Quantum Computing with Haskell
 and FPGA simulation
 shuchang.zhou@gmail.com Jan. 18, 2018

Why quantum computing?

- Can crack elliptic curve cryptography ...
- And threaten your Bitcoin
- 0

○ 1
Classical Bit Qubit

Why study quantum computing
 ... even when you don't have a quantum computer

- Many fast classic algorithms can be traced to simulations of quantum algorithms.

Discrete Fourier Transform	Simulated Annealing	Probabilistic checking	BPP
Quantum Fourier Transform	Quantum Annealing	Deutsch's algorithm	BQP

Why study quantum computing
... even when you don't have a quantum computer
"Quantum computing may be the key, to understanding Deep Learning."

Pure states (eigenvectors)

Quantum Mechanics

- Schrödinger's equation
$i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left[\frac{-\hbar^{2}}{2 \mu} \nabla^{2}+V(\mathbf{r}, t)\right] \Psi(\mathbf{r}, t)$
- von Neumann's equation
- Lax-pair, isospectral

$$
i \hbar \frac{\partial \rho}{\partial t}=[H, \rho]
$$

 $n=1$

Bit to Qubit ("Q-bit")

- Bit: +1 / -1
- Qubit: 2DOF
- Angles: theta / phi
- Two complex numbers + norm constraint

■ $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$, (superposition)

- $|\alpha|^{2}+|\beta|^{2}=1$.
- $|\alpha|^{2}$ and $|\beta|^{2}$ are probabilities
- Bra-ket notation
- <x| for Bra, or row-vector, or transposed vector.
- |x> for vector

Classical Bit

Qubit

Exponential number of bits for simulating Qubits

- N qubits need 2^{N} classic bits
- $\quad(a|0>+b| 1>)(c|0>+d| 1>)$
- $=a c|00>+a d| 01>+b c|10>+b d| 11>$
- Entanglement: when (a, b; c, d) not rank 1

$$
\text { - } \quad a|00>+b| 01>+c|10>+d| 11>
$$

Superposition and Measurement

Quantum operations

- Reversible
- Apply a unitary transform: all kinds of gates
- Unconditional
- Conditional
- Irreversible (Quantum decoherence)
- "Create" a qubit
- Measurement

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \text { Hadamard }
$$

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \text { Pauli-X }
$$

$$
Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \text { Pauli-Y }
$$

$$
R_{\phi}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right] \begin{aligned}
& \text { Phase Shift, pi / } 4 \text { for } \\
& \text { "pi-over-eight" gate }
\end{aligned}
$$

$$
\cdots \quad\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Modeling quantum operations with Haskell

- Reversible
- Apply a unitary transform
- Unconditional
- Conditional
- Irreversible
- "Create" a qubit
- Measurement
-- | The underlying data type of a U unitary operation
data U = UReturn -- A List like construct
| Rot Qbit Rotation U
| Swap Qbit Qbit U
| Cond Qbit (Bool -> U) U
| Ulet Bool (Qbit -> U) U

Has side-effects, how to model?

Monad and the "multi-world"

- Monad is a representation for computation graph
- Construct first, run later
- Haskell put everything with side-effects in IO monad
- putStrLn :: String -> IO ()
- "write : World -> Filename -> String -> World"
- type IO a = World -> (a, World)

World
10 a

Run

New World
a

Example: IO Monad

- (>>=) :: IO a -> (a -> IO b) $->$ IO b (action1 >>= action2) world0 = let (a, world1) $=$ action1 world0
(b, world2) = action2 a world1 in (b, world2)
- "Bind" operation
- return :: a -> IO a
return a world0 $=(\mathrm{a}$, world0)

Input 1
A Monad contains type a

Example: State Monad

- newtype State s a = State $\{$ runState $::$ s -> $(\mathrm{a}, \mathrm{s})\}$
- return $\mathrm{a}=$ State $\$ \backslash \mathrm{~s}->(\mathrm{a}, \mathrm{s})$
- (>>=) :: State s a ->(a -> State s b) ->State s b
- $m \gg=k=$ State $\$$ ls $->$ let $\left(a, s^{\prime}\right)=$ runState m s in runState (k a) s'

