Quantum computing for dummies

Carlos Cotrini

ETH Zürich
ccarlos@inf.ethz.ch
September 14, 2019

What is quantum computing?

From Wikipedia: "Quantum computing is the use of quantum-mechanical phenomena such as superposition and entanglement to perform computation."

It can, in some cases, be much more faster than classical computing.

A toy problem

A bit array of length 2^{n} is balanced if exactly half of its entries are zero. A bit array is constant if all its entries are zero.

A toy problem

A bit array of length 2^{n} is balanced if exactly half of its entries are zero. A bit array is constant if all its entries are zero.

The problem

Given a bit array f of length 2^{n}, known to be balanced or constant, decide if it is balanced.

A toy problem

A bit array of length 2^{n} is balanced if exactly half of its entries are zero. A bit array is constant if all its entries are zero.

The problem

Given a bit array f of length 2^{n}, known to be balanced or constant, decide if it is balanced.

A classical computer takes time linear in the length of the bit array to solve this problem.

A toy problem

A bit array of length 2^{n} is balanced if exactly half of its entries are zero. A bit array is constant if all its entries are zero.

The problem

Given a bit array f of length 2^{n}, known to be balanced or constant, decide if it is balanced.

A classical computer takes time linear in the length of the bit array to solve this problem.
A quantum computer takes logarithmic time (by the Deutsch-Jozsa algorithm).

A more practical example

A quantum computer can find an element in an array of length N in $O(\sqrt{N})$-time (by Grover's algorithm).

Overview

(1) Background

- Qubits and qubit arrays
- Quantum gates
(2) The Deutsch-Jozsa algorithm
(3) Grover's algorithm
- Background in linear algebra
- Grover's algorithm

Qubits

Assume I have a closed box with a cat inside.

Qubits

Assume I have a closed box with a cat inside.

If it is a classical cat, then it is either dead or alive.

Qubits

Assume I have a closed box with a cat inside.

If it is a classical cat, then it is either dead or alive.

If it is a quantum cat, then it is both dead and alive. A quantum phenomenon called superposition.

Qubits

Assume I have a closed box with a cat inside.

If it is a classical cat, then it is either dead or alive.

If it is a quantum cat, then it is both dead and alive. A quantum phenomenon called superposition.

A bit is a value that is either 0 or 1 .

Qubits

Assume I have a closed box with a cat inside.

If it is a classical cat, then it is either dead or alive.

If it is a quantum cat, then it is both dead and alive. A quantum phenomenon called superposition.

A bit is a value that is either 0 or 1 .

A quantum bit is a value that is both 0 and 1 (superposition).

Qubits

What is a qubit?

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1 .
$$

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1
$$

- $\left|a_{0}\right|^{2}=$ probability that we get a 0 , when we measure the qubit.

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1
$$

- $\left|a_{0}\right|^{2}=$ probability that we get a 0 , when we measure the qubit.
- $\left|a_{1}\right|^{2}=$ probability that we get a 1 , when we measure the qubit.

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1
$$

- $\left|a_{0}\right|^{2}=$ probability that we get a 0 , when we measure the qubit.
- $\left|a_{1}\right|^{2}=$ probability that we get a 1 , when we measure the qubit.

Examples:

Qubits	$P(0)$	$P(1)$
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1
$$

- $\left|a_{0}\right|^{2}=$ probability that we get a 0 , when we measure the qubit.
- $\left|a_{1}\right|^{2}=$ probability that we get a 1 , when we measure the qubit.

Examples:

Qubits	$P(0)$	$P(1)$
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$		

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1
$$

- $\left|a_{0}\right|^{2}=$ probability that we get a 0 , when we measure the qubit.
- $\left|a_{1}\right|^{2}=$ probability that we get a 1 , when we measure the qubit.

Examples:

Qubits	$P(0)$	$P(1)$
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1
$$

- $\left|a_{0}\right|^{2}=$ probability that we get a 0 , when we measure the qubit.
- $\left|a_{1}\right|^{2}=$ probability that we get a 1 , when we measure the qubit.

Examples:

Qubits	$P(0)$	$P(1)$
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$(0,1)$		

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1
$$

- $\left|a_{0}\right|^{2}=$ probability that we get a 0 , when we measure the qubit.
- $\left|a_{1}\right|^{2}=$ probability that we get a 1 , when we measure the qubit.

Examples:

Qubits	$P(0)$	$P(1)$
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$(0,1)$	0	1

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1
$$

- $\left|a_{0}\right|^{2}=$ probability that we get a 0 , when we measure the qubit.
- $\left|a_{1}\right|^{2}=$ probability that we get a 1 , when we measure the qubit.

Examples:

Qubits	$P(0)$	$P(1)$
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$(0,1)$	0	1
$(-1,0)$		

Qubits

What is a qubit?

$$
\left(a_{0}, a_{1}\right) \in \mathbb{C}^{2} \text { with }\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1
$$

- $\left|a_{0}\right|^{2}=$ probability that we get a 0 , when we measure the qubit.
- $\left|a_{1}\right|^{2}=$ probability that we get a 1 , when we measure the qubit.

Examples:

Qubits	$P(0)$	$P(1)$
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$
$(0,1)$	0	1
$(-1,0)$	1	0

Qubits

Value		State		Probability
0	\mapsto	a_{0}	\mapsto	$\left\|a_{0}\right\|^{2}$
1	\mapsto	a_{1}	\mapsto	$\left\|a_{1}\right\|^{2}$

A qubit represents a single storage unit where both a 0 and a 1 are stored at the same time (in superposition). It is not that a qubit is storing two values in "physically" different spaces. The 0 and the 1 are in the same "physical" space.

Qubit arrays

Qubit arrays

Fix $n \in \mathbb{N}$.

Qubit arrays

Fix $n \in \mathbb{N}$.
A bit array is one sequence of n bits.

Qubit arrays

Fix $n \in \mathbb{N}$.
A bit array is one sequence of n bits.
A qubit array is all sequences of n bits (superposition).

Qubit arrays

Fix $n \in \mathbb{N}$.
A bit array is one sequence of n bits.
A qubit array is all sequences of n bits (superposition).
When you observe the array, you see a bit array x of n bits with probability $\left|a_{x}\right|^{2}$.

