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Semiconductor quantum dots are a promising candidate for future quantum computer
devices. Presently, there are three major proposals for designing quantum computing
gates based on quantum dot technology: (i) electrons trapped in microcavity; (ii) spin-
tronics; (iii) biexcitons. We survey these designs and show mathematically how, in prin-
ciple, they will generate 1-bit rotation gates as well as 2-bit entanglement and, thus,
provide a class of universal quantum gates. Some physical attributes and issues related
to their limitations, decoherence and measurement are also discussed.
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1. Introduction

The design and construction of the quantum computer (QC) is a major scientific
undertaking of the 21st Century. According to DiVincenzo,13 five requirements
must be satisfied in order to obtain a reliable QC system: (i) be scalable, (ii) the
ability to initialize qubits, (iii) relatively long decoherence times (longer than the
gate operation times), (iv) a qubit-specific read-out capability, and (v) a universal
set of quantum gates.

Building devices to store and process computational bits quantum-mechanically
(qubits) is a challenging problem. In a typical field-effect transistor (FET) in an elec-
tronic computer chip, 10,000 to 100,000 electrons participate in a single switching
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event. It is impossible to isolate, out of such a complex system, two quantum
mechanical states that would evolve coherently to play the role of a qubit.

Quantum dot (QD) fabrication is a major segment of contemporary nanotech-
nology. QD devices, including diode lasers, semiconductor optical amplifiers, IR
(infrared) detectors, mid-IR lasers, quantum-optical single-photon emitters, etc.
are being developed and considered for a wide variety of applications. QDs are also
a promising candidate for future QC technology. In this paper, we hope to elucidate
the connection between the physics of QDs and the basic mathematics of quantum
gate operations. We have put a certain emphasis on the mathematical derivations
but we also hope to explain some aspects of the rudimentary science and technology
of QDs to the novice. This area of research is undergoing rapid advances and our
paper is intended to be only a tutorial account rather than an exhaustive review.
This paper targets a blend of researchers in physics, mathematics and engineering
who work on the interdisciplinary study of quantum devices.

1.1. QD properties and fabrication: From quantum wells, wires

to quantum dots

We begin by introducing what QDs are. QDs consist of nano-scale crystals from a
special class of semiconductor materials, which are crystals composed of chemical
elements in the periodic groups II-VI, III-V, or IV-IV. The size of QDs ranges from
several to tens of nanometers (10−9 m) in diameter, which is about 10–100 atoms.
A QD can contain from a single electron to several thousand electrons since the size
of the quantum dot is designable. QDs are fabricated in semiconductor material
in such a way that the free motion of the electrons is trapped in a quasi-zero-
dimensional “dot.” Because of the strong confinement imposed in all three spatial
dimensions, QDs behave similarly to atoms and are often referred to as artificial
atoms or giant atoms.

When a free electron is confined by a potential barrier, its continuous spectrum
becomes discretized. In particular, the gap between two neighboring energy levels
increases as the length where the free electron moves decreases. A similar thing
happens in solid state. If the motion of electrons in the conduction band or that of
the hole in the valence band is limited in a small region with a scale such as the De
Broglie wavelength or a phase-coherence length,a then the conduction band or the
valence band is split into subbands or discrete levels depending on the dimensional-
ity of the confined structure: such is the case when a material with a lower bandgap
is confined within a material with a higher bandgap. More efficient recombination of
electron-hole pairs can be achieved by incorporation of a thin layer of a semiconduc-
tor material, with a smaller energy gap than the cladding layers, to form a double
heterostructure. As the active layer thickness in a double heterostructure becomes

aIf an electron travels far enough to be scattered by impurities or other electrons, it will lose its
phase coherence (cf. the footnote on quantum coherence in Sec. 1.2). This is called dephasing. The
length in which an electron travels yet can keep its phase coherent is called the phase coherence
length.
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close to the De Broglie wavelength (about 10 nm for semiconductor laser devices)
or the Bohr exciton radius for lower dimensional structures, and as the motion of
the electron is restricted within such a very small regime, energy quantization or
momentum quantization is observed and quantum effects become apparent. There-
fore, the electron states are not continuous but discrete. This phenomenon is known
as the size quantization effect. A proposal for QD-based QC utilizes various energy
levels of one or several electrons in QDs by confining those QDs in a microcavity
will be studied in Sec. 2.

In natural bulk semiconductor material, the overwhelming majority of electrons
occupy the valence band. However, an extremely small percentage of electrons may
occupy the conduction band, which has higher energy levels. The only way for an
electron in the valence band to be excited and be able to jump to the conduction
band is to acquire enough energy to cross the bandgap. If such a jump or transition
occurs, a new electric carrier in the valence band, called a hole, is generated. Since
the hole moves in an opposite direction to the electron, the charge of a hole is
regarded as positive. The pair of energy-raised electron and hole is called an exci-
ton. The average physical separation between the electron and the hole is called
the exciton Bohr radius. Excitons move freely in the bulk semiconductor. However,
an exciton is trapped by high energy barriers as an electron is. The size quantiza-
tion effect is optically observable. A proposal utilizing exciton (and also biexciton)
energy levels for QC will be the topic of discussion in Sec. 4.

If the device length is smaller than the phase coherence length of the electron or
exciton Bohr radius, the energy levels are discrete and the size quantization effect
is observed. Since the energy levels are discrete, the three-dimensional energy band
becomes lower-dimensional depending on the number of confinement directions.
If there is only one directional length of device shorter than the phase coherence
length, the device is regarded as a two-dimensional device, called a quantum well.
The phase coherence length of a quantum well is about 1.62 µm for GaAs and
about 0.54 µm for Si at low temperature. However, since the phase coherence length
depends on impurity concentration, temperature, and so on, it can be modified for
electronic applications. The exciton Bohr radius of GaAs is about 13 nm.

There are two approaches to fabricate nano-scale QDs: top-down and
bottom-up. Semiconductor processing technologies, such as metal organic chemical
vapor deposition, molecular beam epitaxy and e-beam lithography, etc. are used in
the top-down approach. Surface and colloid chemistry such as self-assembly, vapor-
liquid-solid techniques are used in the bottom-up approach.

There are many methods of synthesizing QDs in the bottom-up approach, such
as chemical reactions in colloidal solutions, long time annealing in solid state, chem-
ical vapor deposition on a solid surface, and wet or dry etching of thin film on a
solid surface. Figure 1 shows a high resolution electron transmission microscopy
(HRTEM) image of Cadmium Sulfide (CdS) nano-particles synthesized in a col-
loidal solution. It is shown that the triangular shaped CdS QD is crystalline. Even
though crystalline QDs are synthesized relatively economically and conveniently in
the bottom-up approach as compared with the top-down approach, the alignment
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Fig. 1. HRTEM image of a triangular shaped Cadmium Sulfide (CdS) quantum dot. The quan-
tum dot is crystalline (www.pinna.cx/albums/HRTEM/CdS triangle.sized.jpg).

of QDs is a very serious problem for applications to QC even though such crys-
talline QDs have been made into a few optical devices, such as optical sensors or
field effect diodes, and biomedical apparatus.

As mentioned above, several semiconductor processing technologies can be
applied to QD fabrication in the top-down approach. Usually, a quantum well is
the starting point of QD fabrication. Thus, let us first describe the technology of
quantum well fabrication.

By molecular beam epitaxy and metal organic chemical vapor deposition tech-
niques, an ultra-thin single crystalline layer can be deposited on a bulk substrate.
The development of these advanced epitaxy techniques makes it possible to fab-
ricate quantum wells with a very fine boundary. There are two types of quantum
wells. One is formed by depositing several single crystalline layers through molecular
beam epitaxy, or through the metal organic chemical vapor deposition technique.
The other is by depositing single crystalline layers with modulated impurity con-
centration. The former is usually chosen for optoelectronic devices such as lasers
where electrons and holes need to be confined at the same time, and the latter is for
electronic devices where only either the electron or the hole needs to be confined.

A typical application of quantum wells with single crystalline layers is the
AlGaAs/GaAs quantum well laser as shown in Fig. 2. An Aluminum Gallium
Arsenide (AlGaAs) layer is deposited on a GaAs substrate and then a GaAs layer
of thickness less than 100 nm is deposited on the AlGaAs layer, and AlGaAs layer
is again deposited on the GaAs layer. The energy band profile shown in Fig. 2 is
rotated by 90◦. The thickness of the GaAs quantum well is about or less than the
exciton Bohr radius and size quantization can be observed clearly. The electron
and hole in the GaAs quantum well are confined by the AlGaAs energy barrier,
respectively. The laser wavelength is dependent on the thickness of GaAs quantum
well in the AlGaAs/GaAs quantum well laser.
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Fig. 2. An AlGaAs/GaAs quantum well structure: (a) cross-section and (b) conduction and
valence band profile. The energy barrier heights of the conduction band and of the valence band
are ∆Ec and ∆Ev, respectively. Eci is the lowest energy of the ith conduction subband for i = 1, 2
and 3, Ehh1 is the highest energy of the first heavy hole subband, and Elh1 is the highest energy

of the light hole subband.

Remark 1. We briefly mention here some properties of semiconductor materials
that are used in the fabrication of QDs.

Silicon oxide (SiO2) has a low dielectric constant and is easily created by the
oxidation of silicon; most electronic processors are made of silicon and silicon oxide.
Such technology was developed by the silicon industry in the early 1960s. Nowa-
days, silicon electronic devices of about 50 nm in size can be fabricated in mass
production.

GaAs is one of direct semiconductors for which a transition from the valence
band to the conduction band does not require change of electron momentum. It
can be used as a photodetector.

GaAs/AlGaAs heterostructures can make electrons have very high mobility at
low temperature. The high mobility lengthens the electrons’ phase-breaking mean
free path. Therefore, coherent transport can be observed in GaAs/AlGaAs devices
of µm scale at low temperature.

Bulk CdS absorbs visual light of the yellow-green wavelength, and its resistivity
decreases with increasing illumination. CdS can be used as a photodetector and
window material in solar cells.

Another quantum well application is the high electron mobility transistor.
Figure 3 shows schematic of the cross-section of a high electron mobility tran-
sistor and its conduction band profile. The impurities in the doped AlGaAs layer
provide electrons to the undoped GaAs layer, and the space charges and excess
electrons bend the conduction band as shown in Fig. 3(b). Therefore, a quantum
well is formed at the boundary of the undoped AlGaAs and the undoped GaAs.
Since an Si-based metal-oxide-semiconductor FET has a structure similar to
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Fig. 3. A high electron mobility transistor based on the modulating doping: (a) cross-section
and (b) conduction band profile of doped and undoped AlGaAs layers and undoped GaAs layer.
The energy barrier of the conduction band is ∆Ec. The quantum well lies just below the undoped
AlGaAs layer in (a), and lies to the right of the undoped AlGaAs in (b). The “bend” in the
conduction band is caused by the excess electrons in the undoped GaAs layer and the spatial
charges in the doped AlGaAs layer (as marked by “+”). The energy levels in the quantum well
are discrete with regard to the dependence of variables in the longitudinal direction.
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Fig. 4. A quantum wire fabricated from a quantum well structure: (a) etching of a portion of a
quantum well structure and (b) deposition of metal gate on the top layer. The voltage applied to
the metal gate depletes electrons underneath the gate, and electrons can gather underneath the
place where the gate is not deposited.

high electron mobility transistor, quantum wells can be formed under certain
conditions.

