Quantum Algorithm Survey: Cont'd

Xiaodi Wu

CS, UMIACS, and QuICS, University of Maryland

Quantum Algorithms for Linear Algebraic Problems

Linear equation systems

$$A\vec{x} = \vec{b}$$
, given oracle access to A, \vec{b} , generate $\frac{\vec{x}}{\|\vec{x}\|}$

- ▶ Ref. [HHL]: the first quantum algorithm (poly-log dimension dependence) based on phase-estimation.
- Ref. [CKS]: poly-log error dependence based on approximation theory, linear combination of unitaries (LCU), quantum walks and Hamiltonian simulation.

Quantum Algorithms for Linear Algebraic Problems

Linear equation systems

$$A\vec{x} = \vec{b}$$
, given oracle access to A, \vec{b} , generate $\frac{\vec{x}}{\|\vec{x}\|}$

- ▶ Ref. [HHL]: the first quantum algorithm (poly-log dimension dependence) based on phase-estimation.
- Ref. [CKS]: poly-log error dependence based on approximation theory, linear combination of unitaries (LCU), quantum walks and Hamiltonian simulation.

More examples

► Singular value decomposition, matrix factorization,

Quantum Algorithms for Linear Algebraic Problems

Linear equation systems

$$A\vec{x} = \vec{b}$$
, given oracle access to A, \vec{b} , generate $\frac{\vec{x}}{\|\vec{x}\|}$

- ▶ Ref. [HHL]: the first quantum algorithm (poly-log dimension dependence) based on phase-estimation.
- Ref. [CKS]: poly-log error dependence based on approximation theory, linear combination of unitaries (LCU), quantum walks and Hamiltonian simulation.

More examples

- ▶ Singular value decomposition, matrix factorization,
- ▶ Spectral method, linear sketches,

Many proposals

▶ Quantum algorithms for supper-vector machines, principle component analysis, ...

- ▶ Quantum algorithms for supper-vector machines, principle component analysis, ...
- Quantum algorithms for data fitting, geometric analysis of data, linear regression ...

- Quantum algorithms for supper-vector machines, principle component analysis, ...
- Quantum algorithms for data fitting, geometric analysis of data, linear regression ...
- Quantum enhanced supervised and unsupervised learning, reinforcement learning, deep learning...

- ▶ Quantum algorithms for supper-vector machines, principle component analysis, ...
- Quantum algorithms for data fitting, geometric analysis of data, linear regression ...
- Quantum enhanced supervised and unsupervised learning, reinforcement learning, deep learning...
- ▶ Quantum learning of quantum systems, ...

- ▶ Quantum algorithms for supper-vector machines, principle component analysis, ...
- Quantum algorithms for data fitting, geometric analysis of data, linear regression ...
- Quantum enhanced supervised and unsupervised learning, reinforcement learning, deep learning...
- ▶ Quantum learning of quantum systems, ...

Many proposals

- ▶ Quantum algorithms for supper-vector machines, principle component analysis, ...
- Quantum algorithms for data fitting, geometric analysis of data, linear regression ...
- Quantum enhanced supervised and unsupervised learning, reinforcement learning, deep learning...
- ▶ Quantum learning of quantum systems, ...

Also note that:

▶ No much quantum speed-up in the sense of computational learning theory.

Optimizations

▶ Ref. [BS, vAGGdW, BKL+] Quadratic improvement over classical algorithms.

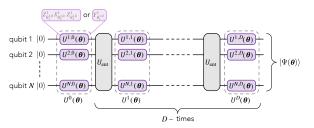
Optimizations

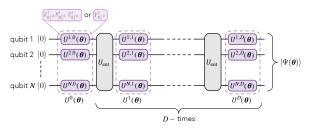
- ▶ Ref. [BS, vAGGdW, BKL+] Quadratic improvement over classical algorithms.
- ▶ Poly-log dependence on the dimension with quantum inputs.

Optimizations

- ▶ Ref. [BS, vAGGdW, BKL+] Quadratic improvement over classical algorithms.
- ▶ Poly-log dependence on the dimension with quantum inputs.
- Quantum acceleration of the gradient descent method.

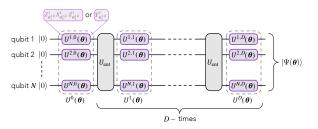
Optimizations

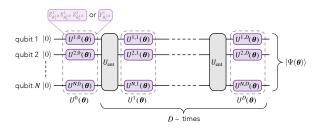

- ▶ Ref. [BS, vAGGdW, BKL+] Quadratic improvement over classical algorithms.
- ▶ Poly-log dependence on the dimension with quantum inputs.
- Quantum acceleration of the gradient descent method.


Optimizations

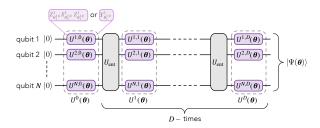
- ▶ Ref. [BS, vAGGdW, BKL+] Quadratic improvement over classical algorithms.
- ▶ Poly-log dependence on the dimension with quantum inputs.
- ▶ Quantum acceleration of the gradient descent method.

Open questions


- ► Concrete examples of SDP with provable quantum speed-up.
- ▶ Optimization beyond SDPs.
- Quantize other classical techniques.


Proposals

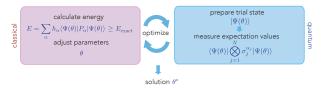
▶ Quantum chemistry: ground energy of Hamiltonians.


Proposals

- ▶ Quantum chemistry: ground energy of Hamiltonians.
- ► Optimization: Quantum Approximate Optimization Algorithm (QAOA)

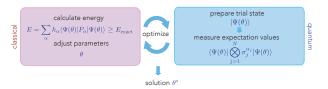
Proposals

- ▶ Quantum chemistry: ground energy of Hamiltonians.
- ► Optimization: Quantum Approximate Optimization Algorithm (QAOA)
- Quantum Neural Network.


Proposals

- ▶ Quantum chemistry: ground energy of Hamiltonians.
- ► Optimization: Quantum Approximate Optimization Algorithm (QAOA)
- Quantum Neural Network.
- ► Representing kernels, e.g., applied in, support vector machines (SVM)

Classical-Quantum Hybrid Algorithms



Classical-Quantum Hybrid Algorithms

▶ Reasonable scenario for algorithm design on near-term quantum devices.

Classical-Quantum Hybrid Algorithms

- ▶ Reasonable scenario for algorithm design on near-term quantum devices.
- ► Heterogeneous computing, architecture, system, programming languages.

Thank You!! Q & A