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Preface

All chemists and many biochemists, materials scientists, engineers, and physicists
routinely use spectroscopic measurements and electronic structure computations to
assist and guide their work. This book is designed to help the non-specialist user of
these tools achieve a basic understanding of the underlying concepts of quantum
chemistry. The emphasis is on explaining ideas rather than on the enumeration of
facts and/or the presentation of procedural details. The book can be used to teach
introductory quantum chemistry to second-or third-year undergraduates either as a
stand-alone one-semester course or as part of a physical chemistry or materials
science course. Researchers in related fields can use the book as a quick introduction
or refresher.

The foundation is laid in the first two chapters which deal with molecular sym-
metry and the postulates of quantum mechanics, respectively. Symmetry is woven
through the narrative of the next three chapters dealing with simple models of
translational, rotational, and vibrational motion that underlie molecular spectros-
copy and statistical thermodynamics. The next two chapters deal with the electronic
structure of the hydrogen atom and hydrogen molecule ion, respectively. Having
been armed with a basic knowledge of these prototypical systems, the reader is ready
to learn, in the next chapter, the fundamental ideas used to deal with the com-
plexities of many-electron atoms and molecules. These somewhat abstract ideas are
illustrated with the venerable H€uckel model of planar hydrocarbons in the penul-
timate chapter. The book concludes with an explanation of the bare minimum of
technical choices that must be made to do meaningful electronic structure compu-
tations using quantum chemistry software packages.

I urge readers who may be afraid of tackling quantum chemistry to relax. Rumors
about its mathematical content and difficulty are highly exaggerated. Comfort with
introductory calculus helps but an open mind and some effort are much more
important. You too can acquire a working knowledge of applied quantum chemistry
just like the vast majority of students who have studied it. Some tips for studying the
material are listed below.

1. The material in later chapters depends on earlier ones. There are extensive
back references throughout to help you see the connections.

2. Solving problems helps you learn. Make a serious attempt to do the end-of-
chapter problems before you look at the solutions.

3. You do need to learn basic facts and terminology in addition to the ideas.
4. Study small amounts frequently. Complex ideas take time to sink in.

This book grew from the quantum chemistry course that I have taught at the
University of New Brunswick since 1985. During the first few years of teaching it,
I was unable to find a text book that treated all the topics which I taught in a way I
liked. So in the fall of 1994, I wrote a set of ‘bare bones’ notes after each lecture
and distributed them during the next one. The encouraging and positive response of
the students kept me going to the end of the course. Having arrived at a first draft
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in this manner, the bare bones were expanded over the next few years. Since then,
this book has been revised over and over again using both explicit and implicit
feedback from students who have taken my course; it has been designed with
their verbal and non-verbal responses to my lectures, questions, problems, and tests
in mind.

Fredericton Ajit J Thakkar
31 March 2014
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A concise introduction for students of physics, chemistry, biochemistry and materials science

Ajit J Thakkar

Chapter 1

Molecular symmetry

1.1 Symmetry operations and elements
Symmetry is all around us. Most people find symmetry aesthetically pleasing.
Molecular symmetry imposes constraints on molecular properties1. A symmetry
operation is an action that leaves an object looking the same after it has been carried
out. A symmetry element is a point, straight line, or plane (flat surface) with respect to
which a symmetry operation is carried out. The center of mass must remain unmoved
by any symmetry operation and therefore lies on all symmetry elements. When dis-
cussing molecular symmetry, we normally use a Cartesian coordinate system with the
origin at the center of mass. There are five types of symmetry operation. The identity
operation E does nothing and is included only to make a connection between sym-
metry operations and group theory. The other four symmetry operations—rotations
Cn, reflections σ, inversion i, and improper rotations Sn—are described next.

1.1.1 Rotations around axes

A symmetry axis Cn, of order n, is a straight line about which (1/n)th of a full ‘turn’
(a rotation by an angle of 360!/n) brings a molecule into a configuration indistin-
guishable from the original one. A Cn axis must pass through the center of mass.
A C1 axis corresponds to a 360! rotation and so it is the same as the identity oper-
ation: C1 ¼ E. A C2 axis has a 360!/2 ¼ 180! rotation associated with it. In H2O,

O

HH

C2

O

H H

C2

1As Eugene Wigner said, symmetry provides ‘a structure and coherence to the laws of nature just as the laws of
nature provide a structure and coherence to a set of events’.
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the line bisecting the HOH angle is a C2 axis; rotation about this axis by 180! just
interchanges the two hydrogen nuclei. If the z axis is a C2 axis, then its action on a
nucleus is to move it from its original position (x, y, z) to (#x, #y, z). Thus

C2ðzÞ
x

y

z

2

64

3

75 ¼
#x

#y

z

2

64

3

75: ð1:1Þ

A C2 axis generates only one unique symmetry operation because two 180! rotations
bring an object back to its original configuration; that is, C2C2 ¼ C2

2 ¼ E. Each of
the objects A, B and C in figure 1.1 has exactly one C2 axis. The C2 axis is along the
x axis in object A, along the y axis in object B, and along the z axis in object C. The
more symmetrical object D in figure 1.1 has three C2 axes, one along each of the x, y
and z axes.

A square has a C4 axis of symmetry as illustrated in figure 1.2. Performing two
successive C4 or 360!/4 ¼ 90! rotations has the same effect as a single C2 or 180!

rotation; in symbols, C2
4 ¼ C2. Hence for every C4 axis there is always a collinear C2

axis. Moreover, C4
4 ¼ C2

2 ¼ E and so a C4 axis generates only two unique symmetry
operations, C4 and C3

4 . A clockwise C3
4 rotation is the same as a counter clockwise

x

y

A

x

y

B

x

y

C

x

y

D

Figure 1.1. Can you see the C2 axes in objects A, B, C, and D?
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C4 rotation. We adopt the convention that all rotations are clockwise. A C4 axis can
be found, for example, along each S–F bond in the octahedral molecule SF6, and
along the axial I–F bond in the square pyramidal IF5 molecule. (Tip: nuclei not on
Cn occur in sets of n equivalent ones.)

In NH3, the line passing through the nitrogen nucleus and the center of the
triangle formed by the hydrogen nuclei is a C3 axis; rotation by 360!/3 ¼ 120! per-
mutes the H nuclei ða ! b, b ! c, c ! aÞ. Methane has a C3 axis along each
C–H bond.

N
H H

H

C

H

H

H

H

A C3 axis generates two unique symmetry operations, C3 and C2
3 . Benzene has a C6

axis perpendicular to the ring and passing through its center. A C6 axis generates
only two unique symmetry operations, C6 and C5

6 , because a C3 and a C2 axis are
always coincident with it, and C2

6 ¼ C3, C3
6 ¼ C2, C4

6 ¼ C2
3 , and C6

6 ¼ E. In
O¼C¼O, the molecular axis is a C1 axis because rotation by any angle, however
small, about this axis leaves the nuclei unmoved.

C4 C4

C4

C4

C2

a

b

d

a

b

c

c

d

d

c

c

b

a

d

b

a

Figure 1.2. C4 symmetry in a square.
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The z axis is taken along the principal symmetry axis which is defined as the Cn

axis with the highest order n. For example, the C6 axis is the principal axis in
benzene. If there are several Cn axes of the highest n, then the principal axis is the one
passing through the most nuclei. For example, ethene (C2H4) has three C2 axes and
the principal axis is the one passing through both carbons. A planar molecule that
has its principal axis in the molecular plane, like ethene but unlike benzene, is placed
in the yz plane.

C C
H H

HH

1.1.2 Reflections through symmetry planes

A plane is a symmetry plane σ if reflection of all nuclei through this plane sends the
molecule into an indistinguishable configuration. A symmetry plane contains the
center of mass and bisects a molecule. If the symmetry plane is the xy plane, then
its action on a nucleus is to move it from its original position (x, y, z) to (x, y, #z).
Thus,

σxy

x

y

z

2

64

3

75 ¼
x

y

#z

2

64

3

75: ð1:2Þ

A symmetry plane generates only one unique symmetry operation because reflecting
through it twice brings a molecule back to its original configuration. Hence σ2 ¼ E.
A symmetry plane is also called a mirror plane.

The xy plane is a symmetry plane for each of the planar objects A, B, C and D in
figure 1.1. Objects A and D also have the xz plane as a plane of symmetry. Objects B
and D have a yz symmetry plane. Object C has no other planes of symmetry. Thus
object D has three planes of symmetry, objects A and B each have two but object C
has only one plane of symmetry. Any planar molecule, such as benzene, has its
molecular plane as a plane of symmetry because reflection across the molecular
plane leaves all nuclei unmoved.

NH3 has three planes of symmetry each of which contains an N–H bond
and is perpendicular to the plane containing the three hydrogen atoms.
(Tip: nuclei not on σ occur in equivalent pairs.) The three symmetry planes are
geometrically equivalent, and the corresponding reflections are said to form a
class. Operations in the same class can be converted into one another by
application of some symmetry operation of the group or equivalently by a
suitable rotation of the coordinate system. The identity operation always forms
a class of its own.
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A symmetry plane perpendicular to the principal symmetry axis is called a
horizontal symmetry plane σh. Symmetry planes that contain the principal symmetry
axis are called vertical symmetry planes σv. A vertical symmetry plane that bisects
the angle between two C2 axes is called a dihedral plane σd. The distinction between
σv and σd planes is unimportant, at least in this book. For example, H2O has two
vertical symmetry planes: the molecular plane and one perpendicular to it. The
intersection of the two planes coincides with the C2 axis. The molecular plane of a
planar molecule can be either horizontal as in C6H6 or vertical as in H2O. Benzene
also has six symmetry planes perpendicular to the ring and containing the C6 axis.
These six planes separate into two classes: three containing CH bonds and three
containing no nuclei. One class of planes is called vertical and the other dihedral; in
this example, either class could be called vertical. Linear molecules like HCl and
HCN have an infinite number of vertical symmetry planes. Some of them, such as
N2 and CO2, have a horizontal symmetry plane as well. Reflection in σh is always in
a class by itself.

1.1.3 Inversion through a center of symmetry

If an equivalent nucleus is reached whenever a straight line from any nucleus to the
center of mass is continued an equal distance in the opposite direction, then
the center of mass is also a center of symmetry. Since the center of mass is at the
coordinate origin (0, 0, 0), the inversion operation imoves an object from its original
position (x, y, z) to (#x, #y, #z). Thus

i

x

y

z

2

64

3

75 ¼
#x

#y

#z

2

64

3

75: ð1:3Þ

Objects C and D in figure 1.1 have a center of symmetry but objects A and B do
not. C6H6, SF6, C2H4 and the object in figure 1.3 have a center of symmetry but CH4

Figure 1.3. This object has a center of symmetry. There would be no center of symmetry if the arrows pointed
in the same direction.
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does not. (Tip: nuclei not on i occur in equivalent pairs.) Inversion generates only
one unique symmetry operation because i2 ¼ E. Inversion forms a class by itself.

S

F
F

F
F

F

F
C C

H H

HH

1.1.4 Improper rotations around improper axes

An improper rotation Sn is a rotation by 360!/n about an axis followed by a
reflection in a plane perpendicular to the axis. Thus Sn ¼ σCn. No unique symmetry
operations are generated by an S1 or S2. Note that S1 ¼ σC1 ¼ σ because C1 ¼ E,
and that S2 ¼ σC2 ¼ i as can be seen by combining equations (1.1)–(1.3). Hence
only Sn with n ⩾ 3 are normally called Sn. Molecules which have both a Cn and a σh
must have an Sn. For example, benzene has an S6 axis coincident with its C6 axis
because it has a σh.

However, an object or molecule need not have a σ or a Cn to have an Sn. Non-
trivial S4 axes are illustrated in figure 1.4 for a crossed stack of erasers and for
methane. Figure 1.4 shows that methane has three S4 axes, each of which bisects two
HCH angles, even though it has neither a C4 axis nor any symmetry planes per-
pendicular to an S4 axis. An S4 axis generates only two unique symmetry operations,
S4 and S3

4 , because S2
4 ¼ σC4σC4 ¼ σ2C2

4 ¼ EC2 ¼ C2 and S4
4 ¼ S2

4S
2
4 ¼ C2

2 ¼ E.

1.2 Classification of molecular symmetry
Objects cannot have an arbitrary collection of symmetry elements. For example, it is
impossible to have a molecule in which there is a C3 axis and only one σv. A rotation
by 120! about the C3 axis carries the σv into a different plane, say P. Since C3 is a
symmetry axis, this new configuration of the molecule must be indistinguishable
from the original one. However, for this to be so, the plane P must be a σv plane as
well. Clearly, a C3 axis and one σv plane imply the existence of two more σv planes.

Mathematicians have worked out all possible groups of symmetry operations.
Their results can be used to classify molecules by symmetry. Since all the symmetry
elements of a molecule must intersect in at least one point, the symmetry groups are

C4
σh

S4

1

1

2

2

3

3

4

4

S4

S4

Figure 1.4. A non-trivial S4 axis with no coincident C4 axis is shown for stacked erasers on the left and for
methane on the right.
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called point groups. Each group is designated by a symbol called the Schoenflies
symbol.

An atom has spherical symmetry and belongs to the K point group. To assign a
molecule to a point group, use the flow chart given in figure 1.5. The first step is to
decide whether the molecule is linear (all atoms on a straight line). If it is linear, then it

Linear? i? D∞h

C∞v

2 or more C5? i? Ih

I

2 or more C4? i? Oh

O

4 C3? σ? i? Th

T Td

Cn, n > 1? n C2 ⊥ Cn? σh? Dnh

σ? Cs σh? Cnh nσv? Dnd

i? Ci nσv? Cnv Dn

C1 S2n? S2n

Cn

Yes Yes

Yes Yes

Yes Yes

Yes Yes Yes

Yes, n ← nmax Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No No

No

No

No

No

No

oNoN

Figure 1.5. Flow chart for determining point group symmetry.
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has C1v orD1h symmetry depending on whether or not it has an inversion center. For
example, carbon dioxide (O¼C¼O) has D1h symmetry but HCN has C1v symmetry.

If the molecule is not linear, then search for non-trivial axes of rotation Cn with
n > 1. It helps to know that if there is a Cn axis, then all the off-axis nuclei can be
separated into sets of n equivalent nuclei. If there are multiple Cn with n > 2, then
the molecule belongs to a high-symmetry ‘Platonic’ group. Six C5 axes indicate Ih,
the point group of a perfect icosahedron or pentagonal dodecahedron, or the rare I,
which has only the pure rotations of an icosahedron. Buckminsterfullerene C60 has
Ih symmetry. Three C4 axes indicate Oh, the point group of a cube or a perfect
octahedron like SF6, or the rare O which has only the pure rotations of an octa-
hedron. Four C3 axes and no C4 axes indicate Td, the group of a perfect tetrahedron
like methane, or the rare T which has only the rotations of Td, or Th obtained by
combining an inversion center with the rotations of T. The I, O, Th, and T point
groups are chemically rare.

If there are no Cn axes at all with n > 1, the molecule is of low symmetry and
belongs to (a) Cs if there is a symmetry plane, (b) Ci if there is a center of inversion,
and (c) C1 otherwise. If there are some Cn with n > 1, choose a principal axis with the
maximum n. From this point on, n is the fixed number that you determined in this
step. Check for nC2 axes perpendicular to the principal axis of symmetry. Next, search
for a horizontal plane of symmetry, σh. Don’t assume that the molecular plane in a
planar molecule is a σh. For example, the molecular plane in benzene is a σh but the
molecular plane in H2O is a σv. On those rare occasions when you have to look for an
S2n axis, bear in mind that 2n is always even and that 2n ⩾ 4 because n > 1. Molecules
with Dn or S2n symmetry are uncommon. For example, C(C6H5)4 has S4 symmetry,
and ethane in a conformation that is neither staggered nor eclipsed has D3 symmetry.
Use table 1.1 to check for all the symmetry elements characteristic of the point group.

Practice finding the point groups2 for the molecules in figure 1.6. Visualization
software that allows rotation of a molecule’s ball-and-stick image in three dimen-
sions is helpful. Newman projections, as taught in organic chemistry, help you see
Dn, Dnd, and Dnh symmetry.

2 From left to right, first row: C1, Ci, Cs, C2; second row: C2v, C3v, C4v, C2h; third row: D2h, D3h, D6h, Oh;
fourth row: D2d, D3d, Td.

Table 1.1. Characteristic symmetry elements of point groups. n ⩾ 2.

Simple Single-axis groups Dihedral groups

C1 E Cn Cn Dn Cn, nC2 ð\CnÞ
Cs σ Cnv Cn, nσv Dnd Cn, nC2 ð\CnÞ, nσd,S2n

Ci i Cnh Cn, σh Dnh Cn, nC2 ð\CnÞ, nσv, σh
Infinite groups Platonic groups

C1v C1,1σv Td 4C3, 3C2, 6σd, 3S4

D1h C1,1σv, i, σh Oh 3C4, 4C3, i, 6σd, 3σh
K 1 C1 Ih 6C5, 10C3, i, 15σ
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1.3 Implications of symmetry
The dipole moment of a molecule should not be changed either in direction or in
magnitude by a symmetry operation. This invariance to symmetry operations can be
realized only if the dipole moment vector is contained in each of the symmetry
elements. For example, an inversion center, more than one Cn axis, and a horizontal
symmetry plane all eliminate the possibility of a dipole moment. Therefore, a
molecule can have a non-zero dipole moment only if it belongs to one of the point
groups C1, Cs, Cn or Cnv. Thus H2O with C2v symmetry can and does have a
non-zero dipole moment, but CO2 with D1h symmetry cannot and does not have
a non-zero dipole moment.

A chiralmolecule is one that cannot be superimposed on its mirror image. Thus, a
molecule can be chiral only if it does not have a symmetry element that converts a
right-handed object to a left-handed one. In other words, a molecule can be chiral
only if it does not have a plane of symmetry or an inversion center or an improper
axis of symmetry Sn. Since S1 ¼ σ and S2 ¼ i, we can simply say that the presence of
an improper axis of symmetry rules out chirality. A molecule can be chiral only if it
belongs to a Cn or Dn point group.

In discussions of rotational spectroscopy, it is usual to classify molecules into four
kinds of rotors or tops. The correspondence between that classification and point
groups is simple. Linear rotors are C1v or D1h molecules. Spherical tops contain
more than one Cn axis with n ⩾ 3 as in Td, Oh or Ih molecules. Symmetric tops are
molecules that contain one and only one Cn axis with n ⩾ 3 or an S4 axis, and thus
belong to Cn, Cnv, Cnh, Dn, Dnh or Dnd with n ⩾ 3 or D2d or Sn ðn ¼ 4, 6, 8, . . .Þ.

C
C

H

F

B

l

r

C

CH

H

B

B

l

l
r

r

C

C
HH

Fl

C

C

l

l

HH
O

H
HH

N
F

F F

F
F

I
CC

H

H F

F

CC
H H

HH

F F

F

B

F

F
F

F

F
F

S

C CC
H

HH

H

H

H

H
HH

H
CH

H

H

H
Figure 1.6. Molecules with various symmetries.
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Asymmetric tops are molecules that do not contain any Cn axis with n ⩾ 3 or S4 axis,
and thus belong to C1, Ci, Cs, C2, C2v, C2h, D2 or D2h.

Two symmetry operations, O1 and O2, are said to commute if the result of car-
rying out one after the other does not depend upon the order in which they are
carried out. That isO1 andO2 commute ifO1O2 ¼ O2O1 whereO1O2 means first do
O2 and then do O1. Symmetry operations do not always commute. For example,
figure 1.7 shows that, in an equilateral triangle, reflections in the σv do not commute
with one another; in symbols, we write σ0vσv 6¼ σvσ

0
v. Figure 1.7 also shows that

σ0vσv ¼ C3 and σvσ
0
v ¼ C2

3 .
Groups in which each symmetry operation commutes with every other symmetry

operation are called Abelian. Every element of an Abelian group forms a class by
itself. Note that the symmetry group of an asymmetric top molecule is always an
Abelian point group. The energy levels of molecules with Abelian symmetry have a
special simplicity as we shall see in section 4.2.

Problems (see appendix B for hints and solutions)
1.1 Which of the molecules in figure 1.6 has a center of inversion?

1.2 Suppose the z axis is a C4 axis of symmetry. What will be the coordinates of a
nucleus after a clockwise C4 rotation if its coordinates were (x, y, z) before the
rotation?

σv

C3

1 2

3

σv

2 1

3

2 3

1
σv σv

σv

C2
3 = C−1

3

1 2

3

σv

1 3

2

3 1

2
σv σv

Figure 1.7. Non-commutativity of reflections in an equilateral triangle.
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1.3 Use sketches to show all the symmetry elements in naphthalene.

1.4 Use sketches to show all the symmetry elements in the following molecules:

1.5 Find two planes of symmetry and three C2 axes in allene (C3H4).

C
H

H H
CC

H

Use sketches to show the symmetry elements. Drawing Newman diagrams (pro-
jections) in the manner of organic chemistry books is helpful.

1.6 Find the symmetry point group for each of the following molecules. Which
molecules are polar and which are chiral?

NH

H

H

H

H
B

N

N

B
N

B

H

H

H

HH

H

F

H
HH Sn

Cl Cl

ClCl

1.7 Find the symmetry point group for each of the following molecules. Which
molecules are polar and which are chiral?

C

H

H F
F

1.8 A molecule has three C2 axes that are perpendicular to each other, and no other
non-trivial symmetry elements. Can such a molecule have a non-zero dipole
moment? Can it be chiral? Explain without reference to the point group of the
molecule.
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Chapter 2

Basic quantum mechanics

2.1 Wave functions specify a system’s state
Newton’s laws do not describe correctly the behavior of electrons inmolecules; instead,
quantum mechanics is required. Following early foundation work by Max Planck,
Albert Einstein, Niels Bohr, and Louis de Broglie, modern quantum mechanics
was discovered in the 1920s, primarily by Werner Heisenberg, Max Born, Erwin
Schrödinger, Paul Dirac, and Wolfgang Pauli. All nine won Physics Nobel Prizes.

The justification for quantum mechanics is that it provides an accurate descrip-
tion of nature. As Bohr said, ‘It is wrong to think that the task of science is to find
out how Nature is. Science concerns what we can say about Nature.’

In quantum mechanics, the state of a system is completely specified by a function
called the time-dependent state or wave function. It is a function of the time t, and of
the three position coordinates of each of the particles in the system. A system which
is not subject to time-varying external forces can be described by a time-independent
wave function ψ (read ψ as sigh), which is a function of the position coordinates
but does not depend on the time. In this book we focus exclusively on such systems.
Hence, all wave functions will be time-independent unless explicitly stated otherwise.

For example, the wave function of a one-particle system can be written as ψ(x, y, z)
where (x, y, z) are the Cartesian coordinates of the position of the particle. The wave
function contains all the information that can be known about the system. Max
Born’s interpretation of the wave function is that jψ j2 is a probability density. Thus,
for a one-particle system, the probability that the particle is in a tiny box centered at
(x, y, z) with sides dx, dy, and dz is given by jψðx, y, zÞj2 dx dy dz, where dx dy dz is
called the volume element1.

1 The probability density jψ j2 is real and non-negative, as it must be, even if the wave function ψ is complex-
valued. In that case, jψ j2 ¼ ψ*ψ where the asterisk denotes complex conjugation; appendix A has a brief
review of complex numbers. In this book, we will work only with real-valued wave functions, and so jψ j2 will
be the same as ψ2.
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To ensure that the sum of the probabilities for finding the particle at all possible
locations is finite, the wave function ψ must be square-integrable:

R
jψðx, y, zÞj2

dx dy dz<1. For example, ψ ¼ e$x2 is square-integrable over $1 ⩽ x ⩽ 1 but
ψ ¼ eþx2 is not.

0
x

0
x

e−x2

e+x2

Probabilities are usually expressed on a scale from 0 (no chance) to 1 (certainty).
The certainty that the particle is somewhere leads to the normalization condition for
the wave function:

Z
jψðx, y, zÞj2 dx dy dz ¼ 1: ð2:1Þ

Clearly, the wave function must be continuous for it to yield a physically sensible
probability density. All this is summarized in:

Postulate 1. The state of a system not subject to external time-varying forces is specified
completely by a continuous and square-integrable wave function ψ that depends on
the coordinates of the particles. The quantity jψ j2 dτ is the probability of finding the
particles in a volume element dτ at a given location.

2.2 Operators represent observables
In quantum chemistry, every physical observable is represented by an operator.
Hence, we first study operators and then quantum chemical ones.

2.2.1 Operators

A function of one variable, like sin(x), is a ‘black box’ that takes any real number x
as input and produces a real number as output. Similarly, an operator is a black box
that takes a function (or vector) as input and produces a function (or vector) as
output. For example, the differentiation operator d/dx takes the function sin(x) as
input and produces the function cos(x) as output. A ‘hat’ may be used to indicate
that a symbol represents an operator; for example, Â fðxÞ ¼ gðxÞ indicates that the
operator Â maps the function f(x) on to the function g(x).

We have already encountered, in equations (1.1)–(1.3), the symmetry operators
C2, σxy and i, which map a vector containing the Cartesian coordinates of a point to
a vector containing the coordinates of the location to which the point is moved by
the corresponding symmetry operation. A symmetry operator can act on a function
by changing the arguments of the function. For example, the inversion operator
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changes the sign of all the arguments of a function and this can be written as
î f ðx, y, zÞ ¼ f ð$x,$y,$zÞ.

Operators work mostly as we expect. The product of a scalar (number) c and
an operator Â is another operator cÂ defined by ½cÂ' f ðxÞ ¼ c½Âf ðxÞ'. The sum of
two operators is defined by ½Â þ B̂' f ðxÞ ¼ Âf ðxÞ þ B̂ f ðxÞ. The product ÂB̂ of two
operators Â and B̂ is defined by ÂB̂ f ðxÞ ¼ Â½B̂ f ðxÞ'. Note that the operator on the
right acts first on the function and its output is acted upon by the operator on
the left. Â

2
is just Â applied twice. In many cases, operator multiplication is non-

commutative, that is ÂB̂ 6¼ B̂Â. For example, the operator Â ¼ x that multiplies a
function by x and the differentiation operator B̂ ¼ d=dx do not commute:

ÂB̂ f ðxÞ ¼ x f 0ðxÞ 6¼ B̂Â f ðxÞ ¼ d=dx½x f ðxÞ' ¼ x f 0ðxÞ þ f ðxÞ: ð2:2Þ

Another example of operators that do not commute with each other is provided by
σv and σv0 under D3h symmetry as shown in figure 1.7.

If an operator Â maps a function f onto itself multiplied by a constant a, that is if

Âf ðxÞ ¼ af ðxÞ, ð2:3Þ

then the function f (x) is said to be an eigenfunction of Â and the constant a is called
the corresponding eigenvalue. For example, let Â ¼ d=dx and f ðxÞ ¼ 5 e3x. Then
Âf ðxÞ ¼ dð5 e3xÞ=dx ¼ 15 e3x ¼ 3f ðxÞ and so 5 e3x is an eigenfunction of the dif-
ferentiation operator d=dx with eigenvalue 3.

If f is an eigenfunction of Â with eigenvalue a, then so is any non-zero multiple
of f. To see this, note that

Âðc f Þ ¼ cðÂ f Þ ¼ cða f Þ ¼ aðc f Þ ð2:4Þ

in which c is a non-zero constant.
An operator Â is linear if, for all functions f and g, and all constants a and b, it is

true that

Â a f þ b gð Þ ¼ aÂ f þ bÂ g: ð2:5Þ

Many operators, such as the differentiation operator, are linear. The square root
operator is an example of an operator that is not linear. All quantum mechanical
operators are linear and Hermitian. An operator Â is Hermitian if

Z
ϕ*ðÂψÞ dx ¼

Z
ψ*ðÂϕÞ dx

! "*
ð2:6Þ

is true for all functions ϕ and ψ . Hermitian operators have two important properties.
(a) All the eigenvalues of a Hermitian operator are real numbers. (b) If f1ðxÞ and
f2ðxÞ are any pair of distinct eigenfunctions of a Hermitian operator, then they are,
or can be chosen to be, orthogonal to one another:

Z þ1

$1
f1ðxÞ f2ðxÞ dx ¼ 0: ð2:7Þ
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If the functions are complex-valued, then f1ðxÞ should be replaced by f *1 ðxÞ in
equation (2.7).

2.2.2 Quantum chemical operators

Postulate 2. Every observable A is represented by a linear, Hermitian operator Â. The
operator x̂ for each coordinate x corresponds to multiplication by x, and the operator for
each component of linear momentum px is p̂x ¼ $iħ@=@x (read ħ as h-bar) in which
ħ ¼ h=2π and h is Planck’s constant. All other operators are constructed by replacing
Cartesian coordinates and linear momenta in the Newtonian formula for A by these two.

Postulate 3. The only values that can be observed in a measurement of an observable
A are the eigenvalues of the corresponding operator Â.

The eigenvalues of postulate 3 are guaranteed to be real numbers, as they must be
if they are to be the results of observations, because the operators are Hermitian.
The p̂x operator would not be Hermitian without the constant i ¼

ffiffiffiffiffiffiffi
$1

p
. Often the

hat ^ is left off x̂ and other multiplicative operators. Observe that equation (2.2)
shows that x̂ does not commute with p̂x.

All other quantum chemical operators are constructed from the position and
momentum operators. For example, the operator T̂ x for the x component of the
kinetic energy of a particle of mass m is obtained as follows:

T̂x ¼
p̂2x
2m

¼ ð$iħÞ2

2m
@

@x

$ %2
¼ $ ħ2

2m
@2

@x2
: ð2:8Þ

The total kinetic energy operator for a single particle of mass m is

T̂ ¼ T̂x þ T̂ y þ T̂ z ¼ $ ħ2

2m
r2 ð2:9Þ

in which

r2 ( @2

@x2
þ @2

@y2
þ @2

@z2

is called the Laplacian operator or ‘del-squared’. Sometimes r2 is denoted by Δ
(read Δ as dell-tah). The potential energy V depends only on the coordinates and
so V̂ for a single particle is simply multiplication by the potential energy function
Vðx, y, zÞ. The total energy operator is called the Hamiltonian operator:

Ĥ ¼ T̂ þ V̂ : ð2:10Þ

The hat is usually left off V̂ because it is a multiplicative operator. Inserting
equation (2.9) into equation (2.10), we get the single-particle Hamiltonian

Ĥ ¼ $ ħ2

2m
r2 þ V x, y, zð Þ: ð2:11Þ
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Hamiltonians for systems with more than one particle are discussed in section 6.2.
The next section explains the fundamental role of the Hamiltonian operator.

2.3 Schrödinger’s equation
Postulate 4. The wave functions ψ of a system free of time-varying external forces are
eigenfunctions of the Hamiltonian operator Ĥ :

Ĥψ ¼ Eψ : ð2:12Þ

Postulate 3 tells us that the observable energies are eigenvalues of the energy
(Hamiltonian) operator. Postulate 4 tells us that the eigenfunctions of the Hamil-
tonian are precisely the wave functions of postulate 1.