Figure 4 shows how quantum wires and QDs are fabricated from quantum wells
in a top-down approach. One method is to remove part of a quantum well by etch-
ing, and the other is to apply an electric field above the quantum well. The former
is used to confine the electron and hole at the same time, while the latter is to
confine only an electron or a hole since the electric field prevents an electron (or a
hole) from forming beneath the metal electrode. To etch the semiconductor material
or to deposit the electrode, a nano-scale pattern has to be transferred by lithogra-
phy. Various lithography technologies have been developed such as nano-imprinting,
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AFM-STM lithography, dip-pen nanolithography, etc. Nevertheless, electron-beam
lithography is currently the most widely used.

1.2. QD-based single-electron devices and single-photon sources

In Sec. 1.1, QD fabrication was discussed. In most of the proposals to be discussed
in the next few sections, QD-based QCs are known to be single-electron devices.
Recent advances in epitaxial growth technology have led to confinement of single
electrons in semiconductor QDs. In QD-based “single-electron transistors” (SET),
the position of a single electron governs the electrical conductance. However, the
same factors that make single-electron detection simple also complicate construc-
tion of a QC based on sensing an electron’s position. Charged electrons are easily
de-localized by stray electric fields due to Coulomb interaction, and electrons placed
in delicate entangled quantum states rapidly lose quantum coherence.b The localiza-
tion of a single dot can be achieved either by advanced epitaxial growth techniques
or by using novel optical manipulation techniques such as the near-field optical
probe.

It was first predicted in 1938 that any two materials with different lattice con-
stants would result in the formation of islands instead of flat layers beyond a crit-
ical thickness.41 The growth of the first strain induced islands were reported by
Goldstein et al.18 in 1985, where InAs islands were formed on GaAs.c These islands
can have sizes in the range of a few nanometers and can confine charge carriers
both in the conduction band and in the valence band. Whatever we use the QD
system for and whatever the fabrication technology we use, there will always be
a statistical distribution of QD size and composition. This statistical distribution
in turn produces inhomogeneous broadening of the QD optical response such as
transition frequencies: this favors the distinction of one qubit from the others since
the energy-domain discrimination is facile. Access to a specific qubit is achieved by
positioning the excitation probe beam spot onto the desired location where a num-
ber of qubits with different frequencies can be accessed. Access to specific qubits
can therefore be achieved by position selective addressing combined with frequency
discrimination.

In addition, single-electron devices have a unique mechanism known as the
Coulomb blockade, which is different from size quantization. Single electron tunnel-
ing occurs at an ultra-small junction. Electrons cannot pass through the ultra-small

bQuantum coherence refers to the property or condition of a quantum system whose constituents
are in-phase, i.e. the various states that make up the overall wave-function have a well-defined,
correlated phase relationship with one another as described by quantum mechanics. (This is to be
contrasted with quantum decoherence, where the coherence of the process is lost.) The constituents
in this paper are (mostly) electrons. But quantum particles such as electrons are identical and
indistinguishable. The only way to tell them apart is via their “different identity cards” defined
through quantum numbers. A system in quantum coherence is a linear combination (i.e. superpo-
sition) of eigenstates where each eigenstate is specified by a quantum number.
cThis strain-induced-QD-growth method belongs to the bottom-up approach.
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Fig. 5. A split-dual gate single-electron tunneling device. The voltage applied to the gate leads to
single-electron junctions at the narrow channels and a quantum dot between the narrow channels.
The capacitance of the junctions and the quantum dot size are dependent on the gate voltage.

junction due to electrostatic charging energy, which is the Coulomb blockade. Only
when the electrostatic charging energy can be lowered by electron tunneling can a
single electron then tunnel through the ultra-small junction, called a single electron
junction. Quantitatively, when the capacitance of the junction is much smaller than
e2/kBT , where e is the absolute charge of electron, kB is the Boltzmann constant
and T is the temperature, single-electron tunneling is observed. Figure 5 shows a
schematic of a single-electron tunneling device. It is built on a quantum well struc-
ture. There are two single electron junctions and one QD. If there is no electron
in the QD, only a single electron can be at the QD by single electron tunneling.
Various single-electron devices have been introduced such as the aforementioned
SET, the single-electron box, and the single-electron turnstile.

Next, we consider the QD as a single photon generation source. Single pho-
tons were first generated in completely different kinds of quantum dots, colloidal
quantum dots, which are synthesized in solutions.28 These dots tend to suffer from
blinking and bleaching; thus, improvements in their stability are required if prac-
tical devices are to be built with these dots. Their properties are currently closer
to those of molecules than to those of Stranski–Krastanow QDs.d But because of
the advantages of Stranski–Krastanow grown QD, most research has concentrated
on epitaxially grown QD. However, one advantage of colloidal dots over epitaxially
grown dots is that they still emit efficiently at room temperature.

dBriefly, Stranski–Krastanow QDs are grown by utilizing the strain caused by the lattice mismatch
between the QD layer and the substrate during molecular beam epitaxy to form QD islands which
are in the shape of a cylinder, pyramid, or truncated pyramid, with dimensions of about the
exciton Bohr radius (see, for example, Refs. 4, 30, 31 and 46).
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The recombination of an electron–hole pair leading to the emission of a photon
with a specific energy is uniquely determined by the total charge configuration of
the dot.24 If a QD is optically pumped with a pulsed laser leading to the creation
of several electron–hole pairs in the dot, then it is possible to spectrally isolate
the single photon emitted by recombination of the last electron–hole pair.17 QDs
offer several advantages as sources for single photons. They have large oscillator
strengths, narrow spectral linewidths, high photon yield, and excellent long-term
stability. The materials used to make QDs are compatible with mature semiconduc-
tor technologies, allowing them to be further developed and integrated with other
components. The usefulness of most QD single-photon sources, though, is limited
by their low efficiencies. The dots radiate primarily into the high-index substrates
in which they are embedded, and very few of the emitted photons can be collected.
The source efficiency can be increased by placing a dot inside a microscopic optical
cavity. Perhaps the most practical microcavities for this purpose are microscopic
posts etched out of distributed-Bragg reflector (DBR) microcavities39 (see Figs. 6
and 7). Light escaping from the fundamental mode of a micropost microcavity is
well approximated by a Gaussian beam, and can thus be efficiently coupled into
optical fibers, detectors, or other downstream optical components. Q as high as 104

together with a mode volume as small as 1.6 cubic optical wavelengths has been
achieved. This translates to nearly 100% efficiency for a single-photon source.

1.3. A simple QD for quantum computing

We now illustrate a simple QD experiment as follows. Single quantum dots for
quantum computation can be localized at the tip of strain induced self-assembled
structures such as Stranski–Krastanow growth mode of GaN QDs grown on AlN

Fig. 6. Scanning-electron microscope image of a micropost microcavity with a top diameter of
0.6 µm and a height of 4.2 µm.
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Fig. 7. QDs in a distributed-Bragg reflector, adapted from Refs. 21 and 22.

layers. A uniquely large hexagonal GaN pyramid (cf. Fig. 8) is self-assembled on
the AlN cap on the surface of the GaN QD layers with a radius of curvature of no
more than 300nm. The faces of the pyramids are the {101̄1̄}e planes as evidenced
by the angle between the inclined edge and the base of the pyramid. The measured
angle of around 58−60◦ is in good agreement with the calculated angle of 58.4◦

using the GaN lattice parameters of c = 5.185 Å and a = 3.189 Å. The formation
of the pyramids indicates that the {101̄1̄} surfaces are self-assembled preferentially
compared to the {0001̄} surface. Thus, it can be inferred that {101̄1̄} surfaces have
the lowest surface potential with respect to the self-assembly process. The tip of
the pyramid is very sharp with a diameter measured to be less than 2 nm. It is

eThis notation (and similar later) is called Miller indices, representing the plane on which the
GaN lattices {101̄1̄} is grown (GaN is a wurtzite structure). A reference for Miller indices may be
found in Ref. 48.
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Fig. 8. GaN pyramids were selectively grown in 4 µm period and 2 µm square openings in a
grid-like pattern. Three period of InGaN MQW structures (30 nm) were grown selectively on top
of hexagonal GaN pyramids.

observed that GaN QDs are localized at the tip of the pyramid as demonstrated by
the strong excitonic properties.

Near-field optical spectroscopy can be used for quantum computation as this
probing technique is highly selective and has been utilized for exciting a single
quantum dot system. Figure 9 shows the exciton emission from QDs localized at
the tip of the pyramid. A comparison of the far-field and near-field spectrum shows
that the emission from quantum confined states in a QD that are significantly
blue-shifted compared to the bulk GaN states. In GaAs-based QDs, the linewidth
of emission from single QDs has been observed to be less than a few µeV. In
GaN-based QDs, the linewidth is broader due to larger longitudinal optical (LO)
phonon scattering rate and electron effective mass, which leads to homogeneous
broadening.

A periodic array of such GaN-based pyramids shown in Fig. 10 has been fabri-
cated by Arakawa’s group at University of Tokyo,42 and can be used for quantum
computation based on lateral coupling of the dots by using a near-field optical
probe.

1.4. Spintronics

Spintronics is applicable to a QD-based QC, a proposal addressed in Sec. 3 of this
paper. Spintronics is spin-based electronics with a spin degree of freedom added to
the conventional charge-based electronic devices. Electrons have a half spin angular
momentum, that is, there are two states of electron spin: spin-up and spin-down.
Spintronics distinguishes spin-up electron current from spin-down electron current
while charge-based electronics does not. Therefore, electron spin can be made to
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Fig. 9. Far-field and near-field photoluminescence (PL) spectrum from a GaN pyramid. The high
energy emission at 3.48 eV observed in the near-field limit is from the QD localized at the top
of the pyramid, whereas the far-field emission is dominated by the photoluminescence from bulk
GaN states. The near-field PL spectrum signifies various energy levels (i.e. eigenstates) of the QD,
which can be used to represent a single qubit for quantum computation.

Fig. 10. SEM image showing the surface morphology and self-assembly of a hexagonal pyramid
shape GaN structure with ∼ 300 nm diameter.

carry information in spintronics. In 1988, it was reported in Ref. 3 that the resistance
of a material is dependent on the magnetic moment alignment of the ferromagnetic
layer, which is known as the giant magnetoresistive (GMR) effect. A simple GMR-
based application is a spin valve as shown in Fig. 11. The top anti-ferromagnetic
layer fixes the magnetic moment of the upper ferromagnetic layer. The lower fer-
romagnetic layer can change the direction of the magnetic moment in the presence
of an external magnetic field. The resistance of the conductive layer varies with
the external magnetic field due to the GMR effect. Spintronics is a type of device
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Fig. 11. A spin valve structure which is used to select desired electron spin current by an external
magnetic field. The magnetization of the pinned layer is insensitive to the magnetic field, but that
of the free layer can be changed. When the magnetic field aligns with the magnetic moments in
the ferromagnetic layers, the resistance of the conductor reaches a minimum. When the magnetic
field anti-aligns with the magnetic moments, the resistance reaches a maximum.

that merges electronics, photonics and magnetism. It is currently developing at a
rapid pace.