Qubit arrays

Fix $n \in \mathbb{N}$.
A bit array is one sequence of n bits.
A qubit array is all sequences of n bits (superposition).
When you observe the array, you see a bit array x of n bits with probability $\left|a_{x}\right|^{2}$.
So a qubit array is defined by one complex number a_{x} for each possible bit array in $\{0,1\}^{n}$.

Qubit arrays

Qubit arrays

What is a qubit array of length n ?

Qubit arrays

What is a qubit array of length n ?

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{C}^{N}, \text { with } N=2^{n} \text { and } \\
& \text { such that } \sum_{x}\left|a_{x}\right|^{2}=1 .
\end{aligned}
$$

Qubit arrays

What is a qubit array of length n ?

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{C}^{N}, \text { with } N=2^{n} \text { and } \\
& \text { such that } \sum_{x}\left|a_{x}\right|^{2}=1 .
\end{aligned}
$$

$\left|a_{x}\right|^{2}$ is the probability, that after observing the qubit array, we get x.

Qubit arrays

What is a qubit array of length n ?

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{C}^{N}, \text { with } N=2^{n} \text { and } \\
& \text { such that } \sum_{x}\left|a_{x}\right|^{2}=1 .
\end{aligned}
$$

$\left|a_{x}\right|^{2}$ is the probability, that after observing the qubit array, we get x.

Examples:

Qubit array	$P(00)$	$P(01)$	$P(10)$	$P(11)$

Qubit arrays

What is a qubit array of length n ?

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{C}^{N}, \text { with } N=2^{n} \text { and } \\
& \text { such that } \sum_{x}\left|a_{x}\right|^{2}=1 .
\end{aligned}
$$

$\left|a_{x}\right|^{2}$ is the probability, that after observing the qubit array, we get x.

Examples:

Qubit array	$P(00)$	$P(01)$	$P(10)$	$P(11)$
$\left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$				

Qubit arrays

What is a qubit array of length n ?

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{C}^{N}, \text { with } N=2^{n} \text { and } \\
& \text { such that } \sum_{x}\left|a_{x}\right|^{2}=1 .
\end{aligned}
$$

$\left|a_{x}\right|^{2}$ is the probability, that after observing the qubit array, we get x.

Examples:

Qubit array	$P(00)$	$P(01)$	$P(10)$	$P(11)$
$\left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$	0	$\frac{1}{2}$	0	$\frac{1}{2}$

Qubit arrays

What is a qubit array of length n ?

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{C}^{N}, \text { with } N=2^{n} \text { and } \\
& \text { such that } \sum_{x}\left|a_{x}\right|^{2}=1 .
\end{aligned}
$$

$\left|a_{x}\right|^{2}$ is the probability, that after observing the qubit array, we get x.

Examples:

Qubit array	$P(00)$	$P(01)$	$P(10)$	$P(11)$
$\left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$	0	$\frac{1}{2}$	0	$\frac{1}{2}$
$\left(0, \frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}\right)$				

Qubit arrays

What is a qubit array of length n ?

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{C}^{N}, \text { with } N=2^{n} \text { and } \\
& \text { such that } \sum_{x}\left|a_{x}\right|^{2}=1 .
\end{aligned}
$$

$\left|a_{x}\right|^{2}$ is the probability, that after observing the qubit array, we get x.

Examples:

Qubit array	$P(00)$	$P(01)$	$P(10)$	$P(11)$
$\left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$	0	$\frac{1}{2}$	0	$\frac{1}{2}$
$\left(0, \frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}\right)$	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$

Qubit arrays

What is a qubit array of length n ?

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{C}^{N}, \text { with } N=2^{n} \text { and } \\
& \text { such that } \sum_{x}\left|a_{x}\right|^{2}=1 .
\end{aligned}
$$

$\left|a_{x}\right|^{2}$ is the probability, that after observing the qubit array, we get x.

Examples:

Qubit array	$P(00)$	$P(01)$	$P(10)$	$P(11)$
$\left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$	0	$\frac{1}{2}$	0	$\frac{1}{2}$
$\left(0, \frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}\right)$	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
$(1,0,0,0)$				

Qubit arrays

What is a qubit array of length n ?

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{C}^{N}, \text { with } N=2^{n} \text { and } \\
& \text { such that } \sum_{x}\left|a_{x}\right|^{2}=1 .
\end{aligned}
$$

$\left|a_{x}\right|^{2}$ is the probability, that after observing the qubit array, we get x.

Examples:

Qubit array	$P(00)$	$P(01)$	$P(10)$	$P(11)$
$\left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$	0	$\frac{1}{2}$	0	$\frac{1}{2}$
$\left(0, \frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}\right)$	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
$(1,0,0,0)$	1	0	0	0

Qubit arrays

More examples:

- $(1 / 2,0,0,1 / 2,0,0,0,1 / \sqrt{2})$ is a qubit array that, when observed, yields 000 with prob $1 / 4,011$ with prob $1 / 4$, and 111 with probability $1 / 2$.

Qubit arrays

More examples:

- $(1 / 2,0,0,1 / 2,0,0,0,1 / \sqrt{2})$ is a qubit array that, when observed, yields 000 with prob $1 / 4,011$ with prob $1 / 4$, and 111 with probability $1 / 2$.
- $(1 / \sqrt{8}, 1 / \sqrt{8})$ is a qubit array that, when observed, yields any bit array of length 3 with equal probability.

