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What is quantum computing?

From Wikipedia: “Quantum computing is the use of quantum-mechanical
phenomena such as superposition and entanglement to perform
computation.”

It can, in some cases, be much more faster than classical computing.
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A toy problem

A bit array of length 2n is balanced if exactly half of its entries are zero. A
bit array is constant if all its entries are zero.

The problem

Given a bit array f of length 2n, known to be balanced or constant, decide
if it is balanced.

A classical computer takes time linear in the length of the bit array to
solve this problem.
A quantum computer takes logarithmic time (by the Deutsch-Jozsa
algorithm).
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A more practical example

A quantum computer can find an element in an array of length N in
O(
√
N)-time (by Grover’s algorithm).
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Overview

1 Background
Qubits and qubit arrays
Quantum gates

2 The Deutsch-Jozsa algorithm

3 Grover’s algorithm
Background in linear algebra
Grover’s algorithm
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Qubits

Assume I have a closed box with a cat inside.

If it is a classical cat, then it is either dead or alive.

If it is a quantum cat, then it is both dead and alive. A quantum
phenomenon called superposition.

A bit is a value that is either 0 or 1.

A quantum bit is a value that is both 0 and 1 (superposition).
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Qubits

What is a qubit?

(a0, a1) ∈ C2 with |a0|2 + |a1|2 = 1.

|a0|2 = probability that we get a 0, when we measure the qubit.

|a1|2 = probability that we get a 1, when we measure the qubit.

Examples:

Qubits P(0) P(1)

( 1√
2
, 1√

2
) 1

2
1
2

( 1√
2
,− 1√

2
) 1

2
1
2

(0, 1) 0 1

(−1, 0) 1 0
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Carlos Cotrini (ETH Zürich) QC for dummies September 14, 2019 7 / 48



Qubits

What is a qubit?

(a0, a1) ∈ C2 with |a0|2 + |a1|2 = 1.

|a0|2 = probability that we get a 0, when we measure the qubit.

|a1|2 = probability that we get a 1, when we measure the qubit.

Examples:

Qubits P(0) P(1)

( 1√
2
, 1√

2
) 1

2
1
2

( 1√
2
,− 1√

2
) 1

2
1
2

(0, 1) 0 1

(−1, 0) 1 0
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Qubits

Value State Probability

0 7→ a0 7→ |a0|2

1 7→ a1 7→ |a1|2
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A qubit represents a single storage unit where both a 0 and a 1 are stored
at the same time (in superposition). It is not that a qubit is storing two
values in “physically” different spaces. The 0 and the 1 are in the same
“physical” space.
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Qubit arrays

Fix n ∈ N.
A bit array is one sequence of n bits.
A qubit array is all sequences of n bits (superposition).
When you observe the array, you see a bit array x of n bits with probability
|ax |2.
So a qubit array is defined by one complex number ax for each possible bit
array in {0, 1}n.
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Carlos Cotrini (ETH Zürich) QC for dummies September 14, 2019 10 / 48



Qubit arrays

Fix n ∈ N.
A bit array is one sequence of n bits.
A qubit array is all sequences of n bits (superposition).

When you observe the array, you see a bit array x of n bits with probability
|ax |2.
So a qubit array is defined by one complex number ax for each possible bit
array in {0, 1}n.
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Qubit arrays

What is a qubit array of length n?

(a0, a1, . . . , aN−1) ∈ CN , with N = 2n and

such that
∑
x

|ax |2 = 1.

|ax |2 is the probability, that after observing the qubit array, we get x .

Examples:

Qubit array P(00) P(01) P(10) P(11)

(0, 1√
2
, 0, 1√

2
) 0 1

2 0 1
2

(0, 1√
2
, 12 ,

1
2) 0 1

2
1
4

1
4

(1, 0, 0, 0) 1 0 0 0
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Qubit arrays

More examples:

(1/2, 0, 0, 1/2, 0, 0, 0, 1/
√

2) is a qubit array that, when observed,
yields 000 with prob 1/4, 011 with prob 1/4, and 111 with probability
1/2.

(1/
√

8, 1/
√

8, 1/
√

8, 1/
√

8, 1/
√

8, 1/
√

8, 1/
√

8, 1/
√

8) is a qubit array
that, when observed, yields any bit array of length 3 with equal
probability.
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Qubit arrays

000 7→ a000 7→ a0 7→ |a0|2

001 7→ a001 7→ a1 7→ |a1|2

010 7→ a010 7→ a2 7→ |a2|2

011 7→ a011 7→ a3 7→ |a3|2

100 7→ a100 7→ a4 7→ |a4|2

101 7→ a101 7→ a5 7→ |a5|2

110 7→ a110 7→ a6 7→ |a6|2

111 7→ a111 7→ a7 7→ |a7|2
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A qubit array of length n is a storage unit with n bits of capacity. A qubit
array is not a data structure containing all bit arrays in 2n “physically”
different locations. All 2n bit arrays are in the “physical” storage unit with
n bits of capacity, coexisting in superposition.
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Qubit arrays are vectors in CN

For x ∈ {0, 1}n, let |x〉 be the qubit array with all entries equal zero except
the x-th, which is 1.