Equation (2.12) is called the Schrödinger equation. Since it has many solutions,
equation (2.12) is often written as

Ĥψn ¼ Enψn ð2:13Þ

where the quantum number n ¼ 1, 2, . . . labels the states in order of increasing energy.
Since Ĥ is Hermitian, the energy eigenvalues En are real numbers as they must be
and the eigenfunctions ψn are orthogonal to one another (see equation (2.7)):

Z
ψmψn dτ ¼ 0 for m 6¼ n: ð2:14Þ

The normalization and orthogonality conditions, equation (2.1) and equation (2.14),
can be combined in the compact orthonormality condition:

Z
ψmψn dτ ¼

1 for m ¼ n,
0 for m 6¼ n

&
ð2:15Þ

in which dτ is the pertinent volume element; for example, dτ ¼ dx dy dz for a single
particle. If the wave functions are complex-valued, then ψm should be replaced by
ψ*
m in equations (2.14)–(2.15).
Equation (2.4) tells us that if ψ 0 is an eigenfunction of Ĥ with energy E, then so is

ψ ¼ cψ 0 where c is any non-zero constant. We exploit this to choose c in a manner
such that ψ is normalized. We require

Z
jψ j2 dτ ¼

Z
jc ψ 0j2 dτ ¼ jcj2

Z
jψ 0j2 dτ ¼ 1:

If c is a real number, then

c ¼ )
Z

jψ 0j2 dτ
$ %$1=2

ð2:16Þ

and we can choose either the positive or the negative sign because both choices lead
to the same probability density jψ j2. This is referred to as the choice of the phase
factor. Usually the positive sign is chosen for simplicity.
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For example, suppose that ψ 0 ¼ e$bx2 is an unnormalized wave function for a
single particle in one dimension and that the range of x is ð$1,1Þ. Insert ψ 0 ¼ e$bx2

into the integral in equation (2.16), note that b > 0 is required for square integra-
bility, and use the integral formula (A.15) on page A-3, to find that

Z
jψ 0j2 dτ ¼

Z 1

$1
e$2bx2 dx ¼ π

2b

' (1=2
:

Choosing the positive root leads to the normalization constant c ¼ ð2b=πÞ1=4 and the
normalized wave function ψ ¼ ð2b=πÞ1=4 e$bx2 .

2.4 Measured and average values
A way to compute the average value of an observable A that we can expect to obtain
in a series of measurements on a set of identical systems is given by the next postulate.

Postulate 5. If a system is in a state described by a normalized wave function ψ , then
the average value of the observable A with corresponding operator Â is given by

hAi ¼
Z

ψðÂψÞ dτ: ð2:17Þ

Equation (2.17) must be written as hAi ¼
R
ψ*ðÂψÞ dτ if the wave function is

complex-valued. An average need not coincide with any of the numbers it is con-
structed from. Hence the expectation (or average) value hAi need not coincide with
any of the eigenvalues of Â. The variance of the values of A found by measurements
on a set of identical systems is given by

σðAÞ ¼
'
hA2i$ hAi2

(1=2
: ð2:18Þ

The Heisenberg uncertainty principle is:

σðxÞσðpxÞ⩾ħ=2: ð2:19Þ

Heisenberg’s inequality implies that σ(x) and σ( px) cannot both be zero although
one can be zero if the other is infinite. In other words, we cannot simultaneously
measure the position and momentum of a particle without introducing an inherent
uncertainty in one or both of these quantities. Similar Heisenberg inequalities hold
for the y and z components2.

2Moreover, Howard P Robertson showed that uncertainty relationships hold true for all pairs of operators,
ðÂ, B̂Þ, that do not commute with each other:

σ Að Þσ Bð Þ⩾ 1

2
hjÂB̂ $ B̂Âji: ð2:20Þ

Inserting the quantum mechanical operators for x̂ and p̂x into equation (2.20) and doing some algebra (see
equation (2.2)) leads to the Heisenberg uncertainty principle given by equation (2.19).
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If quantum mechanics makes you uneasy, pay heed to Richard Feynman (Nobel
Prize, 1965). He said, ‘Do not keep saying to yourself: “But how can it be like that?”
because you will go down the drain into a blind alley from which nobody has yet
escaped. Nobody knows how it can be like that. But all known experiments back up
quantum mechanics.’

Problems (see appendix B for hints and solutions)
2.1 Evaluate g ¼ Âf for (a) Â ¼ d2=dx2 and f ðxÞ ¼ e$ax, (b) Â ¼

R a
0 dx and

f ðxÞ ¼ x3 $ 2x2 þ 3x$ 4, and (c) Â ¼ r2 and f ðx, y, zÞ ¼ x4y3z2.

2.2 Write down the form of the operator Â
2
when (a) Â ¼ x, (b) Â ¼ d=dx, and

(c) Â ¼ d=dxþ x. Make sure you include a function f before carrying out operations
to check your answer.

2.3 Which of the following functions (a) e$αx2 , (b) cos βx, and (c) 7eikx are eigen-
functions of the operator $ħ2d2=dx2? For each eigenfunction, what is the
corresponding eigenvalue?

2.4 Are the functions f ðxÞ ¼ e$3x2 and gðxÞ ¼ eþ3x2 square integrable over
$1 < x < 1? Would the answer change if the constant 3 in these functions was
changed to 5 or 99?

2.5 Jan and Olga were working on solutions to the Schrödinger equation for a
model one-dimensional problem. They squabbled because Jan found the ground

state wave function to be ψ ¼ ζ3=2π
) *1=2

e$ajxj whereas Olga found it to be

ψ ¼ $ ζ3=2π
) *1=2

e$ajxj where a and ζ are constants. Their director, Susan, explained
to them why they were both right. What was Susan’s explanation?

2.6 Write down the three mathematical statements implied by ‘the real-valued
functions f(x) and g(x) are orthonormal on the interval [0, 1)’.

2.7 Suppose ψ 0 ¼ e$ar is an unnormalized wave function for a single-particle,
one-dimensional system. The range of r is (0,1), and a > 0 as is required for square
integrability. Find c such that ψ ¼ cψ 0 is normalized.
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Chapter 3

Translation and vibration

3.1 A particle in a wire
The postulates of quantum mechanics can be understood by considering a simple
one-dimensional model of the translational motion of a particle in a wire. Many of
the features encountered here, including quantization of energy levels, orthogonality
of wave functions, increase in energy with number of nodes in the wave function,
and symmetry of wave functions, recur throughout this book.

Consider a particle of mass m that can move freely along a straight piece of wire
of length a but is prevented from leaving the wire by infinitely high walls as in
figure 3.1. This model of translational motion is used in statistical thermodynamics
when the macroscopic properties of an ideal gas are related to the properties of the
molecules comprising the gas.

The potential energy is zero inside the wire and at its ends, but infinite elsewhere
so that the particle cannot leave the wire. Let the wire be placed along the x axis and
extend from x ¼ 0 to x ¼ a. Since the particle will be restricted to the x axis, this is
a one-dimensional problem. ψ(x) ¼ 0 for x < 0 and x > a because the probability of

V = ∞

ψ = 0

0

V = 0

ψ = ?

a

V = ∞

ψ = 0

x
Figure 3.1. A particle in a wire.
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the particle being outside the wire is zero. To find ψ in the wire, we must solve the
Schrödinger equation (2.12) using a one-particle Hamiltonian, equation (2.11),
with V ¼ 0 and the kinetic energy operator containing only an x component. Thus,
we must solve:

" ħ2

2m
d2ψ
dx2

¼ Eψ for 0⩽ x⩽ a: ð3:1Þ

3.1.1 Solving the Schrödinger equation

Equation (3.1) is solved by noticing that the only functions whose second derivatives
are proportional to themselves, with a negative proportionality constant, are the sine
and cosine functions. So we try the function:

ψðxÞ ¼ A sin αxþ B cos βx for 0⩽ x⩽ a: ð3:2Þ

Postulate 1 on page 2-2 says that ψ must be continuous everywhere. Continuity at
the left edge (x ¼ 0) requires ψð0Þ ¼ 0 which forces A× sin 0þ B× cos 0 ¼ B ¼ 0.
Hence equation (3.2) reduces to ψðxÞ ¼ A sin αx in the wire. Next, continuity at
x ¼ a requires ψðaÞ ¼ A sin αa ¼ 0 and hence αa ¼ &nπ or A ¼ 0 where n is an
integer. The wave function cannot be zero everywhere inside the wire and so A ¼ 0
and n ¼ 0 are not physically admissible. This means that ψnðxÞ ¼ A sinðnπx=aÞ with
n 6¼ 0. Changing the sign of n merely changes the sign and phase factor of ψ . Hence,
the negative values of n do not lead to solutions that are physically distinct from
those with positive n (see section 2.3), and it is sufficient to consider only positive n.
The constant A can be found from the normalization condition (2.1). Using the
integral in equation (A.9) from appendix A, we get:

Z a

0
jψn xð Þj2 dx ¼ jAj2

Z a

0
sin2 nπx=að Þ dx ¼ jAj2a

2
¼ 1: ð3:3Þ

Hence jAj ¼
ffiffiffiffiffiffiffiffi
2=a

p
and we can choose A ¼

ffiffiffiffiffiffiffiffi
2=a

p
. Finally, substitute ψnðxÞ ¼

A sinðnπx=aÞ into the Schrödinger equation (3.1), and find

" ħ2

2m
d2ψn

dx2
¼ ħ2n2π2

2ma2
ψn ¼

h2n2

8ma2
ψn ¼ Enψn: ð3:4Þ

In summary, we have found the wave functions

ψnðxÞ ¼
2=að Þ1=2 sin nπx=að Þ inside the wire: 0⩽ x⩽ a

0 outside the wire: x< 0, x> a

(

ð3:5Þ
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for n ¼ 1, 2, . . ., and from equation (3.4), the corresponding energies

En ¼
h2n2

8ma2
for n ¼ 1, 2, . . .: ð3:6Þ

The quantum number n ¼1, 2, . . . labels the wave functions and energies.

3.1.2 The energies are quantized

Equation (3.6) and figure 3.2 show that only certain energies are allowed; we say that
the energies are quantized. The lowest energy state (n ¼ 1 in this case) is called the
ground state, and the higher energy states (n> 1 in this case) are called excited states.

The lowest allowable energy is called the zero-point energy and is greater than
zero in this problem. It implies that a quantum particle in a wire is always moving
around! In this model, the Heisenberg uncertainty principle makes E1 ¼ 0 impos-
sible because it would imply hp2xi ¼ hpxi ¼ σðpxÞ ¼ 0 since all the energy is kinetic.
That in turn would require σðxÞ to be infinite to satisfy the Heisenberg principle.
However, σðxÞ cannot be infinite because the particle is confined to a wire of
finite length.

The spacing between adjacent energy levels, Enþ1 " En, increases as n increases.
As the wire gets longer (a increases) or the particle gets heavier (m increases), the
spacings Enþ1 " En get smaller and the energy levels are squished closer together.
There is almost a classical energy continuum for heavy enough particles and long
enough wires. The largest quantum effects are seen for extremely light particles in
very short wires.

Einstein’s relationship E ¼ hν gives ν ¼ ðEu " ElÞ=h as the frequency (read ν as
new) of a photon that can excite the particle from state l to u and of a photon emitted
when a particle relaxes from state u to l; see problem 3.2.

ν
u

l

0

8ma2

h2 E

1

4

9

16

E1

E2

E3

E4

Figure 3.2. Energy levels of a particle in a wire, En ¼ h2n2=ð8ma2Þ.

Quantum Chemistry

3-3



3.1.3 Understanding and using the wave functions

The wave functions of equation (3.5) and their squares are shown in figure 3.3. The
probability of finding the particle is not the same at all locations in the wire; see
problem 3.4. The probability density oscillates in the excited states. In the limit as
n ! 1, the peaks of the oscillations are so close together that the probability density
is essentially uniform inside the wire. The points inside the wire at which the wave
functions cross the x axis and become zero are called nodes or zero crossings. The
energy of a state increases with the number of nodes in the corresponding wave function.

There is a center of inversion at the midpoint of the wire, x ¼ a=2. The inversion
operator î interchanges the points a=2þ E and a=2" E (read E as ep-si-lawn) which is
equivalent to the interchange of x and a" x. The wave functions for the states with
odd n are symmetric under inversion—that is î ψnðxÞ ¼ ψnðxÞ for n ¼ 1, 3, 5, . . .. The
wave functions for the even n states are antisymmetric under inversion, that is
î ψnðxÞ ¼ "ψnðxÞ for n ¼ 2, 4, 6, . . .. The probability densities jψnðxÞj

2 are sym-
metric under inversion for all n as they must be since the two halves of the wire are
physically indistinguishable. Hence, the probability of finding the particle in either
half of the wire is

R a=2
0 ψnj j2 dx ¼

R a
a=2 ψnj j2 dx ¼ 1=2. The wave functions ψnðxÞ are

eigenfunctions of a Hermitian operator and hence orthogonal to one another (see
equation (2.14)):

Z a

0
ψnðxÞψmðxÞ dx ¼ 0 for n 6¼ m: ð3:7Þ

xx

n = 1

n = 2

n = 3

n = 4

00 aa

ψn(x) |ψn(x)|2

Figure 3.3. Wave functions ψnðxÞ and probability densities jψnðxÞj
2 for the four lowest states of a particle in

a wire.
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Average values of observables can be calculated from the wave functions using
postulate 5. For example, using the ground-state wave function ψ1ðxÞ from equation
(3.5), the x̂ operator from postulate 2, equation (2.17), and the formula of equation
(A.10) from appendix A to do the final integral, we find that the average value of the
position of a particle in a wire in its ground state is:

hxi ¼
Z

ψ1 x̂ψ1ð Þ dτ ¼ 2

a

Z a

0
sin πx=að Þx sin πx=að Þ dx ¼ a=2:

The result makes sense because the probability density is symmetric with respect to
the center of the wire.

3.2 A harmonic oscillator
A harmonic oscillator is a one-dimensional model for vibrational motion. Visualize
it as a ball attached to a rigid surface by an ideal spring. A particle of mass m
undergoing harmonic motion in the x direction experiences a restoring force pro-
portional to its displacement. We choose x ¼ 0 to be the equilibrium point of zero
displacement; positive values of x correspond to stretching and negative values to
compression of the spring. Then F ¼ "kx in which the force constant k> 0 is a
measure of the spring’s stiffness. Since F ¼ "dV=dx, the potential is V ¼ kx2=2, and
the Schrödinger equation is

" ħ2

2m
d2ψ
dx2

þ 1

2
kx2ψ ¼ Eψ : ð3:8Þ

x

V

The allowed energy levels are found, by an involved derivation, to be

Ev ¼ ħωðvþ 1=2Þ for v ¼ 0, 1, 2, . . . ð3:9Þ

in which ω ¼ k=mð Þ1=2 is the vibrational frequency (read ω as o-may-gah), and v
is the quantum number. The zero-point (ground v ¼ 0 state) vibrational energy
is E0 ¼ ħω=2; a quantum oscillator never stops vibrating. The energy level spacing is
constant: Evþ1 " Ev ¼ ħω; see figure 3.4. The spacing ħω and zero-point energy E0

increase as the particle mass m decreases and the force constant k increases. Lighter
particles and stiffer springs vibrate faster.

Examination of figure 3.5 reveals that ψ vðxÞ has v nodes. As it does for a particle
in a wire, the energy of a state increases as the number of nodes in the wave function
increases. The wave functions are eigenfunctions of the inversion operator î that
changes the sign of x. The even v states are symmetric and the odd v states are
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antisymmetric with respect to î; that is, î ψ vðxÞ ¼ ψ vðxÞ for v ¼ 0, 2, 4, . . . and
î ψvðxÞ ¼ "ψ vðxÞ for v ¼ 1, 3, 5, . . ..

In Newtonian mechanics, an oscillator reaches its points of greatest displacement,
called classical turning points, when all its energy is potential energy. Figure 3.5
shows that as v becomes large, the probability density peaks near the classical
turning points. Observe in figure 3.5 that there is a non-zero probability of dis-
placements that lie outside the classically allowed region from x ¼ "

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2vþ 1Þ=α

p
to

x ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2vþ 1Þ=α

p
. This feature, called tunneling, is characteristic of quantum

systems. Tunneling was discovered by Friedrich Hund in the wave functions for a
double-well problem and first used by George Gamow to explain features of alpha
decay. Quantum mechanical tunneling is important in many different phenomena,
and is exploited in scanning tunneling microscopes invented by Gerd Binnig and
Heinrich Rohrer (Physics Nobel Prize, 1986).

xx

v = 0

v = 1

v = 2

v = 3

ψv(x) |ψv(x)|2

Figure 3.5. Wave functions ψ vðxÞ and probability densities jψ vðxÞj
2 for the four lowest states of a harmonic

oscillator.

0
1/2

3/2

5/2
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Figure 3.4. Energy levels of a harmonic oscillator.
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The wave functions for 0⩽ v⩽ 3 are listed in table 3.1. The general form of the
harmonic oscillator wave functions is

ψ vðxÞ ¼ NvHvðα1=2xÞ e"α x 2=2 ð3:10Þ

where α ¼ ðkmÞ1=2=ħ ¼ mω=ħ and Nv is a normalization constant that can be
determined using equation (2.1). The Hermite polynomial HvðyÞ ¼ a0 þ a1yþ
a2y2 þ ' ' ' þ avyv in which y ¼

ffiffiffi
α

p
x and the ai are constants. The wave functions are

eigenfunctions of a Hermitian operator and hence form an orthonormal set:

Z 1

"1
ψ vðxÞψ v0ðxÞ dx ¼

1 for v ¼ v 0

0 for v 6¼ v 0:

"
ð3:11Þ

Average values can be calculated using equation (2.17), wave functions from
table 3.1, and integral formulas from appendix A. For example, the average value of
x2 in the ground state is:

hx2i ¼
Z 1

"1
ψ0ðxÞ½x2 ψ0ðxÞ) dx

¼
#
α
π

$1=2 Z 1

"1
e"α x 2=2 x2 e"α x 2=2 dx ¼ 1= 2αð Þ:

The probability of non-classical displacements can be calculated to be 0.16 in the
ground state. This probability decreases as v increases.

3.2.1 Molecular vibrations

Molecular vibrations are described by the harmonic oscillator model. A diatomic
molecule is modeled as two atoms attached to each other by an ideal spring. The
potential energy depends only on the position of one atom relative to that of the
other. A center-of-mass transformation allows one to separate external from internal
coordinates in the two-particle Schrödinger equation. Only the internal vibrational
motion is of interest, since the external motion is simply the translational motion of
the molecule as a whole. The Schrödinger equation for the vibrational motion differs
from the Schrödinger equation for the harmonic oscillator only in the replacement
of the mass m by the reduced mass μ ¼ m1m2=ðm1 þm2Þ (read μ as mew) of the
molecule where m1 and m2 are the masses of the two atoms. Hence, the harmonic

Table 3.1. Harmonic oscillator wave functions with α ¼ mω=ħ.

ψ0ðxÞ ¼ α=πð Þ1=4 e"α x 2=2

ψ1ðxÞ ¼ 4α3=πð Þ1=4 x e"α x 2=2

ψ2ðxÞ ¼ α=4πð Þ1=4 ð2α x2 " 1Þ e"α x 2=2

ψ3ðxÞ ¼ α3=9πð Þ1=4 ð2α x3 " 3xÞ e"α x 2=2
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oscillator wave functions and energy levels, with m replaced by μ, describe the
stretching vibration of a diatomic molecule.

It requires 3N coordinates to specify the positions of the atoms in a molecule with
N atoms. Three coordinates are used to specify the location of its center of mass or,
in other words, to describe the translational motion of the molecule as a whole. The
displacements of the remaining 3N " 3 coordinates (called the remaining 3N " 3
degrees of freedom) describe the internal motions of the molecule. A non-linear
molecule has three independent rotations, one about each of the three axes in a
coordinate system fixed at its center of mass. However, a linear molecule has only
two distinct rotations, one about each of the two axes perpendicular to the molecular
(z) axis. One may also think of the number of independent rotations as the number
of angles needed to describe the orientation of the molecule relative to the coordinate
system at its center of mass. All the remaining degrees of freedom describe molecular
vibrations. Therefore, a molecule has 3N " 6 distinct vibrations if it is non-linear or
3N " 5 if it is linear. Each vibration can be modeled as a harmonic oscillator with
different parameters.

Infrared and other types of spectroscopy enable us to measure the frequencies of
transitions between vibrational energy levels of a molecule. The measured frequency
can be used to deduce the force constant using the harmonic oscillator model. The
frequency ν is related to the wavelength λ by ν ¼ c=λ, where c is the speed of light.
Moreover, ν is related to the energy-level spacing by hν ¼ ΔE. The harmonic
oscillator model predicts ΔE ¼ ħω. Combining these relationships gives us
ω ¼ 2πν ¼ 2πc=λ. Since ω ¼ ðk=μÞ1=2, it follows that k ¼ 4π2c2μ=λ2. For example,
the ‘fundamental’ v ¼ 0 ! 1 vibrational transition in 35Cl2 was observed at
565 cm"1; that is, 1=λ ¼ 565 cm"1. The atomic mass of 35Cl is 34.969 u and so
μ ¼ 17:4845 u for 35Cl2. Converting all quantities to SI units and substituting into
k ¼ 4π2c2μ=λ2 gives k ¼ 329 N m"1. Force constants for a wide variety of molecular
vibrations have been obtained in this manner. Force constants give us an indication
of the relative stiffness of bonds.

Problems (see appendix B for hints and solutions)
3.1 What would happen to the energy level spacing of a particle in a wire if its mass
was halved?

3.2 Calculate the wavelength of the photon emitted when an electron in a wire of
length 500 pm drops from the n ¼ 2 level to the n ¼ 1 level.

3.3 Consider a particle in a wire. For which states (values of n) are the probabilities
of finding the particle in the four quarters of the wire (0⩽ x⩽ a=4, a=4⩽ x⩽ a=2,
a=2⩽ x⩽ 3a=4, and 3a=4⩽ x⩽ a) all equal to 1=4? Explain your reasoning with
sketches of pertinent jψnðxÞj

2.

3.4 Consider the ground state of a particle in a wire. Calculate the probability of
finding the particle in (a) the left half of the wire, and (b) in each quarter of the wire.
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3.5 Calculate the ground-state expectation values hxi, hx2i, hpxi, and hp2xi for a
particle in a wire. Explain how the result for hp2xi makes physical sense. Then cal-
culate σðxÞσðpxÞ and check whether the Heisenberg uncertainty principle is satisfied
for the ground state of a particle in a wire.

3.6
(a) The particle in a wire can be used as a very simple model of the π electrons in

1,3-butadiene. Assume that there can be no more than two electrons per energy
level on the basis of the Pauli principle that you learned in your general
chemistry course. Choose m and a in a meaningful manner. Then write down a
formula for the wavelength of a photon that has precisely the energy required to
induce the promotion of an electron from the highest filled to the lowest unfilled
energy level. Finally, find a numerical value for this wavelength.

(b) Solve the same problem for 1,3,5-hexatriene.
(c) Generalize the solution to conjugated polyenes with 2N carbon atoms.

3.7 What would happen to the energy level spacing of a harmonic oscillator if its
force constant was multiplied by four?

3.8 Calculate the ground-state expectation values hxi and hx2i for a one-
dimensional harmonic oscillator. Then calculate σðxÞ.

3.9 An experimental measurement of the v ¼ 0 ! 1 vibrational transition enables
us to calculate the force constant. Vibrational transitions are usually given in wave
numbers (reciprocal wavelengths): ν=c ¼ 1=λ. The wave numbers for 1H35Cl, 1H81Br,
and 1H127I were found to be 2988.9, 2649.7, and 2309:5 cm"1, respectively. The
atomic masses for 1H, 35Cl, 81Br, and 127I are 1.0078, 34.969, 80.916, and 126.90 u,
respectively. Use the harmonic oscillator model of molecular vibrations to calculate
the force constants in N m"1 (equivalent to J m"2) and discuss the relative stiffness of
the bonds.
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Chapter 4

Symmetry and degeneracy

4.1 A particle in a rectangular plate
We noted the link between molecular symmetry and polarity in section 1.3. We saw
symmetry in the wave functions for the model systems discussed in chapter 3. Here,
we study translational motion in two dimensions as a prelude to a systematic
investigation of how symmetry affects energy levels in section 4.2, probability
densities in section 4.3, and wave functions in section 4.4 and section 4.5.

Consider a particle of mass m allowed to move freely within a rectangular
plate, 0⩽ x⩽ a, 0⩽ y⩽ b, but trapped in it by an infinite potential energy outside the
plate as shown in figure 4.1.

The wave function ψ ¼ 0 everywhere outside the plate. Within the plate, V ¼ 0
and ψ is determined by the two-dimensional Schrödinger equation:

" ħ2

2m

@2ψnx,ny

@x2
" ħ2

2m

@2ψnx,ny

@y2
¼ Enx,nyψnx,ny : ð4:1Þ

The two-dimensional problem requires two quantum numbers.

0 a

b

V = 0 V = ∞V = ∞

V = ∞

V = ∞ x

y

Figure 4.1. A particle in a rectangular plate.

doi:10.1088/978-1-627-05416-4ch4 4-1 ª Morgan & Claypool Publishers 2014

http://dx.doi.org/10.1088/978-1-627-05416-4ch4


A partial differential equation like equation (4.1) is often difficult to solve.
However, in this case the technique of separation of variables can be used. Suppose
that the Hamiltonian for a two-dimensional problem is the sum of two one-
dimensional Hamiltonians Ĥ ¼ Ĥ x þ Ĥ y which act only on x and y, respectively,
and that their eigenvalues and eigenfunctions are known:

ĤxφjðxÞ ¼ ɛjφjðxÞ for j ¼ 1, 2, . . . ð4:2Þ

ĤyϕkðyÞ ¼ EkϕkðyÞ for k ¼ 1, 2, . . .: ð4:3Þ
Then the eigenfunctions of the two-dimensional Schrödinger equation

Ĥψ j,kðx, yÞ ¼ Ej,kψ j,kðx, yÞ ð4:4Þ
are given by ψ j,kðx, yÞ ¼ φjðxÞϕkðyÞ and the corresponding eigenvalues are
Ej,k ¼ ɛj þ Ek.

The Hamiltonian for a particle in a rectangle is separable into two one-
dimensional Hamiltonians both corresponding to a particle in a wire, see section 3.1.
Hence, the energies for the particle in a rectangle are

Enx,ny ¼
h2

8m
n2x
a2

þ
n2y
b2

 !

for nx ¼ 1, 2, . . . and ny ¼ 1, 2, . . . ð4:5Þ

and the corresponding wave functions are

ψnx,nyðx, yÞ ¼
4=abð Þ1=2 sin nxπx=að Þ sin nyπy=b

! "
inside the plate,

0 outside the plate:

(

ð4:6Þ

Examine the wave functions shown in figure 4.2 for the four lowest-energy states.
Observe that the ground-state wave function ψ1,1 does not cross zero inside the plate;
that is, ψ1,1 has no interior nodes. However, the excited state wave functions are zero
at every point along certain lines, called nodal lines, inside the plate. Notice from
figure 4.2 that ψ2,1 has a nodal line along x ¼ a=2, that ψ1,2 has a nodal line along
y ¼ b=2, and that ψ2,2 has two nodal lines, one along x ¼ a=2 and the other along
y ¼ b=2. The energy increases with the number of nodal lines but states, like ψ1,2 and
ψ2,1, with the same number of nodal lines may have different energies.

4.2 Symmetry leads to degeneracy
Consider the effect of introducing symmetry in the two-dimensional rectangular
plate of section 4.1. For example, suppose the plate is square so that b ¼ a; then the
energies of equation (4.5) simplify to

Enx,ny ¼
h2

8ma2
!
n2x þ n2y

"
: ð4:7Þ

0 a

a

x

y
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The two lowest excited state energies are equal:

E2,1 ¼ E1,2 ¼ 5h2=ð8ma2Þ ð4:8Þ

although the corresponding wave functions are different. Each different wave
function corresponds to a different state but more than one state may have the same
energy (or energy level). An energy level that corresponds to more than one state is
called degenerate, with a degeneracy equal to the number of corresponding states.
Thus the second lowest energy level of a particle in a square two-dimensional plate,
E ¼ 5h2=ð8ma2Þ, is two-fold degenerate, whereas the ground state has a degeneracy
of one and is said to be non-degenerate. Many two-fold degeneracies arise for the
particle in a square plate because En,k ¼ Ek,n for all k 6¼ n. Indeed, a particle in a
square plate has more degenerate energy levels than non-degenerate ones, as seen
clearly in figure 4.3.

Degeneracies almost always arise from some symmetry of the system. For example,
a particle in a square plate has C4v symmetry, and one finds symmetry-induced
degeneracies in the energy levels. The allowed degeneracies for all the point groups
are listed in table 4.1. There are no degeneracies induced by the geometrical sym-
metry if the point group is Abelian (see section 1.3). A Cn axis with n ⩾ 3 is usually a
good indicator of degeneracy with exceptions only for the rarely encountered Cn and
Cnh groups.

0
0

0
0

0
0

0
0

aa

aa

bb

bb

xx

xx

yy

yy

ψ1,1 ψ2,1

ψ1,2 ψ2,2

Figure 4.2. Wave functions for a particle in a rectangular plate.
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Sometimes there are accidental degeneracies. For example, consider the energies
of a particle in a square, equation (4.7). When ðnx, nyÞ differs from ðnx, nyÞ by more
than an interchange, we expect n2x þ n2y 6¼ n2x þ n2y and hence Enx,ny 6¼ Enx,ny . How-
ever, there are some rare cases where equality holds. For example, 52 þ 52 ¼ 12 þ 72

leads to the accidental degeneracy E5,5 ¼ E1,7 and 12 þ 82 ¼ 42 þ 72 leads to
E1,8 ¼ E4,7.

There can also be degeneracies induced by a non-geometrical symmetry; for
example, such degeneracies arise in the hydrogen atom, as will be seen in section 6.3.
Understanding non-geometrical symmetry is beyond the scope of this book.

4.3 Probabilities in degenerate states
How do degenerate states differ from one another? Consider the wave functions for
a particle in a square plate. Setting b ¼ a in equation (4.6) gives:

ψnx,ny x, yð Þ ¼ 2

a

# $
sin

nxπx
a

% &
sin

nyπy
a

% &
: ð4:9Þ

8ma2

h2 E

0

2

5

8

10

13

17

E1, 1

E2, 1,E 1, 2

E2, 2

E3, 1,E 1, 3

E3, 2,E 2, 3

E4, 1,E 1, 4

E3, 3

Figure 4.3. Energy levels of a particle in a square two-dimensional plate.

Table 4.1. Permissible degeneracies.

Group Maximum degeneracy

C1, Ci, Cs, C2v, D2, D2h, and Cn, Cnh, S2n for n ¼ 2, 3, . . . 1
D2d, and Cnv, Dn, Dnd, Dnh for n ¼ 3, 4, . . . 2
T, Th, Td, O, Oh 3
I, Ih 5
K (sphere) 1
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The wave function for the 2,1 state equals zero along the line x ¼ a/2, whereas the
wave function for the 1,2 state equals zero along the line y ¼ a/2 as indicated in
figure 4.4.

