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Chair: Christian Deppe (Technical University of Munich, Germany)

10:10 Correcting Erasures with Topological Subsystem Color Codes

Hiteshvi Manish Solanki and Pradeep K Sarvepalli {Indian Institute of Technology Madras, India)

Qubit loss is one of the forms of noise encountered in some quantum technologies. Such noise is modeled using the
quantum erasure channel. Unlike the depolarizing noise, it is much more tractable, yet the performance of many
quantum codes over the erasure channel has not been studied as extensively. In this paper, we study the performance
of topological subsystem color codes (TSCCs) over the quantum erasure channel. It is the first such study of TSCCs
over the erasure channel. We propose multiple decoding algorithms for TSCC and obtain the highest thresheld of
about 9.7% for the subsystem color code derived from the square octagon lattice.

10:20 Linear programming decoder for hypergraph product quantum codes

Ormar Fawzi (ENS de Lyon, France): Lucien Groués (Sorbonne Université & Inria Paris, France); Anthony Leverrier (INRIA, France)
We introduce a decoder for quantum CSS codes that is based on linear programming. Qur definition is a priori slightly
different from the one proposed by Li and Vontobel as we have a syndrome oriented approach instead of an error
oriented one, but we show that the success condition is equivalent. Although we prove that this decoder fails for
quantum codes that do not have good soundness property (i.e., having large errors with syndrome of small weight)
such as the toric code, we obtain good results from simulations. We run our decoder for hypergraph products of two
random LDPC codes, showing that it performs better than belief propagation, even combined with the small-set-flip
decoder that can provably correct a2 constant fraction of random errors.

10:30 Universal Communication Efficient Quantum Threshold Secret sharing Schemes

Kaushik Senthoor and Pradeep K Sarvepalli (Indian Institute of Technology Madras, India)

Quantum secret sharing (QSS) is a cryptographic protocol in which a quantum secret is distributed among a number
of parties where some subsets of the parties are able to recover the secret while some subsets are unzble to recover
the secret. In the standard \({(k,n)}%) quantum threshold secret sharing scheme, any subset of Y(k\) or more parties
out of the total \(n\) parties can recover the secret while other subsets have no information about the secret. But
recovery of the secret incurs a communication cost of at least (k') qudits for every qudit in the secret. Recently, a
class of communication efficient Q5SS schemes were proposed which can improve this communication cost to %
(\frac{d}{d-k+13}\) by contacting \(d'geq k') parties where Y({d\} is fixed prior to the distribution of shares. In this
paper, we propose a more general class of \(({k,n)}\} quantum secret sharing schemes with low communication
complexity. In these schemes the combiner can contact any \(d) parties at the time of recovery where ‘(k\leg d\leqg
n'). This is the first such class of universal communication efficient quantum threshold schemes.

10:40 Quantum Channel State Masking

Uzi Pereg and Christian Deppe (Technical University of Munich, Germany); Holger Boche (Technical University Munich, Germany)
Communication over a gquantum channel that depends on a quantum state is considered, when the encoder has
channel side information (CSI) and is required to mask information en the guantum channel state from the decoder. A
full characterization is established for the entanglement-assisted masking equivocation region, and a regularized
formula is given for the quantum capacity-leakage function without assistance. For Hadamard channels without
assistance, we derive single-letter inner and outer bounds, which coincide in the standard case of a channel that does
not depend on a state.
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Part |: Principles of Quantum Computing



“Blackbox” Computing Devices

e The high level function of any computing device: map input data to output data.

beZp =

P(x|b)

=>X€Z?2n

e What are the different type of “boxes” that nature allows?

(ae)

Super-
b =—> Classical > X b = Quantum — x b ==| Quantum F=% X
Box Box Box
Inside the box: Inside the box: Inside the box:
Components are manipulating Components are manipulating Components are manipulating
information encoded in bits information encoded in information encoded in

quantum bits (qubits) “stronger than quantum” objects



“Blackbox” Computing Devices

e The high level function of any computing device: map input data to output data.

beZy == P(x|b) = x cZ
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Quantum versus Classical Computers

e Quantum computers are not simply computers that “use” quantum mechanics.

Hardware relies on
principles of quantum mechanics.

Same computational model:
manipulation of bits

..-010010111010 - -

In contrast, quantum computers manipulate qubits.