Example: "RNN monad"

- newtype Rnn s i a = Rnn \{runRnn :: (i, s) -> (a, s) \}
- return a = Rnn \$
(i, s) -> (a, s)
- (>>=) :: Rnn sia -> (a -> Rnn sjb) -> Rnn s (i, j) b
- $m \gg=k=R n n \$ \backslash(i, j), s)$-> let $\left(a, s^{\prime}\right)=\operatorname{runRnn} m(i, s)$ in runRnn $(k a)\left(j, s^{\prime}\right)$

QIO Haskell package

- QIO models the "irreversible" part: decoherence of the qubits
- Forming a monad
instance Monad QIO
mkQbit :: Bool \rightarrow QIO Qbit
applyU :: U \rightarrow QIO ()
measQbit :: Qbit \rightarrow QIO Bool

QIO Monad can be simulated or sampled

- "run" for sampling
- "sim" for distributional representation

Prob :: * $\rightarrow *$
instance Monad Prob
run :: QIO a \rightarrow IO a
sim :: QIO a \rightarrow Prob a
runC : : QIO a \rightarrow a

Creating qubits

```
-- | Initialise a qubit in the |0> state
q0 :: QIO Qbit
q0 = mkQ False
-- | Initialise a qubit in the |1> state
q1 :: QIO Qbit
q1 = mkQ True
```

-- | Initialise a qubit in the |+> state. This is done by applying a Hadamard gate to the |0> state.
qPlus :: QIO Qbit
qPlus = do qa <- q0
applyU (uhad qa)
return qa

-- | Initialise a qubit in the |-> state. This is done by applying a Hadamard gate to the |1> state.
qMinus :: QIO Qbit
qMinus = do qa <-q1
applyU (uhad qa)
return qa

Measuring and "sharing"

-- | Create a random Boolean value, by measuring the state |+> randBit :: QIO Bool
randBit $=$ do qa <-qPlus
$x<-$ measQbit qa
return x
-- | This function can be used to "share" the state of one qubit, with another
-- newly initialised qubit. This is not the same as "cloning", as the two qubits
-- will be in an entangled state. "sharing" is achieved by simply initialising
-- a new qubit in state $|0\rangle$, and then applying a controlled-not to that qubit,
-- depending on the state of the given qubit.
share :: Qbit -> QIO Qbit
share qa $=$ do qb <-q0

$$
\begin{aligned}
& \text { applyU (cond qa (la -> if a then (unot qb) } \\
& \text { else (mempty))) } \\
& \text { return qb }
\end{aligned}
$$

Deutsch-Jozsa's algorithm

- Given a balanced/constant boolean function (Bool^k -> Bool)
- Do a 2-classification

const True	const False	$\backslash x->x$	$\backslash x->$ not x
1	1	0	0

- Exact solution on a Quantum computer requires 1 evaluation
- Exact solution on a classic computer requires exponential many evaluations
- ... But if allowing bounded errors, require k answers to obtain $\epsilon \leq 1 / 2^{k-1}$

Manual work out

U_{f} maps $|x\rangle|y\rangle$ to $|x\rangle|y \oplus f(x)\rangle$

$$
\begin{aligned}
& \frac{1}{2}(|0\rangle(|f(0) \oplus 0\rangle-|f(0) \oplus 1\rangle)+|1\rangle(|f(1) \oplus 0\rangle-|f(1) \oplus 1\rangle)) \\
& =\frac{1}{2}\left((-1)^{f(0)}|0\rangle(|0\rangle-|1\rangle)+(-1)^{f(1)}|1\rangle(|0\rangle-|1\rangle)\right)
\end{aligned}
$$

$$
\frac{1}{2}(|0\rangle+|1\rangle)(|0\rangle-|1\rangle) . \quad=(-1)^{f(0)} \frac{1}{2}\left(|0\rangle+(-1)^{f(0) \oplus f(1)}|1\rangle\right)(|0\rangle-|1\rangle)
$$