1.5. Three major designs of QD-based quantum gates

QD designs allow for tunable bandgaps through the choices of QD sizes, shapes
and semiconductor materials. For quantum gate logic operations, as mentioned in
the preceding paragraphs, one can utilize energy levels, spins, or excitonic levels of
confined electrons in quantum dots. At present, there exist three major designs of
QD-based QC:

(i) Sherwin, Imamoglu and Montroy36: employ an idea similar to a cavity-QED
design11,35 by trapping single electrons in QD microcavities;

(ii) Loss and DiVincenzo27: utilize electron spins and their interactions via the
electromagnetic effect of tunneling;

(iii) Piermarocchi et al.33: use a design based on coherent optical control of two
electron–hole pairs (called a biexciton) confined in a single QD. Efforts are
being made to couple two of more QDs in order to make this design scalable.

1.6. Universality of 1-bit and 2-bit gates in quantum computing

The executions of computations in QC are premised on the universality of the
quantum gate operations in the QC. We first recall the following universality result.
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Theorem 1 (Universality of 1-bit and 2-bit quantum gates8). Let A be the
collection of all 1-bit unitary rotation gates Uθ,φ, where

Uθ,φ ≡
[

cos θ −ie−iφ sin θ

−ieiφ sin θ cos θ

]
, 0 ≤ θ, φ ≤ 2π. (1.1)

This collection A, together with any single 2-bit gate V satisfying

V |xy〉 �= (S1|x〉) ⊗ (T1|y〉), V |xy〉 �= (S2|y〉) ⊗ (T2|x〉); x, y ∈ {0, 1}, (1.2)

for any 1-bit gates S1, S2, T1 and T2, constitute universal quantum gates for quan-
tum computing. That is, any n-qubit quantum operation (as representable by a
2n × 2n unitary matrix) can be achieved by a concatenation of such 1-bit gates
Uθ,φ and 2-bit gates V .

Therefore, in order to ensure universality, it is sufficient to have all the 1-bit
gates Uθ,φ in (1.1), plus any single 2-bit gate satisfying (1.2). These gates are
derived from applying laser coherent control pulses and/or tunneling voltage gates
in QDs. In the next few sections, we will provide the physical background and the
mathematical equation governing these QD systems.

1.7. Organization of the paper

This paper is organized as follows: In Sec. 2, we study the microcavity approach
of Sherwin et al.36 In Sec. 3, we show the “spintronics” model following Loss and
DiVincenzo.27 In Sec. 4, we describe the biexciton model of Sham et al.33 In each
section, issues related to decoherence and measurement will also be discussed.

We should note that in addition to the three major proposals (i)–(iii) described
in Sec. 1.5, many researchers have proposed QD-based entanglement schemes which
can work as universal quantum gates. We apologize that we cannot cite all such
schemes exhaustively here due to our limited knowledge and resources.

Another different application of QDs to computing, called the quantum dot cellu-
lar automata (QCA) approach, utilizes special properties of quantum decoherence
in QDs to construct electronic logic gates. Information concerning QCA may be
found on the Web.54 A good expository reference may be found in Ref. 46.

2. Electrons in QDs Microcavity

The QC proposed by Sherwin et al.,36 is a collection of QDs contained in a
3D microcavity. Each QD contains exactly one electron. The two lowest elec-
tronic states are used to encode |0〉 and |1〉, respectively. The third energy
level |2〉, as an auxiliary state, is utilized to perform the conditional phase shift
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operation; nevertheless, it does not directly encode any information. In addi-
tion, each QD is addressed by a pair of gate electrodes. Voltage pulses can be
applied to control the energy levels of the QD via the Stark effect,f in partic-
ular, the energies E01 and E02 of the 0–1 and 0–2 transitions. The microcavity
has a fundamental resonance with frequency ωc. There is also a continuous-wave
laser with a fixed frequency ωl (different from ωc) through one side of the cav-
ity. The key technique to manipulate the state of the QD is to tune E01 and
E02 with appropriate voltage pulses (through the gate electrodes) such that res-
onances with �ωc, �ωl, and �ωl + �ωc are achieved. Coupling of different QDs is
done via microcavity mode photons acting as the data bus. See the schematic in
Fig. 12. Here, the QD configuration is similar to the QD in DBR microcavities
in Sec. 1.2. The difference is that we use the cavity-mode photon confined in the
cavity to communicate back and forth between QDs, while in the application of
Sec. 1.2, the emphasis was to enhance the efficiency of generating cavity-mode pho-
tons emitted from the DBR microcavities for utilization by downstream optical
devices.

Fig. 12. The black dots represent the locations of QDs where the electrons are confined. The
cavity photon with frequency ωc serves as the data bus to couple two QDs. The figure on the
right describes the three lowest energy levels utilized to perform qubit operations. The transition
energies from |0〉 to |1〉 and |0〉 to |2〉 are given by �ω01 and �ω02, respectively, which can be tuned
by the voltage pulse e.

fThe Stark effect, discovered in 1913 by J. Stark, is the splitting of a spectral line into several
components in the presence of an electric field. This splitting is called a Stark shift. The electric
field may be externally applied, but in many cases it is an internal field caused by the neighboring
ions or atoms. The effect is due to the interaction between the electric dipole moment of an electron
with the electric field.

For semiconductor material, research on electroabsorption effects near the semiconductor band
edges dates back to the 1950s. These include the interband photon-assisted tunneling or Franz–
Keldysh effects16 and exciton absorption effects.14 With the appearance of quantum-confined
structures, the optical absorption in quantum wells or QDs has been found to exhibit a dramatic
change through exciton effects with an applied external electric field. This is caused by the so-
called Quantum Confined Stark Effect (QCSE),29 which led to the development of integrated
electroabsorption devices at room temperature.
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We may write down the following Hamiltonian to describe a QD interacting
with cavity photons and laser fields:

H = �ωcâ
+
c âc + E10(e)σ̂11 + E20(e)σ̂22 + �g01(e){â+

c σ̂01 + σ10âc}︸ ︷︷ ︸
J1

+ �Ωl,01(e){σ̂01e
iωlt + σ̂10e

−iωlt}︸ ︷︷ ︸
J2

+ �g12(e){â+
c σ̂12 + σ̂12âc} + �Ωl,12(e){â+

c σ̂12e
iωlt + σ̂21âce

−iωlt}︸ ︷︷ ︸
J3

, (2.1)

where âc is the cavity mode annihilation operator, gij are the vacuum Rabi frequen-
cies, σ̂ij = |i〉〈j| for i, j ∈ {0, 1, 2} are the transition operators, and e is the voltage
pulse. Let ec, el, and el+c be the proper heights of e such that E10(ec) = �ωc,
E10(e�) = �ωl, and E20(e�+c) = �ωl + �ωc, respectively. The energies of the cavity
mode photon, �ωc, and the laser photon, �ωl, should be sufficiently separated in
order to have a satisfactory resonance performance. Typically, �ωc is 11.5meV, and
�ωl is 15meV. The different effects of applying voltage pulses e ≈ ec, el, and el+c

can be explained from this Hamiltonian. The meanings of individual terms in (2.1)
are explained in Box 1.

There are a total of 11 terms in the Hamiltonian H in (2.1). Their origins can
be explained as follows:

(i) The first three terms are called the unperturbed Hamiltonian, i.e. the
Hamiltonian without interaction, where �ωcâ

+
c ac represents the energy

of the cavity, and E10(e)σ̂11 + E20(e)σ̂22 represents the energy of the
three-level atom. Note that E10(e) = �ω01 and E20(e) = �ω02. (For the
sake of simplicity, the vacuum energy of the cavity is omitted as it is a
constant, and the energy of the atom at level |0〉 is taken to be 0.)

Interaction Terms: J1,J2 and J3:

(ii) The interaction between the atom and the cavity between the two levels
|0〉 and |1〉 is modeled by J1. The single-mode cavity field stimulates a
Rabi oscillation between |0〉 and |1〉, where g01(e) is the vacuum Rabi
frequency. Term â+

c σ̂01 describes the transition process when the atom
jumps from |1〉 to |0〉 and a cavity photon is created, while σ̂01âc describes
the reverse process.

(iii) J2 contains the laser–atom interaction terms in a semi-classical form,
where the electric field is not quantized (as the electric field induced by
the laser is strong), with Ω�,01 as the Rabi frequency.

(iv) J3 is a combination of the effects of J1 and J2, except that it now
describes the transition between levels |0〉 and |2〉.

Box 1. Meanings of the terms in the Hamiltonian (2.1).
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In order to simplify the analysis of these three primary resonant cases, we have
adopted the following assumptions:

(i) The time durations for the rise and fall of the voltage pulses e are relatively
short, so that ideal heights are quickly reached to ensure that the targeted
resonances dominate the overall state vector evolution.

(ii) The changes to the Hamiltonian H by the voltage pulses e is adiabatic, so that
unwanted transitions between |0〉 and |1〉 induced by ramping electric fields
are minimized.

(iii) The AC Stark shifts in the energy levels of the QD caused by the laser field
are neglected.

(iv) The effect from the terms which do not satisfy resonance conditions is also
neglected.

2.1. Resonance, 1-bit and CNOT gates

The details of the three primary resonant cases for (2.1) are:

(i) e ≈ ec: The first interaction term, Ĥ1 = �g01(e){â+
c σ̂01 + σ10âc} in H [cf. the

term J1 in (2.1)] dominates because of the resonance at ω10(e) ≈ ωc. If the
QD is in state |1〉 or if there is one photon in the cavity, i.e. the cavity state is
|1〉c, the qubit will undergo vacuum Rabi oscillations with frequency g01:

|0〉|1〉c → cos(g01t)|0〉|1〉c − ieiφ sin(g01t)|1〉|0〉c, (2.2)

|1〉|0〉c → cos(g01t)|1〉|0〉c − ie−iφ sin(g01t)|0〉|1〉c, (2.3)

where φ = 0. The above defines a rotation between state vectors |0〉|1〉 and
|1〉|0〉, which is very similar to the 1-bit gate (1.1). We denote it as U

(1)
θ,φ ≡

Uθ,φ(|0〉|1〉, |1〉|0〉) with θ = g01t, with φ = 0.
(ii) e ≈ el: The second interaction term, Ĥ2 = �Ωl,01(e){σ̂01e

iωlt + σ̂10e
−iωlt} in

H [cf. the term J2 in (2.1)] dominates. The state vector will rotate between |0〉
and |1〉 with Rabi frequency Ωl,01. We denote it as U

(2)
θ,φ ≡ Uθ,φ(|0〉, |1〉) with

θ = Ωl,01t:

|0〉 → cos(Ωl,01t)|0〉 − ieiφ sin(Ωl,01t)|1〉, (2.4)

|1〉 → cos(Ωl,01t)|1〉 − ie−iφ sin(Ωl,01t)|0〉. (2.5)

(iii) e ≈ el+c: The Rabi oscillation between |0〉 and |2〉 involving both cavity and
laser photons will dominate the resonance behavior. From the J3 term in (2.1),
after reduction we obtain the following effective Hamiltonian to describe these
two-photon processes:

H2 = �Ω̃(e){â+
c σ̂02e

iωlt + σ̂20âce
−iωlt}. (2.6)

If the cavity contains one photon, i.e. in state |1〉c and the QD is in state |0〉,
then it rotates between |0〉 and |2〉 with frequency Ω̃(el+c). We denote it as
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U
(3)
θ,φ ≡ Uθ,φ(|0〉, |2〉) with θ = Ω̂(el+c)t:

|0〉 → cos(Ω̃(el+c)t)|0〉 − ieiφ sin(Ω̃(el+c)t)|2〉, (2.7)

|2〉 → cos(Ω̃(el+c)t)|2〉 − ie−iφ sin(Ω̃(el+c)t)|0〉. (2.8)

Let us now address how to implement the CNOT (Controlled-NOT) gate in
such a system. With respect to the ordered basis {|00〉, |01〉, |10〉, |11〉}, the matrix
representation of the CNOT gate is

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

This task is achieved by first constructing the conditional phase shift |00〉 → |00〉,
|01〉 → |01〉, |10〉 → |10〉, and |11〉 → −|11〉. The procedure is described in the
following (by starting with a cavity with no photons):

(i) Apply a “π” pulse with height ec and duration π/(2g01) on the control bit.

