

QUANTUM COMPUTING DEMONSTRATION

LUÍS PAULO SANTOS

JANUARY, 2021

BRIEF HISTORICAL OVERVIEW

- Quantum systems evolve in a state space exponentially larger than the number of parameters require to define each state
- This exponential complexity hinders the simulation of large quantum system using classical computers
but simultaneously enables quantum parallelism
- "Nature isn't classical, goddamn it! And if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."
[Richard Feynman, 1981]

BRIEF HISTORICAL OVERVIEW

- In 1985 Deutsch developed a model of a quantum Turing machine, a theoretical basis for quantum computing
- In 1994 Shor has shown that efficient $\left(O\left(\log ^{3}(N)\right)\right.$) factorization of prime numbers is possible on quantum computers;
It hasn't been shown that classical polylogarithmic algorithms for factorization don't exist, although none is known
- In 1996 Grover proposed a search algorithm on unstructured databases with complexity $O(\sqrt{ } N)$, quadratically better than classical searches ($O(N)$)

BRIEF HISTORICAL OVERVIEW

- NISQ (Noisy Intermediate Scale Quantum) era:
- Noisy qubits
- Noisy q-gates
- 20 .. 50 qubits (100 seem feasible) ${ }^{1}$
- Limited connectivity among qubits
- Limited coherence time (~ 100 usec)
${ }^{1}$ Adiabatic quantum computers can reach 2000 qubits (D-Wave 2000Q System), but operate based on the simulated annealing algorithm and the
 adiabatic theorem, requiring the modelling of optimization problems as physical Hamiltonians
rádo-irer, uency

"Demonstration of a quantum error detection code using a square lattice of four superconducting qubits", A.D. Córcoles et al., Nat. Comm., 6:6979 (2015)

QUANTUM CIRCUIT MODEL

- Quantum computers can represent an exponenticilly large number of states due to quantum parallelism
- The quantum circuit model generalizes the binary logic gates model used in classical computers: quantum gates operate on quantum states
$\mathrm{q}[0]$ (0)
$\mathrm{q}[1] \mid 0)$

\#1 - QUBIT

- A classical bit's value is uniquely and deterministically either 0 or 1

$$
b \in\{0,1\}
$$

- A quantum state is a linear combination (superposition) of the basis states:

$$
|q\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle ; \alpha_{0}, \alpha_{1} \in \mathbb{C}, \sum_{i=0}^{1}\left|\alpha_{i}\right|^{2}=1
$$

- A qubit can be in both basis states simultaneously, and any quantum operation on the qubit operates over both states
- A qubit can behave like a classical bit by setting one of the weights α_{i} to 1 and the quantum machine can behave as a classical computer

IBM Q EXPERIENCE - QUBIT

\#1-QUBIT

- A superposition of n qubits is a linear combination of 2^{n} states:

$$
\left|q^{\otimes n}\right\rangle \equiv|\Psi\rangle=\sum_{i=0}^{2^{n}-1} \alpha_{i}|i\rangle, \quad \sum_{i=0}^{2^{n}-1}\left|\alpha_{i}\right|^{2}=1
$$

- any quantum operation on the n qubits superposition operates over all 2^{n} states

\#2 - MEASUREMENT

- Measurement of a quantum register yields a classic staite measurement $\left(|\Psi\rangle=\sum_{i=0}^{2^{n}-1} \alpha_{i}|i\rangle\right)=|i\rangle$, with probability $\left|\alpha_{i}\right|^{2}$
- The quantum superposition collapses into the measured state, losing all information on the α_{i} 's any further reading will return the same state $|i\rangle$
- No intermediate result can be accessed (debugging has to be rethought)
- The α_{i} 's cannot be accessed directly, i.e., they cannot be measured

IBM Q EXPERIENCE - MEASUREMENT

\#3 - UNITARY TRANSFORMATIONS

- Physical laws require all quantum transitions to be unitary:

$$
\left|\Psi^{\prime}\right\rangle=U|\Psi\rangle \Rightarrow U^{-1}=U^{\dagger}, U^{\dagger} U=I
$$

- This also implies means that the transformation is reversible:
given the outputs the inputs can be known!