The two states are related by a rotation of 90& about the C4 axis of symmetry
passing through the center of the square, ða=2, a=2Þ, and perpendicular to it; see
figure 4.2 and figure 4.4. The 90& rotation should leave the system in a configuration
that is indistinguishable from the first. Hence, the two states should have the same
energy and they do. However, neither jψ1,2j

2 nor jψ2,1j
2 can be a valid probability

density because the two are related by a C4 rotation whereas the probability density
is an observable quantity and should not change when a symmetry operation is
carried out. The solution is to notice that when there is a degeneracy, the system is
equally likely to be found in any one of the degenerate states, and hence the
observable probability density is the ensemble-average of the probability densities of
the degenerate states. Thus, the observable probability density for the two-fold
degenerate ψ1,2 and ψ2,1 states is (read ρ as row):

ρ x, yð Þ ¼ 1

2

!
jψ1,2j

2 þ jψ2,1j
2": ð4:10Þ

Figure 4.5 shows that ρðx, yÞ is invariant to a C4 rotation and has C4v symmetry
as it should. There is a node at the center of the square, four equivalent maxima at

a0 x

y

a

+ −

a0 x

y

a

+

−

Figure 4.4. Sign patterns and nodal lines of ψ2,1 (left) and ψ1,2 (right).

0

0

a

a
x

y

ρ(x, y)

Figure 4.5. The ensemble-averaged probability density for the two-fold degenerate ψ1,2 and ψ2,1 states.
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ð0:3, 0:3Þ, ð0:3, 0:7Þ, ð0:7, 0:7Þ, and ð0:7, 0:3Þ that are related by C4 rotations, and
four equivalent saddle points at ða=2, 0:3Þ, ða=2, 0:7Þ, ð0:7, a=2Þ, and ð0:3, a=2Þ that
are related by C4 rotations.

4.4 Are degenerate wave functions unique?
Suppose that ψ and φ (read φ as fye) are a pair of degenerate eigenfunctions of the
Hamiltonian Ĥ so that Ĥψ ¼ Eψ and Ĥφ ¼ Eφ. Then any linear combination
(mixture) of ψ and φ, such as f ¼ aψ þ bφ where the constants a and b are mixing
coefficients, is also an eigenfunction of Ĥ with the same energy E. This follows from
the linearity of Ĥ (see equation (2.5)):

Ĥ f ¼ Ĥ ðaψ þ bφÞ ¼ aĤψ þ bĤφ ¼ aEψ þ bEφ

¼ Eðaψ þ bφÞ ¼ Ef : ð4:11Þ

In other words, degenerate wave functions are not unique.
A pair of doubly degenerate wave functions (ψ , φ) can be replaced by a different

pair of functions, f as defined above and g ¼ cψ þ dφ, provided that we take care to
choose the mixing coefficients, a, b, c, and d, such that f is normalized, g is nor-
malized, and that f and g are orthogonal to each other. One degree of freedom is left
after these three requirements on four constants are satisfied. The requirements are
met by choosing a ¼ d ¼ cosΩ and b ¼ "c ¼ sinΩ—that is, by requiring the
transformation to be unitary. Note that Ω ¼ 0& leads to no change at all (f ¼ ψ ,
g ¼ φ), and that Ω ¼ 90& leads to (f ¼ φ, g ¼ "ψ), which amounts to no more than
changing the sign of one of the functions. This transformation of degenerate wave
functions is akin to rotating the axes of a coordinate system by an angle Ω while
preserving the orthogonality and normalization of the basis vectors. Both pairs of
coordinate axes in figure 4.6 are equally valid but one set may be more useful than
the other in a particular problem. In some problems, transformations among
degenerate wave functions can be utilized to make some aspects easier to work with.
Examples of this will be mentioned in chapter 5.

Because the transformation between equivalent sets of degenerate wave functions
is unitary and preserves orthonormality, all equivalent sets of degenerate wave

0
x

y

xy

Ω

Figure 4.6. Rotation of coordinate axes.

Quantum Chemistry

4-6



functions lead to the same ensemble-averaged probability density. For example, for
the f and g defined above, it is easy to prove that

ρ ¼ 1

2

!
jf j2 þ jgj2

"
¼ 1

2

!
jψ j2 þ jφj2

"
: ð4:12Þ

4.5 Symmetry of wave functions
What do symmetry operations do to wave functions? A symmetry operation carries
a molecule into a configuration that is physically indistinguishable from the original
configuration. Therefore, the energy of a molecule must be the same before and after
a symmetry operation Ô is carried out on it. Hence, the Hamiltonian (energy)
operator Ĥ commutes with each of the symmetry operators Ô; that is, Ĥ Ô ¼ ÔĤ .
It follows that

Ĥ ðÔψÞ ¼ ÔĤψ ¼ ÔEψ ¼ EðÔψÞ: ð4:13Þ

Comparison of the first and last terms above shows that Ôψ is an eigenfunction of the
Hamiltonian with the eigenvalue E. Thus, we see that both ψ and Ôψ are eigen-
functions of Ĥ with the same eigenvalue E.

If the energy level E is non-degenerate, then ψ is the only eigenfunction of the
Hamiltonian with that eigenvalue, and it follows that Ôψ can differ from ψ by at
most a phase factor, see section 2.3. This usually means that Ôψ ¼ 'ψ . In other
words, the wave function is an eigenfunction, typically with an eigenvalue of þ1
or "1, of each of the symmetry operators Ô. In any case, the effect of Ô on ψ is to
multiply it by a number of unit magnitude, and hence Ô leaves the probability
density ψj j2 unchanged as it should. We have already noted in section 3.1 that the
wave functions for a particle in a wire with even and odd n are eigenfunctions of î
with eigenvalues "1 and þ1, respectively. Analogously, in section 3.2, we observed
that the wave functions for a harmonic oscillator with even and odd v are eigen-
functions of î with eigenvalues þ1 and "1, respectively. The apparent difference
between the two systems arises because the quantum numbers begin at n ¼ 1 for the
particle in a wire but at v ¼ 0 for a harmonic oscillator.

What about the symmetry of a set of g degenerate wave functions? The conclusion
from the symmetry argument of equation (4.13)—Ôψ is an eigenfunction of the
Hamiltonian with eigenvalue E—tells us that Ôψ could be any one of the g
degenerate wave functions that correspond to the energy level E or any linear
combination (mixture) thereof. In other words, any symmetry operation of the
symmetry group of the system takes one member of a set of degenerate wave
functions into another member of that set or a mixture of the members of that
degenerate set. Therefore, we cannot talk about the symmetry of a single member of
a degenerate set of wave functions. Instead, we must always consider the symmetry of
an entire set of degenerate wave functions.
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Problems (see appendix B for hints and solutions)
4.1 Using the particle in a square (a ¼ b), two-dimensional, plate as a model, but
without doing calculations, sketch the energy-level diagram for the π electrons in
cyclobutadiene. Assume that there can be no more than two electrons per energy
level as you expect on the basis of the Pauli principle that you learned in your general
chemistry course. Use the energy-level diagram to explain the observation that it has
not proved possible to isolate cyclobutadiene (C4H4).

4.2 Use sketches to show the regions of different sign in the degenerate wave
functions ψ2,3 and ψ3,2 for a particle in a square two-dimensional plate.

4.3 Use the separation of variables technique (section 4.1) to write down the energy
levels of a two-dimensional harmonic oscillator with mass m and force constants kx
and ky in the x and y directions, respectively. The Hamiltonian is

" ħ2

2m
@2

@x2
" ħ2

2m
@2

@y2
þ 1

2
kxx2 þ

1

2
kyy2:

What happens if ky ¼ kx?

4.4 The separation of variables technique also works for two groups of variables;
for example, (x, y, z) could be separated into (x, y) and z. Apply this idea and use
the results of section 3.1 and section 4.1 to write down the wave functions and
energy levels of a particle of mass m confined to a three-dimensional box,
0⩽ x⩽ a, 0⩽ y⩽ b, 0⩽ z⩽ c, by an infinite potential energy outside the box but
allowed to move freely within it.

4.5 What happens if the box in problem 4.4 is a cube of side length a? Write down
the energy level formula. What are the quantum numbers of all the states that
correspond to the first excited energy level?

4.6 Decide which of the molecules in problem 1.6 will have degeneracies in their
energy levels.

4.7 Decide which of the molecules in problem 1.7 will have degeneracies in their
energy levels.

4.8 Explain why the ground state of an 18-electron molecule may have unpaired
electrons if it belongs to the D6h point group, whereas it must have all its electrons
paired if it belongs to the D2h point group.

4.9 The inversion operator î for a particle in a wire stretching from x ¼ 0 to x ¼ a
interchanges the points x and a " x; in other words, îψnðxÞ ¼ ψnða" xÞ. Prove that

îψnðxÞ ¼
þψnðxÞ for n ¼ 1, 3, 5, . . .
"ψnðxÞ for n ¼ 2, 4, 6, . . .

'
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Chapter 5

Rotational motion

5.1 A particle on a ring
In this chapter, we examine the prototypical models for rotational motion. These
models provide the foundation for rotational spectroscopy, and the wave functions
also play an important role in the electronic structure of atoms and diatomic
molecules.

Consider a particle of mass M constrained, by infinite potentials, to move on the
perimeter of a circle of radius R centered at the origin in the xy plane.

x

y

R

On the ring, the potential energy is zero and the Schrödinger equation is

! ħ2

2M
@2ψ
@x2

þ @2ψ
@y2

! "
¼ Eψ : ð5:1Þ

This two-dimensional equation can be reduced to one dimension by transforming
from Cartesian to plane polar coordinates. Figure 5.1 shows that the plane polar
coordinates of a point P consist of its distance r from the origin O, and the angle
ϕ ¼+xOP (read ϕ as fye) between the x axis and the line OP. The particle is
confined to the perimeter of the circle and hence its radial coordinate remains fixed
at r ¼ R. Thus, the angle ϕ suffices to determine the position of the particle and the
wave function depends only upon ϕ.
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Repeated application of the chain rule allows us to express the partial derivatives
with respect to x and y in equation (5.1) in terms of partial derivatives with respect
to r and ϕ. Since r is fixed at R, the derivatives with respect to r vanish, and one is
left with the one-dimensional equation:

! ħ2

2I
d2ψ

dϕ2 ¼ Eψ ð5:2Þ

where I ¼ MR2 is the moment of inertia.
Solving equation (5.2) leads to the energy levels:

Em ¼ ħ2m2

2I
with m ¼ 0, &1, &2, . . .: ð5:3Þ

The ground state (m ¼ 0) is non-degenerate but the excited states are doubly
degenerate because the energies of equation (5.3) are the same for the m and !m
states. The degeneracies are due to a C1ðzÞ symmetry axis; see section 4.2. The
physical meaning of the degeneracies is easy to understand. Classically, the energy of
a rotating particle is related to its angular momentum L by E ¼ L2=ð2IÞ. Moreover,
the angular momentum of the particle on the ring is all directed in the z direction,
perpendicular to the ring. Hence, we can deduce from equation (5.3) that L2

z ¼ ħ2m2

and that Lz ¼ ħm. Note that ħ has the dimensions of angular momentum. We see
that the angular momenta of a pair of states with the same value of jmj⩾ 1 are equal
in magnitude but opposite in sign. Therefore the difference between two states with
the same jmj⩾ 1 is the direction of motion, clockwise or counterclockwise, of the
particle around the ring.

m < 0 m > 0

Such pairs of states clearly should have the same energy and they do.
A particle on a ring has no zero-point energy: E0 ¼ 0. The particle stops moving

in the ground state unlike a particle in a wire and a harmonic oscillator. Most, but
not all, systems have no rotational zero-point energy. Note from figure 5.2 that

O x

y

P

r

φ

y = r sin φ

x = r cos φ
Figure 5.1. Plane polar coordinates. The point P has the Cartesian coordinates (x, y) and the plane polar
coordinates ðr,ϕÞ.
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the spacing between the levels, ΔEm ¼ Ejmjþ1 ! Ejmj, increases as jmj increases.
Equation (5.3) shows that ΔEm ¼ ħ2ð2jmjþ 1Þ=ð2IÞ; hence, the level spacing
increases as the moment of inertia decreases, which happens when either the
particle mass or the radius of the ring decreases. In other words, light particles on
small rings are the most quantum.

The wave functions are found to be:

ψmðϕÞ ¼

1ffiffiffiffiffi
2π

p for m ¼ 0

1ffiffiffi
π

p cosðmϕÞ for m ¼ 1, 2, . . .

1ffiffiffi
π

p sinðmϕÞ for m ¼ !1, !2, . . .:

8
>>>>>>>>><

>>>>>>>>>:

ð5:4Þ

Recall from section 4.4 that the above wave functions form> 0 are not unique1 since
the states with &m are degenerate. The probability density must be computed as an
average over the degenerate states (see section 4.3). Using equation (5.4) and the
identity sin2yþ cos2y ¼ 1, the ensemble-averaged probability density for the ψ&m
states is found to be:

ρ ¼ 1

2

$
jψmj

2 þ jψ!mj
2% ¼ 1

2π
cos2ðmϕÞ þ sin2ðmϕÞ
& '

¼ 1

2π
: ð5:5Þ

1 In some problems, it is more convenient to work with complex-valued forms of these wave functions but we
will not deal with them in this book.

2I
2 E

0
1

4

9

16

E0
E−1, E1

E−2, E2

E−3, E3

E−4, E4

Figure 5.2. Energy levels of a particle on a ring.
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So the probability of finding the particle is the same at all points on the ring as
expected from the C1 axis of symmetry. The wave functions are orthonormal, as
expected from equation (2.15):

Z 2π

0
ψmψn dϕ ¼

1 for m ¼ n

0 for m 6¼ n:

(
ð5:6Þ

5.2 A particle on a sphere
Next we turn to rotational motion in three dimensions. Consider a particle of mass
M constrained to move on the surface of a sphere of radius R centered at the origin.

It is best to work in spherical polar coordinates, figure 5.3, which consist of the
distance r of the point P from the origin O, the polar angle θ ¼+zOP (read θ as
thay-tah) between the z axis and the line OP, and the azimuthal angle ϕ ¼+xOQ
between the x axis and OQ, the projection of OP upon the xy plane. The two angles
give the location of a point on the surface of a sphere of radius r. The polar angle is a
colatitude; the point Pmoves from the North pole to the South pole as θ sweeps over
its full range from θ ¼ 0 to θ ¼ π. The azimuthal angle plays the role of a longitude
and has the range 0⩽ϕ⩽ 2π. The radius r cannot be negative and has the range
0⩽ r<1. Note that

r2 ¼ x2 þ y2 þ z2: ð5:7Þ

The volume elements in Cartesian and spherical polar coordinates are related by the
Jacobian of the transformation, r2 sin θ, as follows;

dx dy dz ¼ r2 sin θ dr dθ dϕ: ð5:8Þ

O y

z

x

z = r cos θ

P

r

θ

y = r sin θ sin φ

x = r sin θ cos φ

Q

φ

Figure 5.3. Spherical polar coordinates. The point P has Cartesian coordinates ðx, y, zÞ and spherical polar
coordinates ðr, θ,ϕÞ.
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Since the particle is on the surface of a sphere, r ¼ R is a constant and the wave
function depends only on the angles (θ, ϕ). The Schrödinger equation is solved by
separation of variables. The ϕ equation turns out to be the same as that for a particle
on a ring, but the θ equation is complicated.

This two-dimensional problem has two quantum numbers ‘ and m restricted to
the values ‘ ¼ 0, 1, 2, . . . and m ¼ 0, &1, &2, . . . , &‘ or, more concisely, l ⩾ jmj. The
energies depend only on ‘ as follows:

E‘,m ¼ ħ2

2I
‘ð‘þ 1Þ for ‘ ¼ 0, 1, . . . ð5:9Þ

where I ¼ MR2 is the moment of inertia. As seen in figure 5.4, degenerate energy levels
occur (see section 4.2) because a sphere has the highest possible symmetry. The
degeneracy of the energy level with quantum number ‘ is 2‘þ 1. For example, the
‘ ¼ 2 energy level is five-fold degenerate and the ‘ ¼ 2 states with !2⩽m⩽ 2 all have
the same energy. There is no zero-point rotational energy (E0,0 ¼ 0) as in most, but not
all, systems involving rotational motion. The level spacing increases with ‘. The
spacing increases when either the particle mass or the radius of the sphere decreases.
Light particles on tiny spheres are the most quantum. Classically, the energy of a
rotating particle is related to its angular momentum L by E ¼ L2=ð2IÞ. Comparison
with equation (5.9) reveals that the square of the angular momentum is
hL̂2i ¼ ‘ð‘þ 1Þħ2. The azimuthal quantum number m determines the z component of
the angular momentum: hLzi ¼ mħ. In this way, the orientation of a rotating body is
quantized—that is, it is restricted to particular orientations. This is called ‘space
quantization’. The other two components of the angularmomentum,Lx andLy, do not
have sharply determined values simultaneously because of the uncertainty principle2.

2I
2 E

0

2

6

12

s ( = 0; m = 0)

p ( = 1; m = −1, 0, 1)

d ( = 2; m = −2, . . . , 2)

f ( = 3; m = −3, . . . , 3)

Figure 5.4. Energy levels of a particle on a sphere.

2 Each of the operators for the three Cartesian components L̂x, L̂y, and L̂z commutes with the L̂
2
operator but L̂x,

L̂y, and L̂z do not commute with each other. Hence, if one component is specified exactly then the others are com-
pletely unspecified because of Robertson’s uncertainty principle; see equation (2.20) in the footnote on page 2-6.

Quantum Chemistry

5-5



5.2.1 Rotational wave functions

The wave functions for this problem, called spherical harmonics by mathematicians,
can be written as Θ‘,jmjðcos θÞ ΦmðϕÞ where the Θ‘,jmjðcos θÞ are polynomials3 in
cos θ, and the ΦmðϕÞ are the wave functions given in equation (5.4) for the particle on
a ring. Trigonometric identities and the relationships in figure 5.3 are used to obtain
the Cartesian forms of the spherical harmonics Y‘,m listed in table 5.1. The Y‘,m are
suitable for most problems of chemical bonding where visualization is important4. In
that context, Y‘,m with ‘ ¼ 0, 1, 2, 3, . . . are referred to as s, p, d, f , . . . functions,
respectively. Descriptive subscripts distinguish among the Y‘,m with the same ‘ but
different m. For example, px, pz, and py are used to denote Y1,m with m ¼ !1, 0, and
þ1 respectively. Similarly, dx2!y2 , dxz, dz2 , dyz, and dxy are used to denote Y2,m with
m ¼ þ2,þ1, 0,!1 and!2, respectively. Note that the power of z in Y‘,m decreases as
jmj increases; for example, the d harmonics have z2 whenm ¼ 0, z whenm ¼ &1, and
no z at all when m ¼ &2.

Plots of jr‘Y‘,mðθ,ϕÞj are used to visualize the wave functions. One finds a nodeless
sphere for an s function, and a dumbbell-shaped object with one nodal plane for a p
harmonic as shown in figure 5.5. All three p functions have the same shape but their
principal axes of symmetry are oriented along the x, y, and z axes, respectively.
Figure 5.5 also shows the dz2 (sometimes called d2z2!x2!y2 or d3z2!r2), dx2!y2 , and dxy
harmonics, each of which has two nodal planes. The principal symmetry axis of dz2 is
along the z axis. In the dx2!y2 function, theC2 axes through the lobes are directed along
the x and y axes. On the other hand, the C2 axes through the lobes of the dxy harmonic
bisect the x and y axes. The dyz and dxz harmonics have the same shape as the dxy
function but theC2 axes through their lobes bisect the axes indicated by the subscripts.

3Review polynomials in appendix A.
4Choosing ΦmðϕÞ to be the complex-valued functions mentioned in section 5.1 leads to complex-valued
spherical harmonics. The latter are preferred in problems involving external magnetic or electric fields in which
states with different m have different energy. They are not used in this book.

Table 5.1. Spherical harmonics Y‘,m in Cartesian form. The normalization constants
are c0 ¼ r!‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð4πÞ

p
, c1 ¼

ffiffiffi
3

p
c0, c2 ¼

ffiffiffiffiffiffiffiffiffiffi
15=4

p
c0, c3 ¼

ffiffiffiffiffi
15

p
c0, c4 ¼

ffiffiffiffiffiffiffiffi
5=4

p
c0,

d0 ¼
ffiffiffiffiffiffiffiffi
7=4

p
c0, d1 ¼

ffiffiffiffiffiffiffiffiffiffi
21=8

p
c0, d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
105=4

p
c0, and d3 ¼

ffiffiffiffiffiffiffiffiffiffi
35=8

p
c0. Different linear

combinations of the f harmonics are used when dealing with Oh symmetry.

m s ð‘ ¼ 0Þ p ð‘ ¼ 1Þ d ð‘ ¼ 2Þ f ð‘ ¼ 3Þ

3 d3 xðx2 ! 3y2Þ
2 c2 ðx2 ! y2Þ d2 zðx2 ! y2Þ
1 c1 x c3 xz d1 xð4z2 ! x2 ! y2Þ
0 c0 c1 z c4 ð2z2 ! x2 ! y2Þ d0 zð2z2 ! 3x2 ! 3y2Þ

!1 c1 y c3 yz d1 yð4z2 ! x2 ! y2Þ
!2 c3 xy d2 xyz
!3 d3 yð3x2 ! y2Þ
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Since they are eigenfunctions of a Hermitian operator (section 2.2), the spherical
harmonics form an orthonormal set. In other words, they are normalized and
orthogonal to each other:

Z 2π

0

Z π

0
YL,Mðθ,ϕÞY‘,mðθ,ϕÞsin θ dθ dϕ ¼

1 if L ¼ ‘ and M ¼ m

0 if L 6¼ ‘ or M 6¼ m

(
ð5:10Þ

where the sin θ is part of the volume element in spherical polar coordinates;
see equation (5.8). This means, for example, that p type spherical harmonics are
orthogonal to all harmonics of s, d, f , . . . type.

5.3 The rigid rotor model
The rigid rotormodel of a non-vibrating diatomic molecule is two atoms (balls) with
masses m1 and m2 attached to each other by a rigid bond (rod) of length R. A center-
of-mass transformation separates external from internal coordinates in the two-
particle Schrödinger equation. The internal rotational motion is of interest whereas
the external motion is just the translational motion of the diatomic molecule as a
whole. The Schrödinger equation for the three-dimensional rotational motion differs
from the Schrödinger equation for a particle on a sphere only in the replacement of the
mass M of the particle by the reduced mass μ ¼ m1m2=ðm1 þm2Þ of the molecule.
Hence, the spherical harmonic wave functions and the energy levels of equation (5.9),
withM replaced by μ, describe the rotations of a diatomic molecule. The same energy
level expression, with suitably modified definitions of I, also applies to the rotations

Figure 5.5. The top row shows, from left to right, the s, pz, and dz2 harmonics. The bottom row shows dx2!y2

(left) and dxy (right). The C2 axes are along the x and y axes in dx2!y2 but bisect them in dxy.
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of polyatomic linear molecules and spherical top molecules (see section 1.3). Rotations
of symmetric and asymmetric tops are beyond the scope of this book.

Equation (5.9) gives the spacings between the rotational energy levels of a
diatomic molecule in terms of the moment of inertia I ¼ μR2. Thus spectroscopi-
cally measured spacings enable us to deduce a value of I. Since we know the reduced
mass μ, we can determine the bond length R from I. This constitutes an experimental
measurement of the bond length. Many of the bond lengths listed in chemistry
textbooks were obtained by microwave spectroscopy.

For example, a microwave spectroscopic measurement shows that the
‘ ¼ 0 ! 1 transition in 2H127I occurs at 196:912 GHz ¼ 1:96912× 1011 Hz. From
equation (5.9), we find that the corresponding transition energy is

ΔE0!1 ¼ E1,m ! E0,m ¼ ħ2

2I
1ð1þ 1Þ ! 0ð0þ 1Þ½ ( ¼ ħ2

I
¼ ħ2

μR2
:

The frequency of a photon that can cause this transition is then

ν ¼ ΔE0!1=h ¼ ħ2=ðhμR2Þ:

The atomic masses of mð2HÞ ¼ 2:0141 u and mð127IÞ ¼ 126:90 u lead to a reduced
mass μ ¼ 1:9826 u ¼ 3:292× 10!27 kg. Inserting the SI values of ν, ħ, h, and μ into
the equation above and solving for R, we find that R ¼ 1:609× 10!10 m ¼ 1:609 Å ¼
160:9 pm is the measured bond length of 2H127I (also known as DI).

More generally, a selection rule states that transitions between rotational levels
are restricted to Δ‘ ¼ &1. The energy difference for allowed transitions can be
written as

ΔE‘!‘þ1 ¼ E‘þ1,m ! E‘,m ¼ B ð‘þ 1Þð‘þ 1þ 1Þ ! ‘ð‘þ 1Þ½ (

¼ 2Bð‘þ 1Þ ð5:11Þ

in which B ¼ ħ2=ð2IÞ is called the rotational constant. Thus the gap between
measured frequencies for two adjacent transitions, ‘ ! ‘þ 1 and ‘þ 1 ! ‘þ 2,
gives 2B=h from which the bond length can be deduced, as in the example above.

Problems (see appendix B for hints and solutions)
5.1 List two important qualitative differences between the energy levels of a particle
in a wire and those of a particle on a circular ring.

5.2 What would happen to the energy level spacing of a particle on a circular ring if
the radius of the circle was doubled?

5.3 Demonstrate that the degenerate m ¼ &1 wave functions for a particle on a ring
are normalized and orthogonal to each other.
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5.4 What is the value of the following integral involving spherical harmonics
Y‘,mðθ,ϕÞ?

Z 2π

0

Z π

0
Y2,!1ðθ,ϕÞY1,!1ðθ,ϕÞ sin θ dθ dϕ

5.5 Calculate the energies of the first three rotational levels of HBr using the three-
dimensional rigid rotor model using mH ¼ 1:008 u, mBr ¼ 79:9 u, and
R(H–Br) ¼ 1.414 Å. What are the frequencies (in GHz) of the ‘ ¼ 0 ! 1 and
‘ ¼ 1 ! 2 rotational transitions?

5.6 The lowest frequency at which a rotational transition is observed experimentally
in carbon monoxide is 115.271GHz. Use the rigid rotor model to calculate the bond
length of CO given the isotope-averaged atomic masses mC ¼ 12:01 u and
mO ¼ 16:00 u.

5.7 Explain how you might use the particle on a ring as a very simple model of the π
electrons in benzene. Assume that there can be no more than two electrons per
energy level on the basis of the Pauli principle that you learned in your general
chemistry course. Choose R and M in a meaningful manner. Write down a formula
for the wavelength of a photon that has precisely the energy required to induce the
promotion of an electron from the highest filled to the lowest unfilled energy level.
Do not introduce numerical values of constants into the formula but use properly
defined symbols instead.

5.8
(a) Calculate

$
jY1,!1j2 þ jY1,0j2 þ jY1,1j2

%
=3.

(b) Calculate
$
jY2,!2j2 þ jY2,!1j2 þ jY2,0j2 þ jY2,1j2 þ jY2,2j2

%
=5:

(c) Do the above results make sense as the ensemble-averaged probability densities
for the ‘ ¼ 1 and ‘ ¼ 2 states of a particle on a sphere?

(d) Guess a general expression, sometimes called Unsöld’s theorem, for the sum of the
squared magnitudes of all the spherical harmonics with a fixed value of ‘.
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Chapter 6

The hydrogen atom

6.1 The Born–Oppenheimer approximation
To discover what quantum mechanics can tell us about atoms and molecules, we
need to solve the Schrödinger equation Ĥψ ¼ Eψ . The Hamiltonian operator is
Ĥ ¼ T̂ þ V̂ ; see equation (2.10). A molecule contains both nuclei and electrons, and
so the kinetic energy operator is a sum of nuclear and electronic terms: T̂ ¼ T̂n þ T̂e.
The potential energy operator V̂ contains terms for the various Coulomb interactions
between pairs of particles: electron–nucleus (en) attractions, electron–electron (ee)
repulsions and internuclear (nn) repulsions. Thus V̂ ¼ Ven þ Vee þ Vnn and

Ĥ ¼ T̂n þ T̂e þ Ven þ Vee þ Vnn: ð6:1Þ

It is difficult to solve the Schrödinger equation with the Hamiltonian (6.1) and so
it is common to simplify Ĥ . Using the observation that nuclei move much more
slowly than electrons because nuclei are much heavier than electrons1, Max Born
and J Robert Oppenheimer2 proposed treating the electronic and nuclear motions in
two separate steps.

Within the clamped nucleus or Born–Oppenheimer approximation, the nuclei are
considered to be motionless on the timescale of electronic motion. Thus the nuclear
kinetic energy T̂n is omitted from Ĥ to obtain

Ĥe ¼ T̂e þ Ven þ Vee þ Vnn: ð6:2Þ
The electronic Hamiltonian Ĥ e depends on the positions of all the particles but it
contains only electronic coordinates as variables because the nuclei have fixed
positions. The electronic Schrödinger equation

Ĥeψe ¼ Eeψe ð6:3Þ

1 Even the lightest possible nucleus consisting of a single proton is approximately 1836 times as heavy as an electron.
2Oppenheimer’s role in the development of nuclear weapons, his later work on nuclear non-proliferation, and
his political troubles make for fascinating reading.
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gives a set of electronic wave functions ψ e and energies Ee for each fixed geometry.
Observe that Vnn is a constant for a fixed geometry, and so

ðĤe % VnnÞψe ¼ Ĥeψe % Vnnψe ¼ Eeψe % Vnnψe ¼ ðEe % VnnÞψe: ð6:4Þ

Hence solving a Schrödinger equation with the Hamiltonian Ĥe % Vnn will yield the
same wave functions as solving equation (6.3) and energies ðEe % VnnÞ from which
Ee can be obtained simply by adding the constant Vnn.

Repeatedly solving the electronic Schrödinger equation (6.3) at a large set of fixed
nuclear geometries yields the ground-state electronic energy Eeð~RÞ as a function of
the nuclear positions ~R. The global minimum ~Re of Eeð~RÞ is the equilibrium
geometry of interest in chemistry. Other local minima on the Eeð~RÞ surface corre-
spond to other stable isomers and first-order saddle points on the surface may
correspond to transition state structures. The function W ð~RÞ ¼ Eeð~RÞ % Eel in
which Eel ¼ Eeð~ReÞ is the potential energy surface upon which the nuclei move. The
masses of the nuclei appear only in the nuclear kinetic energy T̂n. Hence the Eeð~RÞ
surface and its shifted counterpart Wð~RÞ are the same for all isotopologues—
molecules that differ only in their isotopic composition (see problem 6.1).

The second and last step of the Born–Oppenheimer method is to solve the nuclear
motion Schrödinger equation:

½T̂n þW ð~RÞ'ψn ¼ Enψn: ð6:5Þ

The total energy of the molecule is E ¼ Eel þ En and ψ ¼ ψ eψn is the overall wave
function of the molecule. The solution of equation (6.5) is of central importance in
molecular spectroscopy. A center-of-mass transformation followed by an approxi-
mate separation of variables (see section 4.1) allows equation (6.5) to be separated
into translational (t), vibrational (v), and rotational (r) Schrödinger equations and so
En ( Et þ Ev þ Er. For a diatomic molecule,W is a function only of the bond length
R and the potential energy surface is just a W(R) curve of the sort seen in figure 7.5.
If W(R) is nearly harmonic for distances close to the equilibrium bond length Re,
then Ev can be obtained from the energy levels of a harmonic oscillator (section 3.2)
and Er from the energies of a rigid rotor (section 5.3).