This pulse implements the rotation Uπ/2,π(|0〉|1〉, |1〉|0〉) =
h 0 i

i 0

i
, where a

negative sign representing a global phase is omitted.
(ii) Apply a “2π” pulse with height el+c, phase 0, and duration π/Ω̃(el+c) on the

target bit. This pulse implements the rotation Uπ,0(|0〉, |2〉) =
h −1 0

0 −1

i
.

(iii) Apply a “π” pulse with height ec and duration π/(2g01) on the control bit.

Again, this pulse implements the rotation Uπ/2,π(|0〉|1〉, |1〉|0〉) =
h 0 i

i 0

i
.

These three steps will yield the quantum phase gate

Qπ = Qη|η=π ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiη


∣∣∣∣∣
η=π

.

Theorem 2. The above procedure implements the desired conditional phase shift
to achieve the quantum phase gate Qπ.

Proof. Following the previous discussion, we can derive the system states after
each operation, starting from different initial states. The composite operation is
U

(1)
π/2,πU

(3)
π,0U

(1)
π/2,π:

|00〉|0〉c → |00〉|0〉c → |00〉|0〉c → |00〉|0〉c, (2.9)

|01〉|0〉c → |01〉|0〉c → |01〉|0〉c → |01〉|0〉c, (2.10)

|10〉|0〉c → i|00〉|1〉c → −i|00〉|1〉c → |10〉|0〉c, (2.11)

|11〉|0〉c → i|01〉|1〉c → i|01〉|1〉c → −|11〉|0〉c. (2.12)

Ignoring the cavity bit |0〉c, we have realized the conditional phase shift Qπ on
two QDs.



June 5, 2006 9:54 WSPC/187-IJQI 00176

Quantum Dot Computing Gates 251

This quantum phase gate Qπ satisfies (1.2) and is, therefore, a universal 2-bit
gate. From Qπ, we can easily derive the CNOT gate by applying voltage pulses
with height el, utilizing two more “π

2 ” and “ 3π
2 ” pulses with duration π

4Ωl,01
and

3π
4Ωl,01

, and phase −π
2 , i.e.

CNOT = U
(2)
3π/4,−π/2QπU

(2)
3π/4,−π/2. (2.13)

2.2. Decoherence and measurement

Decoherence as well as dissipation are major problems in the physical implementa-
tion of quantum computers. Any realistic quantum computer will have some inter-
action with its environment, which causes decoherence (decay of the off-diagonal
elements of the reduced density matrix) and dissipation (change of populations of
the reduced density matrix).23 Because the data is encoded in the electronic states
and the coupling of different QDs is carried out via microcavity mode photons in
this QD scheme, decoherence of both electronic states and cavity photons must
be considered. There are many interactions which may cause decoherence. Some
of them come from devices’ imperfections, which can be minimized by precision
engineering. Examples of imperfections include the emission of freely propagating
photons, interactions with the fluctuations in the potentials of the gate electrodes,
and inhomogeneity of QDs. These problems can be tackled by using very high
quality cavities, making the gate electrodes out of a superconductor, and individ-
ual calibration of each QD. Also, though the cavity photon loss — a dissipation
effect — is inevitable in the long run, we can extend the lifetime of a cavity photon
by using cavities made from materials such as ultrapure Si. However, there are other
sources of decoherence which are more “essential” and hard to get rid of, such as the
relaxation of an electron from state |1〉 to |0〉 by emission of an acoustic phonon, and
the “pure dephasing” of electronic states by the interaction with acoustic phonons.
If we assume that these are the dominant source of decoherence, it is estimated
that within the decoherence time several thousands of CNOT operations can be
safely performed. Nevertheless, limited by the technological complexity and lack
of experimental results, accurate conclusions about the decoherence in this scheme
still remain to be drawn.

The final stage of the quantum computing process is the readout of the states
of the qubits. A tunable antenna-coupled intersubband terahertz (TACIT) photon
detector is proposed for this task. Terahertz photons with frequencies close to the
absorption frequency of the TACIT detector are efficiently detected. The absorp-
tion frequency can be tuned via the Stark effect similar to the way the transition
energies of QDs are tuned. At the readout stage, we can tune this frequency to the
fundamental resonance frequency ωc of the cavity. Under the cavity resonance, if
the qubit is in state |1〉, it will undergo Rabi oscillation with frequency g01 and emit
a photon at time π

2g01
, which is immediately detected; otherwise, no photon will be

seen. This way we can deduce whether the original state of the QD is |0〉 or |1〉.
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Fig. 13. Schematic for achieving qubits in multi-level QDs using electron-spin orbits.

3. Coupled Electron Spins in an Array of QDs

3.1. Electron spin

The electron spin is a “natural” representation of a qubit since it comprises exactly
two levels. Unlike charge (energy-level) states in an atom or QD, there are no
additional degrees of freedom into which the system could “leak.” Another great
advantage of spins as compared to charge qubits is that in typical semiconduc-
tor materials like GaAs or Si, the time over which the spin of a conduction-band
electron remains phase coherent can be several orders of magnitude longer than
the corresponding charge decoherence times. Of course, these numbers have to be
compared with the time it takes to perform an elementary gate operation. Even
with this being considered, single spins seem to be very well suited as qubits. The
transverse decoherence time T2, which is most relevant in the context of quantum
computing, is defined as the characteristic time over which a single spin which
is initially prepared as a coherent superposition of “spin up” and “spin down”
coherently precesses about an external magnetic field. The transverse dephasing
time T ∗

2 ≤ T2 of an ensemble of spins in n-doped GaAs can exceed 100 ns, as
demonstrated by optical measurements,20 while switching times are estimated to be
of the order of 10–100ps. The longitudinal (energy) relaxation time T1 determines
how long it takes for a non-equilibrium spin configuration to relax to equilibrium.
T1 can be much longer than T2 (and particularly long in confined structures), but
while suppression of spin relaxation is necessary for quantum computation, it is not
sufficient.

There are two main schemes for achieving qubits in QDs using electron spin:

(i) Single-qubit rotations. In principle, spin-flip Raman transitions could rotate
the electron spin in τgate ∼ 10 ps � τdecoh ∼ 1 µs.

(ii) Two-qubit gates — the real challenge in most schemes. In this case, the spin
decoherence during gate operation is a problem.

Spintronics requires the fabrication of ferromagnetic nanostructures that at
room temperature can transport spin-polarized carriers, and which can be assem-
bled into addressable hierarchies on a macroscopic chip. Most efforts have been
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directed towards the mixing of transition-metal atoms (such as Ni, Fe and Mn, which
have permanent magnetic moments) into semiconductor devices based on periodic
table group II–VI (such as CdS) or III-V (GaAs) compound semiconductors. Super-
structures consisting of alternating ferromagnetic/diamagnetic, metallic/oxide thin
films have also received attention; like spin valves, spin-polarized currents can be
injected into them and transported. An all-electrically controlled QD array can be
used for switching qubits.

Recently, a new class of diluted magnetic semiconductor based on the III–V
system is being studied due to its large intrinsic magnetic dipole moment. Gd-
doped GaN materials are reported to have a strong intrinsic spin dipole moment.
The tunneling in QD-based diluted magnetic semiconductors can also be enhanced
by using a nanoscale electrode on a diluted magnetic semiconductor system.

3.2. The design due to Loss and DiVincenzo

In this section, we study questions related to spintronics design.27 The basics of the
Loss and DiVincenzo scheme is quite mathematically elegant. For a linear array of
QDs (see Fig. 14), a single electron is injected into each dot. The electron’s spin
up and down constitute a single qubit. Each QD is coupled with its (two) nearest
neighbors through gated tunneling barriers. The overall Hamiltonian of the array
of coupled QDs is given in10:

H =
n∑

j=1

µBgj(t)Bj(t) · Sj +
∑

1≤j<k≤n

Jjk(t)Sj · Sk, (3.1)

where the first summation denotes the sum of energy due to the application of a
magnetic field Bj to the electron spin at dot j, while the second denotes the inter-
action Hamiltonian through the tunneling effect of a gate voltage applied between
the dots, and Sj , Sk are the spin of the electric charge quanta at, respectively, the
jth and kth QD.

QDs themselves may be viewed as artificial atoms as both manifest similar
behaviors. Coupled QDs, in this connection, may be considered to a certain extent
as artificial molecules.27 Thus, Burkard, Loss and DiVincenzo naturally applied
the Heitler–London and Hund–Mulliken methods in molecular quantum chemistry

gThe Zeeman effect, discovered by P. Zeeman in 1896, refers to the splitting of spectral lines by

a magnetic field. For a quantum particle with spin lying in a magnetic field, interaction between
its spin magnetic moment with the magnetic field causes its energy levels to split into several
levels depending on the spin and the angular momentum quantum number. For QDs, the discrete
energy levels, the transitions between those levels, and the associated spectral lines discussed so
far have implicitly assumed that there are no magnetic fields influencing the QDs. If there are
magnetic fields (due to the local magnetized layer) present, the electronic energy levels are split
into a larger number of levels, and the spectral lines are also split.
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Fig. 14. (a) A linear array of laterally coupled QDs, as given in Burkard, Engel and Loss.9

Each circle represents a QD, where the arrow represents the spin- 1
2

ground state of the confined
electron. The electrodes (dark gray) confine single electrons to the dot regions (circles). The
electrons can be moved by electrical gating into the magnetized or high-magnetic dipole moment
layer to produce locally different Zeeman splittings.g Alternatively, such local Zeeman fields can
be produced by magnetic field gradients as, for example, produced by a current wire (indicated on
the left of the dot-array). Since every dot-spin is subject to a different Zeeman splitting, the spins

can be addressed individually, e.g. through ESR (electron-spin resonance) pulses of an additional
in-plane magnetic AC field with the corresponding Larmor frequency (ωL). Such mechanisms can
be used for single-spin rotations and the initialization step. The exchange coupling between the
dots is controlled by electrically lowering the tunnel barrier between the dots. (b) A nanofabricated
bow-tie shaped electrode on Gd-doped GaN/AlN semiconductor QDs for spintronics.

to evaluate the “exchange energy” J , which in terms of our notation in (3.7) in
Sec. 3.3, is

J =
�

2
ω(t).