Qubit arrays

$$
\begin{aligned}
& 000 \mapsto a_{000} \mapsto a_{0} \mapsto\left|a_{0}\right|^{2} \\
& 001 \mapsto a_{001} \mapsto a_{1} \mapsto\left|a_{1}\right|^{2} \\
& 010 \mapsto a_{010} \mapsto a_{2} \mapsto\left|a_{2}\right|^{2} \\
& 011 \mapsto a_{011} \mapsto a_{3} \mapsto\left|a_{3}\right|^{2} \\
& 100 \mapsto a_{100} \mapsto a_{4} \mapsto\left|a_{4}\right|^{2} \\
& 101 \mapsto a_{101} \mapsto a_{5} \mapsto\left|a_{5}\right|^{2} \\
& 110 \mapsto a_{110} \mapsto a_{6} \mapsto\left|a_{6}\right|^{2} \\
& 111 \mapsto a_{111} \mapsto a_{7} \mapsto\left|a_{7}\right|^{2}
\end{aligned}
$$

A qubit array of length n is a storage unit with n bits of capacity. A qubit array is not a data structure containing all bit arrays in 2^{n} "physically" different locations. All 2^{n} bit arrays are in the "physical" storage unit with n bits of capacity, coexisting in superposition.

Qubit arrays are vectors in \mathbb{C}^{N}

For $x \in\{0,1\}^{n}$, let $|x\rangle$ be the qubit array with all entries equal zero except the x-th, which is 1 .

Qubit arrays are vectors in \mathbb{C}^{N}

For $x \in\{0,1\}^{n}$, let $|x\rangle$ be the qubit array with all entries equal zero except the x-th, which is 1 .

Examples:

Qubit arrays are vectors in \mathbb{C}^{N}

For $x \in\{0,1\}^{n}$, let $|x\rangle$ be the qubit array with all entries equal zero except the x-th, which is 1 .

Examples:

- $|10\rangle=(0,0,1,0)$.

Qubit arrays are vectors in \mathbb{C}^{N}

For $x \in\{0,1\}^{n}$, let $|x\rangle$ be the qubit array with all entries equal zero except the x-th, which is 1 .

Examples:

- $|10\rangle=(0,0,1,0)$.
- $|011\rangle=(0,0,0,1,0,0,0,0)$.

Qubit arrays are vectors in \mathbb{C}^{N}

For $x \in\{0,1\}^{n}$, let $|x\rangle$ be the qubit array with all entries equal zero except the x-th, which is 1 .

Examples:

- $|10\rangle=(0,0,1,0)$.
- $|011\rangle=(0,0,0,1,0,0,0,0)$.
- $|0000\rangle=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$.

Qubit arrays are vectors in \mathbb{C}^{N}

For $x \in\{0,1\}^{n}$, let $|x\rangle$ be the qubit array with all entries equal zero except the x-th, which is 1 .

Examples:

- $|10\rangle=(0,0,1,0)$.
- $|011\rangle=(0,0,0,1,0,0,0,0)$.
- $|0000\rangle=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$.

Definition

$\mathcal{B}_{n}:=\left\{|x\rangle \mid x \in\{0,1\}^{n}\right\}$.

Qubit arrays are vectors in \mathbb{C}^{N}

For $x \in\{0,1\}^{n}$, let $|x\rangle$ be the qubit array with all entries equal zero except the x-th, which is 1 .

Examples:

- $|10\rangle=(0,0,1,0)$.
- $|011\rangle=(0,0,0,1,0,0,0,0)$.
- $|0000\rangle=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$.

Definition

$\mathcal{B}_{n}:=\left\{|x\rangle \mid x \in\{0,1\}^{n}\right\}$.
Example: $\mathcal{B}_{2}=\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$.

\mathcal{B}_{n} is a basis

Let $|\psi\rangle=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$, then

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle
$$

\mathcal{B}_{n} is a basis

Let $|\psi\rangle=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$, then

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle .
$$

$\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle$ is $|\psi\rangle$'s algebraic representation.

\mathcal{B}_{n} is a basis

Let $|\psi\rangle=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$, then

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle .
$$

$\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle$ is $|\psi\rangle$'s algebraic representation.
$\left(a_{0}, a_{1}, \ldots, a_{N}\right)$ is $|\psi\rangle$'s vector representation.

\mathcal{B}_{n} is a basis

Let $|\psi\rangle=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$, then

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle .
$$

$\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle$ is $|\psi\rangle$'s algebraic representation.
$\left(a_{0}, a_{1}, \ldots, a_{N}\right)$ is $|\psi\rangle$'s vector representation.

Examples:

\mathcal{B}_{n} is a basis

Let $|\psi\rangle=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$, then

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle .
$$

$\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle$ is $|\psi\rangle$'s algebraic representation.
$\left(a_{0}, a_{1}, \ldots, a_{N}\right)$ is $|\psi\rangle$'s vector representation.

Examples:

- $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}(1,0)-\frac{1}{\sqrt{2}}(0,1)=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$.

\mathcal{B}_{n} is a basis

Let $|\psi\rangle=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$, then

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle
$$

$\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle$ is $|\psi\rangle$'s algebraic representation.
$\left(a_{0}, a_{1}, \ldots, a_{N}\right)$ is $|\psi\rangle$'s vector representation.

Examples:

- $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}(1,0)-\frac{1}{\sqrt{2}}(0,1)=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$.
- $\left(0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)=\frac{1}{\sqrt{2}}(0,1,0,0)-\frac{1}{\sqrt{2}}(0,0,1,0)=\frac{1}{\sqrt{2}}|01\rangle-\frac{1}{\sqrt{2}}|10\rangle$.

\mathcal{B}_{n} is a basis

Let $|\psi\rangle=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$, then

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle
$$

$\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle$ is $|\psi\rangle^{\prime}$ s algebraic representation.
$\left(a_{0}, a_{1}, \ldots, a_{N}\right)$ is $|\psi\rangle$'s vector representation.

Examples:

- $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}(1,0)-\frac{1}{\sqrt{2}}(0,1)=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$.
- $\left(0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)=\frac{1}{\sqrt{2}}(0,1,0,0)-\frac{1}{\sqrt{2}}(0,0,1,0)=\frac{1}{\sqrt{2}}|01\rangle-\frac{1}{\sqrt{2}}|10\rangle$.
- $(0,0,0,0,0,0,0,-1)=-(0,0,0,0,0,0,0,1)=-|111\rangle$.

Measurements

A measurement operator receives as input a qubit array $\sum_{x} a_{x}|x\rangle$ and outputs x with probability $\left|a_{x}\right|^{2}$.

Measurements

A measurement operator receives as input a qubit array $\sum_{x} a_{x}|x\rangle$ and outputs x with probability $\left|a_{x}\right|^{2}$.