Since we are concerned mostly with the electronic Schrödinger equation (6.3) in
this book, we often refer to it as ‘the’ Schrödinger equation, and drop the e subscript
on the electronic Hamiltonian and wave function.

6.2 The electronic Hamiltonian
In quantum chemistry, it is usual to work in Hartree atomic units. These are defined as
follows. The unit ofmass is the electronmassme, the unit of charge is the proton charge
e, the unit of permittivity is the vacuum value 4πɛ0, and the unit of angular momentum
is ħ. It then follows that the atomic unit of length is the bohr a0 ¼ h2ɛ0=πmee2 and the
atomic unit of energy is the hartree Eh ¼ e2=ð4πɛ0a0Þ. Do not confuse the atomic unit
of mass me with the atomic mass unit u used in general chemistry; 1 u ( 1836:15 me.
Note that the nuclear massesma do not equal one in atomic units. We use atomic units
almost exclusively in the rest of this book. Equations can be converted to Hartree

Quantum Chemistry

6-2



atomic units by setting e ¼ ħ ¼ me ¼ 4πɛ0 ¼ a0 ¼ Eh ¼ 1. Numerical results in
atomic units can be converted to other units with the conversion factors in appendix A.

We now examine, in detail, the form of the electronic Hamiltonian Ĥe that
appears in the electronic Schrödinger equation. The total kinetic energy operator will
have, for each electron, a term of the form%ðħ2r2

j Þ=ð2meÞ whereme is the mass of an
electron and j is the label of the electron. In atomic units, the electronic kinetic
energy of electron j becomes % 1

2r
2
j . The potential energy terms will contain a term

for every distinct pair of particles. Recall that the Coulomb energy of interaction
between a pair of particles with charges q1 and q2 separated by a distance r is given by
V ¼ ðq1q2Þ=ð4πɛ0rÞ, where ɛ0 is the electric constant. In atomic units, this Coulomb
energy becomes simply V ¼ q1q2=r. In atomic units, the charge of an electron is %1
and the charge of a nucleus is equal to the atomic number Z. Thus, the electron–
nucleus attraction Ven will consist of a sum of terms, one for each electron–nucleus
pair, of the form %Za=rja, where rja is the distance between electron j and nucleus a
with atomic number Za. Similarly, the electron–electron repulsion Vee will be a sum
of terms, one for each electron pair, of the form 1=rjk , where rjk is the distance
between electrons j and k. The internuclear repulsion Vnn will be a sum of terms, one
for each nucleus pair, of the form ZaZb=Rab, where Rab is the distance between nuclei
a and b with atomic numbers Za and Zb, respectively.

6.3 The hydrogen atom
The hydrogen atom consists of one electron and a nucleus with atomic numberZ ¼ 1.
The nucleus is placed at the origin and the spherical polar coordinates (see figure 5.3)
of the electron are ðr, θ,ϕÞ. So r is the distance between the electron and nucleus.

n
(0, 0, 0)

e
(r, θ, φ)

r

In atomic units, the electronic kinetic energy operator is T̂e ¼ %r2=2 and the
electron–nucleus potential is Ven ¼ %1=r. There are no repulsions (Vee ¼ Vnn ¼ 0)
for the hydrogen atom because there is only one electron and one nucleus. Using the
above operators, the electronic Schrödinger equation (6.3) is simply

%r2ψ
2

% 1

r
ψ ¼ Eψ : ð6:6Þ

Equation (6.6) canbe solvedby separationof variables in spherical polar coordinates.The
angular ðθ,ϕÞ equation turns out to be essentially the same as that for a particle on a
sphere; see section 5.2.Thederivation is lengthy andonly the results are summarizedhere.

This three-dimensional problem requires three quantum numbers: n, ‘, and m.
The boundary conditions restrict their values. The principal quantum number
n ¼ 1, 2, . . . is a positive integer, the angular momentum quantum number ‘ is
restricted to 0, 1, . . . , n% 1, and the magnetic or azimuthal quantum number m
is restricted to %‘, %‘þ 1, . . . , ‘% 1, ‘. More concisely, n> ‘⩾ jmj. As in chapter 5,
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the quantum numbers ‘ and m measure the state’s angular momentum L:
hL̂2i ¼ ‘ð‘þ 1Þħ2 and hL̂zi ¼ mħ. States with ‘ ¼ 0, 1, 2, 3, . . . are referred to as
s, p, d, f , . . . states, respectively. For example, the states with n ¼ 2 and ‘ ¼ 1 are
referred to as the 2p states and those with n ¼ 3 and ‘ ¼ 2 are called 3d states.

6.3.1 Energy levels

The spherical symmetry of the atom leads us to expect (2‘þ 1)-fold degeneracies like
those found for a particle on a sphere. However, the energies depend only on the
principal quantum number n. More precisely,

En ¼ % 1

2n2
Eh for n ¼ 1, 2, . . . ð6:7Þ

in which Eh (hartree) is the atomic unit of energy. A non-geometrical symmetry
beyond the scope of this book is responsible for the greater, n2-fold, degeneracy. The
1s ground state is non-degenerate and it has an energy of E1 ¼ %ð1=2ÞEh. Degen-
eracies are seen in figure 6.1 for all other values of n. For example, the 2s state and
the three 2p states of the hydrogen atom all have the same energy, E2 ¼ %ð1=8ÞEh,
unlike every other atom where the 2s energy differs from the 2p energy. E ¼ 0 is the
ionization threshold above which there is a continuum of positive energy states. In
the continuum (ionized) states, the electron is detached from the nucleus and the
relative translational energy of the two particles is E > 0.

Continuum of ionized states

E

Eh

−1/2

−1/8

−1/18
−1/32

0

s p d f g h i
1 3 5 7 9 11 13

1s

2s 2p

3s 3p 3d

Figure 6.1. Energy levels (in atomic units) of the hydrogen atom. The degeneracy, 2‘þ 1, of the energy levels
with the same n and ‘ is shown at the bottom.
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6.3.2 Orbitals

The one-electron wave functions are called orbitals and form an orthonormal set. They
can bewritten as the product of a radial function,Rn,‘ðrÞ, and an angular functionY‘,m.
The latter is exactly a spherical harmonic (studied previously in section 5.2). Thus

ψn,‘,mðr, θ,ϕÞ ¼ Rn,‘ðrÞY‘,mðθ,ϕÞ: ð6:8Þ

The first few radial functions for the hydrogen atom are listed in table 6.1. Inserting
Rn,‘ðrÞ from table 6.1 and the real-valued3 Y‘,m from table 5.1 into equation (6.8)
gives the hydrogen orbitals listed in table 6.2. The names given to the orbitals in
table 6.2 consist of the numerical value of n followed by the letter s, p, d, f , . . .
corresponding to the value of ‘ and a descriptive subscript that reminds one of the
angular factor for that choice of m.

Table 6.1. Radial wave functions for the hydrogen atom.

R1,0ðrÞ ¼ R1sðrÞ ¼ 2 e%r

R2,0 rð Þ ¼ R2s rð Þ ¼ 1ffiffiffi
2

p 1% r=2ð Þ e%r=2

R2,1 rð Þ ¼ R2p rð Þ ¼ 1

2
ffiffiffi
6

p r e%r=2

R3,0 rð Þ ¼ R3s rð Þ ¼ 2

9
ffiffiffi
3

p 3% 2rþ 2r2=9
" #

e%r=3

R3,1 rð Þ ¼ R3p rð Þ ¼ 4

27
ffiffiffi
6

p 2% r=3ð Þr e%r=3

R3,2 rð Þ ¼ R3d rð Þ ¼ 4

81
ffiffiffiffiffi
30

p r2 e%r=3

Table 6.2. Wave functions for the hydrogen atom. N2 ¼ ð32πÞ%1=2 and
N3 ¼ 2=81ð2πÞ1=2 are normalization constants. Observe that all the
wave functions have an e%r=n factor.

s 1s ¼ π%1=2 e%r

2s ¼ N2 ð2% rÞ e%r=2 3s ¼ ðN3=
ffiffiffi
6

p
Þð27% 18rþ 2r2Þ e%r=3

p 2px ¼ N2 x e%r=2 3px ¼ N3 ð6% rÞx e%r=3

2py ¼ N2 y e%r=2 3py ¼ N3 ð6% rÞy e%r=3

2pz ¼ N2 z e%r=2 3pz ¼ N3 ð6% rÞz e%r=3

d 3dxy ¼ N3 xy e%r=3 3dx2%y2 ¼ ðN3=2Þðx2 % y2Þ e%r=3

3dxz ¼ N3 xz e%r=3 3dyz ¼ N3 yz e%r=3

3dz2 ¼ ðN3=
ffiffiffiffiffi
12

p
Þð3z2 % r2Þ e%r=3

3Real-valued spherical harmonics are most convenient for the purposes of this book. Since degenerate wave
functions are not unique (section 4.4), it is equally valid to use complex-valued spherical harmonics and ensure
that the z component of the angular momentum ismħ for the state ψn,‘,m. This is most useful when the effects of
an external electric or magnetic field are being studied.
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The ground-state wave function ψ1,0,0 ¼ 1sð~rÞ ¼ π%1=2 e%r is spherically sym-
metric as are all the excited s states. One way to visualize the shapes of the orbitals
with ‘> 0 is a plot of jr‘Y‘,mj as in figure 5.5. Schematic representations, sufficient for
most purposes, of the angular parts of the hydrogen atom orbitals are shown in
figure 6.2. The convention used here is that regions where an orbital is positive are
shaded and regions where it is negative are unshaded. The opposite convention is
used in some books. The px and py orbitals look like the pz orbital except that they
point along the x and y axes, respectively. Schematic pictures of the dyz and dxy
orbitals can be obtained from the picture of the dxz orbital by simply relabeling the
axes. These schematic pictures should be committed to memory because they are
used in many qualitative arguments about molecules. The s and p orbital shapes are
important in understanding the chemistry of all the elements. The d orbital shapes
are important in transition metal and organometallic chemistry. Lanthanide and
actinide chemists need the shapes of f orbitals.

The radial function Rn,‘ has n% ‘% 1 nodes and the angular part Y‘,m has ‘ nodes.
Hence, the overall wave function ψn,‘,m has n % 1 nodes. Once again, the energy
increases as the number of nodes increases. The radial functions Rn,‘ grow in size with
n because the exponential factor e%r=n decays more slowly as n increases. Since the
radial functionsRn,‘ have a r‘ factor, they vanish at the nucleus ðr ¼ 0Þ unless ‘ ¼ 0. It
follows that only s-type radial functions (‘ ¼ 0) have a non-zero value at the nucleus,
an observation that has consequences for electron spin resonance spectroscopy.

6.3.3 Electron density and orbital size

The electron density ρ for a state with fixed n and ‘ is obtained by averaging over the
densities for the degenerate states with the same n and ‘ but different values of m; see
section 4.3. For example, we find for the 2p state that

ρ2pðr, θ,ϕÞ ¼ jR2pj2ðjY1,%1j2 þ jY1,0j2 þ jY1,1j2Þ=3 ¼ R2p
$$ $$2=ð4πÞ ð6:9Þ

xx

x

x

xy

zz

z
z

Figure 6.2. Schematic representation of the hydrogen orbitals. Top row: s and pz orbitals. Bottom row from
left to right: dz2 , dx2%y2 and dxz orbitals.
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where we have used the result of problem 5.8 to simplify the sum of the jY1,mj2.
Notice that the density is spherically symmetric and does not depend on the angles.
Similarly, for any ðn, ‘Þ, we obtain

ρn,‘ðrÞ ¼ jRn,‘ðrÞj2=ð4πÞ: ð6:10Þ

Let us calculate the probability DðrÞ dr that an electron is at a distance between r
and rþ dr from the nucleus or, in other words, the probability of finding the electron
in a thin spherical shell centered at the nucleus with inner radius r and outer radius
rþ dr. The function D(r), called the radial electron density, is obtained by inte-
grating the three-dimensional electron density over all the angles. Using equation
(6.10) and the volume element of equation (5.8) appropriate for spherical polar
coordinates, we find

DðrÞ dr ¼
Z 2π

0

Z π

0
ρn,‘ðrÞ r2 sin θ dr dθ dϕ ¼ r2jRn,‘ðrÞj2 dr: ð6:11Þ

The probability that the electron will be within a sphere of radius R centered at the
nucleus is:

PðRÞ ¼
Z R

0
DðrÞ dr: ð6:12Þ

As R ! 1, PðRÞ ! 1. The van der Waals radius of the H atom can be chosen as
the value of R at which PðRÞ reaches a number close to 1; see problem 6.11. The
concept of an atom’s size is fuzzy (ill-defined) because the probability densities jψ j2
and D(r) do not have a finite size.

Figure 6.3 shows that the radial electron density reaches a global maximum at
r ¼ 1, 5.24, 4, 13.07, 12, and 9 bohrs for the 1s, 2s, 2p, 3s, 3p, and 3d states,

0
0

0
0

0
55 1010 15 20

0.2

0.4

0.6

0.05

0.1

rr

D
(r

)

Figure 6.3. Radial electron densities for the hydrogen atom. Left panel, 1s :%%%%%, 2s : - - - -, and 2p : ) ) ) ) ) );
Right panel, 3s :%%%%%%, 3p : - - - -, and 3d) ) ) ) ) ); Note the difference in the vertical scales of the two panels.
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respectively. These are the most probable (or modal) electron–nucleus distances
for these states. Modal electron–nucleus distances provide another measure of
the size of the electron cloud associated with an orbital. We shall see their
periodic behavior for atoms in section 8.5; they can be used as covalent radii.
The modal distances increase rapidly with n, but differ only by small amounts for
fixed n.

A third measure of size is given by the mean value of the electron–nucleus dis-
tance, which can be calculated from

hri ¼
Z 1

0
r DðrÞ dr: ð6:13Þ

For the ground state, using equation (A.14) from appendix A, one finds:

hri ¼
Z 1

0
r3jR1s rð Þj2 dr ¼ 4

Z 1

0
r3 e%2rdr ¼ 4×

3!

24
¼ 3

2
a0

where a0 (bohr) is the atomic unit of length. A more general calculation gives
hri ¼ 3n2a0=2 for s states with ‘ ¼ 0, showing that orbital size increases quadrati-
cally with the principal quantum number n.

6.3.4 Spin angular momentum

Following Pauli’s proposal of a new quantum number to explain atomic spectra,
Ralph Kronig, George Uhlenbeck, and Samuel Goudsmit introduced an intrinsic
angular momentum called spin for elementary particles like electrons. A simple
picture of electron spin is to think of it as arising from the spinning of the electron
about its own axis. Spin has to be grafted onto non-relativistic quantum mechanics
but arises naturally in relativistic quantum mechanics.

In analogy with the rotational angular momentum discussed in section 5.2, the
square of the spin angular momentum is hŜ2i¼ sðsþ 1Þħ2, where s ¼ 1

2 for electrons,
protons, and neutrons. Photons have s ¼ 1. Particles with half-integer spin s are
called fermions after Enrico Fermi (Physics Nobel Prize, 1938), whereas those
with integer spin are called bosons after Satyendra Bose. The z component of
the spin angular momentum hŜzi is restricted to the values msħ with
ms ¼ %s, %sþ 1, . . . , s% 1, s. Thus an electron has 2sþ 1 ¼ 2 degenerate spin
states, namely ms ¼ 1

2 and ms ¼ % 1
2, sometimes denoted m and k, respectively. These

two spin states are described by the spin functions α and β, respectively. These
functions depend on a notional spin variable σ and form an orthonormal pair:R
α2 dσ ¼ 1,

R
β2 dσ ¼ 1, and

R
αβ dσ ¼ 0.

Consideration of electron spin leads to each of the hydrogen atom orbitals ψn,‘,m
being turned into two degenerate spin orbitals ψn,‘,mα and ψn,‘,mβ. Then, the
degeneracy of the hydrogen atom energy levels doubles to 2n2. An orbital times a
spin function is called a spin orbital.
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6.4 Hydrogen-like ions
The hydrogen-like ions, such as Heþ and Li2þ, consist of one electron and a nucleus
with atomic number Z. They are no more difficult to deal with than the H atom. The
relevant electronic Schrödinger equation,

%r2ψ
2

% Z
r
ψ ¼ Eψ , ð6:14Þ

reduces to equation (6.6) when Z ¼ 1. If we solve equation (6.14), then the solutions
for H, Heþ, . . . can be obtained by setting Z ¼ 1, 2, . . . , respectively. The energy
levels turn out to be:

En,‘,m ¼ % Z2

2n2
Eh for n ¼ 1, 2, . . .: ð6:15Þ

The wave functions are again given by equation (6.8), in which the radial functions
are different for different Z but the angular part is given by the spherical harmonics
Y‘,m for all Z. The radial functions for a hydrogen-like ion with atomic number Z
can be obtained from the functions in table 6.1 by multiplying them by Z3=2 and
replacing r by Zr wherever it occurs on the right-hand side. For example, from
table 6.1, we find that R1sðrÞ ¼ 4

ffiffiffi
2

p
e%2r for the helium cation Heþ which has an

atomic number of Z ¼ 2. The ground-state wave function for Heþ, the product of
R1s and Y0,0, is therefore

1s ¼
ffiffiffiffiffiffiffiffi
8=π

p
e%2r: ð6:16Þ

The same reasoning shows that the ground-state wave function for a one-electron
atom or ion with nuclear charge Z is

1s ¼
ffiffiffiffiffiffiffiffiffiffiffi
Z3=π

p
e%Zr: ð6:17Þ

Since the decay of e%Zr is faster for larger Z, the electron density becomes more
compact as Z increases.

Problems (see appendix B for hints and solutions)
6.1 The vibrational force constant does not vary from one isotopologue to another;
thus, for example, the force constants for H2, HD, and D2 are all identical. The
v ¼ 0 ! 1 vibrational transition in isotopically pure 1H2 has been measured to occur
at 4395:2 cm%1. Use the harmonic oscillator model to predict the same transition
in D2.

6.2 For the hydrogen atom, specify the allowed values of ‘ for n ¼ 5 and the
allowed values of m for f orbitals.

6.3 Including spin considerations, give the degeneracy of the hydrogen atom energy
level with (a) n ¼ 1, (b) n ¼ 2, and (c) n ¼ 3.
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6.4 Calculate, in atomic units, the energy required to excite an electron in the
hydrogen atom from the ground state to the 2pz state. Calculate, in nanometers, the
wavelength of the photon that can cause this excitation.

6.5 Calculate, in electron volts, the energy required to ionize a hydrogen atom in
the 2pz state.

6.6 The mean value hri of the distance between the nucleus and the electron in the
2px state of the hydrogen atom is 5a0. Without calculation, determine the mean
value of the distance between the nucleus and the electron in the 2pz state of the
hydrogen atom. Explain your reasoning.

6.7 Calculate the expectation value hri for the 3p and 3d states of the hydrogen
atom. Use either integral formulas from appendix A or mathematical software.

6.8 Calculate the expectation value hri for the ground state of the Heþ cation.
Compare your result with hri for the H atom.

6.9 Write down, in atomic units, the 2s orbital for Heþ.

6.10 Without calculation, write down the value of the following integral involving
hydrogen atom orbitals. Explain your answer.

Z 2π

0

Z π

0

Z 1

0
3dxzð~rÞ 2pzð~rÞ r2 sin θ dr dθ dϕ

6.11
(a) Derive PðRÞ, the probability that an electron will be no further than a distance

R from the nucleus, for the ground state of the hydrogen atom. Use equation
(6.12) and either integral formulas from appendix A or mathematical software.

(b) Plot the above PðRÞ and use it to find the electron–nucleus distancesR at which
the probability PðRÞ becomes 0.85, 0.95, and 0.99.

(c) Compare these distances with the van der Waals radius of H from an inorganic
chemistry textbook. Which of these distances best matches the van der Waals
radius? What is the probability of finding the electron further from the nucleus
than this radius? Does the answer to the preceding question make you
uncomfortable? Explain why or why not.
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Chapter 7

A one-electron molecule: Hþ
2

The simplest molecule is the hydrogen molecule ion Hþ
2 . It consists of two hydrogen

nuclei (protons) and one electron. The nuclei are stationary within the Born–
Oppenheimer approximation, and they are taken to be a fixed distance R apart.
The z axis is chosen to lie along the principal axis of symmetry, and the origin is
placed at the center of mass. As depicted in figure 7.1, the Cartesian coordinates of the
electron are ðx1, y1, z1Þ, the coordinates of the two nuclei a and b are (0, 0, $R/2) and
(0, 0, þR/2), respectively, and r1a and r1b are the distances between the electron
and the protons.

Using the ideas of section 6.2, the electronic Schrödinger equation is:

Ĥeψ e ¼ $ 1

2
r2

1 $
1

r1a
$ 1

r1b
þ 1

R

! "
ψ e ¼ Eeψe: ð7:1Þ

The first term in Ĥe is the electronic kinetic energy T̂e and the next two terms make
up the electron–nuclear attraction Ven. The internuclear repulsion 1/R is a constant
because R is fixed. The interelectronic repulsion Vee ¼ 0 because there is only one
electron. Since Hþ

2 has only one electron, the wave function will be a molecular
orbital (MO).

(0, 0,−R/2) (0, 0, +R/2)
a R b

r1a r1b

e
(x1, y1, z1)

Figure 7.1. Coordinates for Hþ
2 .
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Equation (7.1) can be solved exactly after transformation to confocal elliptic
coordinates: μ ¼ ðr1a þ r1bÞ=R, ν ¼ ðr1a $ r1bÞ=R, and the azimuthal angle ϕ. The
exact wave functions can be written as ψðμ, ν,ϕÞ ¼ FðμÞ GðνÞ ΦmðϕÞ where ΦmðϕÞ is
a particle-on-a-ring wave function from equation (5.4). The wave functions with
m ¼ 0, &1, &2, . . . are called σ, π, δ, . . . states, respectively. (Read δ as dell-tah.)
Since there is a center of symmetry, the state label is given a subscript of either
g (for gerade) or u (for ungerade), depending on whether the wave function is sym-
metric or antisymmetric with respect to inversion. Unfortunately, the exact electronic
wave functions are rather complicated. For our purposes, it is sufficient to examine
simple approximate wave functions.

7.1 The LCAO model
If the protons are far apart and the electron is close to one of them, say nucleus a,
then the MO should be approximately the 1s orbital of an isolated hydrogen atom
located at a. Hence, a reasonable trial MO can be written as a linear combination of
atomic orbitals (LCAO):

ψ ¼ ca1sa þ cb1sb ð7:2Þ

where 1sa ¼ π$1=2 e$r1a and 1sb ¼ π$1=2 e$r1b , respectively, are 1s atomic orbitals
(AOs) on protons a and b, and ca and cb are mixing coefficients. We also say that the
MO has been expanded in terms of a minimal basis set of one 1s orbital on each atom.

The electron probability density ρ is

ρð~rÞ ¼ ψ2 ¼ c2að1saÞ
2 þ c2bð1sbÞ

2 þ 2cacb1sa1sb: ð7:3Þ

The electron density ρ must be inversion symmetric because the molecule has D1h

symmetry, and hence c2b ¼ c2a. This implies that cb ¼ &ca. Thus, there are two MOs
given by

1σg ¼ Ngð1sa þ 1sbÞ and 1σu ¼ Nuð1sa $ 1sbÞ ð7:4Þ

where Ng and Nu are normalization constants. The names chosen for the MOs are
based on symmetry. The labeling convention for the m quantum number tells us
that both MOs represent σ states (read σ as sigma) because they are combinations of
AOs with m ¼ 0. The 1σg and 1σu MOs have a g and u designation, respectively,
since they are symmetric and antisymmetric with respect to inversion. Anticipating
that they are the lowest-energy σ states, we call them the 1σg and 1σu MOs. To
obtain the complete electronic wave functions, the MOs are multiplied by a spin
function (either α or β). All terms in equation (7.3) are positive when cb ¼ ca, so the
1σg MO leads to a build-up of electron density between the protons and is therefore
bonding in nature. Letting cb ¼ $ca makes the last term in equation (7.3) negative.
This shows that the 1σu MO leads to a diminishing of electron density between the
protons because it has a nodal plane halfway between the nuclei and perpendicular
to the molecular axis. The 1σu MO is therefore antibonding and higher in energy
than the 1σg MO.
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Figure 7.2 shows perspective plots of the electron density ρ in the xz plane.
Clearly the electron density peaks at the nuclei. In the 1σg state there is a build-up of
density between the nuclei, and there is a saddle point at the middle of the bond.
Such a saddle in the electron density is characteristic of a chemical bond. In general,
the extrema (maxima, minima and saddle points) of the electron density have
chemical significance. In the 1σu state, we see a depletion of density and a nodal
plane between the nuclei.

7.2 LCAO potential energy curves
We now turn to the calculation of energies for the ground state of Hþ

2 . The 1σg wave
function (7.4) can be normalized by choosing Ng appropriately using the method
shown on page 2-5. First calculate the normalization integral.

Z
1σ2g dτ ¼ N2

g

Z
1s2a dτ þ

Z
1s2b dτ þ 2

Z
1sa1sb dτ

! "

¼ N2
g ð2þ 2SabÞ ð7:5Þ

because the 1s AOs are normalized; Sab ¼
R
1sa1sb dτ is called an overlap integral.

The Ng normalization constant is now determined by setting the right-hand side of
equation (7.5) equal to one; thus

Ng ¼ ð2þ 2SabÞ$1=2: ð7:6Þ

The energy for the 1σg wave function is found by calculating the expectation
value of the energy (Hamiltonian) operator using equation (2.17). Hence

Eg ¼
Z

1σgðĤe1σgÞ dτ ¼ N2
g ðHaa þHab þHba þHbbÞ ð7:7Þ

where

Hpq ¼
Z

1spðĤe1sqÞ dτ for p, q ¼ a or b: ð7:8Þ

0
0

0
0

1

1

1
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2
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2

2
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−2 xx
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ρ ρ

Figure 7.2. Perspective plots of the electron density ρð~rÞ in the xz plane for the bonding 1σg (left) and anti-
bonding 1σu (right) states of Hþ

2 .
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We see that Hbb ¼ Haa by symmetry. Moreover, Hba ¼ Hab because Ĥe is both real
and Hermitian (see equation (2.6)) and the 1s AOs are real-valued. Thus, we find

Eg ¼ 2N2
g Haa þHabð Þ ¼ Haa þHab

1þ Sab
ð7:9Þ

where equation (7.6) is used to obtain the final expression. A similar calculation
gives Nu ¼ ð2$ 2SabÞ$1=2 and Eu ¼ ðHaa $HabÞ=ð1$ SabÞ for the 1σu state.

Note from figure 7.3 how the overlap integral Sab varies with the bond length R.
As R ! 0, the two AOs become the same and Sab ! 1 because the AOs are nor-
malized. As R gets larger, the overlap decreases; hence Sab ! 0 as R ! 1. The
same behavior would be obtained for the overlap of any two equivalent normalized
AOs placed on equivalent nuclei a and b.

Figure 7.3 shows that as R becomes large, Haa ¼
R
1saðĤe1saÞ dτ correctly

approaches the energy of an isolated hydrogen atom, $0:5 Eh. Hab is a measure
of the interaction between the 1sa and 1sb functions. Observe in figure 7.3 that, as
the two orbitals approach, Hab becomes increasingly attractive until the overlap
becomes sizeable. Then, as the bond length is shortened further, Hab rapidly
becomes less attractive and becomes repulsive.

Use of Haa, Hab and Sab in equation (7.9) and its σu analogue leads to potential
energy curves for the σg and σu MOs, respectively. Figure 7.3 shows that, for all
bond lengths R> 1:6 a0, the σg potential energy curve is lower than $0:5 Eh, the sum
of the energy of an isolated hydrogen atom and a bare proton. In other words, the
ground 1σg state of Hþ

2 is predicted to be stable. On the other hand, the σu potential
energy curve is higher in energy than the dissociation products for all bond lengths
and corresponds to an unbound excited state.
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Figure 7.3. The LCAO model of Hþ
2 . Left panel: integrals. Right panel: potential energy curves for the σg and

σu states.
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The σg potential energy curve in figure 7.3 reaches a minimum at R ¼ Re ¼
2:49 a0 ¼ 132 pm. However, the exact equilibrium bond length of Re ¼ 2:00 a0 ¼
106 pm is noticeably shorter than the value predicted by this simple LCAO-MO.

7.3 The variation method
We need a method to calculate an improved bond length for Hþ

2 without resorting
to the extremely complicated exact solution. Moreover, a method is required
to solve the electronic Schrödinger equation approximately for atoms and mole-
cules with more than one electron because exact solutions cannot be found in these
cases. The variation method is one of the most important methods available for
this purpose.

The variation method is based on the variational theorem: If Φ (read Φ as fye)
is any well-behaved, normalized function of the coordinates of the particles of a
system described by a Hamiltonian Ĥ , then

EΦ ¼
Z

ΦðĤΦÞ dτ ⩾ Egs ð7:10Þ

where Egs is the true ground-state energy of the system. A well-behaved function is
one that is continuous, square-integrable, satisfies the boundary conditions of the
problem, and, as we shall see in section 8.2, obeys the Pauli postulate if the system
contains two or more identical particles. Since the integral in equation (7.10) is
just the expectation value of the energy operator using the approximate wave
function Φ, the inequality in the variational theorem becomes an equality if
Φ ¼ ψgs, where ψgs is the true ground-state wave function. The non-trivial content
of equation (7.10) is that forming an energy expectation value with an approxi-
mate wave function leads to an upper bound to the true ground-state energy1. If
one prefers to work with unnormalized trial functions Φ, then equation (7.10) can
be rewritten as

EΦ ¼
R
ΦðĤΦÞ dτ
R
jΦj2 dτ

⩾ Egs: ð7:11Þ

The ratio of integrals in equation (7.11) is often called the Rayleigh–Ritz quotient. If
Φ is complex-valued, then the leftmost Φ in the integrals in equations (7.10)–(7.11)
must be replaced by Φ'.

A simple application of equation (7.11) is to calculate the ground-state energy
predicted by a guessed wave function as in section 7.2; figure 7.4 confirms that,
as predicted by the variational theorem, the LCAO energy curve lies above the
exact one. In realistic applications, a trial function contains parameters that are

1This happens because it is always possible to express Φ as a linear combination, with coefficients ck , of all the
eigenfunctions ψk of Ĥ . The energy of Φ is then a linear combination of the corresponding energies Ek with
squared coefficients c2k . The latter combination of energies is greater than Egs because all the c2k > 0 and all the
Ek ⩾Egs.
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systematically varied to determine the values that lead to the lowest EΦ. Then, the
trial function Φ that gives the lowest EΦ is selected as the best approximation to the
true ground-state wave function and EΦ as the best approximation to the ground-
state energy. The variational method is used in this way in section 7.4 to improve the
LCAO wave function for Hþ

2 .