J is a function of B, E and a, among others:

J = J(B, E, a), (3.2)

where

B = the magnetic field strength,

E = the electric field strength, and

a = tunneling barrier height or, equivalently, inter-dot distance.

Varying these leads to, respectively, the effects of wave-function suppression, level
detuning, and the suppression of tunneling between the dots.27 The determination
of ω(t) or, equivalently, J , is important. Technologically, the tailoring, design and
implementation of the control pulse ω(t) are also perhaps the most challenging.
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The coupling between two QDs consists of the usual Coulomb repulsion poten-
tial between the two electrons located within each dot and, in addition, a quartic
potential

V (x, y) =
mω2

0

2

[
1

4a2
(x2 − a2)2 + y2

]
, (3.3)

to model the effect of tunneling [see Fig. 15(b)]. Using the Heitler–London approach
(likening the coupled QDs to the H2 dimer), Burkard, Loss and DiVincenzo obtained
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Fig. 15. (a) Geometry of the two identical coupled QDs. The two electrons are confined to
the (x, y)-plane. Electron spins are denoted by σ and τ. (b) Profile of the quartic potential given
by (3.3).
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the exchange energy as

J =
�ω0

sinh(2d2(2b − 1
b ))

[
c
√

b

{
e−bd2

I0(bd2) − ed2(b− 1
b )I0

[
d2

(
b − 1

b

)]}

+
3
4b

(1 + bd2) +
3
2

1
d2

(
eBa

�ω0

)2
]

. (3.4)

The above result given in Ref. 10 is very commendable but its calculation is lengthy.
Its derivations require special techniques and care, but details were not available in
Ref. 10. We will fill in such technical mathematical details in Appendices A and B.

3.3. Model of two identical laterally coupled QDs

For the model given by Loss and DiVincenzo in Ref. 10, the underlying assumptions
leading to the main result (3.4) are itemized as follows.

(i) The geometry of the two coupled dots is described in Fig. 15(a). The electron
confinement is based on single GaAs heterostructure QDs formed in a 2DEG (two-
dimensional electron gas). The directions of the electric and magnetic fields are
indicated in Fig. 15(a), where

B = Bez, due to the vector potential A(x, y, 0) =
B

2
(−yex + xey), (3.5)

E = Eex. (3.6)

(ii) The quartic potential (3.3) for tunneling [see Fig. 15(b)] was motivated by
experimental fact from Ref. 43 that the spectrum of single dots in GaAs is well
described by a parabolic confinement potential, e.g. with �ω0 = 3 meV.10,43 (The
quartic potential (3.3) separates into two harmonic wells centered at x = ±a.) The
constant a, the half interdot distance, satisfies

a 
 aB,

where aB = [�/(mω0)]1/2 is the effective Bohr radius of a single isolated harmonic
well, and

µB is the Bohr magneton;
gj(t) is the effective g-factor;

Bj(t) is the applied magnetic field;
Jjk(t) the time-dependent exchange constant (see Ref. 10 in references therein), with

Jjk(t) = 4t2jk(t)/u, which is produced by the turning on and off of the tun-
neling matrix element tij(t) between QDs i and j, with u being the charging
energy of a single dot. Moreover, Jjk(t) ≡ 0 if |j − k| > 1.

Note that for

Sj = σ(j)
x ex + σ(j)

y ey + σ(j)
z ez, j = 1, 2, . . . , n,
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and

Bj(t) = b(j)
x (t)ex + b(j)

y (t)ey + b(j)
z (t)ez, j = 1, 2, . . . , n,

where

ex =

 1
0
0

 , ey =

0
1
0

 , ez =

 0
0
1

 ,

and σ
(j)
x , σ

(j)
y and σ

(j)
z are the standard Pauli spin matrices (at dot j):

σ(j)
x =

[
0 1
1 0

]
, σ(j)

y =
[

0 −i

i 0

]
, σ(j)

z =
[

1 0
0 −1

]
.

The dot products are defined by

Sj · Sk = σ(j)
x σ(k)

x + σ(j)
y σ(k)

y + σ(j)
z σ(k)

z ,

Bj(t) · Sj = b(j)
x (t)σ(j)

x + b(j)
y (t)σ(j)

y + b(j)
z (t)σ(j)

z .

From the universal quantum computing point of view, as the collection of 1-bit
and 2-bit quantum gates are universal, it is sufficient to study a system with only
two coupled QDs, whose Hamiltonian may now be written as9,11

H(t) ≡ �

2
[Ω1(t) · σ + Ω2(t) · τ + ω(t)σ · τ ], (3.7)

followed by rewriting the notation

S1 = σ, S2 = τ ; µBgj(t)Bj(t) =
�

2
Ωj(t), j = 1, 2; J12(t) =

�

2
ω(t).

The Ω1(t),Ω2(t) and ω(t) are the control pulses. Thus, varying Ω1(t) and Ω2(t)
will generate complete 1-bit Rabi-rotation gates for the first and second qubits,
respectively.11 However, in order to generate the entangling controlled-not (CNOT)
gate or a quantum phase gate, both being 2-bit gates, the coupling term ω(t)σ · τ
in (3.7) is indispensable. Therefore,

(iii) The Coulomb interaction between the two electrons is described by

C =
e2

κ|r1 − r2|
, r1 = x1ex + y1ey, r2 = x2ex + y2ey. (3.8)

Here we assume that the screening length λ satisfies

λ/a 
 1.

(iv) The ratio between the Zeeman splitting (due to the magnetic field B) and the
relevant orbital energies (see (v) below) is small for all values of B of interest here.
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The spin-orbit effect can be neglected, as

Hspin-orbit =
(

ω2
0

2mc2

)
L · S(

c =
√

π

2
e2

κaB

1
�ω0

≈ 2.4 for �ω0 = 3 meV, aB =

√
�

mω0

)
(3.9)

is of the magnetude

Hspin-orbit

�ω0
≈ 10−7.

Consequently, the dephasing effects by potential or charge fluctuations can couple
only to the charge of the electron, instead of the “holes.”

Under conditions (1)–(4) above, the total orbital Hamiltonian of the coupled
system may be given as

Horb = h1 + h2 + C, (3.10)

where

hj =
1

2m

∣∣∣pj −
e

c
A(rj)

∣∣∣2 + exjE + V (rj), for j = 1, 2. (3.11)

(v) Assume further the cryogenic condition kT � �ω0, so we need only consider the
two lowest orbital eigenstates of the orbital Hamiltonian Horb, which are, respec-
tively, the (symmetric) spin-singlet and the (antisymmetric) spin-triplet. A pertur-
bation approximation then leads to the effective Heisenberg spin Hamiltonian

Hs = JS1 · S2 [cf. J in (3.2)],

J ≡ εt − εs = the difference between the triplet and singlet energies. (3.12)

A self-contained account for the derivation of J involves rather technical math-
ematical analysis of the Fock–Darwin Hamiltonians and states, and clever simplifi-
cations of the various integrals in the exchange energy. We put together such work
in Appendices A and B at the end of the paper.

The universality of the Loss–DiVincenzo QD quantum gates can now be pre-
sented. We first show how to choose the control pulse Ω1(t) in order to obtain the
1-bit unitary rotation gate Uθ,φ in (1.1).

Theorem 3 (Ref. 11, pp. 111−112). Let φ, θ ∈ [0, 2π] be given. Denote e(φ) =
cosφex + sin φey + 0ez for the given φ. Let U1,Ω1(t) be the time evolution operator
corresponding to the quantum system

i�
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉, T > t > 0 [cf. H(t) in (3.7)], (3.13)
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where the pulses are chosen such that

Ω1(t) = Ω1(t)e(φ), Ω2(t) = 0, ω(t) = 0, t ∈ [0, T ], (3.14)

with Ω1(t) satisfying∫ T

0

Ω1(t)dt = 2θ, for the given θ. (3.15)

Then, the action of U1,Ω1(t) on the first qubit satisfies

U1,Ω1(t) = Uθ,φ, (3.16)

the 1-bit unitary rotation gate (1.1).

Proof. We have

Uθ,φ =
[

cos θ −ie−iφ sin θ

−ieiφ sin θ cos θ

]
= cos θ1− ie−iφ sin θ

(
σx − iσy

2

)
− ieiφ sin θ

(
σx − iσy

2

)
= cos θ1− i sin θ cosφσx − i sin θ sin φσy

= cos θ1− i sin θ(cosφσx + sin φσy)

= cos θ1− i sin θe(φ) · σ
= e−iθe(φ)·σ, (3.17)

noting that in the above, we have utilized the fact that the 2 × 2 matrix,

e(φ) · σ =
[

0 cosφ − i sinφ

cosφ + i sinφ 0

]
, (3.18)

satisfies (e(φ) · σ)2n = 1 for n = 0, 1, 2, . . . , where 1 is the 2 × 2 identity matrix.
With the choices of the pulses as given in (3.14), we see that the second qubit

remains steady in the time evolution of the system. The Hamiltonian is now

H1(t) =
�

2
Ω1(t)e1(φ) · σ, (3.19)

and acts only on the first qubit (where the subscript 1 of e1(φ) denotes that this is
the vector e(φ) for the first bit). Because Ω1(t) is scalar-valued, we have

H1(t1)H1(t2) = H1(t2)H1(t1) for any t1, t2 ∈ [0, T ]. (3.20)

Thus,

U1,Ω1(T ) = e−
i
2

R
T
0 Ω1(t)e1(φ)·σdt

= e[−
i
2

R
T
0 Ω1(t)dt]e1(φ)·σ

= e−iθe1(φ)·σ, [by (3.15)] (3.21)

using (3.17).
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We may define U2,Ω2 in a similar way as in Theorem 3.
Next, we derive the 2-bit quantum phase gate Qπ and the CNOT gate. This

will be done through the square root of the swap gate Usw:

Usw(|ij〉) = |ji〉, for i, j ∈ {0, 1}. (3.22)

Theorem 4 (Ref. 11, pp. 110−111). Denote by U(t) the time evolution
operator for the quantum system (3.7) for the time duration t ∈ [0, T ]. Choose
Ω1(t) = Ω2(t) = 0 in (3.7) and let ω(t) therein satisty∫ T

0

ω(t)dt =
π

2
. (3.23)

Then, we have U(T ) = −eπi/4Usw, i.e. U(T ) is the swapping gate (with a non-
essential phase factor −eπi/4.)

Proof. From assumptions, we now have

H(t) = ω(t)σ · τ/2. (3.24)

Since ω(t) is scalar-valued, we have the commutativity

H(t1)H(t2) = H(t2)H(t1), for any t1, t2 ∈ [0, T ]. (3.25)

Therefore,

U(T ) = e−i
R

T
0 H(t)dt/� = e[−

i
2

R
T
0 ω(t)dt]σ·τ

= e−iφσ·τ
(

φ ≡ 1
2

∫ T

0

ω(t)dt

)
= cos(φσ · τ) − i sin(φσ · τ ), (3.26)

where e−iφσ·τ, cos(φσ · τ ) and sin(φσ · τ ) are 4 × 4 matrices. Since

σ · τ =


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1


has a three-fold eigenvalue +1 (triplet) and a single eigenvalue (singlet) −3, the
associated projection operators can easily be found to be

P 1 =
1
4
(31 + σ · τ ) and P 2 =

1
4
(1 − σ · τ );

P jP k =
{

0, j �= k,

P j , j = k.