Example: CNOT gate (invert qubit q_{0} if control qubit q_{1} is 1):
$\left\{\begin{array}{ll|ll}q_{1} & q_{0} & q_{1} & q_{0} \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}\right.$

$$
\begin{aligned}
& |\Psi\rangle=\alpha_{0}|00\rangle+\alpha_{1}|01\rangle+\alpha_{2}|10\rangle+\alpha_{3}|11\rangle \\
& {\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{3} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]} \\
& \left|\Psi^{\prime}\right\rangle=\alpha_{0}|00\rangle+\alpha_{1}|01\rangle+\alpha_{3}|10\rangle+\alpha_{2}|11\rangle^{12}
\end{aligned}
$$

\#3 - UNITARY TRANSFORMATIONS

- Unitary transformations have a number of outputs equal to the number of inputs
- Classical boolean gates are not reversible
- Quantum gates:
- NOT (X gate): $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- Rotation (phase shift): $\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \theta}\end{array}\right]$
- CNOT: $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

\#3 - UNITARY TRANSFORMATIONS (HADAMARD)

- The Hadamard gate is often used to prepare uniform superpositions
- Hadamard: $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \quad|0\rangle-H$

$$
\left|q_{0}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\frac{1}{\sqrt{2}}[|0\rangle+|1\rangle]
$$

$$
\left|q_{1} q_{0}\right\rangle=\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\right) \otimes\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\right)\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]=\frac{1}{2}[|00\rangle+|01\rangle+|10\rangle+|11\rangle]
$$

\#4 - QUANTUM PARALLELISM

- An n-qubits register represents $N=2^{n}$ states simultaneously
- A quantum algorithm operates over the \mathbf{N} states simultaneously
- Quantum parallelism is exponential on the number of qubits

Example: what is the key encoded in the circuit?

4 executions are required to iterate over the 4 possible candidates

1 execution is enough to encode the solution in $\left|q_{1} q_{0} y\right\rangle$, but ...

\#4 - QUANTUM PARALLELISM

$$
|\Psi\rangle=\sum_{i=0}^{2^{n}-1} \alpha_{i}|i\rangle \Rightarrow \hat{Q}|\Psi\rangle=\hat{Q}\left(\sum_{i=0}^{2^{n}-1} \alpha_{i}|i\rangle\right)
$$

IBM Q EXPERIENCE - QUANTUM PARALLELISM

| q_{e} | H | a^{a} |
| :--- | :--- | :--- | :--- |
| q_{1} | H | b^{2} |
| q_{2} | H | c |
| | | |

\#4 - QUANTUM PARALLELISM

- Resembles data parallelism: the same algorithm is simultaneously applied to all possible states, but without replication of resources
- Caveat: when a measurement is performed to access the result, only a single state is read, and this is stochastically selected
- Information on all other states is lost
- This irreversible loss of information means that even though the computation evolves on an exponentially large state space, we only have access to a very limited portion of it

\#5 - NO-CLONING THEOREM

- Quantum information cannot be copied!
- There is no unitary transformation that copies one arbitrary quantum superposition in one register to another register:

$$
|R\rangle|Q\rangle \rightarrow U|R\rangle|Q\rangle=|R\rangle|R\rangle
$$

- Copying intermediate results into temporary storage (variables) is thus impossible

\#6 - INITIAL STATE

- Quantum algorithms require that quantum registers are initialized to some known state
- This initial state is referred to as the ground state and usually made to be the basis state |0〉
- Loading data to the quantum registers may in many cases require a number of gates (computation) larger than the number of gates necessary to execute the intended algorithm, offseting the quantum advantage

MEASUREMENTS ON A SIMULATOR

Statevector \vee

MEASUREMENTS ON A REAL SYSTEM

Histogram