7.4 Beyond the LCAO model
The main deficiency of the simple LCAO model of section 7.2 is that it incorporates
only large R behavior. In the united atom limit, R ! 0, Hþ

2 ! Heþ, and the 1s
orbital should behave as e$2r; see equation (6.16). Moreover, the size of the atomic
orbitals should be allowed to adapt to the molecular environment at intermediate
values of R. This behavior can be incorporated in the MO of equation (7.4) by using
hydrogen-like ion AOs of the form (see equation (6.17)):

1sa ¼
ffiffiffiffiffiffiffiffiffiffi
ζ3=π

q
e$ζr1a and 1sb ¼

ffiffiffiffiffiffiffiffiffiffi
ζ3=π

q
e$ζr1b ð7:12Þ

where ζ (read ζ as zay-tah) is an effective nuclear charge which changes as the bond
lengthR changes. The integrals Sab,Haa andHab, and the energy are functions of both
ζ andR. The variational principle (7.10) tells us that, at each fixedR, we should choose
the ζ that leads to the lowest energymaking sure to force ζ > 0 to keep the approximate
wave function square-integrable. Doing this calculation gives ζ values changing
smoothly from ζ ¼ 2 at R ¼ 0 to ζ ¼ 1 as R ! 1. The resulting E(R) shown in
figure 7.4 has a minimum at R ¼ Re ¼ 107 pm in good agreement with the experi-
mental Re ¼ 106 pm.
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Figure 7.4. Potential energy curves for the ground state of Hþ

2 . The simple LCAO and exact curves are
shown as solid lines; sandwiched in between are the curves for the scaled LCAO (- - - -) and the polarized
model (( ( ( ( ( ().
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To improve the scaled LCAO calculation, a more flexible trial function is
required. When a proton approaches a hydrogen atom, the electron density of the
hydrogen atom should polarize in the direction of the proton. In other words, the
atomic orbitals must also be allowed to change their shape in the molecule. We can
incorporate this effect by allowing the 1s function to be polarized by mixing or
‘hybridizing’ it with a 2pz function as illustrated below. The 2pz function is called a
polarization function in this context.

c+

- c

We use 1sa þ c 2pza, where c> 0 is a mixing coefficient, on the left-hand nucleus and
1sb $ c 2pzb on the other nucleus so that the lobes of the two hybridized functions
have a positive overlap.

Thus, the polarized wave function for the σg state is

ψ ¼ N ð1sa þ c 2pzaÞ þ ð1sb $ c 2pzbÞ½ * ð7:13Þ

in which we use hydrogenic 1s functions as in equation (7.12), N is a normalization
constant, and the hydrogenic 2pz functions are given by

2pza ¼
ffiffiffiffiffiffiffiffiffiffi
β5=π

q
z1a e$βr1a and 2pzb ¼

ffiffiffiffiffiffiffiffiffiffi
β5=π

q
z1b e$βr1b ð7:14Þ

where the exponent β is another parameter. The MO (7.13) is said to be expanded in
a polarized basis set consisting of four functions: 1sa, 1sb, 2pza, and 2pzb. The ideas of
polarization functions and polarized basis sets are of general utility and will recur in
section 10.2.

Minimization of the energy with respect to the three parameters, ζ, c, and β, for a
series of bond lengths R leads to the much improved potential energy curve shown in
figure 7.4. This curve has a minimum at R ¼ Re ¼ 106 pm in perfect agreement with
the exact value. At the equilibrium bond length Re, the optimal parameters for the
polarized LCAO wave function are ζ ¼ 1:246, β ¼1.482, and c ¼ 0.138. Observe
that the optimal ζ and β indicate that the 1s and 2pz functions are of approximately
the same size as they should be for 2pz to polarize the 1s function. We now turn
to the evaluation of two other important properties of Hþ

2 —the dissociation energy
and vibrational force constant.

7.5 Force constant and dissociation energy
To predict the rotational and vibrational energy levels of a diatomic molecule such
as Hþ

2 , we should insert W ðRÞ ¼ EðRÞ $ EðReÞ into the Schrödinger equation for
nuclear motion, equation (6.5), and solve by separation of variables. Since full detail
is not needed, we use the approximate procedure described in section 6.1. Make a
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Taylor expansion of E(R) around the equilibrium bond length Re, with x ¼ R$ Re

as the expansion variable, as follows:

E Rð Þ ¼ E Reð Þ þ dE
dR

! "

Re

xþ 1

2

d2E
dR2

! "

Re

x2 þ ( ( (: ð7:15Þ

Note that dE=dR vanishes at R ¼ Re because E(R) has a minimum there, neglect x j

terms with j ⩾ 3, and define the harmonic force constant ke ¼ ðd2E=dR2ÞRe
. Then

W ðRÞ + kex2=2 which is a harmonic potential. So we use section 3.2 to find that
the oscillator’s vibrational energy levels, in atomic units, are Ev ¼ ωðvþ 1=2Þ in
which ω ¼ ðke=μÞ1=2, μ is the reduced mass of the molecule, and v is the vibrational
quantum number. Then, the zero-point (v ¼ 0) vibrational energy is ω=2. The
harmonic energy-level spacing will only be accurate for low-lying vibrational levels
because E(R) is harmonic only for R close to Re. Application of this procedure to
the potential energy curve predicted by the wave function (7.13) leads to a predicted
ω ¼ 2315 cm$1 to be compared with the exact value of 2297 cm$1 for Hþ

2 . As
mentioned in section 6.1, rotational energies can be computed from the rigid rotor
expression (5.9) with I ¼ μR2

e .
The equilibrium dissociation energy De of a diatomic molecule is the energy

required to separate the diatomic at its equilibrium bond length Re into atomic
fragments; see figure 7.5. Using the energy predicted by the wave function of
equation (7.13) we find, in atomic units, for Hþ

2 that

De ¼ EðHÞ þ EðHþÞ $ EðHþ
2 ,ReÞ ¼ $0:5þ 0:0$ ð$0:6004Þ ¼ 0:1004 Eh:

Using a conversion factor from appendix A, we find De ¼ 263 kJ mol$1 to be
compared with the exact value of 269 kJ mol$1.

Since a molecule is always vibrating, the dissociation energy relative to the ground
vibrational state, D0 ¼ De $ ω=2 (see figure 7.5), is often more relevant than De.

Re

E
(R

)

R

D0

De

v = 0

Dissociation limit

Figure 7.5. The equilibrium dissociation energyDe and the dissociation energy D0 from the vibrational ground
state v ¼ 0.
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If the molecular gas can be well approximated as a perfect gas, then D0 is equal to the
enthalpy of reaction for the process: diatomic(g) ! atoms(g) at 0K. D0 is also
called the atomization energy. The four quantities Re, De, D0, and ke are all accessible
through experiment.

7.6 Excited states
Figure 7.6 shows excited state MOs for Hþ

2 made from higher-energy AOs of H. The π
labels follow from the m ¼ &1 quantum numbers of the AOs involved (see table 5.1)
and the naming scheme given on page 7-2. The σg and πu MOs are bonding MOs,
whereas the σu and πg MOs are antibonding MOs. Formation of bonding MOs
requires constructive overlap of the AOs whereas destructive overlap of AOs leads
to antibonding MOs. Observe that the more nodal planes an MO has, the greater
its energy.

The MOs of Hþ
2 are used as prototypes for the MOs of A2 diatomic molecules,

and so it is important to be able to sketch them. The MOs with the same symmetry
label such as σg are sequentially numbered in order of increasing energy. In some
inorganic chemistry texts, the core 1σ MOs are dropped and the remaining σ MOs
are renumbered starting from 1.

Mixing of the 2s and 2pz AOs is expected in the 2σ and 3σ MOs because of the
degeneracy of 2s and 2p AOs in the H atom. However, it has been ignored here

πgx = pxa − pxb

πgy = pya − pyb

πux = pxa + pxb

πuy = pya + pyb

σu = pza + pzb

σg = pza − pzb

σu = sa − sb

σg = sa + sb

Figure 7.6. Formation of typical diatomic MOs from AOs. The shaded lobes are positive and the unshaded
ones negative. The πux and πgx MOs are in the xz plane and the πuy and πgy MOs are in the yz plane.
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because these MOs are meant for a qualitative description of all homonuclear
diatomic molecules A2, and 2s AOs are not degenerate with 2p AOs in many-
electron atoms. The energy ordering in Hþ

2 is

1σg < 1σu < 2σg < 2σu < 1πux ¼ 1πuy < 3σg < 1πgx ¼ 1πgy < 3σu: ð7:16Þ

The ordering varies a bit in other A2 molecules.

Problems (see appendix B for hints and solutions)
7.1 Write down, in atomic units, the electronic Hamiltonian for the one-electron
molecule HeH2þ. Explain the meaning of all symbols.

7.2 Prove that the 1σg and 1σu MOs of equation (7.4) are orthogonal.

7.3 Construct electron configurations for H2 and He2 using the 1σg and 1σu MOs.
Can you see how the electron configuration indicates that He2 is not a stable
molecule?

7.4 Tony used the variational method for the hydrogen atom with ðζ3=πÞ1=2 e$ζr as
a trial function and varied ζ to obtain the lowest possible energy. What value of ζ
and the energy should he have found and why? No calculations are required.

7.5 Suppose that overlap is neglected by assuming that Sab ¼ 0. How does this
change the energies of the LCAO σg and σu wave functions?

7.6 As a simple example of the use of the variation method, suppose that we did not
know how to solve the problem of a particle moving freely in a one-dimensional wire
with infinite walls. Consider

Φ xð Þ ¼
xða$ xÞ for 0 ⩽ x ⩽ a,
0 for x ⩾ a and x ⩽ 0

$

as a trial function. It is well-behaved, it is continuous, square-integrable, and it
vanishes at the walls.
(a) Calculate

R
ΦðĤΦÞ dx where Ĥ is the Hamiltonian for a particle in a one-

dimensional wire.
(b) Calculate

R
jΦj2 dx.

(c) Use the results obtained above in equation (7.11) to calculate the ground-state
energy predicted by this simple trial function. Compare it with the exact ground-
state energy for this problem.

7.7 Write and sketch two MOs made up of dxz AOs placed on equivalent nuclei a
and b. Assign them appropriate symbols (such as σg or ϕu) explaining your choices.
Which MO is bonding and which antibonding? Are either or both of them
degenerate?

7.8 Write and sketch twoMOsmade up of dxyAOs placed on equivalent nuclei a and
b. Assign themappropriate symbols (such as σg orϕu), explaining your choices.Which
MO is bonding and which antibonding? Are either or both of them degenerate?
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7.9 Isotopically pure 1Hþ
2 has an equilibrium bond length Re ¼ 106 pm, an equi-

librium dissociation energy De ¼ 269 kJ mol$1, and the fundamental vibrational
frequency ω ¼ 2297 cm$1. The atomic masses of 1H and 2H (also known as D) are
1.0078 and 2.014 u, respectively.
(a) Calculate the atomization energy D0 for 1Hþ

2 .
(b) What is the value of Re for Dþ

2 ? Explain your answer.
(c) What is the value of De for Dþ

2 ? Explain your answer.
(d) Calculate the vibrational frequency ω for Dþ

2 .
(e) Calculate the atomization energy D0 for Dþ

2 .
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Chapter 8

Many-electron systems

8.1 The helium atom
The helium atom consists of two electrons and a He2þ nucleus (α particle) of
charge þ2, as shown below. r1 and r2, respectively, are the distances between
electrons 1 and 2 and the nucleus, and r12 is the interelectronic distance.

e1 r12

(x1, y1, z1) (x2, y2, z2)
e2

He2+ (0, 0, 0)

r1 r2

Following section 6.2, the electronic Hamiltonian is

Ĥe ¼ # 1

2
r2

1 #
1

2
r2

2 #
2

r1
# 2

r2
þ 1

r12
: ð8:1Þ

The first two terms make up the electronic kinetic energy and the next two
the electron–nucleus attraction. The interelectronic repulsion term, 1=r12 ¼
1=½ðx1 # x2Þ2 þ ðy1 # y2Þ2 þ ðz1 # z2Þ2'1=2, prevents use of the separation of vari-
ables technique of section 4.1. Therefore, exact solutions for He or any other system
with two or more electrons cannot be obtained; finding approximate ones is the central
task of quantum chemistry.

Let us begin with an approximate factorization of the wave function into two
orbitals, one for each electron, as follows:

ψð~r1,~r2Þ ¼ 1sð~r1Þ1sð~r2Þ: ð8:2Þ

First, we try using 1s ¼
ffiffiffiffiffiffiffiffi
8=π

p
e#2r, the 1s orbital for Heþ from section 6.4, because

it should be similar to the 1s orbital in He. With this guess in equation (8.2), we find
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from equation (7.11) that E ¼ #2:75 Eh. This predicts an ionization energy
I ¼ EðHeþÞ # EðHeÞ ( #2 Eh # ð#2:75 EhÞ ¼ 0:75 Eh ¼ 1970 kJ mol#1 which is
far from the experimental value of I ¼ 2373 kJ mol#1. A better choice for the orbital
is to use a 1s orbital appropriate for a hydrogen-like ion with an effective nuclear
charge ζ,

1sð~rÞ ¼ ðζ3=πÞ1=2 e#ζr, ð8:3Þ

and determine ζ by the variational method (see section 7.3). Thus the model wave
function becomes ψð~r1,~r2Þ ¼ ðζ3=πÞ e#ζr1 e#ζr2 . Substituting it into equation (7.11)
and integrating gives E ¼ ζ2 # 27ζ=8. Then we minimize E with respect to ζ by
setting dE=dζ ¼ 0. This leads to ζ ¼ 27=16 ¼ 1:6875, E ¼ #2:8477 Eh, and a sig-
nificantly improved value of I ¼ 2226 kJ mol#1. The effective nuclear charge is
smaller than the atomic number (Z ¼ 2) because one electron is shielded from the
nucleus by the other electron.

8.2 Spin and the Pauli postulate
In the hydrogen atom, we simply multiplied the 1s orbital by either α or β to obtain a
spin orbital. In a similar way, we multiply the wave function (8.2) by an α for
electron 1 and a β for electron 2 to obtain:

ψð~r1, σ1,~r2, σ2Þ ¼ 1sð~r1Þ1sð~r2Þαðσ1Þβðσ2Þ: ð8:4Þ

To simplify the notation, let us use k to stand for ~rk, σk so that, for example,
ψð1, 2Þ ¼ ψð~r1, σ1,~r2, σ2Þ. Further, instead of showing the α and β spins explicitly,
we use a bar to indicate those spin orbitals that have β spin. For example,
1sðkÞ ¼ 1sð~rkÞαðσkÞ and 1sðkÞ ¼ 1sð~rkÞβðσkÞ. Now we can write equation (8.4) as

ψð1, 2Þ ¼ 1sð1Þ1sð2Þ: ð8:5Þ

Is this correct? Wolfgang Pauli provided the answer as an additional postulate of
quantum mechanics.

Postulate 6 The wave function of a system containing two or more electrons changes
sign if the space and spin coordinates of any pair of electrons are interchanged.

Wave functions which satisfy the Pauli condition are said to be antisymmetric with
respect to interchange of electrons. The Pauli postulate is applicable to all fermions
(see section 6.3.4); a general form of the postulate requires wave functions for sys-
tems containing two or more identical bosons to remain unchanged when the space
and spin coordinates of any pair of identical bosons are interchanged.

For a two-electron system, the Pauli postulate requires that the wave function
be antisymmetric with respect to simultaneous interchange of electron coordinates
and spins:

ψð1, 2Þ ¼ #ψð2, 1Þ: ð8:6Þ
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However, the wave function in equation (8.5) does not satisfy the Pauli requirement
of equation (8.6) because interchanging the space and spin coordinates of the two
electrons leads to

#ψð2, 1Þ ¼ #1sð2Þ1sð1Þ ¼ #1sð1Þ1sð2Þ, ð8:7Þ

which is clearly not equal to equation (8.5). A little thought shows that a combi-
nation of the right-hand sides of equation (8.5) and equation (8.7) given by

ψð1, 2Þ ¼ ½1sð1Þ1sð2Þ #1sð1Þ1sð2Þ'=
ffiffiffi
2

p
ð8:8Þ

does satisfy the Pauli condition of equation (8.6). The factor of 1=
ffiffiffi
2

p
keeps the wave

function normalized. Equation (8.8) is the product of wave function (8.2) and a spin
part:

½αðσ1Þβðσ2Þ # βðσ1Þαðσ2Þ'=
ffiffiffi
2

p
:

Thus spin can be tacked on at the end for a two-electron system in just a slightly
more complicated way than for one-electron systems, and all the results of section 8.1
are valid.

A systematic procedure for generating antisymmetric wave functions was found
by John Slater. He noticed that the wave function of equation (8.8) can be rewritten
as a 2 × 2 determinant1:

ψð1, 2Þ ¼ 1ffiffiffiffi
2!

p det

"""""
1sð1Þ 1sð2Þ
1sð1Þ 1sð2Þ

""""": ð8:9Þ

Slater saw that the determinant (8.9) can be generalized for many-electron atoms
or molecules to provide a wave function that satisfies the Pauli condition. For
example, a 3 × 3 Slater determinant for the ground state of the lithium atom can
be written as:

ψð1, 2, 3Þ ¼ 1ffiffiffiffi
3!

p det

1sð1Þ 1sð2Þ 1sð3Þ
1sð1Þ 1sð2Þ 1sð3Þ
2sð1Þ 2sð2Þ 2sð3Þ

"""""""

"""""""
: ð8:10Þ

The rows correspond to spin orbitals and the columns to electrons. In an even more
compact notation, a Slater determinant is specified by a list of the spin orbitals it is
constructed from. For example, the Slater determinants of equation (8.9) and
equation (8.10) can be abbreviated as j1s1sj and j1s1s2sj, respectively.

Interchanging all the coordinates of a pair of electrons amounts to interchanging a
pair of columns in the Slater determinant. But determinants change sign when a
pair of their columns (or rows) is interchanged. Thus we see that the Slater deter-
minant ensures that the Pauli postulate is satisfied. Putting two electrons into the same
spin orbital makes two rows of the Slater determinant identical. But determinants

1Appendix A reviews determinants.
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with two identical rows (or columns) are equal to zero. This shows why there
can be no more than one electron per spin orbital and no more than two electrons per
orbital. The latter statement is precisely the Pauli principle taught in introductory
chemistry courses.

8.3 Electron densities
Postulate 1 on page 2-2 tells us that, for a two-electron atom, jψ j2 d~r1 d~r2 is the
probability of finding an electron within an infinitesimal volume centered at~r1 and
the other electron in an infinitesimal volume centered at ~r2. jψ j2 is a complicated
function of six variables even though we have ignored spin. The situation gets much
worse for larger systems with Ne electrons because ψj j2 is then a function of 3Ne

space variables and Ne spin variables. Such a probability distribution contains far
more information than we can digest. For many chemical problems, all we need is
the electron density ρð~rÞ, the probability of finding an electron at a point in space
irrespective of where the remaining electrons in the system are. ρ can be calculated
from the many-electron probability density by averaging over the positions of the
other Ne # 1 electrons and the spins of all the electrons as follows:

ρð~r1Þ ¼ Ne

Z
jψ j2 d~r2 . . . d~rNe dσ1 . . . dσNe : ð8:11Þ

The quantity ρð~rÞ d~r is the number of electrons, Ne, times the probability of finding
an electron in an infinitesimal volume centered at ~r. The density ρð~rÞ can be
measured by electron diffraction and x-ray scattering experiments.

The electron density ρð~rÞ corresponding to a Slater determinant is given by an
occupation-weighted sum of squared orbitals:

ρð~rÞ ¼ m1jφ1ð~rÞj
2 þm2jφ2ð~rÞj

2 þ ) ) ) þmnjφnð~rÞj
2 ð8:12Þ

where mk is the number of electrons (1 or 2) in the kth MO. For example, the orbital
wave functions for Hþ

2 (equation (7.4)), He (equation (8.9)), and Li (equation (8.10))
lead to ρð~rÞ ¼ j1σgj2, ρð~rÞ ¼ 2 j1sj2, and ρð~rÞ ¼ 2 j1sj2 þ j2sj2, respectively.
Figure 7.2 shows ρ for the 1σg and 1σu states of Hþ

2 .

8.4 The Hartree–Fock model
The calculus of variations can be used to find the orbitals that result when the energy
of a Slater determinant of spin orbitals is minimized using the variational method
(see section 7.3). The optimal orbitals are given by the solutions of the Hartree-Fock
(HF) equations, a set of equations derived by Vladimir Fock and John Slater in 1930
following earlier work by Douglas Hartree. For a closed shell atom or molecule, that is
one with an even number, 2n, of electrons paired off in n orbitals, the HF equations are

F̂φkð~rÞ ¼ Ekφkð~rÞ for k ¼ 1, 2, . . . , n, . . .: ð8:13Þ

These coupled one-electron equations yield the orthonormal HF orbitals φk as the
eigenfunctions of the Fock operator F̂ . The corresponding eigenvalues Ek are called
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orbital energies. Each of the n lowest-energy orbitals, called occupied orbitals, are
combined with α and β spin functions to give the 2n spin orbitals used in the Slater
determinant. The remaining unoccupied orbitals are called virtual orbitals.

The Fock operator is given by:

F̂ ¼ # 1

2
r2 þ vneð~rÞ þ Jð~rÞ # K̂ ð8:14Þ

in which the first term is the kinetic energy operator for an electron, vneð~rÞ is the
Coulomb attraction between an electron and each of the nuclei, and the Jð~rÞ # K̂
terms together account for the interelectronic repulsion. The Coulomb potential Jð~rÞ
is the electrostatic repulsion due to a ‘smeared-out’ cloud of all the electrons. Using
the electron density ρð~rÞ given by equation (8.12), it can be expressed as

Jð~rÞ ¼
Z

ρð~sÞ
j~r #~sj

d~s: ð8:15Þ

The Jð~rÞ potential incorrectly counts the repulsion of each electron with itself. The
exchange operator K̂ serves to cancel exactly the self-interaction and also includes
effects arising from the Pauli antisymmetry. The internuclear repulsion Vnn is left out
of the Fock operator because, for a fixed molecular geometry, it is a constant and
can be added to the total energy at the end of the calculation; see the discussion
around equation (6.4).

We need to know F̂ to solve the HF equations (8.13) and find the HF orbitals φk.
However, F̂ depends on the φk because the Coulomb potential Jð~rÞ and exchange
operator K̂ depend on the occupied φk. In other words, we need to know F̂ to find
the φk but we need to know the φk to find F̂ . An iterative procedure is required to
overcome this mutual dependency. An initial guess of the occupied orbitals is used to
generate ρð~rÞ, Jð~rÞ, K̂ , and thereby F̂ . Then, the HF equations are solved and
the resulting orbitals used to generate an updated F̂ . This procedure is repeated until
F̂ and the electron density ρð~rÞ are self-consistent—that is, they stop changing from
one iteration to the next. The iterative procedure is called a self-consistent-field, or
SCF, procedure. Symmetry arguments apply to the Fock operator in the same way
as they do to the Hamiltonian (see section 4.5). Hence, permissible degeneracies of
the orbitals can be determined from table 4.1.

The HF energy of a molecule is not the sum of the orbital energies. However,
there is a nice physical interpretation of the occupied orbital energies Ek. Tjalling
Koopmans2 pointed out that if one assumes the removal of a single electron from
a molecule does not affect the orbitals, then a reasonable approximation to the
ionization energy for removal of an electron from the orbital φk is given by #Ek.
Koopmans’ approximation is a direct connection between orbital energies and

2Koopmans asked that credit for this result be shared with his physics mentor, Hans Kramer. Koopmans
began his doctoral studies in theoretical physics but later switched to mathematical economics. He shared the
1975 Nobel Memorial Prize in Economics with Leonid Kantorovich for his work on the theory of optimal
resource allocation.
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ionization energies measured by photoelectron spectroscopy. Relaxation of the orbi-
tals upon ionization is included in better methods for computing ionization energies.

The method presented above for closed shell systems is sometimes referred to
as the spin-restricted Hartree-Fock (RHF) method. Generalization of the RHF
method to open-shell systems takes two common forms: the restricted open-shell
Hartree–Fock (ROHF) and spin-unrestricted Hartree–Fock (UHF) methods. In the
ROHF method, as many orbitals as possible are doubly occupied. In the UHF
method, every electron is in a different orbital. For example, the ROHF wave
function for Li is j1s1s2sj with one doubly occupied and one singly occupied orbital.
The UHF wave function for Li is j1s1s02sj with three singly occupied orbitals. The 1s
and 1s0 orbitals and their energies are very similar but not identical. Both methods
have advantages and disadvantages but UHF calculations are far more common.

8.4.1 Matrix formulation

Practically exact solutions of the HF equations can be obtained for atoms and
diatomic molecules by numerical grid methods. However, such methods are not
always feasible for polyatomic molecules. George Hall and Clemens Roothaan
transformed the integro-differential HF equations into matrix3 equations. A basis set
of N known real-valued functions, fg1ð~rÞ, g2ð~rÞ, . . . , gNð~rÞg, is used to expand each
of the MOs as follows:

φkð~rÞ ¼ c1kg1ð~rÞ þ c2kg2ð~rÞ þ ) ) ) þ cNkgNð~rÞ ð8:16Þ

where the real numbers cjk are called MO coefficients and need to be calculated.
Recall that in section 7.1 and section 7.4, the 1σ MOs of Hþ

2 were expanded in basis
sets of AOs on each of the hydrogen atoms. A simple derivation proves that the
problem of finding the MO coefficients in equation (8.16) requires one to solve
the Hall–Roothaan or matrix Hartree–Fock equations:

FCk ¼ EkSCk for k ¼ 1, . . . ,N ð8:17Þ

in which F and S are N ×N matrices, and Ck is a column vector (an N × 1 matrix)
that contains the expansion coefficients for the kth MO. The elements of the Fock (F)
and overlap (S) matrices are given by

Fij ¼
Z

gið~rÞ½F̂ gjð~rÞ' dτ and Sij ¼
Z

gið~rÞgjð~rÞ dτ: ð8:18Þ

The matrix equations (8.17) can be transformed into a matrix eigenvalue problem that
can be solved by a computer. As on page 8-5, an iterative self-consistent-field procedure
is required because the elements of the Fockmatrix depend upon the occupied orbitals.
Using N basis functions leads toNMOs. Hence,Nmust always be at least as large as,
and is usually much larger than, the number of occupied MOs. As N becomes suffi-
ciently large, the orbitals and orbital energies approach the HF limit. The choice of a
suitable basis set is discussed in section 10.2.1. Some simple examples follow.

3Appendix A reviews matrix algebra.
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We have already done calculations equivalent to solving the matrix HF equations
for Hþ

2 . A matrix HF calculation using the hydrogen atom 1sa and 1sb AOs as basis
functions would lead to 2 × 2 matrices in equation (8.17). Solving the HF equations
would result in two MOs: the occupied MO would be 1σg and the virtual MO would
be 1σu, exactly as in equation (7.4). If we used the two 1s functions of equation (7.12)
and the two 2pz AOs of equation (7.14) for a total of four basis functions, then the
4 × 4 matrix HF equations would lead to one occupied MO as in equation (7.13)
and three unoccupied MOs.

The 1s orbital for He in section 8.1 can be improved by a matrix HF computation
using two basis functions: s1 ¼ e#ζ1r and s2 ¼ e#ζ2r with ζ1 ¼ 1:453 and ζ2 ¼ 2:906.
A basis set which contains two copies of each function which differ only in their ζ
values is called a double-zeta set. The 2 × 2 matrix HF equations lead to one occupied
and one virtual orbital. The resulting energy E ¼ #2:861 67 Eh predicts an ionization
energy of I ¼ 2262 kJ mol#1 which is 111 kJ mol#1 smaller than experiment.

8.5 Atoms
Pioneering HF calculations on atoms were carried out in the early days of quantum
chemistry by Douglas Hartree, his father William Hartree, John Slater, Bertha
Swirles (later Lady Jeffreys), and others. The qualitative insights obtained by their
heroic4 calculations now appear in general chemistry books. It is convenient to work
in spherical polar coordinates because the potential energy in an atom is spherically
symmetric. As in the hydrogen atom, three quantum numbers (n, ‘, and m) are
needed to label the HF orbitals. Each orbital is a product of a radial function Rn,‘ðrÞ
and a spherical harmonic Y‘,mðθ,ϕÞ (see section 5.2). Thus, the orbitals of any atom
can be labeled 1s, 2s, 2px, . . ., just as in the hydrogen atom.

The HF orbital energies of the atoms from H to Xe are shown in figure 8.1. Note
that in atoms with two or more electrons, unlike in the hydrogen atom (see figure
6.1), orbitals with the same n and different ‘ are not degenerate. For example, the 2s
and 2p orbitals are degenerate in the hydrogen atom and hydrogen-like ions but they
have different energies in any atom or atomic ion with two or more electrons.
Observe also that the same orbital has a different energy in different atoms and
atomic ions. For example, the energy of a 2p orbital is #0:310 Eh in B but it is
#4:256 Eh in Al. This means that it is possible for the order of a pair of orbitals to
change from one atom to another; for example, 3d orbitals are lower in energy than
the 4s orbital in Sc, but the opposite is true in K and Ca.

It is often said that to determine the electron configuration of an atom, we move
up the energy ladder filling each orbital with up to two paired electrons until all
electrons have been accounted for. Degenerate orbitals are filled keeping as many
unpaired electrons as possible; this is called Hund’s rule. However, this Aufbau
(building-up) process is too simplistic and fails even in the first transition series from
Sc to Zn. As figure 8.1 shows, the 3d orbital energy is lower than that of 4s
throughout this series. If strict orbital energy order was followed for Sc–Ni, then

4Keep in mind that electronic computers and calculators had not yet been invented.
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their configurations would be [Ar]4s03dnþ2 with n ¼ 1, . . . , 8 where [Ar] is an
abbreviation for the electron configuration of Ar. However, except for Cr and Cu,
both the experimental and HF configurations for Sc–Ni are [Ar]4s23dn. The correct
configuration is obtained only if one considers the total energies of various config-
urations instead of orbital energies. Recall from section 8.4 that the HF energy of a
molecule is not the sum of the orbital energies. Approximating the total energy by
the sum of the energies of the occupied orbitals can be useful, as in the H€uckel model
(see chapter 9), but it sometimes leads to incorrect conclusions.

As an aid to remembering the electron configurations of the atoms, one can use
Klechkowsky’s rule: fill atomic orbitals as if it were true that their orbital energies
increase when nþ ‘ increases, and for fixed nþ ‘ they increase as n increases.
Exceptions to this rule occur in several transition metal atoms. For example, Pd has a
[Kr]5s04d10 configuration rather than [Kr]5s24d8 as predicted by Klechkowsky’s rule.

The electron density is spherically symmetric in atoms and the radial electron
density D(r) is more useful as in section 6.3.3. For example, the electron configu-
ration of Kr is 1s22s22p63s23p64s23d104p6 and equation (8.12) leads to
ρðrÞ ¼ 2j1sj2þ 2j2sj2þ 6j2pj2þ 2j3sj2þ 6j3pj2þ 2j4sj2þ 10j3dj2þ 6j4pj2: Figure 8.2
shows DðrÞ ¼ 4πr2ρðrÞ for Kr. Observe that four peaks arise from the occupied
orbitals with n ¼ 1, 2, 3, and 4, respectively. These peaks in D(r) correspond to the
K, L, M, and N shells of Kr.

The position of the outermost maximum of the orbital radial densities serves as a
measure of the covalent radius. Figure 8.3 shows that these radii exhibit periodic
behavior; in any given row of the periodic table, they generally decrease from left
(alkali) to right (noble gas). The striking exception for Pd arises because it is the only
atom in the fourth period that does not have an occupied 4s orbital; its electron
configuration is [Kr]4d10.