(3.27)
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Thus, from (3.26) and (3.27), we obtain

U(T ) = e−iφσ·τ = e−iφ · 1
4
(31 + σ · τ ) + e−3iφ · 1

4
(1− σ · τ ). (3.28)

With a little manipulation, (3.28) becomes

U(T ) = eiφ

[
cos(2φ)1 − i sin(2φ)

1 + σ · τ
2

]
= eiφ[cos(2φ)1 − i sin(2φ)Usw], (3.29)

using the fact that

Usw =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =
1
2
(1 + σ · τ ).

Choosing φ = π/4, we obtain the desired conclusion.

Corollary 1 (Ref. 11, pp. 110−111). The square roots of the swapping gate
U

1/2
sw are

U1/2
sw =

e±πi/4

√
2

(1 ∓ iUsw). (3.30)

Proof. From (3.29), we first obtain

Usw = ie−
πi
4 U(T ). (3.31)

Then, we use φ = ±π/8 in (3.29) to obtain

U1/2
sw = (ie−

πi
4 )1/2e±πi/8

[
1√
2
(1∓ iUsw)

]
, (3.32)

and the desired conclusion. (Note that these two square roots of Usw reflect the
choices of

√
1 = 1 and the square root of −1 = ±i for the square roots of the

eigenvalues of Usw.)

Corollary 2 (Ref. 11, p. 112). The quantum phase gate Qπ is given by

Qπ = (−i)U
1,Ω

(2)
1

U2,Ω2U
1/2
sw U

1,Ω
(1)
1

U1/2
sw , (3.34)

where 

∫
Ω(1)

1 (t) dt = −πe1z,∫
Ω(2)

1 (t) dt = πe1z/2,∫
Ω2(t) dt = −πe2z/2,

(3.35)

and e1z , e2z denote the ez vector of, respectively, the first and the second qubit.



June 5, 2006 9:54 WSPC/187-IJQI 00176

262 G. Chen et al.

Remark 2. In order to realize this succession of gates, only one of the Ω(t) in
(3.35) is nonzero at any given instant t, with the duration when Ω(1)

1 (t) �= 0 earlier
than that when Ω2(t) �= 0, and that when Ω(2)

1 (t) �= 0 even later. Earliest is the
period when ω(t) �= 0 for the first U

1/2
sw , and another period when ω(t) �= 0 is

intermediate between those when Ω(1)
1 (t) �= 0 and Ω2(t) �= 0.

Proof. Define

UXOR ≡ e
πi
4 σz e−

πi
4 τzU1/2

sw ei π
2 σz U1/2

sw , (3.36)

with U
1/2
sw = e− π

4 i
√

2
(1+iUsw) chosen from (3.30). Then, it is straightforward to check

that

UXOR|00〉 = |00〉(i), UXOR|01〉 = |01〉(i),
UXOR|10〉 = |10〉(i), UXOR|11〉 = |11〉(−i), (3.37)

so that

UXOR = i(|00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11|)
= iQπ. (3.38)

From the quantum phase gate Qπ, we again obtain the CNOT gate as in (2.13).
As a final comment of this section, we note that the two QDs in coupling are

assumed to be identical. However, the state-of-the-art of fabrication of QDs with
uniform size and characteristics is far from being perfected with current technology.
A more refined mathematical treatment for the modeling of two non-identical QDs
in coupling is needed.

3.4. More details of the QD arrangements: Laterally coupled

and vertically coupled arrays

The discussions so far in this section are geared toward laterally coupled QDs. Let
us now give some details of QD array arrangement. In coupled QDs, there exists
the combined action of the Coulomb interaction and the Pauli exclusion princi-
ple. Two coupled electrons in the absence of a magnetic field have a spin-singlet
ground state, while the first excited state in the presence of strong Coulomb repul-
sion is a spin triplet (recall the discussions of singlet and triplet in the proof of
Theorem 4). Higher excited states are separated from these two lowest states by
an energy gap, given either by the Coulomb repulsion or the single-particle con-
finement. For lateral coupling, the dots are arranged in a plane, at a sufficiently
small distance, say 2a [cf. (3.2)–(3.4)], such that the electrons can tunnel between
the dots (for a lowered barrier) and an exchange interaction J between the two
spins is produced. Lateral coupling amongst QDs lying in a single plane can be
achieved by two different techniques: first, by controlling the material system, and
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Fig. 16. Near-field photoluminescence emission from laterally coupled QDs.

then by having spatial correlation between adjoining dots that can lead to split-
ting of eigenstates within a single dot into symmetric and antisymmetric states;
secondly, by using a near-field probe that can induce an electromagnetic coupling
between neighboring QDs. Figure 16 shows a laterally coupled GaN/AlN single
period QD system probed by near-field optical spectroscopy. In the absence of
tunneling between the dots, we still might have direct Coulomb interaction left
between the electrons. However, this has no effect on the spins (qubit) provided
the spin-orbit coupling is sufficiently small, which is the case for s-wave electrons
in III–V semiconductors with unbroken inversion symmetry (this would not be
so for hole-doped systems since the hole has a much stronger spin-orbit coupling
due to its p-wave character). Finally, the vanishing of J in (3.1) or (3.2) can be
exploited for switching by applying a constant homogeneous magnetic field to an
array of QDs to tune J to zero (or close to some other desirable value). Then, for
switching J on and off, only a small gate pulse or a small local magnetic field is
needed.

Figure 16(a) shows the far-field PL (photonluminescence) spectrum, which is
broadband and includes an ensemble effect of the emission from various QDs.
Figure 16(b) shows the emission from various regions A–C as mapped in spatial
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PL map show above. The emissions from individual dots are observed from the
narrow PL spectrum, some of which are inhomogeneously broadened due to lat-
eral coupling. A greater control of laterally coupled QDs can be achieved by using
patterned substrates so that the electrons in a confined QD can be controlled by
tailoring the eigenfunction of the conduction subbands.32

The arrangement of vertically tunnel-coupled QDs has also been studied by
Burkard, Loss, and DiVincenzo.10 The mathematical modeling is quite similar to
the laterally coupled case so we omit it here and refer the interested reader to
Ref. 10. Neogi et al.31 consider such a setup of the dots, which has been produced
in multilayer self-assembled QDs as well as in etched mesa heterostructures.

To gain insight into the spatial variation of GaN QDs and quantum wells on the
emission intensity and linewidth, cross-sectional transmission electron microscopy
(TEM) was performed. Samples were processed in a dual-beam SEM/FIBh (FEI
Nova 600) using a Ga ion-beam accelerating voltage of 5 kV, followed by exam-
ination in a Tecnai F20 analytical HRTEM.i A near vertical correlation of the
GaN dots ∼ 30 nm in width is observed from a STEMj-HAADFk image (not shown
here), with some dot assemblies correlated at an angle slightly off vertical. It is also
observed that the width of these dots and their period correspond to the surface
texture observed in the SEM image (Fig. 10). An HRTEM image shown in Fig. 17
illustrates that 1.1–2 nm high GaN QD-like clusters are embedded in GaN/AlN
quantum wall-like structures.

Fig. 17. HRTEM image showing 〈1 − 1 − 1 − 0〉 cross-section of stacked layers of GaN dots.

hSEM: scanning electron microscope; FIB: focused ion-beam.
iHRTEM: high-resolution transmission electron microscope.
jSTEM: scanning transmission electron microscope.
kHigh-angle annular dark-field.
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Fig. 18. Near-field emission from a single GaN/AlN QD excited by a He-Cd laser at 325 nm. The
scanning area is 450 nm × 450 nm.

The vertical correlation provides a lower radiative recombination lifetime and
higher emission efficiency due to tunneling via the vertically connected dots, espe-
cially in case of thin AlN spacer layers. Figure 18 shows strong emission from a
single cluster of QDs from a 450 nm× 450 nm area.

Switching of the spin–spin coupling between dots of different size can be achieved
by means of varying external electric and magnetic fields. The exchange interac-
tionl is not only sensitive to the magnitude of the applied fields, but also to their
direction. It has been predicted that an in-plane magnetic field B‖ suppresses J

exponentially; a perpendicular field in laterally coupled dots has the same effect.
A perpendicular magnetic field B⊥ reduces, on one hand, the exchange coupling
between identically sized dots and, on the other hand, for different dot sizes: increas-
ing B⊥ amplifies the exchange coupling J until the electronic orbitals of the various
QD are magnetically compressed to approximately the same size. A perpendicular
electric field E⊥ detunes the single-dot levels, and thus reduces the exchange cou-
pling; the very same finding was made for laterally coupled dots and an in-plane
electric field.10

3.5. Decoherence and measurement

The main source of decoherence for this model is environmental fluctuation. For
electron spin, it is the fluctuation of the ambient magnetic field. This effect can be
modeled as the linear interaction between the electron spin and the environment
modeled as a set of harmonic oscillators (called a Caldeira–Leggett-type model).

lThe exchange interaction is the “off-diagonal” effect of the Coulomb forces acting on two inter-
acting particles (here, the two electrons and their spins in two neighboring QDs). This exchange
interaction is characterized by the quantity J given in Appendix B.
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For a two-spin system, the interaction Hamiltonian is Hint = λ
∑

i=1,2 Si ·bi, where
Si is the angular momentum of the electron spin and the jth component of bi,
bj
i =
∑

α gij
α (a+

α,ij + aα,ij), is the fluctuating field. Here, a+
α,ij and aα,ij are, respec-

tively, the creation and annihilation operators of the magnetic field with mode
α, respectively, and gij

α is the amplitude. The unperturbed harmonic-oscillator
Hamiltonian of the magnetic field can be written as HB =

∑
ωij

α a+
α,ijaα,ij + 1

2 ,
where the subscript “B” represents “bath,” i.e. the environment, and ωij

α is the
frequency of the mode α of the field. Interest is focused on the density matrix of
the system, which is obtained by tracing the bath from the total density matrix
ρ̄(t), ρ(t) = TrBρ̄(t). The dynamics of ρ̄(t) satisfies the von Neumann equation

∂ρ̄(t)
∂t

= −i[H, ρ̄(t)] = −iLρ̄(t), (3.39)

where H is the whole Hamiltonian including the unperturbed system
Hamiltonian Hs:

H = Hs + Hint + HB, (3.40)

and L is the corresponding Liouvillian super operator.
A detailed computation of the effect of the decoherence on the quantum system

when the swap gate or 1-bit rotation gate are applied is given in Ref. 27. That result
shows that the decoherence time has an order of 1.4 ns while the time needed for one
logic gate operation has an order of 25 ps, which is very satisfactory for quantum
computation. The reference model used in the computation has an exchange con-
stant J = 80 µeV and the ambient magnetic fields are assumed to be at thermal
equilibrium.