Examples:

- Measuring $-\frac{1}{2}|0\rangle-\frac{\sqrt{3}}{2}|1\rangle$ yields 1 with probability $\frac{3}{4}$.

Measurements

A measurement operator receives as input a qubit array $\sum_{x} a_{x}|x\rangle$ and outputs x with probability $\left|a_{x}\right|^{2}$.

Examples:

- Measuring $-\frac{1}{2}|0\rangle-\frac{\sqrt{3}}{2}|1\rangle$ yields 1 with probability $\frac{3}{4}$.
- Measuring $|1\rangle$ yields 1 with probability 1 .

Measurements

A measurement operator receives as input a qubit array $\sum_{x} a_{x}|x\rangle$ and outputs x with probability $\left|a_{x}\right|^{2}$.

Examples:

- Measuring $-\frac{1}{2}|0\rangle-\frac{\sqrt{3}}{2}|1\rangle$ yields 1 with probability $\frac{3}{4}$.
- Measuring $|1\rangle$ yields 1 with probability 1.

Observation

After measuring a qubit array, all its uncertainty is lost. Measuring again gives the same result.

Quantum gates

A quantum gate is a unitary transformation $G: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$.

Quantum gates

A quantum gate is a unitary transformation $G: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$.
For now, the most important thing to know about unitary transformations is that they are linear:

$$
G\left(\sum_{x} a_{x}|x\rangle\right)=\sum_{x} a_{x} G|x\rangle .
$$

Quantum gates

A quantum gate is a unitary transformation $G: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$.
For now, the most important thing to know about unitary transformations is that they are linear:

$$
G\left(\sum_{x} a_{x}|x\rangle\right)=\sum_{x} a_{x} G|x\rangle
$$

Example:

$$
G\left(\frac{1}{2}|00\rangle-\frac{1}{2}|10\rangle-\frac{1}{\sqrt{2}}|11\rangle\right)=\frac{1}{2} G|00\rangle-\frac{1}{2} G|10\rangle-\frac{1}{\sqrt{2}} G|11\rangle .
$$

Quantum gates

A quantum gate is a unitary transformation $G: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$.
For now, the most important thing to know about unitary transformations is that they are linear:

$$
G\left(\sum_{x} a_{x}|x\rangle\right)=\sum_{x} a_{x} G|x\rangle .
$$

Example:

$$
G\left(\frac{1}{2}|00\rangle-\frac{1}{2}|10\rangle-\frac{1}{\sqrt{2}}|11\rangle\right)=\frac{1}{2} G|00\rangle-\frac{1}{2} G|10\rangle-\frac{1}{\sqrt{2}} G|11\rangle .
$$

To compute $G|\psi\rangle$, you only need to know how G works on \mathcal{B}_{n}.

Popular quantum gates

- Hadamard gate.
- Emulation gate.
- Reflection gate.

Quantum gate example: Hadamard gate

For $|x\rangle \in \mathcal{B}_{n}$,

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle,
$$

where $x^{\top} y:=\sum_{i \leq n} x[i] y[i]$ is the classical inner product.

Quantum gate example: Hadamard gate

For $|x\rangle \in \mathcal{B}_{n}$,

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle,
$$

where $x^{\top} y:=\sum_{i \leq n} x[i] y[i]$ is the classical inner product.
Example:

$$
H|0\rangle=
$$

Quantum gate example: Hadamard gate

For $|x\rangle \in \mathcal{B}_{n}$,

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle,
$$

where $x^{\top} y:=\sum_{i \leq n} x[i] y[i]$ is the classical inner product.
Example:

$$
H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle .
$$

Quantum gate example: Hadamard gate

For $|x\rangle \in \mathcal{B}_{n}$,

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle,
$$

where $x^{\top} y:=\sum_{i \leq n} x[i] y[i]$ is the classical inner product.
Example:

$$
\begin{aligned}
& \quad H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle . \\
& H|01\rangle=
\end{aligned}
$$

Quantum gate example: Hadamard gate

For $|x\rangle \in \mathcal{B}_{n}$,

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle,
$$

where $x^{\top} y:=\sum_{i \leq n} x[i] y[i]$ is the classical inner product.
Example:

$$
\begin{aligned}
& H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle . \\
& H|01\rangle=\frac{1}{2}|00\rangle
\end{aligned}
$$

Quantum gate example: Hadamard gate

For $|x\rangle \in \mathcal{B}_{n}$,

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle,
$$

where $x^{\top} y:=\sum_{i \leq n} x[i] y[i]$ is the classical inner product.
Example:

$$
\begin{gathered}
H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle . \\
H|01\rangle=\frac{1}{2}|00\rangle-\frac{1}{2}|01\rangle
\end{gathered}
$$

Quantum gate example: Hadamard gate

For $|x\rangle \in \mathcal{B}_{n}$,

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle,
$$

where $x^{\top} y:=\sum_{i \leq n} x[i] y[i]$ is the classical inner product.
Example:

$$
\begin{array}{r}
H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle . \\
H|01\rangle=\frac{1}{2}|00\rangle-\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle
\end{array}
$$

Quantum gate example: Hadamard gate

For $|x\rangle \in \mathcal{B}_{n}$,

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle,
$$

where $x^{\top} y:=\sum_{i \leq n} x[i] y[i]$ is the classical inner product.
Example:

$$
\begin{gathered}
H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle . \\
H|01\rangle=\frac{1}{2}|00\rangle-\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle .
\end{gathered}
$$

Quantum gate example: Hadamard gate

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle
$$

In particular,

$$
H|00 \ldots 0\rangle=
$$

Quantum gate example: Hadamard gate

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle,
$$

In particular,

$$
H|00 \ldots 0\rangle=\sum_{y \in\{0,1\}^{n}} \frac{1}{\sqrt{2^{n}}}|y\rangle=:|?\rangle
$$

Quantum gate example: Hadamard gate

In general, for any qubit array $|\psi\rangle=\sum_{x} a_{x}|x\rangle$,

$$
H|\psi\rangle=H\left(\sum_{x} a_{x}|x\rangle\right)
$$

Quantum gate example: Hadamard gate

In general, for any qubit array $|\psi\rangle=\sum_{x} a_{x}|x\rangle$,

$$
\begin{aligned}
H|\psi\rangle & =H\left(\sum_{x} a_{x}|x\rangle\right) \\
& =\sum_{x} a_{x} H|x\rangle \\
& =\sum_{x, y} \frac{a_{x}(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle \\
& =\sum_{y}\left(\sum_{x} \frac{a_{x}(-1)^{x^{\top} y}}{\sqrt{2^{n}}}\right)|y\rangle .
\end{aligned}
$$

Applying the Hadamard gate takes constant time! It is not that the gate computes $H|x\rangle$, for each x ! Remember that all bit arrays x are in superposition!