Examples:

|10〉 = (0, 0, 1, 0).

|011〉 = (0, 0, 0, 1, 0, 0, 0, 0).

|0000〉 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Definition

Bn := {|x〉 | x ∈ {0, 1}n} .

Example: B2 = {|00〉 , |01〉 , |10〉 , |11〉}.
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Bn is a basis

Let |ψ〉 = (a0, a1, . . . , aN−1), then

|ψ〉 =
∑

x∈{0,1}n
ax |x〉 .

∑
x∈{0,1}n ax |x〉 is |ψ〉’s algebraic representation.

(a0, a1, . . . , aN) is |ψ〉’s vector representation.

Examples:

(
1√
2
,− 1√

2

)
= 1√

2
(1, 0)− 1√

2
(0, 1) = 1√

2
|0〉 − 1√

2
|1〉 .(

0, 1√
2
,− 1√

2
, 0
)

= 1√
2

(0, 1, 0, 0)− 1√
2

(0, 0, 1, 0) = 1√
2
|01〉 − 1√

2
|10〉 .

(0, 0, 0, 0, 0, 0, 0,−1) = −(0, 0, 0, 0, 0, 0, 0, 1) = − |111〉 .

Carlos Cotrini (ETH Zürich) QC for dummies September 14, 2019 16 / 48



Bn is a basis

Let |ψ〉 = (a0, a1, . . . , aN−1), then

|ψ〉 =
∑

x∈{0,1}n
ax |x〉 .

∑
x∈{0,1}n ax |x〉 is |ψ〉’s algebraic representation.

(a0, a1, . . . , aN) is |ψ〉’s vector representation.

Examples:

(
1√
2
,− 1√

2

)
= 1√

2
(1, 0)− 1√

2
(0, 1) = 1√

2
|0〉 − 1√

2
|1〉 .(

0, 1√
2
,− 1√

2
, 0
)

= 1√
2

(0, 1, 0, 0)− 1√
2

(0, 0, 1, 0) = 1√
2
|01〉 − 1√

2
|10〉 .

(0, 0, 0, 0, 0, 0, 0,−1) = −(0, 0, 0, 0, 0, 0, 0, 1) = − |111〉 .
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Measurements

A measurement operator receives as input a qubit array
∑

x ax |x〉 and
outputs x with probability |ax |2.

Examples:

Measuring −1
2 |0〉 −

√
3
2 |1〉 yields 1 with probability 3

4 .

Measuring |1〉 yields 1 with probability 1.

Observation

After measuring a qubit array, all its uncertainty is lost. Measuring again
gives the same result.
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Quantum gates

A quantum gate is a unitary transformation G : CN → CN .

For now, the most important thing to know about unitary transformations
is that they are linear:

G

(∑
x

ax |x〉

)
=
∑
x

axG |x〉 .

Example:

G

(
1

2
|00〉 − 1

2
|10〉 − 1√

2
|11〉

)
=

1

2
G |00〉 − 1

2
G |10〉 − 1√

2
G |11〉 .

To compute G |ψ〉, you only need to know how G works on Bn.
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Popular quantum gates

Hadamard gate.

Emulation gate.

Reflection gate.
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Quantum gate example: Hadamard gate

For |x〉 ∈ Bn,

H |x〉 :=
∑

y∈{0,1}n

(−1)x
>y

√
2n

|y〉 ,

where x>y :=
∑

i≤n x [i ]y [i ] is the classical inner product.

Example:

H |0〉 =
1√
2
|0〉+

1√
2
|1〉 .

H |01〉 =
1

2
|00〉 − 1

2
|01〉 +

1

2
|10〉 − 1

2
|11〉 .
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Carlos Cotrini (ETH Zürich) QC for dummies September 14, 2019 20 / 48



Quantum gate example: Hadamard gate

For |x〉 ∈ Bn,

H |x〉 :=
∑

y∈{0,1}n

(−1)x
>y

√
2n

|y〉 ,

where x>y :=
∑

i≤n x [i ]y [i ] is the classical inner product.

Example:

H |0〉 =
1√
2
|0〉+

1√
2
|1〉 .