Measurement of a single spin in a QD is obviously difficult because of the weak
signal and strong background noise. Elegant schemes are needed to overcome this
difficulty. One could utilize a switchable tunneling with which the electron tunnels
into a super-cooled paramagnetic dot (PM) before the measurement. Then, it nucle-
ates a ferromagnetic domain whose magnetization can be measured by conventional
methods. The fidelity of successful measurement with this method is expected to
be about 75% when the magnetization in the upper hemisphere is interpreted as a
spin-up state of the electron. Another scheme utilizes a switchable valve or barrier
which is only transparent to electrons of the spin-up state. When a spin is to be
measured, this switchable valve only lets the spin-up electron pass to another QD
(called a measure dot). Then a nanoscale single-electron electrometer can be used
to detect the presence of an electron in the measure dot. If an electron is found
there, it is in the spin-up state; otherwise, it is in the spin-down state.

3.6. New advances

Recent advances in nanofabrication have greatly facilitated the development of spin-
based devices. The accurate estimation of the QD size distribution in the nanoscale
limit is critical to the optimization of the radiative emission rate, device design
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and fabrication of integrated QD-based quantum computational structures. The
focused ion-beam (FIB) lithography technique overcomes the diffraction-limited
spot size occurring in convention photolithography. FIBs offer advantages over
the conventional photo-processing technique in precision and fine resolution, and
extends the capability of photoprocessing to the nanometer region. FIB-aided pro-
cessing of semiconductor optoelectronic devices have facilitated progress recently
in the areas of photoprocessing and photofabrication with a higher degree of preci-
sion and resolution.2,45 The patterning and machining of electrodes with nanoscale
resolution over QD structures in the FIB allows for the unique opportunity of
simultaneously preparing cross-sectional TEM at sub-micron spatial resolutions.

We should also mention that many solid-state implementations for quantum
computing have been proposed subsequently,26 including superconducting qubits,
nuclear spins of donor atoms in silicon, and charge qubits in QDs.

4. Biexcitons in a Single QD

Piermarocchi et at.33 propose to utilize the robustness of the elementary excitation
of the electrons in semiconductor nanostructure QDs, i.e. excitons. An exciton con-
sists of a conduction-band electron and a valence-band hole. This electron–hole pair
may be likened to a hydrogen atom, which has an orbiting electron and a nucleus
with one proton carrying a positive charge corresponding to the hole. In an undoped
QD, the optically excited electron–hole pair feels the presence of a large number of
atoms (of the order of 105–106) in the dot and the effect may be well characterized
by the static dielectric constant and the electron–hole’s effective mass.37 Thus, the
exciton works in the same way as excitations in “giant atoms.” A single QD can
hold multi-exciton complexes containing many interacting excitons.

Piermarocchi et al.33 consider two electron–hole pairs, each with two confined
energy levels, inside a single QD (see Fig. 19). The underlying assumptions for the
biexciton model considered in this section according to Ref. 33 are:

(i) The lifetimes of the biexciton and exciton are large enough for the quantum
operations involved, and no unintended states will be introduced. Thus, the
system evolves in a desirable subspace. This also means that only the optically
active states are considered.

(ii) The size of the dot considered is about 40 × 35 × 5 nm3. The electronic levels
considered are the first two states derived from the localization of the s-like
conduction band states, carrying a spin ± 1

2 , and the hole levels are derived from
the localization of the states in the p-like valence-band heavy hole, carrying a
± 3

2 total spin in the direction of the QD growth axis.
(iii) Only the Coulomb interaction between the carriers which conserve their con-

duction or valence band indices is taken into account. The electron–hole
exchange is neglected, whose energy is of the order of µeV and only affects
the fine structure of the excitonic levels.
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Fig. 19. This schematic illustrating biexciton transitions is adapted from Ref. 25. Here, � rep-
resents an electron and ⊕ a hole. (a) The four quantum states considered, from left to right: the
ground state |0〉, the excited exciton state |+〉, the excited exciton state |−〉 and the biexciton
state | − +〉, which could be utilized to encode |00〉, |01〉, |10〉 and |11〉, respectively. (b) Dia-
gram of the energy levels of the four states and their transitions induced by optical pulses, where
σ+ represents left-polarized light and σ− represents right-polarized light. The binding energy is
∆ = ε+ + ε− − ε−+.

According to the above assumptions, the Hamiltonian of the four-level biexciton
system under an optical field with σ+ polarization can be written as

H+ = ε+|01〉〈01|+ ε−|10〉〈10|+ ε−+|11〉〈11|

+
1
2
{Ω+(t)|01〉〈00| + fΩ+(t)|11〉〈10| + h.c.}, (4.1)

where ε+, ε−, and ε−+ are, respectively, the unperturbed energies of the states |01〉,
|10〉, and |11〉 from |00〉, and h.c. represents the Hermitian conjugate of the operator
before it;

Ω+ = d+E+(t) (4.2)

represents a time dependent Rabi energy provided by the electric field, with d+

being the dipole moment of the exciton state |+〉; f is a correction factor to the
dipole moment due to the Coulomb interaction. The electric field E+(t) normally
has a Gaussian shape: E+(t) = ε+e−(t/ε)2ei(ω+t+φ). If a series of pulses are applied
instead of one, E+(t) is the sum of several pulses and Ω+(t) can be expressed as

Ω+(t) =
∑

j

d+E+,j(t − τj), (4.3)

where τj is the center of the jth pulse. The Hamiltonian H+ may be rewritten in
matrix form

H+ =


0 Ω∗

+(t)/2 0 0
Ω+(t)/2 ε+ 0 0

0 0 ε− fΩ∗
+(t)/2

0 0 fΩ+(t)/2 ε−+

 (4.4)
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with respect to the ordered basis |00〉, |01〉, |10〉, |11〉. The two isolated block forms
of the matrix in (4.4) imply that the whole state space can be divided into two
invariant subspaces. One is spanned by |00〉 and |01〉, or the ground state |0〉 and
excited state |+〉; the other is spanned by |10〉 and |11〉, or the excited sate |−〉
and biexciton state | − +〉. The Hamiltonian H+ introduces Rabi rotation within
each subspace, which will be shown in next subsection [cf. (4.15)]. Similarly, the
Hamiltonian of the system under σ− polarized optical field reads

H− = ε+|01〉〈01|+ ε−|10〉〈10|+ ε−+|11〉〈11|

+
1
2
{Ω−(t)|10〉〈00| + fΩ−(t)|11〉〈01|+ h.c.} (4.5)

and the associated matrix form is

H− =


0 0 Ω∗

−(t)/2 0
0 ε+ 0 fΩ∗

−(t)/2
Ω−(t)/2 0 ε+ 0

0 fΩ−(t)/2 0 ε−+

 . (4.6)

We can also write H− in a similar block matrix form as H+ in (4.4) by reorder-
ing the four basis, while H− introduces Rabi rotations within subspace spanned by
|00〉 (the ground state |0〉) and |10〉 (the excited state |−〉); and another subspace
spanned by |01〉 (the excited state |+〉) and |11〉 (| − +〉). This is easy to under-
stand because exciton states |+〉 and |−〉 are created by optical fields with different
polarizations. The fact that H+ and H− share the same form after reordering the
basis ensures that we only have to focus on one of them. The evolution operator, or
propagator, generated by H− can be obtained easily and similarly after we know
the propagator generated by H+.

4.1. Derivation of the unitary rotation matrix and the conditional

rotation gate

The key to realizing a logic gate, or unitary transformation, of this quantum system
is to choose appropriate optical pulses. Before the derivation of the various logic
gates, we first convert H+ into its interaction picture. We separate H+ into the
unperturbed and interaction parts H+ = H+

0 + H+
I , where

H+
0 = ε+|01〉〈01|+ ε−|10〉〈10|+ ε−+|11〉〈11|, (4.7)

H+
I =

1
2
{Ω+(t)|01〉〈00| + fΩ+(t)|11〉〈10|+ h.c.}. (4.8)

Standard deduction leads to the Hamiltonian in the interaction picture

V+ = eiH+
0 tH+

I e−iH+
0 t

=
1
2
{Ω+(t)eiε+t|01〉〈00| + fΩ+(t)ei(ε+−∆)t|11〉〈10|+ h.c.}, (4.9)
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Fig. 20. A schematic illustration of the control pulses applied for a logic gate. The top and middle
curves have the same Gaussian shape but different frequencies. The bottom curve is a composite
pulse which is the sum of the above two pulses. For simplicity, all the angles are set to 0. Also,
ε0 = ε1 = 1 and ε0 = ε1 = ε. The x-axis represents time; the y-axis represents the amplitude of
the electric field.

where ∆ = ε++ε−−ε−+ is the biexciton binding energy, which is not zero because of
the interaction between the two excitons. Choosing the optical pulse to be E+(t) =
ε0e

−(t/ε0)
2
e−iε+t−iφ0 + ε1e

−(t/ε1)
2
e−i(ε+−∆)t−iφ1 , a composite bi-chromatic phase-

locked pulse shown in Fig. 20, we obtain the Hamiltonian with this pulse, in the
interaction picture as

V+ =
d+

2
(ε0e

−(t/ε0)
2
e−iφ0 + ε1e

−(t/ε1)
2
ei∆t−iφ1)|01〉〈00|

+
d+

2
(ε0e

−(t/ε0)
2
e−i∆t−iφ0 + ε1e

−(t/ε1)
2
e−iφ1)|11〉〈10| + h.c., (4.10)

where we have used the usual rotating wave and dipole approximations, and f is
set to 1 for convenience. The pulse has an envelope shape e−(t/ε)2 with width 2ε,
and its spectra has two peaks centered at ε+ and ε+−∆ (see Fig. 20). To determine
and approximate the unitary evolution operator, we need the Magnus expansion

U+ = T e−
i
�

R ∞
−∞V+(t)dt

= e−
i
�
(Ĥ0+Ĥ1+···), (4.11)
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where T is the time ordering operator, and

Ĥ0 =
∫ ∞

−∞
V+(t)dt,

Ĥ1 =
∫ ∞

−∞
dt2

∫ ∞

−∞
dt1[V+(t2),V+(t1)],

...
...

The two integral limits are set to be infinity, because the amplitude of the
electric field decreases to zero exponentially fast. Simulation has shown that the
first term already has good accuracy, and the evolution operator can be obtained
by the approximation

U+ = e−
i
�

R ∞
−∞ V+(t)dt

= e−iA, (4.12)

where

A =
1
�

∫ ∞

−∞
V+(t)dt

=
1
2


0 eiφ0θ0 + δ1e

iφ1 0 0
e−iφ0θ0 + δ1e

−iφ1 0 0 0
0 0 0 δ0e

iφ0 + θ1e
iφ1

0 0 δ0e
−iφ0 + θ1e

−iφ1 0


(4.13)

in matrix form. Here, for simplicity, we have introduced new variables θi = d+εi

�
×∫∞

−∞ e−(t/εi)
2
dt and δi = d+εi

�

∫∞
−∞ e−(t/εi)

2
ei∆tdt = εi

√
πd+εi

�
e−(ε∆/2)2, i = 0, 1.