Qubits are two-level quantum systems that
can utilize non-classical features like superposition and entanglement.



DiVincenzo’s Five Requirements for the Implementation of
Quantum Computation

Fortschr. Phys. 48 (2000) 9—11, 771—-783

The Physical Implementation of Quantum Computation

DaviD P. DIVINCENZO

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA

Abstract

After a brief introduction to the principles and promise of quantum information processing, the require-
ments for the physical implementation of quantum computation are discussed. These five requirements,
plus two relating to the communication of quantum information, are extensively explored and related to
the many schemes in atomic physics, quantum optics, nuclear and electron magnetic resonance spectro-
scopy, superconducting electronics, and quantum-dot physics, for achieving quantum computing.



DiVincenzo’s Five Requirements for the Implementation of
Quantum Computation

1. A scalable physical system with well-characterized qubits
2. A qubit-specific measurement capability

3. The ability to initialize the state of the qubits to a simple fiducial
state, such as |000 ...)

4. A “universal” set of qguantum gates

5. Long relevant decoherence times, much longer than the gate
operation time



DiVincenzo’s Five Requirements for the Implementation of
Quantum Computation

1. A scalable physical system with well-characterized qubits



Physical Qubits: Photons

Photon

Example:
Photon Polarization

%

il Vertical Horizontal
polarization polarization
0) 1)

Jiuzhang Suanshu optical quantum computer, Jian-wei Pan’s group



Physical Qubits: Trapped lons

e Individual ions are confined in a magnetic field and manipulated using laser pulses.

Honeywell’s trapped ion quantum computer

Ground state 15t excited state



Physical Qubits: Superconducting Circuits

Comnn e When certain materials are cooled to
very low temperatures, their electrons
form pairs called Cooper pairs.

e Cooper pairs carry charge in a circuit
with virtually zero resistance, a phenomenon

called superconductivity.
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The Theory of Qubits

e Mathematically, we represent every qubit by a two-dimensional complex vector space C2.

- Physical states of the system are represented by 2 x 2 complex matrices that are
(i) positive (i.e. having non-negative eigenvalues)

(ii) trace-one (i.e. diagonal elements summing to one)

e Operators of this form are called density matrices (symbolically written as p, w, etc.).

General Form of a Qubit:

T p Ge
p_l—p
/

Coherence terms 0<p<1;
0<r<pl—p) Every valid choice of p, r, ¢ corresponds to a different
physical preparation of the quantum system!




The Theory of Qubits

e A special type of density matrices are those having rank one:

[ 2 - /1
< = 2 2 - /1
3 "3 §[§_2§

. /1 1 - /1
£ S Ia/ =
\/ 3 3 3

=
|
||
£
|
P

is called a ket

where ) i
= [) (¥ (Y| = [\/g —i\/%\ is called a bra
e A rank one density matrices is called a pure state. Otherwise it’s called a mixed state.

e We represent pure states simply by their vector |¢) € C2.
e The standard basis in C? is called the computational basis.

0) = [(1)] 1) = H " generipur;j;i;w - [g]

o + (817 =1



The Theory of Qubits

photon

Vertical
polarization

0)

Lo

Diagonal up
polarization

i +) = /5(0) + 1))

Horizontal
polarization
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Diagonal down
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The Theory of Qubits

e How do the states of qubit systems evolve in time?

Reversible evolution of the system is described by unitary dynamics.

p UpUT, where U is a unitary operator, i.e. UTU =1 := {1 0].

0 1
A unitary U is also called a gate. / - \
E le: 10) = |1
AP Op = 01 Bit flip: 7al0) = [1)
| 10 o4|1) = [0)
— ' Pauli _
p U : aU: 1 1 0 . O'z|0> — |0>
' n z — ase Hip:
UPUT matrices o 0 -1 Phase fl o 1) = —[1)
Example o 0 —i| B+ o,]0) = i[1)
\ _ Y 't 0| Phase flip: oy|l) = —@
[ p e - |
— re_i(b 1 — » X i

| 0 1 re’* 1 [0 1 1— re
T — P — b
UpU" = [1 0] {re_w5 1 —p] [1 0] [Te“b D }



The Theory of Qubits
“superposition” of states

e We represent multiple qubits by taking tensor products of C2. /

r |
. . . n L] . L] L] .
An n-qubit state lives in C? and is expressed as a linear combination of 2" basis vectors:

1 1 1

Z Z Z by by, b, [01) @ b2) @ -+ @ |by) Ly by, €C
b1=0bs=0  b,=0 /‘ ‘\ T

First Second Nth

qubit qubit qubit

e The physical correspondence still remains:

Every |¢) € C?" corresponds to a physically realizable
state of an n-qubit system!!