Quantum gate example: Emulation gate

If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a Boolean circuit, then

$$
U_{f}|x\rangle:=(-1)^{f(x)}|x\rangle
$$

Quantum gate example: Emulation gate

If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a Boolean circuit, then

$$
U_{f}|x\rangle:=(-1)^{f(x)}|x\rangle
$$

In general, for any qubit array $|\psi\rangle$,

$$
U_{f}|\psi\rangle=U_{f}\left(\sum_{x} a_{x}|x\rangle\right)=\sum_{x} a_{x}(-1)^{f(x)}|x\rangle
$$

Quantum gate example: Emulation gate

If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a Boolean circuit, then

$$
U_{f}|x\rangle:=(-1)^{f(x)}|x\rangle
$$

In general, for any qubit array $|\psi\rangle$,

$$
U_{f}|\psi\rangle=U_{f}\left(\sum_{x} a_{x}|x\rangle\right)=\sum_{x} a_{x}(-1)^{f(x)}|x\rangle
$$

If computing $f(x)$ takes $O(K)$-time, then computing $U_{f}|\psi\rangle$ also takes $O(K)$-time.

Quantum gate example: Reflection gate

$$
F|x\rangle \begin{cases}|00 \ldots 0\rangle & \text { if } x=00 \ldots 0 \text { and } \\ -|x\rangle & \text { otherwise. }\end{cases}
$$

Classical vs parallel vs quantum computation

$f:\{0,1\}^{n} \rightarrow\{0,1\}$. Suppose that computing $f(x)$ takes $O(K(n))$-time.

Classical vs parallel vs quantum computation

$f:\{0,1\}^{n} \rightarrow\{0,1\}$. Suppose that computing $f(x)$ takes $O(K(n))$-time. How much you need to compute f 's table?

Classical vs parallel vs quantum computation

$f:\{0,1\}^{n} \rightarrow\{0,1\}$. Suppose that computing $f(x)$ takes $O(K(n))$-time. How much you need to compute f 's table?

	Memory	Time	Energy
Classical	$O\left(2^{n}\right)$	$O\left(2^{n} K(n)\right)$	$O\left(2^{n} K(n)\right)$

Classical vs parallel vs quantum computation

$f:\{0,1\}^{n} \rightarrow\{0,1\}$. Suppose that computing $f(x)$ takes $O(K(n))$-time. How much you need to compute f 's table?

	Memory	Time	Energy
Classical	$O\left(2^{n}\right)$	$O\left(2^{n} K(n)\right)$	$O\left(2^{n} K(n)\right)$
Parallel $\left(2^{n}\right.$ cores $)$	$O\left(2^{n}\right)$	$O(K(n))$	$O\left(2^{n} K(n)\right)$

Classical vs parallel vs quantum computation

$f:\{0,1\}^{n} \rightarrow\{0,1\}$. Suppose that computing $f(x)$ takes $O(K(n))$-time. How much you need to compute f 's table?

	Memory	Time	Energy
Classical	$O\left(2^{n}\right)$	$O\left(2^{n} K(n)\right)$	$O\left(2^{n} K(n)\right)$
Parallel $\left(2^{n}\right.$ cores $)$	$O\left(2^{n}\right)$	$O(K(n))$	$O\left(2^{n} K(n)\right)$
Quantum	$O(n)$	$O(K(n))$	$O(K(n))$

Classical vs parallel vs quantum computation

$f:\{0,1\}^{n} \rightarrow\{0,1\}$. Suppose that computing $f(x)$ takes $O(K(n))$-time. How much you need to compute f 's table?

	Memory	Time	Energy
Classical	$O\left(2^{n}\right)$	$O\left(2^{n} K(n)\right)$	$O\left(2^{n} K(n)\right)$
Parallel $\left(2^{n}\right.$ cores $)$	$O\left(2^{n}\right)$	$O(K(n))$	$O\left(2^{n} K(n)\right)$
Quantum	$O(n)$	$O(K(n))$	$O(K(n))$

* Constants may vary substantially.

Quantum computing for dummies

Carlos Cotrini

ETH Zürich
ccarlos@inf.ethz.ch
September 14, 2019

The Deutsch-Jozsa algorithm

And now... a problem that can be solved in linear time by a classical computer, but in constant time by a quantum computer!

A bit array of length 2^{n} is balanced if exactly half of its entries are zero. A bit array is constant if all its entries are zero.

The Deutsch-Jozsa algorithm

And now... a problem that can be solved in linear time by a classical computer, but in constant time by a quantum computer!

A bit array of length 2^{n} is balanced if exactly half of its entries are zero. A bit array is constant if all its entries are zero.

The problem

Given a bit array f of length 2^{n}, known to be balanced or constant, decide if it is balanced.

The Deutsch-Jozsa algorithm

And now... a problem that can be solved in linear time by a classical computer, but in constant time by a quantum computer!

A bit array of length 2^{n} is balanced if exactly half of its entries are zero. A bit array is constant if all its entries are zero.

The problem

Given a bit array f of length 2^{n}, known to be balanced or constant, decide if it is balanced.

The Deutsch-Jozsa algorithm

And now... a problem that can be solved in linear time by a classical computer, but in constant time by a quantum computer!

A bit array of length 2^{n} is balanced if exactly half of its entries are zero. A bit array is constant if all its entries are zero.

The problem

Given a bit array f of length 2^{n}, known to be balanced or constant, decide if it is balanced.

