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BRIEF HISTORICAL OVERVIEW

• Quantum systems evolve in a  state space exponentially larger than the 

number of parameters require to define each state

• This exponential complexity hinders the simulation of large quantum system

using classical computers

but simultaneously enables quantum parallelism

• “Nature isn’t classical, goddamn it! And if you want to make a simulation of 

Nature, you’d better make it quantum mechanical, and by golly it’s a wonderful 

problem, because it doesn’t look so easy. ”

[Richard Feynman, 1981]
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BRIEF HISTORICAL OVERVIEW

• In 1985 Deutsch developed a model of a quantum Turing machine, a 

theoretical basis for quantum computing

• In 1994 Shor has shown that efficient ( O(log3(N)) ) factorization of prime 

numbers is possible on quantum computers;

It hasn’t been shown that classical polylogarithmic algorithms for factorization

don’t exist, although none is known

• In 1996 Grover proposed a search algorithm on unstructured databases with 

complexity O(√N) , quadratically better than classical searches ( O(N) )
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BRIEF HISTORICAL OVERVIEW
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• NISQ (Noisy Intermediate Scale Quantum) era:

• Noisy qubits

• Noisy q-gates

• 20 .. 50 qubits (100 seem feasible)1

• Limited connectivity among qubits

• Limited coherence time (~100 usec) 

1 Adiabatic quantum computers can reach 2000 
qubits (D-Wave 2000Q System),  but operate based 
on the simulated annealing algorithm and the 
adiabatic theorem, requiring the modelling of 
optimization problems as physical Hamiltonians
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QUANTUM CIRCUIT MODEL

• Quantum computers can represent an exponentially large number of states due to 

quantum parallelism

• The quantum circuit model generalizes the binary logic gates model used in classical

computers: quantum gates operate on quantum states
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#1 - QUBIT
• A classical bit’s value is uniquely and deterministically either 0 or 1

𝑏 ∈ 0,1

• A quantum state is a linear combination (superposition) of the basis states:

  𝑞 = 𝛼0  0 + 𝛼1  1 ; 𝛼0 , 𝛼1 ∈ ℂ,  𝑖=0
1 𝛼𝑖

2 = 1

• A qubit can be in both basis states simultaneously, and any quantum operation on 

the qubit operates over both states

• A qubit can behave like a classical bit by setting one of the weights αi to 1 and the 

quantum machine can behave as a classical computer
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#1 - QUBIT

• A superposition of n qubits is a linear combination of 2n states:

  𝑞⊗𝑛 ≡   Ψ =  𝑖=0
2𝑛−1 𝛼𝑖  𝑖 ,  𝑖=0

2𝑛−1 𝛼𝑖
2 = 1

• any quantum operation on the n qubits superposition operates over all 2n

states
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#2 - MEASUREMENT

• Measurement of a quantum register yields a classic state

measurement   Ψ =  𝑖=0
2𝑛−1 𝛼𝑖  𝑖 =   𝑖 , with probability 𝛼𝑖
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• The quantum superposition collapses into the measured state, losing all 

information on the 𝛼𝑖’s

any further reading will return the same state   𝑖

• No intermediate result can be accessed (debugging has to be rethought)

• The 𝛼𝑖’s cannot be accessed directly, i.e., they cannot be measured
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#3 – UNITARY TRANSFORMATIONS
• Physical laws require all quantum transitions to be unitary:

  Ψ′ = U   Ψ ⟹ 𝑈−1 = 𝑈†, 𝑈†𝑈 = 𝐼

• This also implies means that the transformation is reversible:

given the outputs the inputs can be known!
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q1 q0 q1 q0

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

  Ψ = 𝛼0  00 + 𝛼1 0  1 + 𝛼2  10 + 𝛼3  11
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𝛼2
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1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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𝛼1

𝛼2

𝛼3

  Ψ′ = 𝛼0  00 + 𝛼1 0  1 + 𝛼3  10 + 𝛼2  11

q1

q0

Example: CNOT gate (invert qubit q0 if control qubit q1 is 1):



#3 – UNITARY TRANSFORMATIONS

• Unitary transformations have a number of outputs equal to the number of inputs

• Classical boolean gates are not reversible

• Quantum gates:

• NOT (X gate): 
0 1
1 0

• Rotation (phase shift): 
1 0
0 𝑒𝑖𝜃

• CNOT:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Toffoli (CCNOT): 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
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• The Hadamard gate is often used to prepare uniform superpositions

• Hadamard:  
1

2

1 1
1 −1

  𝑞0 =
1

2

1 1
1 −1

1
0

=
 1 2

 1 2
=

1

2
  0 +   1

  𝑞1𝑞0 =
1

2

1 1
1 −1

⊗
1

2

1 1
1 −1

1
0
0
0

=

 1 2
 1 2
 1 2
 1 2

=
1

2
  00 +   01 +   10 +   11

#3 – UNITARY TRANSFORMATIONS (HADAMARD)
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q0|0> H

q0|0> H

q1|0> H



#4 - QUANTUM PARALLELISM
• An n-qubits register represents N=2n states simultaneously

• A quantum algorithm operates over the N states simultaneously

• Quantum parallelism is exponential on the number of qubits
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Example: what is the key encoded in the circuit?

b0

yb1

q1

y

q0

|0>

q0

q1

4 executions are required to 
iterate over the 4 possible 
candidates 

1 execution is enough to encode 
the solution in |q1 q0 y> , but …

H

H
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  𝑎

  𝑏
Q 𝑄   𝑎 ⊗   𝑏

  Ψ =  
𝑖=0

2𝑛−1

𝛼𝑖  𝑖 ⟹  𝑄  Ψ =  𝑄  
𝑖=0

2𝑛−1

𝛼𝑖  𝑖

  0

  0
Q 𝑄   0 ⊗   0

  0

  1
Q 𝑄   0 ⊗   1

  1

  0
Q 𝑄   1 ⊗   0

  1

  !
Q 𝑄   1 ⊗   1
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#4 - QUANTUM PARALLELISM

• Resembles data parallelism: the same algorithm is simultaneously applied to all 

possible states, but without replication of resources

• Caveat: when a measurement is performed to access the result, only a single 

state is read, and this is stochastically selected

• Information on all other states is lost

• This irreversible loss of information means that even though the computation

evolves on an exponentially large state space, we only have access to a very 

limited portion of it
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#5 - NO-CLONING THEOREM

• Quantum information cannot be copied!

• There is no unitary transformation that copies one arbitrary quantum 

superposition in one register to another register:

  𝑅   𝑄 ⟶ 𝑈   𝑅   𝑄 =   𝑅   𝑅

• Copying intermediate results into temporary storage (variables) is thus

impossible
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#6 – INITIAL STATE

• Quantum algorithms require that quantum registers are initialized to some 

known state

• This initial state is referred to as the ground state and usually made to be the 

basis state   𝟎

• Loading data to the quantum registers may in many cases require a number

of gates (computation) larger than the number of gates necessary to execute 

the intended algorithm, offseting the quantum advantage
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MEASUREMENTS ON A SIMULATOR
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MEASUREMENTS ON A REAL SYSTEM
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