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States on both sides of critical point 
could be either (A) Insulators

(B) Metals
(C) Superconductors



SDWs in Mott insulators

2 4La CuO

( )4 / 3, 4 / 3K π π=
Non-collinear spins

( ),K π π=
Collinear spins

“Disorder” the spins by enhancing quantum 
fluctuations in a variety of ways…..
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A. “Dimerized” Mott insulators

Landau-Ginzburg-Wilson (LGW) theory.

B. Kondo lattice models 
“Large” Fermi surfaces and the LGW SDW  
paramagnon theory.

C. Fractionalized Fermi liquids
Spin liquids and Fermi volume changing transitions 
with a topological order parameter.

D. Deconfined quantum criticality
Berry phases and the transition from SDW to bond 
order. (Talks by T. Senthil (N20.008) and 
L. Balents (N20.009))



(A) Magnetic quantum phase tranitions in 
“dimerized” Mott insulators

Landau-Ginzburg-Wilson (LGW) theory:
Second-order phase transitions described by 

fluctuations of an order parameter
associated with a broken symmetry





Coupled Dimer Antiferromagnet
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close to 0λ Weakly coupled dimers

( )↓↑−↑↓=
2

1

Excitation: S=1 triplon
(exciton, spin collective mode)

Energy dispersion away from
antiferromagnetic wavevector
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close to 1λ Weakly dimerized square lattice



close to 1λ Weakly dimerized square lattice

Excitations:  
2 spin waves (magnons)

2 2 2 2
p x x y yc p c pε = +

Ground state has long-range spin density wave 
(Néel) order at wavevector K= (π,π) 

0 ϕ ≠

spin density wave order parameter:   ;  1 on two sublatticesi
i i

S
S

ϕ η η= = ±



λc = 0.52337(3)
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, 

Phys. Rev. B 65, 014407 (2002)
T=0

λ 1 cλ Pressure in TlCuCl3

Quantum paramagnetNéel state

0ϕ ≠ 0ϕ =

The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 
(1990)) provides a quantitative description of spin excitations in TlCuCl3 across the 
quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, 

Phys. Rev. Lett. 89, 077203 (2002))



LGW theory for quantum criticality
write down an effective action 

for the antiferromagnetic order parameter  by expanding in powers 
of  and its spatial and temporal d

Landau-Ginzburg-Wilson theor
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Three triplon continuum
Triplon pole

Structure 
holds to all 
orders in u

A.V. Chubukov,            
S. Sachdev, and J.Ye, Phys. 

Rev. B 49, 11919 (1994) 



(B) Kondo lattice models 

“Large” Fermi surfaces and the Landau-
Ginzburg-Wilson spin-density-wave 

paramagnon theory



Kondo lattice
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At large JK , magnetic order is destroyed, and we obtain a 
non-magnetic Fermi liquid (FL) ground state

S. Doniach, Physica B 91, 231 (1977).



Luttinger’s Fermi volume on a d-dimensional lattice for the FL phase 

Let v0 be the volume of the unit cell of the ground state,
nT be the total number density of electrons per volume v0.

(need not be an integer)
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A “large” Fermi surface



Argument for the Fermi surface volume of the FL phase 

Single ion Kondo effect implies  at low energiesKJ →∞

( )† † † † 0i i i ic f c f↑ ↓ ↓ ↑− † 0 ,  =1/2 holeif S↓

Fermi liquid of S=1/2 holes with hard-core repulsion
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( ) ( )

Fermi surface volume density of holes mod 2
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= −
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Doniach’s T=0 phase diagram for the Kondo lattice

JK 

“Heavy” Fermi  liquid with 
moments Kondo screened 
by conduction electrons.              

Fermi surface volume 
equals the Luttinger value.

Local moments choose 
some static spin 

arrangement

SDW FL

JKc



LGW theory for quantum critical point
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Write down effective action for SDW order parameter ϕ

 fluctuations are damped 
by mixing with fermionic 
quasiparticles near the Fermi surface

ϕ

Fluctuations of  about 0  the triplon is now a paramagno nϕ ϕ = ⇒
J. Mathon, Proc. R. Soc. London A, 306, 355 (1968); T.V. Ramakrishnan, Phys. Rev. B 10, 4014 (1974);  
M. T. Beal-Monod and K. Maki, Phys. Rev. Lett. 34, 1461 (1975); J.A. Hertz, Phys. Rev. B 14, 1165 (1976).
T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin (1985);                   
G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339 (1985); A.J. Millis, Phys. Rev. B 48, 7183 (1993).



(C) Fractionalized Fermi liquids (FL*) 

Spin liquids and Fermi volume changing 
transitions with a topological order parameter

Beyond LGW: quantum phases and phase 
transitions with emergent gauge excitations

and fractionalization
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Work in the regime with small JK, and consider 
destruction of magnetic order by frustrating 

(RKKY) exchange interactions between f moments

bondΨ

N. Read and     
S. Sachdev,           

Phys. Rev. Lett. 
62, 1694 (1989).

Possible paramagnetic ground state with 0ϕ =

bond

bond

Such a state breaks lattice symmetry and has 0, 
          where  is the 

Ψ ≠

Ψ bond order parameter

Bond order (and confinement) appear for collinear spins in d=2



Work in the regime with small JK, and consider 
destruction of magnetic order by frustrating 

(RKKY) exchange interactions between f moments

bondA   ground state with 0 and 0spin liquid ϕ = Ψ =

P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974);        
P.W. Anderson 1987
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Excitations of the paramagnet with non-zero spin
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1   are confined 
into a 1   by a confining
compact U(1) gauge force
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N. Read and S. Sachdev,                 
Phys. Rev. Lett. 62, 1694 (1989).
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Excitations of the paramagnet with non-zero spin

bond 0Ψ =
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2

1/ 2   are deconfined 
and interact with 

 (non-collinear spins, 2,3)
or U(1) (collinear spins, 3) 
gauge forces
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N. Read and S. Sachdev,                 
Phys. Rev. Lett. 62, 1694 (1989).