1 1 1

= Z Z Z Loy b b [D1) @ [D2) @ -+ @ |by) )

b1=0 b2=0 bNZO




The Theory of Qubits

Example: Consider a two-qubit photon system.

__________________________________________________________________________________________________________________________

First Second \: i First Second
photsn phciton i ! photon photon et ! et -
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/
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Corresponds to both
. photons vertically polarized

photons horizontally polarized

N s e =
\/I \/I i Corresponds to both /,é .é
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e But the linear combination state |®) = \/g (|0) ®10)+]1)®| 1)) must also be physically realizable!

However, in |¢) the individual photons do not have a definite polarization state.

States of this form are called entangled.



The Theory of Qubits

Building entangled states:

H | =

\/g

Hadamard gate

T

0)— H KI\
0 |

\/g(m SURYITETY

U
Two-qubit
controlled-not
(CNQOT) gate

o OO -

oo~ O

_ o O O

CNOT
CNOT

CNOT

(
(
(
CNOT(
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~  ~— = =

X & & &

-]
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e By repeating CNOT with different single-qubit
gates, more sophisticated entangled states with

more qubits can be constructed.

= O

p—t



DiVincenzo’s Five Requirements for the Implementation of
Quantum Computation

2. A qubit-specific measurement capability



Quantum Measurement

e How do we measure the state of a qubit?

A standard measurement involves

(i) a unitary gate, followed by

“wave . C :
function (ii) a projection onto either the |0) or |1) state;
collapse” the measurement device outputs either “0” or “1” indicating which projection occured
B e |
| I o - 1
P U : Q_{O,l} b ==» b U —:—@ » € {0,1}
| ~— I
| 1
i UpUt
(@, ;
° A one qubit “quantum computing” device that
. _ stochastically maps Z5* — Zo with transition probabilities
Quantum The probability of outcome O is p

P(z[b) = (z|UppUT|z).

indeterminism The probability of outcome 1is 1-p



Quantum Measurement

e For pure states: : ‘& {0,1}

) <(al9) + BI1)
)l = |

3% The probability of outcome 0 is |a|?
of

@ The probability of outcome 1 is |B|?

&)

=

8

e Why are pure states special?

We can always perform a gate that rotates any state [1)) either to |0) or |1).

W) — U —— K =0 ) — U H o, __[: ) =1
Ul) =10 o UlY) = 1)
The outcomes are no longer stochastic,
and we can design quantum “black boxes” b =) U 4@ » = = f(b)
(i.e. circuits) that compute functions.




Quantum Measurement

e Multi-qubit measurements are done in the same way:

- i @: b, € {0,1}
N-(;iubit i 5= by € {0,1}
unitary =

‘w> B U : ®=b3€{0,1}

\ @: by € {0,1}



DiVincenzo’s Five Requirements for the Implementation of
Quantum Computation

3. The ability to initialize the state of the qubits to a simple fiducial
state, such as [000 ...)



The Quantum Circuit Model

e The quantum cricuit model describes a standard approach to computing
some function f : Z5 — Z5' using a quantum computer.

e The input b € Z% is encoded in an n-qubit computational basis state:

e The function f is encoded into a unitary Uy that reversibly maps |b) to |f(b)).

e A standard (but not always optimal) form of unitary computation:

Vbe Z'S Initialize the m output registers

VxeZy: f T T

Input Output Measure output registers
registers  registers to learn x @ f(b)

Uf(|b> ) |X>) = |b> R |X P f(b)> in the |0) state (i.e. x =0): |0,,) =]0) @ - - -

® |0)



The Quantum Circuit Model

[b) b1)
bezy —=p It |b) " "
[ba) 5,)
) Uy
L |0 £(0)1) —()
O:tfcmt‘ |Om> o : :
10) |£(B)m)—19)