H |01〉 =
1

2
|00〉 − 1

2
|01〉

+
1

2
|10〉 − 1

2
|11〉 .
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Quantum gate example: Hadamard gate

H |x〉 :=
∑

y∈{0,1}n

(−1)x
>y

√
2n

|y〉 ,

In particular,

H |00 . . . 0〉 =

∑
y∈{0,1}n

1√
2n
|y〉 =: |?〉 .
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Quantum gate example: Hadamard gate

In general, for any qubit array |ψ〉 =
∑

x ax |x〉,

H |ψ〉 = H

(∑
x

ax |x〉

)

=
∑
x

axH |x〉

=
∑
x ,y

ax (−1)x
>y

√
2n

|y〉

=
∑
y

(∑
x

ax (−1)x
>y

√
2n

)
|y〉 .

Applying the Hadamard gate takes constant time! It is not that the gate
computes H |x〉, for each x! Remember that all bit arrays x are in
superposition!

Carlos Cotrini (ETH Zürich) QC for dummies September 14, 2019 22 / 48



Quantum gate example: Hadamard gate

In general, for any qubit array |ψ〉 =
∑

x ax |x〉,

H |ψ〉 = H

(∑
x

ax |x〉

)
=
∑
x

axH |x〉

=
∑
x ,y

ax (−1)x
>y

√
2n

|y〉

=
∑
y

(∑
x

ax (−1)x
>y

√
2n

)
|y〉 .

Applying the Hadamard gate takes constant time! It is not that the gate
computes H |x〉, for each x! Remember that all bit arrays x are in
superposition!
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Quantum gate example: Emulation gate

If f : {0, 1}n → {0, 1} is a Boolean circuit, then

Uf |x〉 := (−1)f (x) |x〉 .

In general, for any qubit array |ψ〉,

Uf |ψ〉 = Uf

(∑
x

ax |x〉

)
=
∑
x

ax (−1)f (x) |x〉 .

If computing f (x) takes O(K )-time, then computing Uf |ψ〉 also takes
O(K )-time.
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Quantum gate example: Reflection gate

F |x〉

{
|00 . . . 0〉 if x = 00 . . . 0 and

− |x〉 otherwise.
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Classical vs parallel vs quantum computation

f : {0, 1}n → {0, 1}. Suppose that computing f (x) takes O(K (n))-time.

How much you need to compute f ’s table?

Memory Time Energy

Classical O(2n) O(2nK (n)) O(2nK (n))
Parallel (2n cores) O(2n) O(K (n)) O(2nK (n))

Quantum O(n) O(K (n)) O(K (n))

* Constants may vary substantially.
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The Deutsch-Jozsa algorithm

And now... a problem that can be solved in linear time by a classical
computer, but in constant time by a quantum computer!

A bit array of length 2n is balanced if exactly half of its entries are zero. A
bit array is constant if all its entries are zero.

The problem

Given a bit array f of length 2n, known to be balanced or constant, decide
if it is balanced.

Executing this circuit requires only just one call to Uf .
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Exercises

Observe that |0〉 = |00...0〉. Recall that

H |x〉 :=
∑

y∈{0,1}n

(−1)x
>y

√
2n

|y〉 . Uf |x〉 := (−1)f (x) |x〉 .

We now show why this circuit decides if f is balanced or constant.

Show that∣∣ψ′〉 = HUfH |00 . . . 0〉 =
∑

z∈{0,1}n

 ∑
y∈{0,1}n

(−1)z
>y+f (y)

√
2n

 |z〉 .
After we measure |ψ′〉, what is the probability that we get 00 . . . 0 if f
is balanced? What is the probability of getting 00 . . . 0 if f is
constant?
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Agenda

1 Background in linear algebra.

Linear transformations.
Matrix representations.
Unitary transformations.

2 Grover’s algorithm.
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Searching with a quantum computer

The problem

Given a function f : {0, 1}n → {0, 1}, find an element x ∈ {0, 1}n such
that f (x) = 1. We call such an element a solution of f .

A classical computer solves this in O(2n)-time.
A quantum computer can solve this in O(

√
2n)-time!

We assume that there are M � N = 2n solutions of f .
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Linear transformations

A linear transformation is a function T : CN → CN such that

T (a1 |ψ1〉+ a2 |ψ2〉) = a1T |ψ1〉+ a2T |ψ2〉 .

Every linear transformation T is identified with a unique matrix
JT K ∈ CN×N such that T |ψ〉 = JT K |ψ〉. We identify T with JT K.
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How to compute the matrix representation of a linear
transformation T?

1 List all basic qubit arrays: |00 . . . 0〉 , |00 . . . 1〉 , . . . , |11 . . . 1〉.

2 Apply T to each of them: T |00 . . . 0〉 ,T |00 . . . 1〉 , . . . ,T |11 . . . 1〉.
3 Write these qubit arrays as column vectors.