Executing this circuit requires only just one call to U_{f}.

Exercises

Observe that $|\mathbf{0}\rangle=|00 \ldots 0\rangle$. Recall that

$$
H|x\rangle:=\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{x^{\top} y}}{\sqrt{2^{n}}}|y\rangle . \quad U_{f}|x\rangle:=(-1)^{f(x)}|x\rangle .
$$

We now show why this circuit decides if f is balanced or constant.

- Show that

$$
\left|\psi^{\prime}\right\rangle=H U_{f} H|00 \ldots 0\rangle=\sum_{z \in\{0,1\}^{n}}\left(\sum_{y \in\{0,1\}^{n}} \frac{(-1)^{z^{\top} y+f(y)}}{\sqrt{2^{n}}}\right)|z\rangle .
$$

- After we measure $\left|\psi^{\prime}\right\rangle$, what is the probability that we get $00 \ldots 0$ if f is balanced? What is the probability of getting $00 \ldots 0$ if f is constant?

Agenda

(1) Background in linear algebra.

- Linear transformations.
- Matrix representations.
- Unitary transformations.
(2) Grover's algorithm.

Searching with a quantum computer

The problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, find an element $x \in\{0,1\}^{n}$ such that $f(x)=1$. We call such an element a solution of f.

Searching with a quantum computer

The problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, find an element $x \in\{0,1\}^{n}$ such that $f(x)=1$. We call such an element a solution of f.

A classical computer solves this in $O\left(2^{n}\right)$-time.

Searching with a quantum computer

The problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, find an element $x \in\{0,1\}^{n}$ such that $f(x)=1$. We call such an element a solution of f.

A classical computer solves this in $O\left(2^{n}\right)$-time.
A quantum computer can solve this in $O\left(\sqrt{2^{n}}\right)$-time!

Searching with a quantum computer

The problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, find an element $x \in\{0,1\}^{n}$ such that $f(x)=1$. We call such an element a solution of f.

A classical computer solves this in $O\left(2^{n}\right)$-time.
A quantum computer can solve this in $O\left(\sqrt{2^{n}}\right)$-time! We assume that there are $M \ll N=2^{n}$ solutions of f.

Linear transformations

A linear transformation is a function $T: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ such that

$$
T\left(a_{1}\left|\psi_{1}\right\rangle+a_{2}\left|\psi_{2}\right\rangle\right)=a_{1} T\left|\psi_{1}\right\rangle+a_{2} T\left|\psi_{2}\right\rangle .
$$

Linear transformations

A linear transformation is a function $T: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ such that

$$
T\left(a_{1}\left|\psi_{1}\right\rangle+a_{2}\left|\psi_{2}\right\rangle\right)=a_{1} T\left|\psi_{1}\right\rangle+a_{2} T\left|\psi_{2}\right\rangle .
$$

Every linear transformation T is identified with a unique matrix $\llbracket T \rrbracket \in \mathbb{C}^{N \times N}$ such that $T|\psi\rangle=\llbracket T \rrbracket|\psi\rangle$. We identify T with $\llbracket T \rrbracket$.

How to compute the matrix representation of a linear transformation T?

(1) List all basic qubit arrays: $|00 \ldots 0\rangle,|00 \ldots 1\rangle, \ldots,|11 \ldots 1\rangle$.

How to compute the matrix representation of a linear transformation T?

(1) List all basic qubit arrays: $|00 \ldots 0\rangle,|00 \ldots 1\rangle, \ldots,|11 \ldots 1\rangle$.
(2) Apply T to each of them: $T|00 \ldots 0\rangle, T|00 \ldots 1\rangle, \ldots, T|11 \ldots 1\rangle$.

How to compute the matrix representation of a linear transformation T ?

(1) List all basic qubit arrays: $|00 \ldots 0\rangle,|00 \ldots 1\rangle, \ldots,|11 \ldots 1\rangle$.
(2) Apply T to each of them: $T|00 \ldots 0\rangle, T|00 \ldots 1\rangle, \ldots, T|11 \ldots 1\rangle$.
(3) Write these qubit arrays as column vectors.

How to compute the matrix representation of a linear transformation T?

(1) List all basic qubit arrays: $|00 \ldots 0\rangle,|00 \ldots 1\rangle, \ldots,|11 \ldots 1\rangle$.
(2) Apply T to each of them: $T|00 \ldots 0\rangle, T|00 \ldots 1\rangle, \ldots, T|11 \ldots 1\rangle$.
(3) Write these qubit arrays as column vectors.
(9) $\llbracket T \rrbracket$ is the matrix whose columns are the vectors above.

Examples

Let T be such that $T|0\rangle=-|1\rangle$ and $T|1\rangle=|0\rangle$. If we apply the steps above we get:
(1) List all basic qubit arrays: $|0\rangle,|1\rangle$.

Examples

Let T be such that $T|0\rangle=-|1\rangle$ and $T|1\rangle=|0\rangle$. If we apply the steps above we get:
(1) List all basic qubit arrays: $|0\rangle,|1\rangle$.
(2) If we apply T to these arrays we get: $-|1\rangle,|0\rangle$.

Examples

Let T be such that $T|0\rangle=-|1\rangle$ and $T|1\rangle=|0\rangle$. If we apply the steps above we get:
(1) List all basic qubit arrays: $|0\rangle,|1\rangle$.
(2) If we apply T to these arrays we get: $-|1\rangle,|0\rangle$.
(3) Writing them as column vectors yields: $\binom{0}{-1} \quad\binom{1}{0}$
© Hence,

$$
T=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Multiplication of a matrix and a vector

Recall that $T|0\rangle=-|1\rangle$ and $T|1\rangle=|0\rangle$.

