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Quantum Algorithms for Linear Algebraic Problems

Linear equation systems

A~x = ~b, given oracle access to A,~b, generate
~x

‖~x‖

I Ref. [HHL]: the first quantum algorithm (poly-log
dimension dependence) based on phase-estimation.

I Ref. [CKS]: poly-log error dependence based on
approximation theory, linear combination of unitaries
(LCU), quantum walks and Hamiltonian simulation.

More examples

I Singular value decomposition, matrix factorization, .....

I Spectral method, linear sketches, .....
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Quantum Algorithms for Machine Learning

Many proposals

I Quantum algorithms for supper-vector machines, principle
component analysis, ...

I Quantum algorithms for data fitting, geometric analysis of
data, linear regression ...

I Quantum enhanced supervised and unsupervised learning,
reinforcement learning, deep learning...

I Quantum learning of quantum systems, ...

Also note that:

I No much quantum speed-up in the sense of computational
learning theory.
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Quantum Algorithms for Optimizations

Optimizations

I Ref. [BS, vAGGdW, BKL+] Quadratic improvement over
classical algorithms.

I Poly-log dependence on the dimension with quantum
inputs.

I Quantum acceleration of the gradient descent method.

Open questions

I Concrete examples of SDP with provable quantum
speed-up.

I Optimization beyond SDPs.

I Quantize other classical techniques.
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Figure 4: Heuristic preparation of trial states for the variational quantum eigensolver

based on single-qubit gates U(✓) interleaved by entangling operations Uent as described

in the text.

Independently of the particular problem to be solved, one may choose trial states that

can be e�ciently generated in current quantum hardware and at the same time allow

the generation of highly entangled states that are close to the target state.

This approach is showcased in the examples provided in Sections 4.4 and 5.1. As

shown in Fig. 4, the preparation of the heuristic trial states comprises two types of

quantum gates, single-qubit Euler rotations U(✓) determined by the rotation angles ✓

and an entangling drift operation Uent acting on pairs of qubits. The N -qubit trial

states are obtained by applying a sequence of D entanglers Uent alternating with the

Euler rotations on the N qubits to the initial ground state |00 . . . 0i,

|�(✓)i =

D�timesz }| {
UD(✓)Uent . . . U1(✓)Uent U0(✓)|00 . . . 0i (13)

This gate sequence has a total number of p = N(3D + 2) independent angles.

To be more specific, the single-qubit operations are decomposed into rotations about

the x� and the z�axes, U q,i(✓) = Zq

✓q,i
1

Xq
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, with Xq(✓q,i
j ) = exp

h
�i✓q,i

j �
x
q /2

i
(and

similarly for Zq(✓q,i
j ), Y (✓)) denoting the unitary operation acting on qubit q at the i-th

position in the gate sequences. The heuristic approach does not rely on the accurate

implementation of specific two-qubit gates and can be used with any Uent that generates

su�cient entanglement. A natural choice can be the cross-resonance gate [83, 84] as

a two-qubit gate suited for the fixed-frequency superconducting qubit architecture as

used, for example, for the IBM Q experience [61].

4.4. Small molecules calculated with the variational quantum eigensolver

As an application of the method described above, we present the calculation of the

ground-state energy of simple molecules such as the hydrogen molecule: The starting

Proposals

I Quantum chemistry: ground energy of Hamiltonians.

I Optimization: Quantum Approximate Optimization
Algorithm (QAOA)

I Quantum Neural Network.

I Representing kernels, e.g., applied in, support vector
machines (SVM)
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Figure 3: Variational quantum eigensolver method. The trial states, which depend on a

few classical parameters ✓, are created on the quantum device and used for measuring

the expectation values needed. These are combined on a classical computer to calculate

the energy Eq(✓), i.e. the cost function, and find new parameters ✓ to minimize it.

The new ✓ parameters are then fed back into the algorithm. The parameters ✓⇤ of the

solution are obtained when the minimal energy is reached.

qubit quantum states | (✓)i parametrized by control parameters ✓. The subsequent

measurement of a cost function Eq(✓) = h (✓)|Hq| (✓)i, typically the energy of a

problem Hamiltonian Hq, serves a classical computer to find new values ✓ in order to

minimize Eq(✓) and find the ground-state energy

Emin
q

= min
✓

(h (✓)|Hq| (✓)i) . (3)

This variational quantum eigensolver approach to Hamiltonian-problem solving has been

recently applied in di↵erent contexts [70, 37, 34, 40, 71, 72]. In fact, the Hamiltonian

Hq can take many forms, the only requirement being that it can be mapped to a system

of interacting qubits with a non-exponentially increasing number of terms. Here we

distinguish two relevant cases: Hamiltonians that describe fermionic condensed-matter

or molecular system (Section 4) and Hamiltonians that describe a classical optimization

problem (Section 5).

3.1. Variational quantum eigensolver method

In detail, the variational quantum eigensolver method consists of four main steps as

shown in Figure 3. First, on the quantum processor a tentative variational eigenstate, a

trial state, | (✓)i is generated by a sequence of gates parameterized by a set of control

I Reasonable scenario for algorithm design on near-term
quantum devices.

I Heterogeneous computing, architecture, system,
programming languages.
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