—» f(b)eZ




The Quantum Circuit Model

1) b1)
bezy —= b |b) -7 i
o) )
i Uy
L, | £(0)1) —()
O:t‘ltmt‘ |Om> o : :
o) £(B)m)—{1Q)]

Ancilla |y &
1Cllla |07—-> B .

registers

0)

—>» f(b)eZ




The Quantum Circuit Model

Exercise: Let’s build the full binary adder:

=+

—| === OO OO R

— | = OO == OOl

I—\OI—‘OI—‘CDI—‘DEQ

R OIO|R IO FRIO W

)
I e Kl i Kol Ren) Ranl §S

|ZC7 Y, Cin> & ’00> — |$a Y, Cin> & |Sa Cout>

/

Input
registers

Sa:fftz; § =T DYDCin
* )
® Y)
T Cin>
D— DD |s)
U/ U/ U/




The Quantum Circuit Model

Exercise: Let’s build the full binary adder:

X | Y | Cn S | Cou
0 0 0 0 Ot |ZC, Y, Ciﬂ) ® ’00> — |5U7 Y, Cin> & |S, Cout>
010 L 1] 0 i !
0[1] 01| 0 registors reginiers Cout = 7Y & (&S y)ein
011 1 0 1
1101] 0O 1 0
1101 1 0 1
1|10 0] 1 ) * /L )
111 1 1 1 |y> ® D ly)
|Cin> |Cill>

e Toffoli three-qubit gate:

0) () O Cout)

|ZC9 yv 0> — |$a ya $y> I I

Toffoli gat
(logical “and” gate) OO SR



The Quantum Circuit Model

Exercise: Let’s build the full binary adder:

=+

—| === OO OO R

— | = OO == OOl

|—t©|—l©|—l©|—l©§

R OIO|R IO FRIO W

)
I e Kl i Kol Ren) Ranl §S

|ZC7 Y, Cin> & ’OO> — |$a Y, Cin> & |S, COUt>

/ T

Input Output
registers registers

S=xDYDcCin
Cout = TY D (Qj@y)ciﬂ

) ¢ * )
V) 1 cB +— Iy)

|Cill> i 4 |Cin>
0) Y, B

0)

Jd A
\V
Jd A
3/

|Cout>

D
4/
D
3/



The Quantum Circuit Model

Exercise: Let’s build the full binary adder:

T | Y| Cnl| S| Cout What’s the big deal!?!
0O]0] O [|O 0
0|01 1 1 0 Isn’t this just implementing the logic of a classical circuit?
o 10 1 Y Not quite
01| 1 0 1
110} 0 1 0
tfo] 1]o] 1 ) e N
1|1} 0 (O 1
111 1] 1 ) — — |y)
Cin) — — |Cin)

Ufull— adder




The Quantum Circuit Model

Exercise: Let’s build the full binary adder:

T | Y| Cnl| S| Cout What’s the big deal!?!

0O]0 0 ||O 0

0|01 1 1 0 Isn’t this just implementing the logic of a classical circuit?

01119 L Y Not quite

0O}1] 1 0 1

L0 O 1 0

1ol 1 ]o] 1 — N\ |2)

L)1} 0 (O 1

L1 1 (1] 1 — — |y)

! ) — Utnll-adder Cin)
|w> — Z Fa:,y,cin L,Y, Cin>|09 0> —_— I |S>

x,Y,cin=0
We can run our circuit on — [Cout)

superpositions of inputs! — \ /




The Quantum Circuit Model

Exercise: Let’s build the full binary adder:

L Yy Cin S Cout . . .
0T ol o o 0 e The answers to all possible inputs are encoded in the
0T o T 1 1 0 single output state.
0]1]0 1 0 e Unfortunately there is no way to access all of these answers
01 1 0 1 at once.
110 0 |1 0
1 10| 1 0 1 e Instead we must find some other clever way to use this
1|10 |0 1 superposition to learn some (partial) information about
1|1] 1 1 1 the answers.
S Cout
. Upan-adder | ( | |
( \
W)= ) Tegenley,cn)0,0) N7 T ey el ©y 6 cnley © (@ © y)en)

x:yvcil’lzo a:,y,cin:O

We can run our circuit on
superpositions of inputs!