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 
(1991); X. G. Wen, Phys. Rev. B 44, 2664 (1991).



Influence of conduction electrons
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Local moments fσ
Conduction electrons cσ
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Determine the ground state of the quantum antiferromagnet defined by 
JH, and then couple to conduction electrons by JK

Choose JH so that ground state of antiferromagnet is                        
a Z2 or U(1) spin liquid



Influence of conduction electrons

+

Conduction electrons cσ
Local moments fσ

At JK= 0 the conduction electrons form a Fermi surface on 
their own with volume determined by nc.

Perturbation theory in JK is regular, and so this state will be stable for finite JK.
So volume of Fermi surface is determined by

(nT -1)= nc(mod 2), and does not equal the Luttinger value.

The (U(1) or Z2) FL* state



A new phase: FL*
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This phase preserves spin rotation invariance, and has a Fermi 
surface of sharp electron-like quasiparticles.       

The state has “topological order” and associated neutral excitations. 
The topological order can be detected by the violation of Luttinger’s

Fermi surface volume. It can only appear in dimensions d > 1

Precursors:  N. Andrei and P. Coleman, Phys. Rev. Lett. 62, 595 (1989).
Yu. Kagan, K. A. Kikoin, and N. V. Prokof'ev, Physica B 182, 201 (1992).
Q. Si, S. Rabello, K. Ingersent, and L. Smith, Nature 413, 804 (2001).
S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002).
L. Balents and M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654, (1999);  
T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000).
F. H. L. Essler and A. M. Tsvelik, Phys. Rev. B 65, 115117 (2002).
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Phase diagram (U(1), d=3)

JK 

FLU(1) FL*

JKc

Quantum 
Critical

No transition for T>0 in d=3 compact U(1) gauge 
theory; compactness essential for this feature

T

Sharp transition at T=0 in d=3 compact U(1) gauge 
theory; compactness “irrelevant” at critical point
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FLU(1) FL*

JKc

Quantum 
Critical

• Specific heat ~ T ln T
• Violation of     
Wiedemann-FranzT
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JK 

FLU(1) FL*

JKc

Quantum 
Critical

( )Resistivity ~ 1/ ln 1/T
T



Phase diagram (U(1), d=3)



(D) Deconfined quantum criticality

Berry phases, bond order, and the breakdown 
of the LGW paradigm

All phases have conventional order, but 
gauge excitations and fractionalizion
emerge at the quantum critical point.

Talks by T. Senthil (N20.008) and L. Balents (N20.009)
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Mott insulator with one S=1/2 spin per unit cell

Destroy Neel order by perturbations which preserve full square 
lattice symmetry e.g. second-neighbor or ring exchange.
The strength of this perturbation is measured by a coupling g.

bond

Small ground state has Neel order with 0

Large paramagnetic ground state with 0,  0

g

g

ϕ

ϕ

⇒ ≠

⇒ = Ψ ≠
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a aSϕ η ϕ
η

→
→ ±
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a+µϕ

0ϕ

aϕ

a a+ 0

 oriented area of spherical triangle 

formed by and an arbitrary reference ,   poi, nt
a hA alfµ

µϕ ϕ ϕ

→

2 aA µ

Aaµ transforms like a compact U(1) gauge field

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Quantum theory for destruction of Neel order

Ingredient missing from LGW theory: Ingredient missing from LGW theory: 
Spin Berry PhasesSpin Berry Phases

exp a a
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Sum of Berry phases of 
all spins on the square 
lattice.

a+µϕaϕ
2 aA µ



Quantum theory for destruction of Neel order
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Partition function on cubic lattice

Modulus of weights in partition function: those of a 
classical ferromagnet at a “temperature” g

Small ground state has Neel order with 0

Large paramagnetic ground state with 0
  Berry phases lead to large cancellations between different 
   time histories 

g

g

ϕ

ϕ
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S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
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g0

Neel order
 0ϕ ≠

?
bond

Bond order
0

Not present in 
LGW theory 
of  orderϕ

Ψ ≠

or



g0
S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). 
S. Sachdev and K. Park, Annals of Physics 298, 58 (2002).

? or



S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990); G. Murthy and S. Sachdev, 
Nuclear Physics B 344, 557 (1990); C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 
134510 (2001); S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002);                                  
O. Motrunich and  A. Vishwanath, cond-mat/0311222.                                                    

Theory of a second-order quantum phase transition 
between Neel and bond-ordered phases

*

At the quantum critical point:
 +2  periodicity can be ignored 

(Monopoles interfere destructively and are dangerously irrelevant).
 =1/2  , with ~ , are globally 

          pro

A A

S spinons z z z

µ µ

α α αβ β

π

ϕ σ

• →

•

pagating degrees of freedom.

Second-order critical point described by emergent 
fractionalized degrees of freedom (Aµ and zα );

Order parameters (ϕ and Ψbond ) are “composites” and of 
secondary importance

Second-order critical point described by emergent 
fractionalized degrees of freedom (Aµ and zα );

Order parameters (ϕ and Ψbond ) are “composites” and of 
secondary importance

→

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004).



Phase diagram of S=1/2 square lattice antiferromagnet

g
*

Neel order

~ 0z zα αβ βϕ σ ≠

(associated with condensation of monopoles in ),A
µ

or

bondBond order  0Ψ ≠

1/ 2 spinons  confined, 
1 triplon excitations

S z
S

α=
=

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004). 
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