Clash: Haskell for FPGA

- C入aSH http://www.clash-lang.org/
- A Haskell spin-off
- Models wires as infinite stream, and sequential logic as State machines
- counter :: Signal (Unsigned 2)
- counter = register 0 (liftA (+1) topEntity)
- > sampleN $8 \$$ topEntity
- $[0,1,2,3,0,1,2,3]$
- Dependent type for bit width (partial support)
- Type checking for bit width checking
- (++) :: Vec n a -> Vec mat> $\operatorname{Vec}(\mathrm{n}+\mathrm{m}) \mathrm{a}$

Clash: Haskell for FPGA

```
mealy :: (s -> i -> (s, 0)) -> s -> Signal i -> Signal o
mac :: Int -- Current state
    -> (Int,Int) -- Input
    -> (Int,Int) -- (Updated state, output)
mac s (x,y) = (s',s)
    where s' = x * y + s
```

topEntity :: Signal (Int, Int) -> Signal Int
topEntity $=$ mealy mac 0

Clash/FPGA: implement Complex Number

```
type CC = Vec 2 RR
c0 = 0 :> 0 :> Nil
c1 = 1 :> 0 :> Nil
sqr_norm :: CC -> RR
sqr_norm (a :> b :> Nil) = a * a + b * b
cadd :: CC -> CC -> CC
cadd = zipWith (+)
cmul :: CC -> CC -> CC
cmul (a :> b :> Nil) (c : > d :> Nil) = (a * c - b * d) :> (a * d + b * c) :>
Nil
dotProduct xs ys = foldr cadd c0 (zipWith cmul xs ys)
matrixVector m v = map (`dotProduct` v) m
```


Clash/FPGA: Qubit

```
type QBit = Vec 2 CC
q0 :: Signal QBit
q0 = register (c1 :> c0 :> Nil) q0
q1 :: Signal QBit
q1 = register (c0 :> c1 :> Nil) q1
qPlus = hadamardG q0
qMinus = hadamardG q1
    ( hr ch
hadamard :: QBit -> QBit
hadamard = matrixVector ((h
```



```
hadamardG :: Signal QBit -> Signal QBit 
measure :: Signal QBit -> Signal RR
measure = register 0 . liftA (\ x -> sqr_norm (x !! 1))
```


Multi-Qubit interaction

From $(a|0>+b| 1>)(c|0>d| 1>)$ to $a c|00>+a d| 01>+b c|10>+b d| 11>$

```
explode :: Signal QBit -> Signal QBit -> Signal (Vec 4 CC)
```

explode qx $q y=$ register (repeat c0) \$ liftA2 outer qx qy
where

```
        outer :: QBit -> QBit -> Vec 4 CC
        outer (x0 :> x1 :> Nil) y = (map (cmul x0) y) ++ (map (cmul x1) y)
```

measure0 : : Signal (Vec 4 CC) -> Signal RR

Measures $\left|\left|00>\left.\right|^{2}+\left||01>|^{2}\right.\right.\right.$

Deutsch-Jozsa's algorithm

deutsch u : : Vec 2 RR $->$ Vec 4 CC $->$ Vec 4 CC deutsch $u(f 0:>$ fl $:>$ Nil) $=$ matrixVector (make complex (

$$
\left(\begin{array}{cccc}
1-f 0 & f 1 & 0 & 0 \\
f 0 & 1-f 1 & 0 & 0 \\
0 & 0 & 1-f 0 & f 1 \\
0 & 0 & f 0 & 1-f 1
\end{array}\right)
$$

hadamard I : Vec 4 CC -> Vec 4 CC
hadamard I =

```
matrixVector (make_complex (
                    (h :> 0 :> h :> 0 :> Nil) :>
(0 :> h :> 0 :> h :> Nil) :>
(h :> 0 :> - h :> 0 :> Nil) :>
(0 :> h :> 0 :> - h :> Nil) :> Nil))
```