DiVincenzo’s Five Requirements for the Implementation of
Quantum Computation

4. A “universal” set of quantum gates



A Universal Gate Set

0) Va

0) Vi

0) Vs ® Va
s of

e A universal gate set is a subset of gates that can be combined in series and parallel to
perform any N-qubit gate (or approximate to arbitrary precision).

Theorem: A universal gate set if given by:

1M1 1 |10 CNOT =
H:\/;ll —1] T_lo 8”/4]

— o O O
O = OO

o O O =
o O =k O




A Universal Gate Set

10

o==qg 4| —oi— = Tl {7477 | —
o 1
0 —

%Y =150 Ty — THT 0z~ 0 =T T

Theorem: A universal gate set if given by:

1 0 O

111 10] cNor= |V LY

H \/gll _1] [0 617r/4 0O 0 O

0 0 1

O = O O




A Universal Gate Set

Example: The Toffoli gate

@
®
®
®
5
D—s
<
D—9
NN
~

JAll

Van
N>
~

fan
N
~
)
N

H—P 11

e In fact, five CNOT gates are known to be necessary and sufficient for Toffoli.



DiVincenzo’s Five Requirements for the Implementation of
Quantum Computation

5. Long relevant decoherence times, much longer than the gate
operation time



The Fight Against Decoherence

e Unwanted interaction with the environment will cause the qubits to go through a
process known as decoherence.

Ideal:

Actual;

t = 1o t =1
I I
I I
i T
1 0 1 1 1
IOO 0 0 pl 9 1 1
t =1 t =1
|
! : Decoherence
- |
/(1 0 : 1 p—a(t—t1)
po = (0 0) P1 = % (e—a(t—h) 1 )

t = tq

|

|

|

/100
=0 o)
t = tq




The Fight Against Decoherence

e The decoherence time should not significantly exceed the gate operation time.

e Provided this condition is met, decoherence errors between a sequence of
quantum gates can be mitigated using quantum error correction codes.

e We can understand this as a random phase flip o, with probability (1—e~*(¢=%))/2:

1+ e—a(t—t1) 1 — e—(t—t1)
p1 = 5 HpoH + 5 o, HpoHo..
e If we can correct 0. error we will recover the ideal process.
t=tg t =1t t =t
: |
I l Decoherence '
Actual: : H - H :

1 0 1 —a(t—t1) 1 0 1 0
1 € 1 —a(t—t1) 1
70 (0 0> Pr=rz (e_o‘(t_tl) 1 ) P27 (0 1) e : (0 —1>



Quantum Error Correction

e To correct general qubit errors, it suffices to correct against Pauli errors.

Example: The Shor Nine-Qubit Code

Idea: Embed a qubit state into a nine-qubit state.

(J000) + |111))(]000) + [111))(]000) 4 |111))

0) = |0L) = o
_ (]000) —]111))(]000) — |111))(]000) — [111))
1) — 1) = 272
1) = a|0) 4+ B|1) — \’¢L> = al0r) + B|1L) e The logical qubit is protected against an error

y : on any one of its nine physical qubits.

Logical qubit




Quantum Error Correction

phase bit
The Shor Nine-Qubit Code Ormri ()i;ors

Key observation -  Any Pauli error will map |07,) to one of 3 -9 = 27 states

and |17) to one of 3 -9 = 27 orthogonal states

Block 1 Block 2 Block 3
f 1 f 1 f 1

Perr U X
0,y — U000 + [111))(]000; }\111>)(|000>+ 110)) oy oy [0) © [B1)[B2) © B3)]b) @ [B5) |6 @ |00)
22 Pauli erTOr phase error bit error bit error

CTTOT CO]‘I‘C(‘UOI] blOCk labE‘l h]“(']i ]:'l})(‘] \‘lll)—]:]m‘k ]:'lh(‘]

(000) — [111))(|000) — [111))(|000) — [111)) wmd =~ sy —wmmp |1) @ |b1)|b2) @ [B3)|b4) @ |b5)|b6) @ |00)
2\/5 Perr Uﬁx

L) =

Example: A bit and phase flip (o) on qubit six:

All one-qubit errors on |1y,)

(\000) + \111))(|001> — |110>)(|000> i |111>) «——  are orthogonal to this!
2v/2

000) — 111 (1001 110M/(1000) = 111 All one-qubit errors on |0r,)
(‘ > ‘ >)(| >2j;§| >)(| > | >) YT are orthogonal to this!