0

−1

−2

−3

H C Mg Ar Cr Zn Kr Mo Cd Xe

−
lo

g
(−

)

Figure 8.1. Hartree–Fock atomic orbital energies: 1s–5s (x), 2p–5p (•), 3d–4d (ƒ). To identify the orbitals,
note that in Xe the order is 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 5s, 5p. Based on calculations reported by Koga T
and Thakkar A J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 2973.
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8.6 Diatomic molecules
The study of molecular orbitals was pioneered by Friedrich Hund, Robert
Mulliken5, and Sir John E Lennard-Jones. The insights obtained from their work
now constitute some of the basic ideas of inorganic chemistry.

The HF equations for diatomic molecules can be solved numerically in confocal
elliptic coordinates, ðμ, ν,ϕÞ; see page 7-1. The molecular orbitals are written as

5Mulliken won the 1966 Nobel Prize in Chemistry for ‘his fundamental work concerning chemical bonds and
the electronic structure of molecules by the molecular orbital method’.
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Figure 8.2. Total (——) and K-, L-, M-, and N-shell contributions () ) ) ) ) )) to the Hartree–Fock radial
electron density for Kr (Z ¼ 36). Calculated from the HF wave function reported by Koga T, Kanayama K,
Watanabe S and Thakkar A J 1999 Int. J. Quantum Chem. 71 491.
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Figure 8.3. Atomic radii calculated by Waber J T and Cromer D T 1965 J. Chem. Phys. 42 4116.
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φðμ, ν,ϕÞ ¼ f ðμ, νÞΦmðϕÞ, where ΦmðϕÞ is a particle-on-a-ring wave function
(equation (5.4)) and m ¼ 0, * 1, . . . for σ, π, . . . MOs, respectively. Homonuclear
diatomic molecules have D1h symmetry, and their orbitals can be assigned the
symmetry labels 1σg, 1σu, 2σg, 2σu, . . . , just as in Hþ

2 . Figure 8.4 shows the orbital
energies of the diatomics from B2 to F2. The ordering of the levels is almost the same
as in Hþ

2 (see section 7.6) except that the 3σg and 1πu energies cross twice with 1πu
being lower in B2, C2 and F2, and 3σg being lower in N2 and O2.

The content of figure 8.4 can be summarized by writing down the electron
configurations. For example, the configuration of C2 is written as
1σ2g1σ

2
u2σ

2
g2σ

2
u1π

2
ux1π

2
uy. It is common to use 1π4u as shorthand for 1π2ux1π

2
uy. In

inorganic chemistry textbooks, the numbering is sometimes changed to omit the
MOs that contain the core electrons; as a consequence, 1σg in H2, 2σg in Li2, and 3σg
in N2 may all be confusingly called 1σg.

The B2 and O2 molecules have two unpaired electrons in their highest occupied π
MOs and are therefore paramagnetic. The correct prediction of the paramagnetism
of O2 by the MO theory was one of its earliest major successes. A nominal bond
order is given by the number of bonding electron pairs minus the number of

B2 C2 N2 O2 F2

1σg

1σu

2σg

2σu

1πu

3σg

1πg

3σu

Figure 8.4. MO energy level diagram for homonuclear diatomics. The energies are not to scale; the 1σg and 1σu
energies are far lower than the energies of the valence MOs.
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antibonding electron pairs. Bond orders of 1, 2, and 3 correspond to single, double,
and triple bonds, respectively. Figure 8.5 shows that, for the second-period A2

molecules, the greater the bond order, the shorter the bond length and the greater the
dissociation energy. Figure 8.4 suggests that Be2 and Ne2 have a bond order of zero
and are not stable molecules. In reality, these molecules are very weakly bound by
van der Waals forces.

8.7 The Kohn–Sham model
The HF model is useful but also has severe limitations. In section 8.4 we saw that
there is a residual error of 111 kcal mol#1 in the ionization energy of the helium
atom. Further refinement of the He orbital by using a basis set of three or more
exponential (Slater-type) functions does not help. A 5 × 5 matrix HF calculation of
this type leads to an energy E ¼ #2:861 68 Eh, which is not much better than the
energy obtained with two functions. Unfortunately, this is the best energy that can
be obtained with a HF wave function. Moreover, the breaking of a bond is very
poorly described by the HF model if both the resulting fragments are open-shell
species. For example, figure 8.6 shows that the HF potential energy curve for H2

diverges from the exact one as the bond is broken.
The HF model wave function is unable to describe the instantaneous, short-range,

dynamical correlation of the motion of the electrons that keeps them apart. It helps to
think of electron correlation as creating a Coulomb hole or bubble around each
electron in which the probability of finding another electron with opposite spin is
greatly reduced. We now turn to the Kohn–Sham (KS) model because it improves
upon the HF model and creates a Coulomb hole around each electron. The KS model
stems from the 1951 work of John Slater who was trying to simplify the HFmodel. He
replaced the exchange operator K̂ in the HF equations (8.13) by an effective exchange
potential of the form vxð~rÞ ¼ c ρð~rÞ1=3, where c is a constant. To understand the idea
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Figure 8.5. Bond lengths Re and dissociation energies De. The nominal bond order is 1, 2, 3, 2, and 1 for
B2, C2, N2, O2, and F2, respectively.
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behind vx, observe that the electron density ρ has dimensions of a reciprocal volume
and henceR ¼ ρ#1=3 is a length. Now rewrite the exchange potential as vx ¼ c=R and
note that vx has the same general form as the Coulomb potential. Now visualizeR as
the radius of an exclusion sphere around an electron at the position~r. The radius R
shrinks in regions of high density and expands in regions of low density. This is
physically quite reasonable; compare the size of your personal space when you are in a
crowded theater with its size when you are on a deserted beach.

Slater’s approach unexpectedly improves upon HF results in some cases, sug-
gesting that vx partially models electron correlation. So why not replace the
exchange operator K̂ in the HF equations by an exchange-correlation potential
vxcð~rÞ that mimics both the role of K̂ and the effects of electron correlation?
This line of inquiry is called Kohn–Sham density functional theory (KS-DFT)
because of an important formal development by Walter Kohn6 and Lu Jeu Sham
following earlier work by Pierre Hohenberg and Kohn. Their work guarantees the
existence of an exact vxc. Unfortunately, the exact vxc is unknown and approxi-
mate forms must be used. KS–DFT is being developed very rapidly at this time
and there are many competing vxc models, some of which will be discussed in
section 10.2.2.

Matrix KS equations analogous to the matrix HF equations are obtained by
modifying the Fock operator in equation (8.18) appropriately. The KS MOs
resemble, but differ from, HF MOs. They have the same symmetry properties as
their HF counterparts. The KS energy of the highest occupied MO equals the first

1 2 3 4 5

−1

−0.8

−0

e

.9

−1.1

−1.2

R

E
(R

)

H + H

Figure 8.6. Potential energy curves, in atomic units, for the ground electronic state of H2. -----: Hartree–Fock;
——: nearly exact.

6Walter Kohn shared the 1998 Nobel Prize in Chemistry for his development of density functional theory.
Many people loosely refer to KS–DFT as simply DFT, even though DFT should be used to denote a pure
density-only theory.
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ionization energy of the molecule. Using KS orbitals in equation (8.12) gives the
electron density. However, the Slater determinant of KS orbitals is not an accurate
wave function for the system of interest. Hence, it is not known how to use KS–DFT
correctly for molecular properties that depend on quantities other than the energy
and electron density.

Problems (see appendix B for hints and solutions)
8.1 Using atomic units, write down the electronic Hamiltonian for the Liþ cation.
Explain the physical meaning of each term.

8.2 Why is it wrong to use ½1sð1Þ1sð2Þ þ 1sð1Þ1sð2Þ'=
ffiffiffi
2

p
as an approximate wave

function for the ground state of the helium atom?

8.3 A Slater determinant satisfies the Pauli principle. So what is wrong with using
j1s1s1sj for the ground state of the Beþ cation?

8.4 Consider an excited (triplet) state of the helium atom which has the configu-
ration 1s2s and both electrons have β spin. Set up an orbital-model wave function
that satisfies the Pauli postulate for this excited state. Write your wave function in
the form of (a) a 2 × 2 determinant, and (b) a spatial function multiplied by a spin
function.

8.5 In the compact notation of page 8-3, write down a Slater determinant which
could be used to represent the ground-state wave function of the boron atom in
(a) the ROHF method, and (b) the UHF method.

8.6 The energies of the occupied molecular orbitals, 1a1, 2a1, and the triply
degenerate 1t2, of CH4 are #11:20, #0:93 and #0:54 Eh, respectively. Estimate the
ionization energy of CH4.

8.7 Consider the ground state of a system containing two electrons and a nucleus of
atomic number Z. If we use the Slater determinant of equation (8.9) with the
hydrogen-like 1s function of equation (8.3) as the trial wave function in a variational
calculation, we find E ¼ ζ2 #2Zζ þ 5ζ=8.
(a) Find the ζ that should be used without using a specific value for Z. Justify your

answer. For He (Z ¼ 2), your answer should agree with the corresponding
result in section 8.1.

(b) What is the value of the ground-state energy predicted if the above ζ is used?
Do not use a specific value for Z at this stage.

(c) Compare the ground-state energy of the H# anion (Z ¼ 1) predicted by this
calculation with that of the hydrogen atom. What does this lead you to expect
about the stability of H#?

8.8 How many peaks should one see in the photoelectron spectrum of the Ar atom?
Explain your answer.

8.9 Use figure 8.4 to write the ground-state electron configurations of O2 and Oþ
2 .

Which should have the longer bond length and why?
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8.10 Write the ground-state electron configuration of Li2. Draw the MO energy-
level diagram and sketch the occupied MOs. What is the nominal bond order?
Would Liþ2 be more or less strongly bound than Li2?

8.11 Write the ground-state electron configuration of Be2. Draw the MO energy-
level diagram and sketch the occupied MOs. What is the nominal bond order? What
is the lowest unoccupied molecular orbital (LUMO)?
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Chapter 9

Qualitative MO theory

9.1 The H€uckel model
In 1930, Erich H€uckel proposed a simple model for the π MOs and energies1 of
planar conjugated hydrocarbons; the insights his model provides have permeated
organic chemistry. The H€uckel model remains important although far more
sophisticated calculations are possible now.

The H€uckel model is ‘obtained’ from the HF model as follows.
1. All σ electrons are neglected except insofar as they affect parameters of the

method. This means that all hydrogen atoms are ignored.
2. The basis set for a planar hydrocarbon with N carbon atoms is chosen to be

one 2pπ AO on each carbon atom. If the hydrocarbon is in the xy-plane,
these are the 2pz AOs. Thus the kth MO is given by

φk ¼ c1kp1 þ c2kp2 þ # # # þ cNkpN ð9:1Þ

where pi is the AO on carbon i, and the cik are expansion coefficients.
3. The elements of the F and S matrices appearing in the matrix HF equations

(8.17) are assigned values instead of being calculated. All overlap is neglected
by setting Sij ¼ 1 when i ¼ j, and Sij ¼ 0 otherwise2. Thus, the H€uckel
overlap matrix is an N ×N identity matrix I; that is S ¼ I. This implies that
the normalization condition for the H€uckel MO of equation (9.1) is simply

c21k þ c22k þ # # # þ c2Nk ¼ 1: ð9:2Þ

1 The MOs of planar molecules are called σ or π, respectively, depending on whether they remain unchanged or
change sign upon reflection in the molecular plane. Unfortunately, this usage is entrenched in chemistry
although it is inconsistent with symmetry conventions. Note that degeneracy is not implied by the π label in this
context.
2 In fact, if the carbon atoms i and j are separated by a typical CC bond distance, then the overlap between
their 2pπ orbitals is Sij & 0:25. However, inclusion of overlap does not change the results by huge amounts.

doi:10.1088/978-1-627-05416-4ch9 9-1 ª Morgan & Claypool Publishers 2014
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4. A diagonal Fock matrix element Fii is roughly the energy of an electron in
the 2pπ AO of carbon i. They are all made equal because the carbon atoms in
conjugated hydrocarbons are nearly equivalent: Fii & α. Thus, the diagonal
part of the H€uckel F is simply α I.

5. If carbon atoms i and j are not bonded to each other, their interaction is
small, and the matrix elements Fij ¼ Fji & 0. If the carbon atoms i and j are
bonded to each other, then H€uckel sets the matrix elements Fij ¼ Fji to an
interaction energy, β. Moreover, this negative value β is used for all bonded
pairs because all carbon atoms in conjugated hydrocarbons are nearly
equivalent and all CC bond lengths are nearly equal. Thus, the off-diagonal
part of the H€uckel F matrix is βA in which the elements of A are given by
Aij ¼ 1 if atoms i and j are bonded and by Aij ¼ 0 otherwise. A is called the
adjacency matrix because the only information it contains is the connectivity
of the molecule—which carbons are bonded to which other carbons. Putting
the diagonal and off-diagonal parts together, the Fock matrix becomes
F ¼ α Iþ βA. The H€uckel F reflects the permutational symmetry of A but
does not contain any geometrical information. For example, in cyclobuta-
diene with atoms numbered sequentially,

F ¼

α β 0 β

β α β 0

0 β α β

β 0 β α

2

6664

3

7775 ¼ α

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6664

3

7775þ β

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

2

6664

3

7775:

6. The π-electron energy Eπ is taken as the sum of the orbital energies.

Inserting the H€uckel S and F into the matrix equations (8.17) leads to

ðα Iþ βAÞCk ¼ EkICk for k ¼ 1, . . . ,N: ð9:3Þ

Subtracting α ICk from both sides of equation (9.3), using ICk ¼ Ck, collecting
terms, and dividing both sides by β, we find

ACk ¼ xkCk for k ¼ 1, . . . ,N ð9:4Þ

in which xk ¼ ðEk ' αÞ=β. F and A have the same eigenvectors and the H€uckel
orbital energies are obtained from the eigenvalues of A using

Ek ¼ αþ xkβ for k ¼ 1, . . . ,N: ð9:5Þ

Equation (9.4) provides a route to the H€uckel orbital energies and MOs without the
need to assign numerical values to α and β.
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9.2 Cumulenes
A cumulene is a conjugated non-branched chain of N carbons, HðCHÞNH.

1

2

N3

N-1

Ethene, the allyl radical, and 1,3-butadiene are cumulenes with N ¼ 2, 3, and 4,
respectively. The H€uckel energies and MOs are shown in figure 9.1 for ethene. As in
chapter 7, the positive lobes of the MOs are shaded. φ1 is a bonding MO because it
leads to a build-up of charge between the nuclei, whereas φ2 has a nodal plane per-
pendicular to the C¼C bond and is antibonding. Hence, the orbital energy αþ β is the
lower one confirming that β< 0. The total π-electron energy is Eπ ¼ 2E1 ¼ 2ðαþ βÞ.

Next consider the orbital energies shown in figure 9.2 for butadiene. The four
π-electrons occupy the two lowest energy levels. Thus, Eπ ¼ 2E1 þ 2E2 ¼ 4αþ 4:48β.
If the two π-bonds were non-interacting, then we would expect a π-electron energy
twice that of ethene—that is, 4ðαþ βÞ. The difference between the H€uckel Eπ and
its hypothetical non-interacting counterpart is called the delocalization energy, ΔEdl.
For butadiene, ΔEdl ¼ Eπ ' 4ðαþ βÞ ¼ 0:48β. The delocalization energy is due to
conjugation.

The sketches of the MOs in figure 9.2 follow from the MO coefficients noting that
the carbon atoms are numbered from left to right. The shaded lobes of the atomic
p orbitals are positive and the unshaded ones are negative. The size of each atomic
orbital is proportional to its coefficient in that MO. The lowest-energy MO (φ1) is
bonding between each pair of adjacent carbons. The next MO, φ2, has two bonding
interactions (between carbons 1–2 and 3–4) and one antibonding interaction

2 = α − β

1 = α + β

ϕ2 = 0.71 (p1 − p2)

ϕ1 = 0.71 (p1 + p2)

Figure 9.1. H€uckel energy levels and MOs for ethene.

4 = α − 1.62β

1 = α + 1.62β

3 = α − 0.62β

2 = α + 0.62β

ϕ4 = 0.37p1 − 0.60p2 + 0.60p3 − 0.37p4

ϕ1 = 0.37p1 + 0.60p2 + 0.60p3 + 0.37p4

ϕ2 = 0.60p1 + 0.37p2 − 0.37p3 − 0.60p4

ϕ3 = 0.60p1 − 0.37p2 − 0.37p3 + 0.60p4

Figure 9.2. H€uckel energies and MOs for 1,3-butadiene.
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between carbons 2–3, which has the same net effect as one bonding interaction. The
third MO has one bonding and two antibonding interactions, and φ4 has three
antibonding interactions. The energy increases as the number of nodal planes per-
pendicular to the molecular plane increases from 0 in the lowest energy MO φ1 to 3
in the highest-energy MO φ4. A smooth curve that connects the tops of the shaded
lobes in a H€uckel MO of ethene or butadiene (or any other cumulene) looks like a
wave function of a particle in a wire. This can often be used to sketch a H€uckel MO
for a cumulene without calculation.

The adjacency matrix for any cumulene has ones on the first super- and sub-
diagonals and zeroes elsewhere. This simplicity allows general solutions to be found.
As seen in figure 9.3, the H€uckel energy levels for the cumulenes are non-degenerate,
and lie between αþ 2β and α' 2β. Every energy level at αþ xβ has a counterpart at
α' xβ. IfN is odd, there is a non-bonding level at E ¼ α. The interactions among the
N atomic orbitals ‘spread’ an energy level into N levels.

The H€uckel model can be applied to chains of N sodium atoms taking the N basis
functions to be the outermost 3s orbitals on each of the Na atoms. Hence, a very long
cumulene may also be regarded as a model of a one-dimensional strip of metallic
sodium or any other alkali metal. As N ! 1, the energy levels get packed into a
continuous band of width 4jβj. Moreover, the bandwidth increases with the strength
of the interaction jβj. These ideas are of great importance in the study of solids.

9.3 Annulenes
An annulene is a monocyclic conjugated polyene, CNHN , with N ⩾ 3. The cyclo-
propenyl radical, cyclobutadiene, and benzene are annulenes with N ¼ 3, 4, and 6,
respectively. Joining the two ends of a cumulene gives an annulene.

1

2

N-1
N

Hence, the adjacency matrix for an N-annulene is obtained from A for an
N-cumulene by setting A1N ¼ AN1 ¼ 1. The simplicity of A allows a general solution

N = 1 2 3 4 5 6 ∞

α + 2β

α − 2β

α

Bonding

Antibonding
Nonbonding

Figure 9.3. H€uckel energy levels for cumulenes.
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to be found. Note from figure 9.4 that all the annulenes have a non-degenerate level
at αþ 2β followed by doubly degenerate levels; when N is even, there is also a non-
degenerate level at α' 2β. When N is even, every energy level at αþ xβ has a
counterpart at α' xβ. This pairing of energy levels does not occur in annulenes with
odd N. Observe that as N ! 1, the doubly degenerate energy levels get packed into
a continuous band of width 47β7.

There is a striking similarity between the H€uckel orbital energies for annulenes
and the energy levels of a particle on a ring (see figure 5.2 on page 5-3). To have a
stable filled-subshell π-electron configuration, the number of π electrons must be
Nπ ¼ 2þ 4m for m ¼ 0, 1, . . .. This gives H€uckel’s 4mþ 2 rule: monocyclic conju-
gated systems are most stable if they contain 4mþ 2 π electrons. Benzene and the
cyclopentadienyl anion satisfy the 4mþ 2 rule with m ¼ 1 because they have six
π electrons. Such molecules are called aromatic. The H€uckel model predicts that
annulenes with 4m π electrons are highly unstable diradicals. Monocyclic conjugated
hydrocarbons with 4m π electrons are called anti-aromatic.

The H€uckel orbital energies and MOs of benzene are shown in figure 9.5
where the carbons are numbered sequentially around the ring. The lowest energy
MO φ1 is bonding between each pair of adjacent carbons. The φ2 MO has four
bonding interactions (between carbons 1–2, 1–6, 3–4, and 4–5) and two anti-
bonding interactions (between carbons 2–3 and 5–6) which has the same net
effect as two bonding interactions. Its degenerate partner φ3 has two bonding
interactions (between carbons 2–3 and 5–6) and no antibonding interactions. The
degenerate MOs, φ4 and φ5, have one nodal plane perpendicular to the molecular
plane. The MO energy increases with increasing number of nodal planes per-
pendicular to the molecular plane; there are 0 nodal planes of this type in φ1 and
3 in the k ¼ 6 MO.

The H€uckel π-electron energy for benzene is Eπ ¼ 2ðαþ 2βÞ þ 4ðαþ βÞ ¼
6αþ 8β. If the three π bonds were non-interacting, then we would expect a
π-electron energy three times that of ethene—that is, 6ðαþ βÞ. The delocalization
energy is then ΔEdl ¼ 6αþ 8β ' 6ðαþ βÞ ¼ 2β. This large delocalization energy
gives benzene an extra stability. It is precisely this stability that is predicted by
H€uckel’s 4mþ 2 rule.

N = 3 4 5 6 ∞

α + 2β

α − 2β

α

Bonding

Nonbonding

Antibonding

Figure 9.4. H€uckel energy levels for annulenes.
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9.4 Other planar conjugated hydrocarbons
We now turn to other hydrocarbons. The H€uckel energy levels for planar conjugated
hydrocarbons with one or more tertiary carbon atoms bonded to three other carbons
do not all lie between αþ 2β and α' 2β; for example, the lowest orbital energy for
styrene (phenylethene) is at αþ 2:14β. However, it is true that the H€uckel energy
levels for any planar conjugated hydrocarbon always lie between αþ 3β and α' 3β.

Conjugated hydrocarbons which contain a ring with an odd number of atoms are
said to be non-alternant. All other conjugated hydrocarbons are called alternant
hydrocarbons. For any alternant hydrocarbon, it is always possible to place labels on
some of the carbons in such a manner that no two neighbors are both labeled or both
unlabeled. Such a labeling is impossible for a non-alternant hydrocarbon.

The pairing theorem states that for each H€uckel energy level at αþ xβ, an
alternant hydrocarbon has another one at α' xβ. We have seen this for the
cumulenes in section 9.2 and for the alternant annulenes (those with an even number
N of carbon atoms) in section 9.3. A simple consequence of the pairing theorem is

ϕ1

ϕ2

ϕ4

ϕ6

α + 2β

α − 2β

α + β

α − β

ϕ3

ϕ5

ϕ6 = (p1 − p2 + p3 − p4 + p5 − p6) /
√

6
ϕ5 = (p2 − p3 + p5 − p6) /2

ϕ4 = (2p1 − p2 − p3 + 2p4 − p5 − p6) /
√

12
ϕ3 = (p2 + p3 − p5 − p6) /2

ϕ2 = (2p1 + p2 − p3 − 2p4 − p5 + p6) /
√

12

ϕ1 = (p1 + p2 + p3 + p4 + p5 + p6) /
√

6
Figure 9.5. H€uckel energy levels and MOs for benzene.
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that the sum of all the H€uckel energies, occupied and unoccupied, isNα for alternant
hydrocarbons with N carbon atoms. This result is also true for non-alternant
hydrocarbons even though the pairing theorem is inapplicable; see problem 9.10.

Several computer programs are freely available for performing numerical cal-
culations to obtain detailed solutions of the H€uckel model for conjugated hydro-
carbons other than cumulenes and annulenes. As an example, figure 9.6 shows the
results of a computer calculation on methylenecyclopropene. The pairing theorem
does not apply to this molecule because it is a non-alternant hydrocarbon. Hence the
energy levels are not placed symmetrically with respect to α. Nevertheless, the sum
of all four orbital energies is precisely 4α. Carbon atom 3 is bonded to three other
carbons and hence the lowest energy level is lower than αþ 2β, unlike in any
cumulene or annulene. The two lowest energy levels are doubly occupied and the
total π energy is Eπ ¼ 4αþ 4:96β corresponding to a delocalization energy of
ΔEdl ¼ Eπ 'Nπðαþ βÞ ¼ 0:96β. The delocalization energy is due to conjugation.
φ1 is bonding over the entire molecule. φ2 has bonding character between carbons
1–2 and 3–4 but is antibonding between carbons 1–3 and 2–3, making it almost
non-bonding overall as reflected by the closeness of its energy to α.

9.5 Charges, bond orders, and reactivity
Each term on the left-hand side of the normalization condition, equation (9.2), for
H€uckel MO φk pertains to a different carbon atom; one may interpret jcjk j2 as the
fraction of an electron in φk that resides on atom j. Adding up a contribution from
each MO, weighted by the number of electrons in it, gives the π-electron population
(or π charge) qj of atom j. Thus, we write

qj ¼ m1jcj1j2 þm2jcj2j2 þ # # # þmN jcjN j2 ð9:6Þ

in whichmk is the number of electrons in the kth MO and cjk is the coefficient of pj in
the kth MO. For example, the population on atom 4 in methylenecyclopropene,
figure 9.6, is q4 ¼ 2× 0:282 þ 2× ð'0:82Þ2 ¼ 1:49 electrons. Similarly, we find that
q1 ¼ q2 ¼ 0:82 and q3 ¼ 0:88 electrons. Obviously, unoccupied MOs do not con-
tribute to qj because they have mk ¼ 0. The sum of the populations on all the atoms
equals the total number of π electrons in the molecule (four in this case).

1 2

3

4

α − 1.48β
α − 1.00β

α + 2.17β

α + 0.31β

ϕ4 = 0.30p1 + 0.30p2 − 0.75p3 + 0.51p4

ϕ3 = 0.71p1 − 0.71p2

ϕ1 = 0.52p1 + 0.52p2 + 0.61p3 + 0.28p4

ϕ2 = 0.37p1 + 0.37p2 − 0.25p3 − 0.82p4

Figure 9.6. H€uckel energies and MOs for methylenecyclopropene.
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The π-electron populations are indicators of reactivity. An electrophile is most
likely to attack the carbon with the largest π charge whereas a nucleophile is most
likely to attack the carbon with the smallest π charge. The π-electron populations
calculated above for methylenecyclopropene show a build-up of electron density at
the methylene carbon, making it a prime target for electrophilic attack.

Unfortunately, π charges are useless as reactivity indices for alternant hydro-
carbons because all the carbons have the same π population. An electrophile is most
likely to seek electrons from the highest occupied MO (HOMO), and hence the
relevant measure of reactivity is the π charge in the HOMO given by c2j,HOMO.
Similarly, a nucleophile is most likely to donate electrons to the lowest unoccupied
MO (LUMO) and the reactivity of carbon j to nucleophilic attack can be measured
by c2j,LUMO. These reactivity indices based on the frontier orbitals, the HOMO and
LUMO, are also used as additional reactivity indices for non-alternant hydrocarbons.

Charles Coulson generalized equation (9.6) by defining the π-bond order of the
bond between a pair of bonded carbon atoms i and j as follows:

Pij ¼ m1ci1cj1 þm2ci2cj2 þ # # # þmNciNcjN : ð9:7Þ

This definition leads to a π-bond order of 1 in ethene as expected. The Lewis structure
for butadiene has perfectly localized, alternating double and single bonds; in other
words, it shows π-bond orders of P12 ¼ 1, P23 ¼ 0 and P34 ¼ 1. By contrast, substi-
tuting MO coefficients from figure 9.2 into equation (9.7), the H€uckel π-bond orders
are found to be P12 ¼ 2× 0:37× 0:60þ 2× 0:60× 0:37 ¼ 0:89, P23 ¼ 2× 0:60×
0:60þ 2× 0:37× ð'0:37Þ ¼ 0:45, and P34 ¼ 0:89. Comparison with the Lewis bond
orders shows that the bond between the central carbons has acquired some π
character at the expense of the terminal bonds; in other words, the π electrons
are delocalized due to conjugation. General chemistry textbook descriptions of the
‘resonance’ between two equivalent Kekulé structures suggest that the CC π-bond
orders in benzene should be close to 1=2. The H€uckel model predicts the CC π-bond
orders in benzene to be 2=3 indicating that π-electron delocalization strengthens all the
CC bonds. The π-bond order between carbon atoms 1 and 3 in methylenecyclo-
propene is P13 ¼ 0:45 showing π-electron delocalization in the three-membered ring.
The total bond order is 1þ Pij since there is also a σ bond between every pair of
bonded carbons.

Molecular geometry plays no role in the H€uckel model because it uses only
connectivity information. For example, there is no difference between cis- and trans-
butadiene in the H€uckel model because both isomers have the same connectivity.
However, Coulson found a relationship between H€uckel model π-bond orders Pjk

and experimental bond lengths Rjk :

Rjk & Rs '
PjkðRs ' RdÞ

Pjk þ 0:765ð1' PjkÞ
ð9:8Þ

in which Rs ¼ 154 pm and Rd ¼ 134 pm are typical CC single and double bond
lengths, respectively. Equation (9.8) is set up to predict correctly that Rjk ¼ Rs when
Pjk ¼ 0 and Rjk ¼ Rd when Pjk ¼ 1. This simple empirical formula gives useful
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predictions of CC bond lengths in conjugated hydrocarbons. For example, it
correctly predicts CC bond lengths of 140 pm in benzene. Formula (9.8) gives a
C2–C3 bond length of 144 pm in butadiene to be compared with the experimental
value of 146 pm.

Reaction with a free radical should proceed with the radical forming a bond to a
carbon. This will be easiest with carbons which have the greatest bonding capacity
left over after accounting for the bonds that are initially present in the molecule.
Thus, the free valence is the difference between the maximum π bonding a carbon
atom can have and the amount of π bonding it actually has in the molecule prior to
reaction. The amount of π bonding (Bk) at atom k is measured by the sum of the
orders of all the π bonds involving the atom. Coulson defined the free valence index
of carbon k as

fk ¼
ffiffiffi
3

p
' Bk ð9:9Þ

in which
ffiffiffi
3

p
is the largest possible H€uckel value3 of Bk for any trigonally bonded

carbon. For example, using the π-bond orders calculated on page 9-8, the free
valence of carbon atom 1 in butadiene is f1 ¼

ffiffiffi
3

p
' P12 ¼ 1:73' 0:89 ¼ 0:84

whereas the carbon atom 2 has f2 ¼
ffiffiffi
3

p
' P12 ' P23 ¼ 1:73' 0:89' 0:45 ¼ 0:39.

Check that f3 ¼ f2 and f4 ¼ f1. The free valence values correctly predict that the
primary carbons are more vulnerable to free radical attack than the secondary
carbons.

By and large, the various reactivity indices provide very simple and useful
measures of reactivity. However, none of these reactivity indices is perfect. Some-
times the different indices predict different things. One must expect a model as
simple as the H€uckel model to have shortcomings.

9.6 The H€uckel model is not quantitative
The H€uckel method provides very useful qualitative results for conjugated hydro-
carbons. The 4mþ 2 rule is an outstanding example of its success. Unfortunately,
attempts to use the H€uckel model quantitatively by assigning numerical values to α
and β revealed that different values are required for different properties to agree with
experiment. Hence, quantitative use of the H€uckel model has been abandoned.

An extended H€uckel method that includes all valence electrons plays an analo-
gous role for molecules of all types, organic and inorganic. The method provides
qualitative results such as the nodal structure and symmetries of molecular orbitals.
The Woodward–Hoffmann4 rules used in organic chemistry were based on such
calculations. It is not, however, a quantitative method like those discussed in
chapter 10.