$H \otimes I=\left(\begin{array}{cccc}h & 0 & h & 0 \\ 0 & h & 0 & h \\ h & 0 & -h & 0 \\ 0 & h & 0 & -h\end{array}\right)$
where $h=\$ \$(f L i t(1 /$ sqrt 2$)):: R R$

$$
\begin{aligned}
& (\mathrm{fO}:>(1-\mathrm{fl}):>0:>0:>\mathrm{Nil}):>\quad 1\left(\begin{array}{lllll}
0 & 0 & f 0 & 1-f 1
\end{array}\right) \\
& \text { (0 : > } 0:>(1-\mathrm{f} 0):>\mathrm{fl}:>\mathrm{Nil}):> \\
& \text { (} 0:>0 \quad:>\mathrm{fO}:>(1-\mathrm{fl}) \quad:>\mathrm{Nil}):>\mathrm{Nil}) \text {) }
\end{aligned}
$$

Deutsch-Jozsa's algorithm


```
deutsch :: Vec 2 RR -> Signal RR
deutsch f0f1 =
    let xy = explode qPlus qMinus in
    let xy2 = register (repeat c0) $ liftA (deutsch_u f0f1) xy in
    let xy3 = register (repeat c0) $ liftA hadamard_I xy2 in
    measure0 xy3
```

topEntity : : Signal (Vec 4 RR)
topEntity $=$ bundle (map deutsch (f0 :> f1 :> f2 :> f3 :> Nil))
where $f 0=0$:> $0 \quad:>$ Nil
f1 = 1 :> 1 :> Nil
f2 = 0 :> 1 :> Nil
f3 = 1 :> 0 :> Nil
sampleN 8 \$ topentity
$[<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0>,<0.0,0.0,0.0,0.0\rangle$ $,<0.999847412109375,0.999847412109375,0.0,0.0>,<0.999847412109375,0.999847412109375,0.0,0$.
$0>,<0.999847412109375,0.999847412109375,0.0,0.0>$]

Synthesizing on FPGA

yosys> show
Deutsch_explode

Problem: no usage of ALU, very resource intensive.

Future work

- Try more Quantum Computing algorithms
- Do the matrix multiplications in multiple cycles

Congratulation for becoming one of the rarest

 species!

Ross Freeman

Backup after this slide

Quantum Computing

- Qubit
- Inherently reversible
- Quantum coherence exploits entanglement
- Quantum Decoherence
- Introduction to Quantum Information

Schmidt decomposition (yet another SVD)

- vector w in tensor product space H_1 lotimes H_2
- separable state
- entangled state
- Schmidt rank

$$
w=\sum_{i=1}^{m} \alpha_{i} u_{i} \otimes v_{i} .
$$

- Schmidt decomposition
- Partial trace
- von Neumann entropy

$$
-\sum_{i}\left|\alpha_{i}\right|^{2} \log \left|\alpha_{i}\right|^{2}
$$

- matrix w with first dimension being H_1 and second being H_2
- rank 1 matrix
- $\operatorname{rank}(w)>1$
- rank
- SVD: w = U S V^T
- $S^{\wedge} 2$
- entropy of square of singular values

A Finite Input Response Filter in Clash

```
dotp :: SaturatingNum a
    => Vec (n + 1) a
    -> Vec (n + 1) a
    -> a
```


dotp as bs = fold boundedPlus (zipWith boundedMult as bs)
fir
:: (Default a, KnownNat n, SaturatingNum a, HasClockReset domain gated synchronous)
=> Vec $(\mathrm{n}+1) \mathrm{a}$-> Signal domain a -> Signal domain a
fir coeffs $x_{-} t=y _t$
where

```
y_t = dotp coeffs <$> bundle xs
xs = window x_t
```