0p) —

1) =




Quantum Error Correction
The Shor Nine-Qubit Code

[¥) = |0) + B|1) = |[¥r) = al0z) + B[1r)  Encoding
— Perr|thr) = aPerr|0r) + BPer|1L)  Single-qubit Pauli error
— Utix Pere| Y1) = QUsix Perr|0L) + BUgix Perr|11)  Error correction gate
= a(|0)®1b1)[b2)|bs)[b4)|bs)[bs)|00))+5([1)@[b1)|b2)[b3)|ba)[b5)|b6)[00))
= (|0) + B[1)) @ [b1)[b2)[b3)[ba)[b5) b6 ) |00)
= [) ® [b1)|b2)]b3)[b4)|b5)|bg)[00)

Error corrected!



Part [I: Some Basic Examples



Query Model

e Suppose a user has access to a “black box” that can compute a function f : Z5 — Z> on
a given input b.

e The query complexity of f describes the number of calls an agent must make to the
“black box” to compute f(b) for an arbitrary b.

Classical Oracle Complexity C(f)

b
E—)
am———

f(b)
C(f) >> Q(f)???

Z I'v[b)|y)
b
Superposition 3
queries m———
3" ulb)ly @ (b))
b

Quantum Oracle Complexity Q(f)
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e The tric




Deutsch-Jozsa Problem

e Consider a Boolean function f : Z5 — Zo that is either constant or balanced:

n 0 ifbesS
VbeZy: f(b)=ce{0,1} 15 C Zj b) —
’ S| =2n— 1L f(®) 1 ifbgs

constant balanced

e Goal: Decide whether f is constant or balanced by making queries to the oracle.

e Let N :=2". Then C(f) = O(N).

n qubits

e A quantum oracle for f functions as follows: b)

one qubit

e The trick will be to use a superposition of inputs! y)

— |y & f(b))



Deutsch-Jozsa Problem

1 qubits O|b)|0) = |b)|0 & f(b))

—— |b)
| o Olb)I1) = b1 & f(b))
y) —— ly @ f(b))

) (10) —[1)) if f(b) =
) (—10) +[1)) if f(b)
L = (=1)/®b)(j0) — |1))

Olb) (0) - |1)) = {E .

“Eigenstate trick”

e It is customary to omit in calculations the oracle qubit |y) and just write the oracle action as
Olb) = (=1)"™|b).

&n
e Consider a uniform superposition of all n-bit strings:  |®) .= {\/g (10) + |1>)} = 4/ % Z |b)

beZy
O1®) = /% Y (-1)/P)|b)

beZl




Deutsch-Jozsa Problem

)" Z gon = HEn
B | O |
y)
Ole) = /5 > (1)) gooe) = L (—1)f ()EPx|x)
beZy XELD bELD

Fact:

HEb) = 3 (—1)P )

XELY

Check:

H®"|b) = H|b)) @ H|bs) ® --- @ H|by,)

1 b1 _1)b2 e _1)bn
= 2570+ D) @ (0 + (D) @+ @ (100 + (=1 1),




Deutsch-Jozsa Problem

Ho" = HEn
) O
(b) n
O®) = /% Z b)  pge O1P) =+ >
beZy xELY bezn
_ 1)¢ 1
o If f(b) = ¢ for all b, then _(_)N



Deutsch-Jozsa Problem

HE"

D)

O|®) =

H®n

JES -

beZy

f(b)|b

e If f is balanced, then:

HE"OI®) =% Y Y (1)

x€ZLy bELY

4| X

bef~1(0)

e Notice that [0)®" component (i.e. x = 0) is

L
N

2

bef~1(0)

2

bef~1(1)

> (=™ =o.

XCLy

f(b)®b-X|X>

Z Z (_l)f(b)EBb-X|X>

bef—1(1) | x€Zy

Hence with probability 0 will
outcome x = 0 be measured!



Deutsch-Jozsa Problem

= Hon HEn

=

) 0

bEZ” XELY bELD
e f is constant if and only if x = 0 is measured.
= Q(f)=1 < C(f)=0(N)

e However, there exists randomized classical algorithms that can solve this problem
with small error.

e Can we obtain a separation between classical and quantum complexities even with
bounded error?