3 The maximal value of Bk ¼
ffiffiffi
3

p
, and hence fk ¼ 0, is found for the central carbon atom in the diradical

CðCH2Þ3.
4 Robert Woodward won the 1965 Nobel Prize in Chemistry for his work on organic synthesis, and Kenichi
Fukui and Roald Hoffmann shared the 1981 Nobel Prize in Chemistry for their work on quantum theories of
chemical reactions.
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Problems (see appendix B for hints and solutions)
9.1 Write down the adjacency matrix for (a) butadiene (C4H6) with the atoms
numbered sequentially from left to right, and (b) benzene (C6H6) with the atoms
numbered sequentially around the ring.

9.2 Prove that the orthogonality condition
R
φiφj dτ ¼ 0 for i 6¼ j can be expressed

in terms of the H€uckel MO coefficients as

c1ic1j þ c2ic2j þ # # # þ cNicNj ¼ 0 for i 6¼ j:

9.3 Show that the HOMO and LUMO in figure 9.2 are orthonormal.

9.4 Use results from section 9.2 and section 9.3 to draw a π-orbital energy level
diagram for (a) cyclo-octatetraene and (b) octatetraene.

Which of these molecules would you expect to be more stable? Why?

9.5 Which of C5H
þ
5 , C5H5 and C5H

'
5 is expected to be the most stable? How does

this help to understand the structure of ferrocene, FeðC5H5Þ2?

9.6 Given α ¼ '6:15 eV and β ¼ '3:32 eV, predict the ionization energy for
benzene and compare it with the experimental value of 9.4 eV.

9.7 A student performed a H€uckel calculation on fulvene.
(a) She found that C3, C4, and C5 had π-electron populations of 1.073, 1.092,

and 1.047, respectively. What were the π-electron populations on C1, C2,
and C6?

1

2 3

4
5
6

(b) Use these π-electron populations to predict which carbon atom a nucleophile is
most likely to attack. Explain your choice.

(c) The student found π-bond orders of 0.76, 0.45, 0.78, and 0.52 for the C6–C5,
C5–C4, C4–C3, and C3–C2 bonds, respectively. Calculate the free valence index
for C2.

(d) Use π-bond orders and free valence indexes to predict which carbon atom a free
radical would be most likely to attack. Explain your choice.
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9.8 A lone-pair electron on theO atom inH2C¼CH–CH¼O is promoted to the lowest
unoccupied molecular orbital (LUMO). Assuming that the π-MOs of prop-2-enone
are the same as in butadiene, explainwithMOdiagrams butwithout calculationswhich
CC bond you would expect to become longer and which shorter as a result of this
transition, and why.

9.9 Calculate the π-bond orders of the C1–C2 and C2–C3 bonds for butadiene using
equation (9.7) and the H€uckel MOs given in figure 9.2. Check against section 9.5.
Suppose an electron moves from the π HOMO to the π LUMO in butadiene. Find
the π-bond orders for this excited state.

9.10 Calculate the trace (sum of diagonal elements) of the H€uckel F matrix. What
does this tell us about the energy levels?

9.11 Alice found a pair of degenerate H€uckel MOs for cyclobutadiene:

φa ¼ ðp1 ' p3Þ=
ffiffiffi
2

p
and φb ¼ ðp2 ' p4Þ=

ffiffiffi
2

p
:

However, Jim thought that the same pair of degenerate MOs were given by:

φc ¼ ðp1 ' p2 ' p3 þ p4Þ=2 and φd ¼ ðp1 þ p2 ' p3 ' p4Þ=2:

They were both right. Explain how that can be true.
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Ajit J Thakkar

Chapter 10

Computational chemistry

10.1 Computations are now routine
Computations complement experimental work. They are used to predict quantities
that are too hard, expensive, time-consuming, or hazardous to measure. For example,
the structure of a transition state is easier to calculate than measure. Calculations can
guide the design of experimental work. For example, pharmaceutical companies
developing new drugs routinely use computational methods to screen compounds for
likely activity before synthesizing them. Computational methods can predict equi-
librium geometries, transition-state structures, dipole moments, barriers to internal
rotation, relative energies of isomers, enthalpies of reaction and formation, and many
other properties. It is a rare chemical problem where computational chemistry is of no
help at all.

The HF and KS methods described in chapter 8 have been implemented in many
computer programs, such as GAMESS, ORCA and GAUSSIAN. The programs can be run
on cheap commodity computers. Virtually anyone can easily learn how to perform
quantum chemical calculations with them. However, it is harder to learn to recog-
nize problems that are amenable to computation, choose methods appropriate to the
problem, and assess the results. The latter tasks are difficult because many choices
have to be made. Several books have been written on the subject.

This chapter summarizes a minimal amount of essential material about quantum
chemical methods to help you understand papers that use such methods. An
introduction to basis set selection is given in section 10.2. The choice of functional in
a KS-DFT calculation, the handling of heavy atoms, and methods to account for
solvent effects are discussed very briefly in section 10.2. An outline of practical
computational strategies and a map of the main methods of current computational
chemistry are given in section 10.3.
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10.2 So many choices to be made
10.2.1 Selection of a basis set

In the Hþ
2 calculations of section 7.1 and section 7.4, the MOs were represented by

linear combinations of atom-centered 1s-type functions ðe#ζrÞ and 2pz-like polar-
ization functions ðze#ζrÞ. These functions are special cases of Slater-type functions
defined by N e#ζrr‘Y‘,m where Y‘,m is a spherical harmonic (section 5.2) and N is a
normalization constant; see table 10.1.

Unfortunately, the computation of the required integrals is rather time-consuming
for Slater-type functions. The integrals are greatly simplified if one uses Gaussian
functions defined byN e#ζr2r‘Y‘,m and listed in table 10.1. However, this leads to a loss
of accuracy. A solution that combines computational efficiency and accuracy is to use
fixed linear combinations of Gaussians, called contracted Gaussian functions (CGF),
with parameters predetermined by atomic calculations or some other prescription.
For example, s1 ¼ 0:317 e#0:110 r2 þ 0:381 e#0:406 r2 þ 0:109 e#2:228 r2 is an s-typeCGF.
Almost all contemporary calculations use a basis set of CGFs.

A minimal basis set contains one basis function for each type of AO that is
occupied in the ground state of each atom in the molecule. For example, a minimal
basis set contains one s-type basis function for each hydrogen atom in a molecule
since H has one occupied AO (1s). Similarly, a minimal basis set has two s-type and
one set of three p-type basis functions for each second-period atom since these atoms
have an occupied 1s AO in the core, and occupied 2s and 2p valence AOs1. Thus, a
minimal basis set for benzene (C6H6) contains N ¼ 6× 5þ 6× 1 ¼ 36 basis func-
tions. A well-known minimal CGF basis set is STO-3G in which the name denotes
that CGF consisting of three Gaussians are used for each AO.

Minimal basis sets are not accurate enough for most purposes and are not used
except for very large systems. Instead, minimal basis sets are conceptual building
blocks for double-zeta (DZ) and split-valence (SV) basis sets. A double-zeta basis
contains twice as many functions as a minimal basis; each function in the minimal
basis set is replaced by two of the same type. We have already seen a double-zeta
basis set for He on page 8-7. The description of an atom in a molecule may require

Table 10.1. Slater- and Gaussian-type functions in unnormalized form.

Type Slater Gaussian Type Slater Gaussian

s e#ζr e#ζr2 dxy xy e#ζr xy e#ζr2

px x e#ζr x e#ζr2 dyz yz e#ζr yz e#ζr2

py y e#ζr y e#ζr2 dxz xz e#ζr xz e#ζr2

pz z e#ζr z e#ζr2 dx2#y2 ðx2 # y2Þ e#ζr ðx2 # y2Þ e#ζr2

dz2 ð3z2 # r2Þ e#ζr ð3z2 # r2Þ e#ζr2

1 It is necessary to add p-type basis functions in Li and Be because they have unoccupied 2p-type AOs that are
quite close in energy to the occupied 2s AO.
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p functions of different sizes in different directions because the chemical environ-
ment of the atom may be different in different directions.

This cannot be achieved with a minimal basis set but is clearly possible with a DZ
basis set. A split-valence basis set is a minimal basis set for the core and a DZ set for
the valence region. A SV set is almost as accurate as a DZ set for many chemical
properties because they are not affected much by the core electrons. For example, a
SV basis set for a second-period atom such as C contains nine CGF: three of s type
and six of p type. Common SV basis sets include the 3-21G, 4-31G, and 6-31G basis
sets2. The notation 3-21G tells us that each core CGF contains three Gaussians and
there are two valence CGF—one containing two Gaussians and the other containing
only one Gaussian.

The smallest basis sets that offer a good compromise between accuracy and
computational effort are obtained by adding polarization functions of higher angular
momentum to a DZ or SV basis set. The polarization functions help to describe how
the electron cloud of an atom polarizes (distorts) under the influence of the other
atoms in the molecule. The polarization of an s function by a pz function was
illustrated on page 7-7. The polarization of p-type functions is achieved with d-type
functions, as shown below.

+

An SV plus polarization (SVP) basis set is an SV basis plus a set of three p-type
functions on each hydrogen atom, a set of five d-type functions on each B, C, N, O,
and F atom, and so on. A popular SVP basis set is the 6-31G** or 6-31G(d,p) set,
which consists of a 6-31G set plus polarization functions. Another common SVP
basis set is cc-pVDZ. Sometimes polarization functions are included only on the
non-hydrogen atoms, as in the 6-31G* or 6-31G(d) basis set, to reduce computation.

Calculations on anions and weakly bonded systems require diffuse functions—
Gaussians with relatively small exponents. The addition of diffuse functions to a basis
set is often denoted by ++ or the ‘aug-’ prefix. For example, the 6-31++G(d,p) basis set
consists of the 6-31G(d,p) basis plus an s-type diffuse function on each H atom, an

2These basis sets and others named in this fashion were developed in the laboratory of John Pople who shared
the 1998 Nobel Prize in Chemistry ‘for his development of computational methods in quantum chemistry’. The
widely used GAUSSIAN computer program was developed by his research group.
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s-type and a set of p-type diffuse Gaussians on each B, C, N, O, and F atom, and so on.
The cc-pVDZ set with added diffuse functions is called aug-cc-pVDZ.

Larger basis sets are constructed in a similar manner. For example, one can have
valence triple-zeta basis sets with two sets of polarization functions, as in the 6-311G
(2d,2p) basis set. A systematic sequence of basis sets of increasing quality is formed
by the cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z, and cc-pV6Z sets, and another
sequence is formed by their aug- counterparts. The computer time required to do
matrix HF or KS calculations increases with the number of basis functions N as N4.
For large molecules, the computational cost increases less rapidly, roughly as N2:7

for HF and KS-DFT, because of the weak coupling between basis functions that are
located on well-separated atoms.

10.2.2 Selecting a functional

An exchange-correlation potential vxc, or an exchange-correlation energy func-
tional3 Exc, has to be specified if KS-DFT calculations are desired. Many functionals
are available but it is probably best to stick to the most heavily used and well-tested
ones. Functionals of the generalized gradient approximation (GGA) type depend
upon both the electron density and its gradient. Popular GGA functionals include
the empirical BLYP and SOGGA functionals and the theoretically better justified
PW91 and PBE (sometimes called PBEPBE) functionals. Computationally more
expensive hybrid methods use a mixture of the HF exchange operator K̂ and an
approximate vxc. B3LYP is by far the most widely used hybrid functional although
PBE0 (sometimes called PBE1PBE) is better justified theoretically. Corrections for
van der Waals (dispersion) forces are now common as in the B3LYP-D3 scheme.
Finding better functionals is a high priority in current research; new functionals are
proposed almost every month.

10.2.3 Heavy atoms and relativistic effects

The observation that many chemical properties of atoms and molecules are deter-
mined primarily by the valence electrons was exploited in the construction of
smaller, but equally accurate, basis sets on page 10-2. For molecules containing
atoms from the fifth period and beyond, that is Rb and heavier atoms, a much
greater computational saving can be obtained if all terms describing the interaction
of the electrons in the core orbitals with each other, with the valence electrons, and
with the nuclei, are simply replaced by an ‘effective core potential’ (ECP), and the
nuclear charges Z appearing in the interaction potential between the valence elec-
trons and the nuclei are replaced by effective nuclear charges Zeff ¼ Z #Nc, where
Nc is the number of core electrons. In addition to the computational savings, ECPs
can be made to approximate relativistic effects as well; the latter are important in
atoms with a large nuclear charge because the innermost electrons move with a
speed approaching that of light. All this has to be done in a manner that does not

3The two are related by vxcð~rÞ ¼ δExc=δρð~rÞ.
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violate the Pauli principle. The process of constructing an ECP is complex and well
beyond the scope of this book.

The choice of Nc is important but not always intuitive. For example, to obtain
good results, it suffices to treat Si ([Ne] 3s23p2) as a 4 valence-electron system but it is
necessary to treat Ti as a 12 valence-electron system ([Ne] 3s23p63d24s2) and not as a
4 valence-electron system ([Ar] 3d24s2). ECPs are often available for varying core
sizes. It is usually safe to use small-core or medium-core ECPs but large-core ECPs
should be used only with caution. The most commonly used effective core potentials
include those from the Los Alamos National Laboratory and the Stuttgart–Dresden
collections.

10.2.4 Accounting for a solvent

All the methods discussed so far relate to molecules in the gas phase but the properties
of a molecule in solution can be quite different from its gas-phase properties.
Reaction-field methods are currently used to include solvent effects. The solvent is
modeled as a continuum of uniform dielectric constant ɛ, and the solute molecule
is placed in a cavity within the solvent field. The simple Onsager model, in which a
spherical cavity is used, predicts a non-zero solvent effect only for molecules with
a non-zero dipole moment. The polarizable continuummodel is a more sophisticated
model in which the cavity is described by a set of interlocking atomic spheres.
Reaction-field calculations are routine; the only additional actions required from the
user are to specify the solvent, choose the reaction-field model, and run a calculation
to estimate the cavity radius if the Onsager model is to be used.

10.3 Practical calculations
Quantum chemical calculations almost never lead to exact results; we just find
inexact solutions to approximate equations. Hence, it rarely makes sense to do just a
single calculation. Instead, a series of calculations must be done to assess the
reliability of the results. The size of the molecules and degree of difficulty in
computing the property of interest will determine tactical details, such as the choice
of basis sets and methods. Often, the limitations of the available computer hardware
force one to settle for a lower level of calculation than one knows, or finds, is
required to obtain the desired reliability.

The goal of the calculations should determine the computational strategy. If the
object is to understand or predict trends in the variation of a property across a set
of molecules, then one should calculate the property using an inexpensive KS-DFT
method which lies in the middle third of the simplified map of quantum chemical
methods shown in figure 10.1. It is advisable to calibrate the results by performing
or looking up parallel calculations on an additional set of similar molecules for
which the trend is already known. A KS-DFT computation requires a choice of
both basis set and functional. The usual notation for a KS-DFT calculation is
the name of the functional followed by a slash followed by the basis set name.
For example, one can talk about a B3LYP/6-31G(d) or PBE/cc-pVTZ calculation.
Hybrid functionals are often more accurate than GGA varieties, especially for
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organic molecules. The most commonly reported calculations are of the B3LYP/
6-31G(d,p) and B3LYP/6-31+G(d,p) varieties. However, it is more prudent to use
PBE or PBE0 for molecules containing several transition metal atoms. A correction
for dispersion (van der Waals) interactions is often applied to KS-DFT calculations.
It is not uncommon to see KS-DFT calculations in a systematically improving
sequence of basis sets.

There are many other ab initio4 methods for finding wave functions better than
the HF model but they are beyond the scope of this book. The simplest such method,
called second-order Møller–Plesset (MP2) perturbation theory, is widely used to
calculate a correction to the HF energy in terms of integrals that involve all the
occupied and virtual HF orbitals. In situations where KS-DFT is known to produce
results of uneven quality, it is recommended to do MP2 calculations for calibration.
A similar notation is used for MP2 computations—for example, one writes MP2/cc-
pVTZ or MP2/6-311G(2d,2p). MP2 calculations typically take only twice as long as
KS-DFT calculations. If both KS-DFT and MP2 results turn out to be not accurate
enough for one’s purposes, then one must do systematic ab initio calculations as
described in the next paragraph.

If the object is to calculate as accurate a value as possible for some property of a
small molecule, then it is appropriate to perform a sequence of computations in
which the level of both the method and the basis set are systematically increased

Hartree–Fock

Parameterize

THE,lekcüH:evitatilauQ

Older: AM1, PM3

Newer: RM1, PM6, PM7

Modify F̂ (KS-DFT)

LDA

GGA: PBE, BLYP, SOGGA, . . .

Hybrid: PBE0, B3LYP, MPW3LYP, M06, . . .

Build upon

Perturbative: MP2, MP3, . . .

Non-linear: CCSD, CCSD(T), . . .

Variational: MCSCF, CI, MRCI, . . .

Figure 10.1. A schematic map of the quantum chemical forest.

4Ab initio derives from Latin and means ‘from first principles’.
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until the results stabilize. KS-DFT calculations cannot be improved in a systematic
manner and one must turn to methods which begin with a HF calculation and then
systematically improve it; the latter methods are shown in the bottom third of the
map in figure 10.1. The MP2 method is usually the first method in this sequence, and
the CCSD(T) coupled-cluster method is often the last. Calculations of this sort
require some technical knowledge and experience, and so consulting an expert is
usually a good idea.

If the system being studied is very large, KS-DFT calculations may be too time-
consuming. Then one can use semiempirical methods based on simplified matrix HF
equations in which most integrals are neglected and others are assigned numerical
values using empirical rules or data. Semiempirical methods are ‘take-it-or-leave-it’
since there is no basis set, functional, or method to vary. A simple semiempirical
method, useful only for qualitative purposes, is the H€uckel model detailed in
chapter 9. The most widely used, quantitative, semiempirical methods are AM1
(Austin model 1) and PM3 (parametric model 3)5. Recently, AM1 and PM3 have
been reparameterized to produce the improved versions RM1 (Recife model 1),
PM6, and PM7 (parametric models 6 and 7).

Further study
A practical introduction to computational chemistry is given by James Foresman
and Æleen Frisch in their Exploring Chemistry with Electronic Structure Methods
(Gaussian, Inc., Pittsburgh, 2nd edition, 1996). The GAMESS computer program,
and its Fortran source code, are freely available from http://www.msg.ameslab.gov/
gamess/ and can be used to try out calculations. Use Ira Levine’s Quantum Chem-
istry, (Prentice Hall, NJ, 5th edition, 2000) to learn much more about the methods
introduced in this book and others. Case studies and numerical comparisons of the
performance of various basis sets, functionals, and methods can be found in
Christopher Cramer’s Essentials of Computational Chemistry: Theories and Models,
(Wiley, New York, 2nd edition, 2004).

5Do not confuse PM3 with MP3 (3rd-order Møller–Plesset perturbation theory).
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Appendix A

Reference material

Matrices and determinants
An N ×M matrix A is a rectangular array of numbers with N rows andM columns;
the number in the ith row and jth column is denoted Aij. An N × 1 matrix is a
column vector with N components. Most matrices used in quantum chemistry are
either square matrices or column vectors. The transpose of an N × M matrix A is a
M × N matrix denoted AT which has the elements AT

ij ¼ Aji. A square matrix is
called symmetric if it is equal to its transpose. The transpose of a column vector is a
row vector.

Matrices of the same size can be added element by element; C ¼ Aþ B means
that Cij ¼ Aij þ Bij for all i, j. If A is an N ×N matrix and c is a scalar, then cA is an
N ×N matrix with elements cAij. Matrices of commensurate sizes can be multiplied.
If A is an N ×M matrix and B is a M ×P matrix, then C ¼ AB is an N ×P matrix
whose ijth element is given by the dot product of the ith row of A and jth column
of B. Thus,

Cij ¼ Ai1B1j þ Ai2B2j þ # # # þ AiMBMj: ðA:1Þ

The product of two squareN ×N matrices is anN ×N square matrix. Multiplication
of square matrices is not necessarily commutative; AB can be and sometimes is
different from BA. A square N ×N matrix times an N × 1 column vector is an N × 1
column vector. A square matrix I with ones on the diagonal and zeroes elsewhere is
called an identity matrix. When A and I are square N ×N matrices and C is an N × 1
column vector, IA ¼ AI ¼ A and IC ¼ C.

A square matrix has a number, called its determinant, associated with it. For a
1 × 1 matrix A, det A ¼ A11. For a 2 × 2 matrix A,

det A ¼ det
A11 A12

A21 A22

!!!!

!!!! ¼ A11A22 & A21A12: ðA:2Þ
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The determinant of an N ×N matrix can be expanded ‘by minors’ as a sum of N
determinants of ðN & 1Þ× ðN & 1Þ matrices. For example, the determinant of a
3 × 3 matrix is given by a sum of three 2 × 2 determinants:

det

A11 A12 A13

A21 A22 A23

A31 A32 A33

!!!!!!!!

!!!!!!!!

¼ A11 det

!!!!!
A22 A23

A32 A33

!!!!!& A12 det

!!!!!
A21 A23

A31 A33

!!!!!þ A13 det

!!!!!
A21 A22

A31 A32

!!!!!: ðA:3Þ

Each scalar above is from the first row of the 3 × 3 determinant with alternating
signs, and the jth 2 × 2 determinant is obtained by striking out the first row and jth
column in the parent 3 × 3 determinant. Interchanging a pair of rows or columns of
a determinant changes its sign. Hence, if a pair of rows or columns of A is identical,
then det A ¼ 0.

A real, symmetric, square N × N matrix A has N eigenvalues λi and
eigen(column)vectors Ci that satisfy the eigenvalue equation:

ACi ¼ λiCi: ðA:4Þ

The trace of a square N ×N matrix A is the sum of its diagonal elements:
Tr A ¼ A11 þ A22 þ # # # þ ANN . The sum of the eigenvalues of A equals its trace:
λ1 þ λ2 þ # # # þ λN ¼ Tr A.

Miscellaneous
Complex numbers can be expressed as z ¼ aþ ib where a and b, respectively, are
called the real and imaginary parts of z, and i ¼

ffiffiffiffiffiffiffi
&1

p
is called the imaginary unit.

The complex conjugate of z is denoted z' and is given by z' ¼ a& ib. Generally,
setting i to &i wherever it appears suffices to find the complex conjugate. The
squared magnitude of z is given by

jzj2 ¼ z'z ¼ ða& ibÞðaþ ibÞ ¼ a2 & ibaþ aib& i2b2 ¼ a2 þ b2: ðA:5Þ

A polynomial P(x) of degree n has the form

PðxÞ ¼ a0 þ a1xþ a2x2 þ # # # þ anxn ðA:6Þ

where the ai are constants and are called coefficients. P(x) has n roots—that is, there
are n values of x for which PðxÞ ¼ 0.

The factorial function is defined by

n! ¼ nðn& 1Þðn& 2Þ . . . 1 ðA:7Þ

and 0! ¼ 1. For example, 1! ¼ 1, 2! ¼ 2, 3! ¼ 6, and 4! ¼ 24.
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Table of integrals
Z

x sin ax dx ¼ 1

a2
sin ax& x

a
cos ax ðA:8Þ

Z
sin2 ax dx ¼ x

2
& 1

4a
sin 2ax ðA:9Þ

Z
x sin2 ax dx ¼ x2

4
& x
4a

sin 2ax& 1

8a2
cos 2ax ðA:10Þ

Z
x2 sin2 ax dx ¼ x3

6
& x2

4a
& 1

8a3

# $
sin 2ax& x

4a2
cos 2ax ðA:11Þ

Z
x2eax dx ¼ eax

a
x2 & 2x

a
þ 2

a2

# $
ðA:12Þ

Z b

a
f 0ðxÞgðxÞ dx ¼ ½ f ðxÞgðxÞ)ba &

Z b

a
f ðxÞg0ðxÞ dx ðA:13Þ

Z 1

0
xne&ax dx ¼ n!

anþ1
for a> 0 and n ¼ 0, 1, 2, . . . ðA:14Þ

Z 1

&1
e&ax2 dx ¼ π

a

% &1=2
for a> 0 ðA:15Þ

Z 1

&1
x2ne&ax2 dx ¼ 1 # 3 # 5# # #ð2n& 1Þ

2nan
π
a

% &1=2
for a> 0 and n ¼ 1, 2, . . . ðA:16Þ

Z 1

&1
x2nþ1e&ax2 dx ¼ 0 for a> 0 and n ¼ 0, 1, 2, . . . ðA:17Þ

Z 1

0
x2nþ1e&ax2 dx ¼ n!

2anþ1
for a> 0 and n ¼ 0, 1, 2, . . . ðA:18Þ
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Conversion factors

Constants and Greek letters

1a0 ¼ 52:918 pm

¼ 0:529 18 Å
1Å ¼ 1:8897 a0

¼ 100 pm

1Eh ¼ 2625:5 kJ mol&1

¼ 627:51 kcal mol&1

¼ 27:211 eV

¼ 2:1947× 105 cm&1

¼ 4:3597× 10&18 J

1kJ mol&1 ¼ 3:8088× 10&4 Eh

1kcal mol&1 ¼ 1:5936× 10&3 Eh

1eV ¼ 3:6749× 10&2 Eh

1cm&1 ¼ 4:5563× 10&6 Eh

1u ¼ 1:6605× 10&27 kg

Prefix Meaning

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103 ¼ 1000

deci d 10&1 ¼ 0:1

centi c 10&2 ¼ 0:01

milli m 10&3 ¼ 0:001

micro μ 10&6

nano n 10&9

pico p 10&12

femto f 10&15

Value

c 2:9979× 108 m s&1

h 6:6261× 10&34 J s
ħ 1:0546× 10&34 J s
e 1:6022× 10&19 C
me 9:1094× 10&31 kg

NA 6:0221× 1023 mol&1

From: Mohr P J, Taylor B N and Newell D B
2012 Rev. Mod. Phys. 84 1527

α alpha ν nu
β beta Ξ, ξ xi
Γ, γ gamma o omicron
Δ, δ delta Π, π pi
E, ɛ epsilon ρ, ϱ rho
ζ zeta Σ, σ sigma
η eta τ tau
Θ, θ, ϑ theta Υ, υ upsilon
ι iota Φ, ϕ, φ phi
κ kappa χ chi
Λ, λ lambda Ψ, ψ psi
μ mu Ω, ω omega
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Equation list

Photon properties E ¼ hν and λν ¼ c

Schrödinger equation Ĥψn ¼ Enψn

Orthonormality
R
ψ2
m dτ ¼ 1 and

R
ψmψn dτ ¼ 0 for m 6¼ n

Quantum operators x̂ ¼ x, p̂x ¼ &iħ@=@x, p̂2x ¼ &ħ2@2=@x2

T̂ x ¼ p̂2x=ð2mÞ, Ĥ ¼ T̂ þ V̂

Mean value hAi ¼
R
ψðÂψÞ dτ

Variance σðAÞ ¼ ðhA2i& hAi2Þ1=2

Heisenberg uncertainty principle σðxÞσðpxÞ⩾ ħ=2

Particle in a wire En ¼ n2h2=ð8ma2Þ for n ¼ 1, 2, . . .

ψnðxÞ ¼ ð2=aÞ1=2 sinðnπx=aÞ for 0⩽ x⩽ a

Particle in a Enx,ny ¼ h2ðn2x=a2 þ n2y=b
2Þ=ð8mÞ

rectangular plate ψnx ,nyðx, yÞ ¼ ½4=ðabÞ)1=2 sinðnxπx=aÞ sinðnyπy=bÞ
inside the box, for nx, ny ¼ 1, 2, . . .

Harmonic oscillator Ev ¼ ðvþ 1=2Þħω for v ¼ 0, 1, 2, . . . ;ω ¼
ffiffiffiffiffiffiffiffiffi
k=m

p

ψ0ðxÞ ¼ ðα=πÞ1=4 e&α x2=2 with α ¼ mω=ħ

Particle on a ring Em ¼ ħ2m2=ð2IÞ for m ¼ 0, *1, *2, . . .

ψ0ðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2πÞ

p

Particle on a sphere E‘,m ¼ ħ2‘ð‘þ 1Þ=ð2IÞ for ‘ ¼ 0, 1, . . . ; ‘⩾ jmj
ψ0,0ðθ,ϕÞ ¼ Y0,0ðθ,ϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð4πÞ

p

hL̂2i ¼ ‘ð‘þ 1Þħ2, hL̂zi ¼ mħ

Rigid rotor I ¼ μR2 with μ ¼ m1m2=ðm1 þm2Þ
Cartesian/spherical r ¼ ðx2 þ y2 þ z2Þ1=2

dx dy dz ¼ r2 sin θ dr dθ dϕ

Hydrogen atom En,‘,m ¼ &Eh=ð2n2Þ for n ¼ 1, 2, . . . ; n> ‘⩾ jmj
ψ1,0,0ð~rÞ ¼ 1sðrÞ ¼ π&1=2 e&r

Hydrogen-like ion En,‘,m ¼ &Z2Eh=2n2 for n ¼ 1, 2, . . . ; n> ‘⩾ jmj
ψ1,0,0ð~rÞ ¼ 1sðrÞ ¼ Z3=πð Þ1=2 e&Zr

Variational principle
R
ΦðĤΦÞ dτ=

R
jΦj2 dτ⩾Egs

Hartree–Fock F̂φk ¼ Ekφk for k ¼ 1, 2, . . .

Matrix Hartree–Fock FCk ¼ EkSCk for k ¼ 1, 2, . . .

Hartree–Fock electron density ρð~rÞ ¼ m1jφ1ð~rÞj
2 þm2jφ2ð~rÞj

2 þ # # # þmnjφnð~rÞj
2

H€uckel matrix F ¼ αIþ βA

H€uckel MO (HMO) φk ¼ c1kp1 þ c2kp2 þ # # # þ cNkpN
HMO normalization c21k þ c22k þ # # # þ c2Nk ¼ 1

H€uckel π-charges qj ¼ m1jcj1j2 þm2jcj2j2 þ # # # þmN jcjN j2

H€uckel bond orders Pij ¼ m1ci1cj1 þm2ci2cj2 þ # # # þmNciNcjN
H€uckel free valence fk ¼

ffiffiffi
3

p
& Bk
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Appendix B

Problem hints and solutions

1.1 (a) SF6, (b) trans-HFC¼CHF, (c) H2C¼CH2, (d) Benzene, (e) Staggered ethane,
and (f) ðCHBrClÞ2.

1.2 Hint: Apply the C4 rotation to unit vectors along the x and y axes.

1.3 Naphthalene has three C2 axes, one σh and two σv planes of symmetry, and a
center of symmetry at the center of mass. The principal C2 axis is along the CC bond
shared by the rings. Another C2 axis is perpendicular to the molecular plane and
passes through the center of mass. The third C2 axis is perpendicular to the other two
and bisects the bond shared by the rings. If the origin is at the center of mass, and the
x, y, and z axes lie along the three C2 axes, then the xy, yz, and xz planes are
symmetry planes.

1.4 Both molecules are planar. The molecular plane is a σ for the molecule on the
left and a σh for the molecule on the right, which also has a C2 axis and a center of
symmetry.