Multiplication of a matrix and a vector

Recall that $T|0\rangle=-|1\rangle$ and $T|1\rangle=|0\rangle$.
Let $|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle=\left(a_{0}, a_{1}\right)$. Let's verify that

$$
T|\psi\rangle=\llbracket T \rrbracket|\psi\rangle .
$$

Multiplication of a matrix and a vector

Recall that $T|0\rangle=-|1\rangle$ and $T|1\rangle=|0\rangle$.
Let $|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle=\left(a_{0}, a_{1}\right)$. Let's verify that

$$
T|\psi\rangle=\llbracket T \rrbracket|\psi\rangle .
$$

- $T|\psi\rangle=a_{0} T|0\rangle+a_{1} T|1\rangle=-a_{0}|1\rangle+a_{1}|0\rangle=\left(a_{1},-a_{0}\right)$.

Multiplication of a matrix and a vector

Recall that $T|0\rangle=-|1\rangle$ and $T|1\rangle=|0\rangle$.
Let $|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle=\left(a_{0}, a_{1}\right)$. Let's verify that

$$
T|\psi\rangle=\llbracket T \rrbracket|\psi\rangle .
$$

- $T|\psi\rangle=a_{0} T|0\rangle+a_{1} T|1\rangle=-a_{0}|1\rangle+a_{1}|0\rangle=\left(a_{1},-a_{0}\right)$.
- $\llbracket T \rrbracket|\psi\rangle$ can be visualized as follows:

$$
\binom{a_{0}}{a_{1}}
$$

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Multiplication of a matrix and a vector

Recall that $T|0\rangle=-|1\rangle$ and $T|1\rangle=|0\rangle$.
Let $|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle=\left(a_{0}, a_{1}\right)$. Let's verify that

$$
T|\psi\rangle=\llbracket T \rrbracket|\psi\rangle .
$$

- $T|\psi\rangle=a_{0} T|0\rangle+a_{1} T|1\rangle=-a_{0}|1\rangle+a_{1}|0\rangle=\left(a_{1},-a_{0}\right)$.
- $\llbracket T \rrbracket|\psi\rangle$ can be visualized as follows:

$$
\begin{array}{cc}
\binom{a_{0}}{a_{1}} \\
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) & \binom{a_{1}}{-a_{0}}
\end{array}
$$

Multiplication of a matrix and a vector

Recall that $T|0\rangle=-|1\rangle$ and $T|1\rangle=|0\rangle$.
Let $|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle=\left(a_{0}, a_{1}\right)$. Let's verify that

$$
T|\psi\rangle=\llbracket T \rrbracket|\psi\rangle .
$$

- $T|\psi\rangle=a_{0} T|0\rangle+a_{1} T|1\rangle=-a_{0}|1\rangle+a_{1}|0\rangle=\left(a_{1},-a_{0}\right)$.
- $\llbracket T \rrbracket|\psi\rangle$ can be visualized as follows:

$$
\begin{array}{cc}
\binom{a_{0}}{a_{1}} \\
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) & \binom{a_{1}}{-a_{0}}
\end{array}
$$

Hence, $\llbracket T \rrbracket|\psi\rangle=\left(a_{1},-a_{0}\right)$.

Multiplication of a matrix and a vector

Recall that $F: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ is the quantum gate such that

$$
F|x\rangle \begin{cases}|00\rangle & \text { if }|x\rangle=|00\rangle \\ -|x\rangle & \text { otherwise }\end{cases}
$$

Multiplication of a matrix and a vector

Recall that $F: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ is the quantum gate such that

$$
F|x\rangle \begin{cases}|00\rangle & \text { if }|x\rangle=|00\rangle \\ -|x\rangle & \text { otherwise }\end{cases}
$$

F's matrix representation is

Multiplication of a matrix and a vector

Recall that $F: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ is the quantum gate such that

$$
F|x\rangle \begin{cases}|00\rangle & \text { if }|x\rangle=|00\rangle \\ -|x\rangle & \text { otherwise }\end{cases}
$$

F 's matrix representation is
(1) $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.

Multiplication of a matrix and a vector

Recall that $F: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ is the quantum gate such that

$$
F|x\rangle \begin{cases}|00\rangle & \text { if }|x\rangle=|00\rangle \\ -|x\rangle & \text { otherwise }\end{cases}
$$

F 's matrix representation is
(1) $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.
(2) $|00\rangle,-|01\rangle,-|10\rangle,-|11\rangle$.

Multiplication of a matrix and a vector

Recall that $F: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ is the quantum gate such that

$$
F|x\rangle \begin{cases}|00\rangle & \text { if }|x\rangle=|00\rangle \\ -|x\rangle & \text { otherwise }\end{cases}
$$

F 's matrix representation is
(1) $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.
(2) $|00\rangle,-|01\rangle,-|10\rangle,-|11\rangle$.
(3) $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 0 \\ -1\end{array}\right)$.

Multiplication of a matrix and a vector

Recall that $F: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ is the quantum gate such that

$$
F|x\rangle \begin{cases}|00\rangle & \text { if }|x\rangle=|00\rangle \\ -|x\rangle & \text { otherwise }\end{cases}
$$

F 's matrix representation is
(1) $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.
(2) $|00\rangle,-|01\rangle,-|10\rangle,-|11\rangle$.
(3) $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 0 \\ -1\end{array}\right)$.
(9) F 's matrix representation is then

Multiplication of a matrix and a vector

In consequence, $F|\psi\rangle$ for any qubit array $\left(a_{00}, a_{01}, a_{10}, a_{11}\right)$ is

Multiplication of a matrix and a vector

In consequence, $F|\psi\rangle$ for any qubit array $\left(a_{00}, a_{01}, a_{10}, a_{11}\right)$ is

$$
\left(\begin{array}{l}
a_{00} \\
a_{01} \\
a_{10} \\
a_{11}
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Multiplication of a matrix and a vector

In consequence, $F|\psi\rangle$ for any qubit array $\left(a_{00}, a_{01}, a_{10}, a_{11}\right)$ is

$$
\left(\begin{array}{l}
a_{00} \\
a_{01} \\
a_{10} \\
a_{11}
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad\left(\begin{array}{c}
a_{00} \\
-a_{01} \\
-a_{10} \\
-a_{11}
\end{array}\right)
$$

Multiplication of a matrix and a vector

In consequence, $F|\psi\rangle$ for any qubit array $\left(a_{00}, a_{01}, a_{10}, a_{11}\right)$ is

$$
\left(\begin{array}{l}
a_{00} \\
a_{01} \\
a_{10} \\
a_{11}
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad\left(\begin{array}{c}
a_{00} \\
-a_{01} \\
-a_{10} \\
-a_{11}
\end{array}\right)
$$

That is, $F|\psi\rangle=\left(a_{00},-a_{01},-a_{10},-a_{11}\right)$.