Grover’s Search

one qubit

— |b0>

— ly®1)




Grover’s Search

e Consider a Boolean function f : Z5 — Zo with a unique input bg such that

0 otherwise

#(b) — {1 if b = by

e We can think of by as a “needle in a stack” of 2" elements that can be identified

by the function f.

n qubits

b)

e A quantum oracle for f:

one qubit

y)

b # by

|bo)

1Y)

n qubits

one qubit

— |b0>

— ly®1)




Grover’s Search

e Inside the oracle:

e Suppose n =5 and bg = (1,0,1,0,1).

B bl> @
b2> Ox @ Ox
; Design idea: Start with an n-qubit AND,
b) — 3) ¢ place bit flips in the 0 positions of bg.
|b4> Ox @ Og
|b5> @
y) D ly @ f(b))




Grover’s Search

1 qubits O|b)|0) = |b)|0 & f(b))

—— |b)
| o OMb)[1) = [B)]1 & £(b)
y) —— ly & f(b))

b)

Olb) (10) - 1)) = {b> ('OT “I) it =0

b) (—[0) +[1)) if f(b

_ = (—=1)'®b)(|0) - |1))

e Suppose we input a uniform superposition of all n-bit strings:

@) =[50+ )] =va 2 b

beZ?

= \Jhbo) + /5 o) [O(D /& lbo) -+ /27 Bo) }

e The oracle “marks” the input bg
here  [bo) = /v b)
where - [bo) = \/ 71 b; b) by a phase flip.

“Eigenstate trick”

Note: |bg) L |bg)



Grover’s Search

1 e The next step is to “amplify” the phase flip.
{O<I>>\/%|bo>+\/%|bo> J

This is done using the n-qubit unitary

W = 2/0)(®| — L.

B) = 1/ [bo) + /X5 [Bo)
— WO|9) = (2®)(@|-1)0|) = 2|) (—\/%<<I>|bo> ¥ \/@@m—w)ﬂ/%b@—\/@m—w

bo> + /20— 4))

The amplitude of |by) has increased relative to |®)!

e One Grover iteration consists of e We now repeat the Grover iteration many
applying the oracle followed by times, each time querying the oracle.

phase amplification: [G@) - WO(I))}




Grover’s Search: High-Level |dea

bo)
reemmmmnnnneees | preeeeenmeneeeaes : G*|®)
n qubits b !
|0 e L G*l)
I | i G|®)
G G )
Grover iterations bo)

Starting from the state |®), each Grover iteration rotates
|®) closer to the solution state |bg).



Geometric Analysis )= /1bo) + yE B

bo)  Gl¢) = (2|®)(®] —1)O[) = sin p[bo) + cos [bo) P = arcsin (\/%)
For arbitrary state: (i) |¢)) = sinf|bg) + cos 9|b_0>
2040 P _
Pt | > Oracle call: (ii) O|?/)> = —sin l9|b0> + COS 9|b0>
P [1))
9 _ o
- |b0> Phase inversion: (111) G|w> — (2‘(1)> <(f[)‘ — ]I)‘w>
O|v) = sin(2p + 0)|bg) + cos(2p + 0)|bg)

e Each iteration rotates the vector by 2¢ + 6
= G*|4p) = sin (2ky + 0) |bg) + cos (2ke + 0) |bg)

e Start initial state in [¢)) = |®) so 0 = ¢ = G*|®) = sin ((2k 4+ 1)) [bg) + cos ((2k + 1)¢) |bg)



Grover’s Search

G*|®) = sin ((2k + 1)) [bo) + cos ((2k + 1)¢) [bo)

e If we measure G*|®), the probability of outcome bg (i.e. the solution to our problem) is

p(bo) = sin® ((2k + 1)p)
= sin? ((Qk + 1) arcsin (\/%))
~ sin? (Qk %)

e So taking k ~ %\/ﬁ yields p(bg) ~ 1.

Result: Compare:
O(vN) quantum queries are needed to O(N) classical queries are needed to
locate a data string among N items locate a data string among N items

(with bounded error). (with bounded error).
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¢ Quantum Information Science studies how the fundamental features of
quantum mechanics, like superposition and entanglement, can be directly
harnassed to enhance the computation, communication, and

security of information.
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