1.5 Each of the symmetry planes contains all three carbon atoms and two hydrogen
atoms. The principal C2 axis passes through the three carbon atoms. The other two
C2 axes can be seen with effort and help from the Newman diagram below. The line
of sight is the principal C2 axis through all carbons. The unbroken solid line
represents the front hydrogen atoms and the broken line the back hydrogen atoms.
The dashed lines are the C2 axes; they are perpendicular to the principal axis and
pass through the central carbon.
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1.6 A table is the easiest way to present the results:

Molecule Point group Polar? Chiral?

Pyridine C2v Yes No
Borazine D3h No No
CH3F C3v Yes No
SnCl4 Td No No

1.7 (a) C2v, (b) D3h, (c) Cs, and (d) D2d.

1.8 A dipole moment vector can lie along at most one of the three C2 axes, and
would be moved by the other two axes. Therefore, the molecule cannot be polar. It
has no planes of symmetry, no inversion center, and no improper axis of symmetry.
Therefore, it could be chiral. See section 1.3.

2.1 (a) a2 e$ax, (b) a4=4$ ð2=3Þa3 þ ð3=2Þa2 $ 4a, and (c) 12x2y3z2 þ 6x4yz2 þ 2x4y3.

2.2 (a) Â
2 ¼ x2. (b) Â

2 ¼ d2=dx2. (c) Recall from equation (2.2) that x and d=dx do
not commute.

Â
2
f ¼ ðd=dxþ xÞ2f ¼ ðd=dxþ xÞðdf =dxþ xf Þ

¼ d2f =dx2 þ dðxf Þ=dxþ xðdf =dxÞ þ x2f

¼ d2f =dx2 þ ðdx=dxÞf þ xðdf =dxÞ þ xðdf =dxÞ þ x2f

¼ d2f =dx2 þ f þ 2xðdf =dxÞ þ x2f

and hence

Â
2 ¼ d2=dx2 þ 2xðd=dxÞ þ ðx2 þ 1Þ:

2.3 The results are best presented in a table:

Function eigenfunction of $ħ2d2=dx2? eigenvalue

e$ax2 No —

cos βx Yes ħ2β2

7eikx Yes ħ2k2

2.4 Hint: Sketch the functions over the interval $1⩽ x⩽ 1. f(x) is square integrable
but g(x) is not. Changing the value of the constant does not matter as long as it is
kept positive.

2.5 The wave functions differ only by a factor of $1, a phase factor. They lead to
exactly the same probability density ψ2.

2.6 (a) f ðxÞ is normalized:
Z 1

0
f ðxÞ f ðxÞ dx ¼ 1,
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(b) g(x) is normalized:
Z 1

0
gðxÞ gðxÞ dx ¼ 1,

and (c) f (x) is orthogonal to g(x):
Z 1

0
gðxÞ f ðxÞ dx ¼

Z 1

0
f ðxÞ gðxÞ dx ¼ 0:

2.7 Using equation (2.16), the integral (A.14) from appendix A with n ¼ 0, and
choosing the positive root leads to c ¼

ffiffiffiffiffi
2a

p
.

3.1 It would double.

3.2 The wavelength λ ¼ c=ν where c is the speed of light and ν is the frequency of the
photon. By Einstein’s relationship, E ¼ hν and hence λ ¼ hc=E. The energy E is the
difference between the energies of the n ¼ 2 and n ¼ 1 levels, and is therefore
E ¼ h2ð22 $ 12Þ=ð8ma2Þ in which m is the mass of the electron (me) and a is the
length of the wire. Finally, we have λ ¼ 8cmea2=ð3hÞ. Inserting the various quantities
in SI units leads to λ ¼ 275 nm which is in the near ultraviolet (UV).

3.3 Figure 3.3 shows that n ¼ 4 is one of many such states. Think about equation
(3.5). Which other states satisfy these requirements?

3.4 Postulate 1 on page 2-2 tells us that calculation of the probabilities will require
integrals of jψ1ðxÞj

2, the square of the ground-state wave function. Equation (3.5)
gives us ψ2

1 ¼ ð2=aÞsin2ðπx=aÞ. The integrals can be done using equation (A.9) from
appendix A or with mathematical software. (a) The probability of finding the
particle in the left half of the wire is

Z a=2

0
jψ1 xð Þj2 dx ¼ 2

a

Z a=2

0
sin2 πx=að Þ dx ¼ 1=2:

(b) The probability of finding the particle in a quarter at the edge is
Z a=4

0
jψ1ðxÞj

2 dx ¼
Z a

3a=4
jψ1ðxÞj

2 dx ¼ 0:091,

and for a middle quarter it is
Z a=2

a=4
jψ1ðxÞj

2 dx ¼
Z 3a=4

a=2
jψ1ðxÞj

2 dx ¼ 0:409:

Observe that the probabilities for the four quarters add up to 1.

3.5 Section 3.1 contains a calculation of hxi. Use equation (2.17) with the ground-
state wave function from equation (3.5) and the integral formula of equation (A.11)
from appendix A to find that

hx2i ¼
Z a

0
jψ1 xð Þj2 x2 dx ¼ ð2π2 $ 3Þ

6π2
a2 ¼ 0:283 a2:
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Use p̂x ¼ $iħ @=@x and the identity 2 sin y cos y ¼ sinð2yÞ to find that

hpxi ¼ $iħ
Z a

0
ψ1ðxÞ dψ1=dxð Þ dx ¼ $iħ

2

a

Z a

0
sinðπx=aÞd sinðπx=aÞ

dx
dx

¼ $iħ
2

a
π
a

Z a

0
sinðπx=aÞ cosðπx=aÞ dx ¼ $iħ

π
a2

Z a

0
sinð2πx=aÞ dx ¼ 0:

Note that p̂2x ¼ $ħ2 @2=@x2 and do some calculation to find:

hp2xi ¼ $ħ2
Z a

0
ψ1ðxÞðd2ψ1=dx

2Þ dx ¼ h2=ð4a2Þ:

The average value of the kinetic energy is hT̂ xi ¼ hp̂2xi=ð2mÞ. Substituting the value
calculated above for hp̂2xi, we find that hT̂ xi ¼ h2=ð8ma2Þ which equals the ground-
state energy given by equation (3.6) with n ¼ 1. This makes sense because all the
energy is kinetic in this problem. Finally,

σ xð Þσ pxð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π2 $ 18

p

6
ħ ¼ 0:568 ħ;

which clearly satisfies the Heisenberg inequality of equation (2.19).

3.6
(a) Assuming that the four π electrons occupy the two lowest states, the lowest

energy transition is the one from the highest occupied level (n ¼ 2) to the lowest
unoccupied one (n ¼ 3). Using the difference between the energies of the n ¼ 3
and n ¼ 2 levels of a particle in a wire, λν ¼ c, Einstein’s relation E ¼ hν, and
the mass of the electron me, you should find λ ¼ 8cmeL2=ð5hÞ in which the
length of the wire could be taken as L ¼ 2RðC¼CÞ þ RðC$CÞ. This estimate
leads to a length of L & 2× 134þ 154 ¼ 422 pm for the backbone of 1,3-
butadiene, and λ ¼ 117 nm. Other reasonable estimates of the length of the wire
would be acceptable.

(b) λ ¼ 8cmeL2=ð7hÞ, L & 710 pm, and λ ¼ 237 nm.
(c) Hints: What will be the quantum number of the highest occupied energy level?

How many C¼C and C–C bonds are there?

3.7 It would double because ω ¼ ðk=mÞ1=2.

3.8 Hint: See page 3-7 for a derivation of one of the expectation values needed. The
ground state of a harmonic oscillator is called a minimum uncertainty state.

3.9 Hints: Do not forget to use the reduced mass of the diatomic. The wave numbers
need to be converted to frequencies and all quantities should be in SI units before
final use. k ¼ 515:57 N m$1 for 1H35Cl.

4.1 Populating the energy levels shown in figure 4.3 with four π electrons in
accordance with the Pauli principle and Hund’s rule, we find the scheme shown
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below. Clearly, cyclobutadiene is predicted to be a diradical and hence so very
reactive that it is nearly impossible to isolate.

8ma2

h2 E

0

2

5

8

E1, 1

E1, 2 E2, 1

E2, 2

4.2 Hint: Once you understand how figure 4.4 follows from equation (4.9), then you
will be able to use equation (4.9) to make the sketches.

4.3 The first and third terms in the Hamiltonian define a one-dimensional harmonic
oscillator in the x direction and the second and fourth terms define a one-dimensional
harmonic oscillator in the y direction. Thus, the separation of variables technique
(see page 4-1) allows us to write:

Evx,vy ¼ ħωxðvx þ 1=2Þ þ ħωyðvy þ 1=2Þ

in which ωx ¼ ðkx=mÞ1=2 and ωy ¼ ðky=mÞ1=2; two quantum numbers, vx ¼ 0, 1, . . .
and vy ¼ 0, 1, . . . , are needed in this two-dimensional problem.

If ky ¼ kx, then ωy ¼ ωx and Evx,vy ¼ ħωxðvx þ vy þ 1Þ. Pairs of states with
interchanged quantum numbers, such as (1,2) and (2,1), become degenerate. Some
accidental degeneracies also arise exactly as in the case of a particle in a square plate;
see section 4.2.

4.4 In this three-dimensional problem, there are three quantum numbers,
nx ¼ 1, 2, . . . , ny ¼ 1, 2, . . . , and nz ¼ 1, 2, . . .. The wave functions outside the box
are simply ψnx,ny,nzðx, y, zÞ ¼ 0. Inside the box, the three-dimensional wave functions
are given by

ψnx,ny,nz x, y, zð Þ ¼ 8

abc

" #1=2

sin
nxπx
a

$ %
sin

nyπy
b

$ %
sin

nzπz
c

$ %
:

The energies are given by

Enx,ny,nz ¼
h2

8m
n2x
a2

þ
n2y
b2

þ n2z
c2

 !

:

This is the fundamental model of translational motion in three dimensions. For
example, it is used in statistical thermodynamics to calculate the properties of an
ideal monatomic gas, and the translational contributions to the properties of an
ideal molecular gas.
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4.5 Setting b ¼ a and c ¼ a in the solutions to problem 4.4, we find that the energies
for a particle in a cube are given by

Enx,ny,nz ¼
h2

8ma2
n2x þ n2y þ n2z

$ %
:

The three states with ðnx, ny, nzÞ ¼ ð2, 1, 1Þ, ð1, 2, 1Þ, and ð1, 1, 2Þ all have the same
energy 3h2=ð4ma2Þ. The first excited energy level is three-fold degenerate.

4.6 Borazine, CH3F and SnCl4 will have degeneracies in their energy levels because
of the presence of a C3 axis. See section 4.2.

4.7 Cyclopropane (D3h) and spiropentane (D2d) have degeneracies in their energy
levels. See table 4.1.

4.8 There is an even number of electrons. If there are no degeneracies in the energy
levels, as is the case when a molecule belongs to the D2h point group (see table 4.1),
opposite-spin pairs of electrons will occupy the lowest levels and there will be no
unpaired electrons. On the other hand, in the case of a molecule with D6h symmetry,
Hund’s rule may lead to unpaired electrons in the highest occupied energy level(s)
because the latter could be degenerate.

4.9 Replace x by ða$ xÞ in equation (3.5) to get

ψnða$ xÞ ¼
ffiffiffiffiffiffiffiffi
2=a

p
sin½nπða$ xÞ=a(:

Note that the trigonometric identity sinðα$ βÞ ¼ sin α cos β $ sin β cosα can be
applied to ψnða$ xÞ above with α ¼ nπa=a ¼ nπ and β ¼ nπx=a. This gives us

ψn a$ xð Þ ¼
ffiffiffiffiffiffiffiffi
2=a

p
sinðnπÞ cosðnπx=aÞ $ sinðnπx=aÞ cosðnπÞ½ (:

Substitute the values sinðnπÞ ¼ 0, cosðnπÞ¼ þ1 for n ¼ 2, 4, . . . , and cosðnπÞ ¼ $1
for n ¼ 1, 3, . . . , in the above to find, as required, that

ψn a$ xð Þ ¼ îψn xð Þ ¼
þψnðxÞ for n ¼ 1, 3, 5, . . .
$ψnðxÞ for n ¼ 2, 4, 6, . . .

&

5.1 There are two important qualitative differences:
1. There are degeneracies in the energy levels of a particle on a circular ring but not

in the energy levels of a particle in a wire.
2. The ground-state energy of a particle on a circular ring is zero but the ground

state energy of a particle in a wire is non-zero. In other words, there is no
rotational zero-point energy but there is a translational zero-point energy.

5.2 The spacing would decrease by a factor of four because R2 appears in the
denominator of the energy formula, equation (5.3).

5.3 Verify normalization by showing that
Z 2π

0
jψ1j

2 dϕ ¼
Z 2π

0
jψ$1j

2 dϕ ¼ 1
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and orthogonality by showing that
Z 2π

0
ψ1ψ$1 dϕ ¼ 0:

Use either mathematical software or integral formulas to do the integrals.

5.4 0 because of orthogonality.

5.5 The reduced mass of HBr is

μ ¼ mHmBr=ðmH þmBrÞ ¼ 1:008× 79:9=ð1:008þ 79:9Þ ¼ 0:99544 u:

Using a conversion factor from appendix A, μ ¼ 0:99544× 1:6605× 10$27 ¼
1:6529× 10$27 kg. Using equation (5.9), the difference between the energies of the
‘ ¼ 0 and ‘ ¼ 1 levels is

ΔE0!1 ¼ E1,m $ E0,m ¼ ħ2

2I
1 1þ 1ð Þ $ 0 0þ 1ð Þ½ ( ¼ ħ2

I
¼ ħ2

μR2
:

The frequency of a photon that can cause this transition is ν ¼ ΔE0!1=h; insert the
SI values of h, ħ, μ in kg, and R ¼ 1:414× 10$10 m to find ν ¼ 5:079×
1011 Hz ¼ 507:9 GHz. Similarly, the frequency for the ‘ ¼ 1 ! 2 transition is
1016GHz.

5.6 Hint: Follow the example shown in section 5.3 to find R ¼ 113:1 pm.

5.7 Hint: This is similar to problem 3.6, for which a solution has been given, except
that the energy levels of a particle on a circular ring have to be used instead of those
for a particle in a straight wire.

5.8 (a) 1=ð4πÞ, (b) 1=ð4πÞ, (c) Unsöld’s theorem states that

jY‘,$‘j2 þ jY‘,$‘þ1j2 þ ) ) ) þ jY‘,‘$1j2 þ jY‘,‘j2 ¼
2‘þ 1

4π
:

6.1 The vibrational transition energy is E1 $ E0 ¼ ħω. The transition energy is
proportional to the frequency and to the wave number, which is the reciprocal of the
wavelength. Recall that ω ¼

ffiffiffiffiffiffiffiffi
k=μ

p
. The isotopologues H2 and D2 will have the same

k but different μ. Thus we can write

ωðD2Þ
ωðH2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=μðD2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=μðH2Þ

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
μðH2Þ
μðD2Þ

s

:

From http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl we find the
atomic masses of H and D to be 1.0078 and 2.0141, respectively. Since
μ ¼ m1m2=ðm1 þm2Þ, we have μðH2Þ ¼ 0:50390 and μðD2Þ ¼ 1:00705 and

ω D2ð Þ ¼ 4395:2×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:50390

1:00705

r
¼ 3109:0 cm$1:

The heavier molecule has a smaller vibrational frequency as expected.

Quantum Chemistry

B-7

http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl


6.2 For n ¼ 5, the allowed values of ‘ are 0, 1, 2, 3, 4 or s, p, d, f, g. For f orbitals,
‘ ¼ 3 and the allowed values of m are $3,$2,$1, 0, 1, 2, 3.

6.3 (a) 2, (b) 8, and (c) 18. Why are these degeneracies equal to the number of atoms
in the (a) 1st, (b) 2nd, and (c) 4th periods of the periodic table?

6.4 Use equation (6.7) to find that

ΔE ¼ E2,1,0 $ E1,0,0 ¼
$1

2× 22
$ $1

2× 12
¼ 3

8
Eh:

Combining ΔE ¼ hν and λν ¼ c, we have λ ¼ hc=ΔE. Keeping everything in SI units
(ΔE has to be converted from Eh to J), we find λ ¼ 121:5 nm.

6.5 The energy of the 2pz state (n ¼ 2) is $ð1=8ÞEh and the ionization threshold is at
E ¼ 0. So the ionization energy is ð1=8ÞEh ¼ 3:401 eV.

6.6 hri ¼ 5 a0 for the 2pz state just as it does for the 2px state because the value of hri
depends only on the n and ‘ quantum numbers as shown by equations (6.11)–(6.13).

6.7 Using table 6.1, equation (6.13), and either integral formulas from appendix A
or mathematical software, we find hri ¼ ð25=2Þ a0 and ð21=2Þ a0 for the 3p and 3d
states respectively.

6.8 Substitute R1sðrÞ ¼ 4
ffiffiffi
2

p
e$2r from page 6-9 into equation (6.11) to find

DðrÞ ¼ 32r2 e$4r. Inserting D(r) into equation (6.13) and using equation (A.14)
leads to

hri ¼ 32

Z 1

0
r3 e$4r dr ¼ 32× 3!=44 ¼ ð3=4Þ a0:

Note that hri ¼ ð3=4Þ a0 for Heþ is half the size of hri ¼ ð3=2Þ a0 for H because the
electron density of Heþ is more compact.

6.9 Taking R2s for the H atom from table 6.1 and following the prescription in
section 6.4, we find for Heþ (Z ¼ 2) that

R2sðrÞ ¼
ffiffiffiffiffi
23

p
=

ffiffiffi
2

p$ %
ð1$ 2r=2Þ e$2r=2 ¼ 2ð1$ rÞ e$r:

The 2s orbital for Heþ is 2s ¼ R2sY0,0 ¼ R2s=
ffiffiffiffiffi
4π

p
¼ π$1=2ð1$ rÞ e$r.

6.10 The integral equals zero because the orbitals (wave functions) of the hydrogen
atom are orthogonal to each other.

6.11
(a) Using equation (6.11) with R1sðrÞ ¼ 2 e$r, one obtains

PðRÞ ¼ 1$ e$2R 1þ 2Rþ 2R2
' (

:

(b) PðRÞ ¼ 0:85, 0.95, and 0.99 whenR ¼ 2:36 a0, 3:15 a0, and 4:20 a0 respectively.
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7.1 The electronic Hamiltonian for the HeH2þ molecule with bond length R is
given by

Ĥ e ¼ $ 1

2
r2

1 $
2

r1a
$ 1

r1b
þ 2

R

where r1a is the distance between the electron and the He nucleus (labeled a) and r1b
is the distance between the electron and the proton (labeled b). The first term cor-
responds to T̂ e, the next two to Ven, and the last one to Vnn. Vee ¼ 0 because there is
only one electron. Compare with the Hamiltonian for Hþ

2 on page 7-1.

7.2 Integrate the product of the 1σg and 1σu MOs of equation (7.4) as follows:
Z

1σg1σu dτ ¼NgNu

Z
1s2a $ 1sa1sb þ 1sb1sa $ 1s2b
' (

dτ

¼NgNu

Z
1s2a dτ $

Z
1s2b dτ

" #
¼ NgNuð1$ 1Þ ¼ 0:

7.3 H2 has two electrons and its configuration is 1σ2g. He2 has four electrons and its
configuration is 1σ2g1σ

2
u. He2 is not a stable molecule because the bonding effect of

1σ2g is canceled out by the antibonding effect of 1σ2u.

7.4 ζ ¼ 1 and E ¼ $ð1=2ÞEh. His trial function contains the exact wave function as
a special case and so the variational method should find it.

7.5 The energies become Eg ¼ Haa þHab and Eu ¼ Haa $Hab. The two energies
are symmetrically placed below and above Haa, the non-bonding energy. When
overlap is included, Eu is further aboveHaa than Eg is belowHaa; in other words, 1σu
is more antibonding than 1σg is bonding.

7.6
(a)

R
Φ ĤΦ
' (

dx ¼ ħ2a3

6 m
¼ h2a3

24π2m
.

(b)
R
jΦj2 dx ¼ a5=30.

(c) EΦ ¼ 5

4π2
h2

ma2
¼ 0:12665

h2

ma2
. This is 1.3% higher than the exact ground-state

energy
h2

8ma2
.

7.7 πg,xz ¼ dxz,a þ dxz,b and πu,xz ¼ dxz,a $ dxz,b. The MOs are labeled π because
the dxz AOs have m ¼ 1; see the convention on page 7-2 and table 5.1. The g and u
designations indicate that the MOs are symmetric and antisymmetric with respect to
inversion. Make sketches of the MOs and observe that πg,xz is antibonding and πu,xz
is bonding. The πg,xz MO and the analogous πg,yz MO form a doubly degenerate
pair. Similarly, the πu,xz and πu,yz MOs form a doubly degenerate pair.

7.8 δg,xy ¼ dxy,a þ dxy,b and δu,xy ¼ dxy,a $ dxy,b. The MOs are labeled δ because the
dxy AOs have m ¼ 2. The g and u designations indicate that the MOs are symmetric
and antisymmetric with respect to inversion. δg,xy is bonding and δu,xy is antibonding.
The ðδg,xy, δg,x2$y2Þ MOs are doubly degenerate as are the ðδu,xy, δu,x2$y2Þ MOs.
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7.9
(a) We find, in appendix A, values of Eh in both kJ mol$1 and cm$1 which we can

use to convert ω to kJ mol$1 as follows:

ω ¼ 2297 cm$1 × 2625:5 kJ mol$1=ð2:1947× 105 cm$1Þ ¼ 27:48 kJ mol$1:

Thus D0 ¼ De $ ω=2 ¼ 242 kJ mol$1 (see section 7.5) for 1Hþ
2 .

(b) Since Dþ
2 and Hþ

2 are isotopologues, they have the same electronic Hamiltonian.
Hence, within the Born–Oppenheimer approximation, they have the same
potential energy curve; see section 6.1. Therefore, Dþ

2 has Re ¼ 106 pm just as
Hþ

2 does.
(c) For the reasons explained above, De ¼ 269 kJ mol$1 for Dþ

2 .
(d) Following the solution to problem 6.1, find ω ¼ 1625 cm$1 for Dþ

2 .
(e) D0 ¼ De $ ω=2 ¼ 250 kJ mol$1 for Dþ

2 . D0 is larger for Dþ
2 than for Hþ

2 because
the heavier Dþ

2 has a smaller vibrational zero-point energy.

8.1 The Liþ cation consists of two electrons and a nucleus of charge þ3. Hence,

Ĥe ¼ $ 1

2
r2

1 $
1

2
r2

2 $
3

r1
$ 3

r2
þ 1

r12
where r1 and r2, respectively, are the distances between electrons 1 and 2 and the
nucleus, and r12 is the interelectronic distance. The first two terms constitute T̂e , the
next two terms make up Ven, and the last term is Vee. Vnn ¼ 0 because there is only
one nucleus. Compare with Ĥe for He.

8.2 The given wave function does not satisfy the Pauli postulate. It is symmetric
rather than antisymmetric with respect to interchange of all the coordinates of the
electrons.

8.3 Observe that 1s1s1s
)) )) ¼ 0 because a determinant vanishes when two of its rows

are identical. We cannot have a wave function that is zero everywhere because the
electron probability density cannot be zero everywhere.

8.4
(a) Using 1sβ and 2sβ as the two occupied spin orbitals, we find

ψ 1, 2ð Þ ¼ 1ffiffiffi
2

p det
1sð1Þ 1sð2Þ
2sð1Þ 2sð2Þ

)))))

))))):

(b) The expanded form is a product of spatial and spin functions:

ψð~r1, σ1,~r2, σ2Þ ¼ ½1sð~r1Þ2sð~r2Þ $ 2sð~r1Þ1sð~r2Þ(βðσ1Þβðσ2Þ=
ffiffiffi
2

p
:

8.5
(a) ROHF wave function: j1s1s2s2s2pzj,
(b) UHF wave function: j1s1s02s2s02pzj.
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8.6 Koopmans’ approximation predicts that the (first) ionization energy is
approximately $EHOMO. CH4 has 10 electrons and 5 doubly occupied MOs. In CH4,
the HOMO is any one of the triply degenerate 1t2 MOs. Hence, from the given data,
the (first) ionization energy of CH4 is 0:54 Eh.

8.7
(a) Use the variational method. Choose ζ to minimize the energy. Set

dE=dζ ¼ 2ζ $ 2Z þ 5=8 ¼ 0 and find ζ ¼ Z $ 5=16. For the neutral helium
atom with Z ¼ 2, this gives ζ ¼ 2$ 5=16 ¼ 27=16 as in section 8.1.

(b) Insert the above ζ ¼ Z $ 5=16 into the given energy expression, and do a bit of
algebraic manipulation to find E ¼ $ðZ $ 5=16Þ2.

(c) Setting Z ¼ 1 in the above formula gives E ¼ $ð11=16Þ2 & $0:47 Eh, which is
above the exact energy of a neutral H atom ($0:5 Eh). This calculation predicts
that the hydride anion H$ can gain energy by losing an electron. This is an
incorrect result and another failure of the orbital model due to its neglect of
dynamical electron correlation.

8.8 The electron configuration of Ar is 1s22s22p63s23p6. There should be five peaks
in the photoelectron spectrum of Ar corresponding, in order of increasing energy, to
ejection of an electron from a 3p, 3s, 2p, 2s, and 1s orbital. The first four peaks
would be seen in a vacuum UV photoelectron spectrum and the highest-energy peak
in an x-ray photoelectron spectrum. The usual (first) ionization energy is the energy
corresponding to ejection of an electron from the HOMO (3p).

8.9 O2 has the electron configuration 1σ2g1σ
2
u2σ

2
g2σ

2
u3σ

2
g1π

2
ux1π

2
uy1π

1
gx1π

1
gy. Removing an

electron from one of the doubly degenerate HOMOs gives the electron configuration
of Oþ

2 as either 1σ2g1σ
2
u2σ

2
g2σ

2
u3σ

2
g1π

2
ux1π

2
uy1π

1
gx or 1σ2g1σ

2
u2σ

2
g2σ

2
u3σ

2
g1π

2
ux1π

2
uy1π

1
gy.

Since the HOMOs are both antibonding orbitals, removal of an electron from either
one of them results in strengthening the bond and shortening it. Thus, O2 should have
a longer bond length than Oþ

2 .

8.10 The ground-state electron configuration of Li2 is 1σ2g1σ
2
u2σ

2
g. Base your orbital

energy diagram on the bottom of figure 8.4. Sketches of the occupied MOs can be
made as in figure 7.6. There are two electrons in each of the bonding σg MOs and
two electrons in the antibonding σu MO. Remembering to count electron pairs as
opposed to electrons, the nominal bond order is 2$ 1 ¼ 1. Liþ2 would have one less
electron in the bonding HOMO and a nominal bond order of 1:5$ 1 ¼ 0:5. Hence,
the Liþ2 cation is less strongly bound than its neutral parent.

8.11 The ground-state electron configuration of Be2 is 1σ2g1σ
2
u2σ

2
g2σ

2
u. Base your

orbital energy diagram on the bottom of figure 8.4. Sketches of the occupied MOs
can be made as in figure 7.6. There are two electrons in each of the bonding σg MOs
and two electrons in each of the antibonding σu MOs. Remembering to count
electron pairs as opposed to electrons, the nominal bond order is 2$ 2 ¼ 0. The
LUMO is 1πu.
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9.1 (a) A ¼

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

2

664

3

775, and (b) A ¼

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

2

6666664

3

7777775
.

9.2 Substitute the basis set expansion of each MO (see equation (9.1)) in the
orthogonality condition:

R
φiφj dτ ¼ 0 for i 6¼ j. Note that (a) all the terms involvingR

pkp‘ dτ with k 6¼ ‘ vanish because the H€uckel model assumes that the basis
functions are orthogonal and (b) the integrals in the surviving terms are

R
p2k dτ ¼ 1

because the basis functions are normalized. It follows that

c1ic1j þ c2ic2j þ ) ) ) þ cNicNj ¼ 0 for i 6¼ j:

9.3 Insert the HOMO coefficients into equation (9.2) and find 0:602 þ 0:372 þ
ð$0:37Þ2 þ ð$0:60Þ2 ¼ 0:994 which is normalized within rounding error. An anal-
ogous result holds for the LUMO. Using the result of problem 9.2, we
find 0:60× 0:60þ 0:37× ð$0:37Þ þ ð$0:37Þ× ð$0:37Þ þ ð$0:60Þ× ð0:60Þ ¼ 0, which
proves that the HOMO is orthogonal to the LUMO.

9.4 Octatetraene because cyclo-octatetraene is seen to be a diradical.

9.5 C5H
$
5 by H€uckel’s 4mþ 2 rule. Think of ferrocene as an Fe2þ cation sandwiched

between two C5H
$
5 rings and held to each by ionic attraction.

9.6 Substitute the values of α and β in the HOMO energy from figure 9.5 and use
Koopmans’ approximation to find I & $EHOMO ¼ 6:15þ 3:32 ¼ 9:47 eV, which is
0.7% larger than the measured value.

9.7 Enough information is given to deduce the answers with simple logic.
(a) By symmetry, q1 ¼ q4 ¼ 1:092 and q2 ¼ q3 ¼ 1:073. The qi must add up to 6. So

q6 ¼ 6$ 2× 1:092$ 2× 1:073$ 1:047 ¼ 0:623.
(b) Nucleophiles will choose C6 because it has the fewest π electrons.
(c) The C1–C2 π bond order must be the same as that for C3–C4 (0.78). Thus using

equation (9.9), the free valence of C2 is
ffiffiffi
3

p
$ 0:78$ 0:52 ¼ 0:43.

(d) Free radicals attack the site with the largest free valence—one for which the sum
of π-bond orders is the smallest. This has to be C6.

9.8 TheMOs for butadiene are shown in figure 9.2. The LUMO, φ3, is bonding with
respect to C2 and C3 but is antibonding with respect to C1 and C2, and C3 and C4.
Thus adding an electron to the LUMO will shorten the C2C3 bond and elongate the
other two CC bonds.

9.9 The π-bond orders in the excited state are 0.44 for the C1–C2 bond and 0.72 for
the C2–C3 bond.

9.10 Nα. The trace also equals the eigenvalue sum (see page A-2); thus, the sum of
all the occupied and unoccupied orbital energies is Nα. A little thought shows that,
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for alternant hydrocarbons, this result also follows from the pairing theorem. The
surprise is that it is also true for non-alternants. Check that it works for the non-
alternant hydrocarbon in figure 9.6.

9.11 Degenerate functions are not unique (see section 4.4); they can be mixed
provided that the mixtures are normalized and orthogonal to each other. You
should check that both the sets ðφa,φbÞ and ðφc,φdÞ are orthonormal. Moreover,
observe that

φc ¼ ðcos ΩÞφa þ ðsin ΩÞφb, and

φd ¼ $ðsin ΩÞφa þ ðcos ΩÞφb

with Ω ¼ $45* proving that the two sets are related by a unitary transformation as
described in section 4.4. As an additional exercise, find the value of ω required for
the inverse transformation given by

φa ¼ ðcos ωÞφc þ ðsin ωÞφd , and

φb ¼ $ðsin ωÞφc þ ðcos ωÞφd :

Your answer should match what you might guess from Ω and figure 4.6.
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