Composing linear transformations

If T_{1} and T_{2} are linear transformations, then

$$
T_{1}\left(T_{2}|x\rangle\right)=\llbracket T_{1} \rrbracket \llbracket T_{2} \rrbracket|x\rangle
$$

Example

Let H be the Hadamard gate for \mathbb{C}^{2}. Recall that $H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$ and that $H|1\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$.

Example

Let H be the Hadamard gate for \mathbb{C}^{2}. Recall that $H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$ and that $H|1\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$.
Hence,

$$
H=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) .
$$

What happens if we apply the Hadamard gate twice?

$H H$ is equal to

What happens if we apply the Hadamard gate twice?

$H H$ is equal to

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
\end{gathered}
$$

What happens if we apply the Hadamard gate twice?

$H H$ is equal to

$$
\begin{array}{cc}
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

What happens if we apply the Hadamard gate twice?

$H H$ is equal to

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
\end{gathered}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

This means that $H H=I$. That is, $H H|\psi\rangle=|\psi\rangle$.

Unitary transformations

A quantum gate G is a unitary transformation. A linear transformation $G: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ is unitary if $G^{\dagger} G=I$.

Unitary transformations

A quantum gate G is a unitary transformation. A linear transformation $G: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ is unitary if $G^{\dagger} G=I$.

If you are not familiar with complex algebra, then you can think of G^{\dagger} as G^{\top}, G^{\prime} s transpose.

Unitary transformations

A quantum gate G is a unitary transformation. A linear transformation $G: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ is unitary if $G^{\dagger} G=I$.

If you are not familiar with complex algebra, then you can think of G^{\dagger} as G^{\top}, G^{\prime} s transpose.

Recall that the transpose of a matrix $G \in \mathbb{C}^{M \times N}$ is the matrix $G^{\top} \in \mathbb{C}^{N \times M}$ obtained by "mirroring" G through its diagonal. More precisely, for $i \leq M, j \leq N$, we have that $\left(G^{\top}\right)_{i j}=G_{j i}$.

Unitary transformations

A quantum gate G is a unitary transformation. A linear transformation $G: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ is unitary if $G^{\dagger} G=I$.

If you are not familiar with complex algebra, then you can think of G^{\dagger} as G^{\top}, G^{\prime} s transpose.

Recall that the transpose of a matrix $G \in \mathbb{C}^{M \times N}$ is the matrix $G^{\top} \in \mathbb{C}^{N \times M}$ obtained by "mirroring" G through its diagonal. More precisely, for $i \leq M, j \leq N$, we have that $\left(G^{\top}\right)_{i j}=G_{j i}$.

For example,

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)^{\top}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

Grover's algorithm

The problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, find an element $x \in\{0,1\}^{n}$ such that $f(x)=1$. We call such an element a solution of f.

Grover's algorithm

The problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, find an element $x \in\{0,1\}^{n}$ such that $f(x)=1$. We call such an element a solution of f.

We assume that there are $M \ll N=2^{n}$ solutions of f.

Quantum circuit

Quantum circuit

$$
\approx\left|\pi(4 \arcsin \sqrt{N / M})^{-1}\right| \approx O(\sqrt{N})
$$

Let $|\sigma\rangle:=\frac{1}{\sqrt{M}} \sum_{x: f(x)=1}|x\rangle$ and $\left|\sigma^{\perp}\right\rangle:=\frac{1}{\sqrt{N-M}} \sum_{x: f(x)=0}|x\rangle$.

Quantum circuit

$$
\approx\left|\pi(4 \arcsin \sqrt{N / M})^{-1}\right| \approx O(\sqrt{N})
$$

Let $|\sigma\rangle:=\frac{1}{\sqrt{M}} \sum_{x: f(x)=1}|x\rangle$ and $\left|\sigma^{\perp}\right\rangle:=\frac{1}{\sqrt{N-M}} \sum_{x: f(x)=0}|x\rangle$.
$|\sigma\rangle$ and $\left|\sigma^{\perp}\right\rangle$ are normal and orthogonal.

Quantum circuit

$$
\approx\left|\pi(4 \arcsin \sqrt{N / M})^{-1}\right| \approx O(\sqrt{N})
$$

Let $|\sigma\rangle:=\frac{1}{\sqrt{M}} \sum_{x: f(x)=1}|x\rangle$ and $\left|\sigma^{\perp}\right\rangle:=\frac{1}{\sqrt{N-M}} \sum_{x: f(x)=0}|x\rangle$.
$|\sigma\rangle$ and $\left|\sigma^{\perp}\right\rangle$ are normal and orthogonal.
|?) lies in the span of these two vectors.

Grover's rotation illustrated

Grover's rotation illustrated

Grover's rotation illustrated

Grover's rotation illustrated

Quantum circuit for Grover's rotation

Figure: Quantum circuit for Grover's rotation.

Putting all together

(1) The Grover rotation is implemented as $G \equiv U_{f} \rightarrow H \rightarrow F \rightarrow H$.
(1) Show that F^{\prime} 's matrix representation is $2|00 \ldots 0\rangle|00 \ldots 0\rangle^{\top}-I$.
(2) Show that $H^{\top}=H$.
(3) Show that the matrix representation of $H F H$ is $2 \mid$? $\rangle \mid$? $\rangle^{\top}-1$.

- Show that U_{f} is a reflection through the qubit array $\left|\sigma^{\perp}\right\rangle$. Recall that a linear transformation is a reflection through a vector v if its matrix representation is $2 v v^{\top}-l$.
© Conclude that G performs a rotation. It can be shown that this rotation is done by an angle of $\theta=2 \arcsin \sqrt{M / N}$ towards $|\sigma\rangle$.
(2) Write down the circuit implementing Grover's algorithm and argue why it computes a solution of f with high probability.

