academic Press, 2001.

[3] Reilly, Frank, and Brown, Keith. Investment Analysis & Portfolio Management.
Mason, Ohio: Thompson South-Western, 2003.

[4] Bodie, Zvi, Kane, Alex, and Marcus, Alan. Investments. New York: Mc-
Graw Hill, 2002.

[5] Harris, Larry. Trading and Exchanges. New York, New York: Oxford Uni-
versity Press, 2003.

19

[6] Lutz, Mark and Ascher, David. Learning Python. Sebastopol, California:
O’Reilly Media Inc., 2003.

[7] ASPN Python Cookbook. 05 May 2006.
<http://aspn.activestate.com/ASPN/Cookbook/Python>

[8] Introduction to R Statistical Package. Venables, W. N. , and Smith, D.M.
<http://cran.r-project.org/doc/manuals/R-intro.pdf>

[9] TSeries: Package for time series analysis and computational finance.
Trapletti, Adrian, and Hornik, Kurt. <http://cran.r-
project.org/src/contrib/Descriptions/tseries.html>

[10] MySQL Commands. 05 May 2006. <http://www.pantz.org/database/mysql/mysqlcommands.shtml>

[11] Insert GARCH material

[12] Probably some other r-package documentation

[13] Kendrick, David, Mercado, Ruben, and Amman, Hans.
Computational Economics Modeling. Austin: UT Austin Press, 2005.

[14] Kritzman, Mark. Portable Financial Analyst. New York: Wiley Finance,
2003.

[15] Engle, Robert. 2001. GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics.

[16] Markowitz, Harry. Portfolio Selection. The Journal of Finance, 1952.

20