4 JT K is the matrix whose columns are the vectors above.
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Examples

Let T be such that T |0〉 = − |1〉 and T |1〉 = |0〉. If we apply the steps
above we get:

1 List all basic qubit arrays: |0〉, |1〉.

2 If we apply T to these arrays we get: − |1〉, |0〉.

3 Writing them as column vectors yields:

(
0
−1

) (
1
0

)
4 Hence,

T =

(
0 1
−1 0

)
.
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Multiplication of a matrix and a vector

Recall that T |0〉 = − |1〉 and T |1〉 = |0〉.

Let |ψ〉 = a0 |0〉+ a1 |1〉 = (a0, a1). Let’s verify that

T |ψ〉 = JT K |ψ〉 .

T |ψ〉 = a0T |0〉+ a1T |1〉 = −a0 |1〉+ a1 |0〉 = (a1,−a0).

JT K |ψ〉 can be visualized as follows: (
a0
a1

)
(

0 1
−1 0

) (
a1
−a0

)
Hence, JT K |ψ〉 = (a1,−a0).
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Multiplication of a matrix and a vector

Recall that F : C4 → C4 is the quantum gate such that

F |x〉

{
|00〉 if |x〉 = |00〉
− |x〉 otherwise.

F ’s matrix representation is

1 |00〉, |01〉, |10〉, |11〉.
2 |00〉, − |01〉, − |10〉, − |11〉.

3


1
0
0
0

,


0
−1
0
0

,


0
0
−1
0

,


0
0
0
−1

.

4 F ’s matrix representation is then
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .
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Multiplication of a matrix and a vector

In consequence, F |ψ〉 for any qubit array (a00, a01, a10, a11) is


a00
a01
a10
a11




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




a00
−a01
−a10
−a11


That is, F |ψ〉 = (a00,−a01,−a10,−a11).
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Composing linear transformations

If T1 and T2 are linear transformations, then

T1 (T2 |x〉) = JT1KJT2K |x〉 .
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Example

Let H be the Hadamard gate for C2. Recall that H |0〉 = 1√
2
|0〉+ 1√

2
|1〉

and that H |1〉 = 1√
2
|0〉 − 1√

2
|1〉.

Hence,

H =

(
1√
2

1√
2

1√
2
− 1√

2

)
.
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What happens if we apply the Hadamard gate twice?

HH is equal to

(
1√
2

1√
2

1√
2
− 1√

2

)
(

1√
2

1√
2

1√
2
− 1√

2

) (
1 0
0 1

)
This means that HH = I . That is, HH |ψ〉 = |ψ〉.
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Unitary transformations

A quantum gate G is a unitary transformation. A linear transformation
G : CN → CN is unitary if G †G = I .

If you are not familiar with complex algebra, then you can think of G † as
G>, G ’s transpose.

Recall that the transpose of a matrix G ∈ CM×N is the matrix
G> ∈ CN×M obtained by “mirroring” G through its diagonal. More
precisely, for i ≤ M, j ≤ N, we have that

(
G>
)
ij

= Gji .

For example, (
1 2 3
4 5 6

)>
=

 1 4
2 5
3 6

 .
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Carlos Cotrini (ETH Zürich) QC for dummies September 14, 2019 40 / 48



Grover’s algorithm

The problem

Given a function f : {0, 1}n → {0, 1}, find an element x ∈ {0, 1}n such
that f (x) = 1. We call such an element a solution of f .

We assume that there are M � N = 2n solutions of f .
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Quantum circuit

Let |σ〉 := 1√
M

∑
x :f (x)=1 |x〉 and

∣∣σ⊥〉 := 1√
N−M

∑
x :f (x)=0 |x〉.

|σ〉 and
∣∣σ⊥〉 are normal and orthogonal.

|?〉 lies in the span of these two vectors.
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Grover’s rotation illustrated
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Grover’s rotation illustrated

Carlos Cotrini (ETH Zürich) QC for dummies September 14, 2019 46 / 48



Quantum circuit for Grover’s rotation

Figure: Quantum circuit for Grover’s rotation.
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Putting all together

1 The Grover rotation is implemented as G ≡ Uf → H → F → H.

1 Show that F ’s matrix representation is 2 |00 . . . 0〉 |00 . . . 0〉> − I .
2 Show that H> = H.
3 Show that the matrix representation of HFH is 2 |?〉 |?〉> − I .
4 Show that Uf is a reflection through the qubit array

∣∣σ⊥〉. Recall that
a linear transformation is a reflection through a vector v if its matrix
representation is 2vv> − I .

5 Conclude that G performs a rotation. It can be shown that this
rotation is done by an angle of θ = 2 arcsin

√
M/N towards |σ〉.

2 Write down the circuit implementing Grover’s algorithm and argue
why it computes a solution of f with high probability.
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