When the pulse is sufficiently flat, ε∆ � 1, δi is almost zero, and A is further
reduced to an even simpler form

A =
1
2


0 eiφ0θ0 0 0

e−iφ0θ0 0 0 0
0 0 0 eiφ1θ1

0 0 e−iφ1θ1 0

 , (4.14)

which agrees with the result obtained by the area theorem.m It is also worth noting
that A is composed of two independent subsystems, which is most convenient in

mAssuming θ is the angle the Bloch vector rotates, and Ω(t) is the Rabi frequency, then the area
theorem says that

θ =

Z t

−∞
Ω(t1)dt1,

i.e. θ is equal to the area below the frequency curve.
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computation. A general form of the propagator U+ in matrix form can be derived as

U+ = e−iA

=


cos(θ0/2) ieiφ0 sin(θ0/2) 0 0

ie−iφ0 sin(θ0/2) cos(θ0/2) 0 0
0 0 cos(θ1/2) ieiφ1 sin(θ1/2)
0 0 ie−iφ1 sin(θ1/2) cos(θ1/2)

 .

(4.15)

The matrix in (4.15) is useful in the design of pulses for the 1-bit rotations and
the conditional rotation gates.

Theorem 5. In the above four-level biexciton quantum system (within the accuracy
of the area theorem), polarized optical pulses can be used to realize unitary 1-bit
rotation and the conditional rotation matrices.

Proof. When θ0 = θ1 = θ, from (4.15), we obtain the y-rotation of the first qubit
by setting φ0 = φ1 = π/2, denoted by R1y(θ), and the x-rotation R1x(θ) by setting
φ0 = φ1 = 0. If θ0 = 0, a rotation of first qubit when the second qubit is in state
|1〉 is obtained, denoted by CROT

1,2 (θ, φ):

CROT
1,2 (θ, φ) =


1 0 0 0
0 1 0 0
0 0 cos(θ/2) ieiφ sin(θ/2)
0 0 ie−iφ sin(θ/2) cos(θ/2)

 . (4.16)

Another conditional rotation triggered when the second qubit is in state |0〉 can be
obtained with θ1 = 0, denoted by CROT

1,2̄ (θ, φ):

CROT
1,2̄ (θ, φ) =


cos(θ/2) ieiφ sin(θ/2) 0 0

ie−iφ sin(θ/2) cos(θ/2) 0 0
0 0 1 0
0 0 0 1

 . (4.17)

The proof of the rotations and conditional rotations of the second qubit is
similar. We only need to apply the σ− polarized field instead of the σ+ polarized
field. The result can be obtain by just reordering the basis.

The derivation of the above theorem also provides blocks to construct a CNOT
gate, and we have the following corollary.

Corollary 3. A CNOT gate can be simulated with the one qubit rotation and con-
ditional rotation gates obtained in the above theorem; thus, the proposal is universal.
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Proof. We will only investigate the CNOT gate controlled by the second qubit.
Using the same notation as in the last theorem, we can construct a z-rotation
operation of the second qubit:

R2z(θ) = R2y(π/2)R2x(θ)R2y(−π/2) (4.18)

and a special case,

R2z(π/2) = R2y(π/2)R2x(π/2)R2y(−π/2)

=


e−π/4 0 0 0

0 e−π/4 0 0
0 0 eπ/4 0
0 0 0 eπ/4

 . (4.19)

The above z-rotation can be used in a quantum phase gate Qπ up to a phase
shift:

Qπ = R2z(π/2)R1y(π/2)R1x(π/2)CROT
1,2̄ (−π/2)CROT

1,2 (π/2)R1y(−π/2)

= e−iπ/4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (4.20)

Now we can construct the CNOT gate with the second qubit as the control
qubit using above phase shift gate and a conditional rotational gate combined as

CNOT
1,2 = QπCROT

1,2 (π,−π/2)

= e−iπ/2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (4.21)

up to a phase factor.

4.2. Decoherence and measurement

The lifetime of an exciton is critical to quantum information processing. It con-
strains how many logical operations can be performed before the system loses
coherence. Theoretical and experimental results5,40 show that the lifetime spans
from 10 ps to about 1 ns, depending on the confinement and temperature. The
source of decoherence comes from spontaneous emission caused by ambient fluctu-
ations and other factors. The shape of the pulse should be carefully designed to
reduce the spillover of unwanted excited states, such as unlocalized exciton states
with energy levels close to that of the localized excitons. During the operations, the
heating effect may also accelerate the decoherence.

Research on coherent nonlinear optical spectroscopy of the individual excitons
provides a method to probe a single exciton in a semiconductor QD.6,40 When a
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weak probe optical pulse E(t) is applied on the QD, an induced nonlinear optical
polarization field is created. The polarization field is homodyne detected with the
transmitted field, generating a signal. The integral of this signal provides a dif-
ferential transmission signal proportional to the inversion of the exciton, i.e. the
difference of probability amplitudes of the excited and ground states.

4.3. Proposals for coupling of two or more biexciton QD

It is not realistic to set up more qubits by exciting more excitons in a single QD.
To make the above proposal scalable, other strategies to couple two or more QDs
are necessary. Potential candidates include a microcavity36 as already discussed
in Sec. 2, where the cavity mode photon is used as an agent to connect two QD,
and a linear support,7 where the quantum phonon state of a big molecule or nano-
rod serves as the data bus. Piermarocchi et al.34 also suggest using pure optical
control to couple spins in two neighboring QD. The main control method is to
use an external optical field with σ+ polarization which creates an unlocalized
electron–hole pair, i.e. an exciton. This photo-generated electron–hole pair has a
fixed angular momentum configuration corresponding to the polarization of the
field, with electron spin state −σ(−1/2) and hole spin state σ(3/2). The density
of the optical field is kept below the lowest discrete exciton state. The electron
spin in the photo-generated exciton interacts with the two electron spins from
the two neighboring QDs and serves as an agent to couple them together. After
reasonable simplification, the interaction Hamiltonian between the two spins can
be shown to be

HS = −2J12S
1 · S2, (4.22)

where S1 and S2 are the two electron spins from the two QDs, and J12 is a constant.
Figure 21 gives a schematic of this proposal. It is an interaction term similar to
that of NMR except that the constant J12 is controllable.

A

E

B

ωp ,σ+

Fig. 21. A schematic of the optical induced spin–spin interaction. A and B are two electron spins
in two neighboring quantum dots; E is the photo-generated unlocalized exciton which interacts
with A and B. The optical field has frequency ωp and σ+ polarization.



June 5, 2006 9:54 WSPC/187-IJQI 00176

Quantum Dot Computing Gates 275

5. Conclusions

Physical implementations of qubits using QDs are fundamentally limited by inter-
action of qubits with their environment and the resulting decoherence. These
interactions of the qubits set the maximum time of coherent operation and an
upper bound for the number of quantum gate operations to be applied on a sin-
gle qubit; therefore, understanding the origin of decoherence is critical in control-
ling or reducing it, in order to implement quantum logic gates. Because of their
strong localization in all directions, electrons confined in QDs are strongly cou-
pled to longitudinal optical (LO) vibrations of the underlying crystal lattice. If the
coupling strength exceeds the “continuum width,” the energy of keeping the LO
phonons delocalized, a continuous Rabi oscillation of the electron arises, that is,
an everlasting emission and absorption of one LO phonon. As a result, electron–
phonon entangled quasi-particles known as polarons form; these play a substan-
tial role in the rapid decoherence of the spin-based QD qubits. The decoherence
time for an exciton typically ranges from 20 ps to 100 ps, which is considerably
shorter than the decoherence times of nuclear or electron spin. This is a problem
since gate operations take approximately 40 ps to perform. However, implement-
ing ultrafast (femtosecond) optoelectronics may eventually enable us to bypass
this problem. Read-out on the QD can be achieved by placing the excitation and
probe beam spots at a specific location where a number of qubits with differ-
ent excitonic frequencies can be accessed. The somewhat randomized distribution
of the QD size and composition allow qubits with different excitation frequencies
to exist, making it easier to identify specific qubits by singling out the different
frequencies.

There are many interesting or useful websites on QDs or quantum complexity
in general, maintained by individual researchers or research centers. We mention
just a few of them here:

(i) Reference 49, of the Centre for Quantum Computation, at Oxford University,
UK, contains comprehensive, current information and activities in quantum
computation.

(ii) Reference 50, of the Los Alamos National Laboratory, US, contains perhaps
the most current papers and manuscripts on any quantum-related topics.

(iii) Reference 51, Quantum Dot Group homepage, maintained by a group of
European (mainly French) researchers.

(iv) Reference 52, maintained by researchers in Oxford and Cambridge Universities,
UK, on optical quantum dots.

(v) Reference 53, maintained by L. Kouwenhoven of the Technical University of
Delft in the Netherlands.

(vi) Reference 54, maintained by researchers in the Electrical Engineering Depart-
ment of the University of Notre Dame, US, is the website of quantum cellular
automata.
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Appendix A. The Fock–Darwin States

The mathematical derivations of (3.4) rely heavily on the Fock–Darwin
Hamiltonian, which models the motion of a conduction-band electron confined in a
two-dimensional parabolic potential well in an external magnetic field perpendicular
to the two-dimensional plane:

HFD =
1

2m

∣∣∣p − e

c
A
∣∣∣2 +

1
2M

ω2
0r

2 (r = (x2 + y2)1/2), (A.1)

where the notation follows that introduced in Sec. 3.3. The Fock–Darwin Hamilto-
nian HFD and its eigenstates have pleasant mathematical properties12,15 and may
be viewed as a two-dimensional analog of the simple harmonic oscillator.

From (A.1) and (3.5), we have

H =
1

2m

(
|p|2 − 2

e

c
p · A +

e2

c2
|A|2

)
+

1
2
mω2

0(x
2 + y2)

=
|p|2
2m

− 1
2

eB

mc
(−pxy + pyx) +

e2B2

8mc2
(x2 + y2) +

1
2
mω2

0(x
2 + y2)

=
|p|2
2m

+
1
2
m

(
ω2

0 +
ω2

c

4

)
(x2 + y2) +

1
2
ωcLz, (A.2)

where

eB
mc ≡ ωc = the cyclotron frequency,

Lz = xpy − ypx = the z-component of the angular momentum, L = r × p.

Next, from the four independent operators x, y, px and py, we define four new
operators:

a = ε(x − iy) + η(ipx + py),

a+ = ε(x + iy) + η(−ipx + py),

b = ε(x + iy) + η(ipx − py),

b+ = ε(x − iy) + η(−ipx − py),


(A.3)
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where ε and η are real numbers. Using (Poisson brackets)

[x, px] = [y, py] = i�, (A.4)

[x, y] = [x, py] = [y, x] = [y, px] = 0, (A.5)

we can easily show that

[a+, b] = [a, b+] = [a, b] = [a+, b+] = 0, (A.6)

and

[a+, a] = εη[x + iy, ipx + py] + εη[−ipx + py, x − iy]

= −4εη�, (A.7)

[b+, b] = εη[x − iy, ipx − py] + [−ipx − py, x + iy]

= −4εη�. (A.8)

Thus, if we choose

η = 1/(4ε�), (A.9)

then {
[a, a+] = [b, b+] = 1;
all other commutators are zero.

(A.10)

We obtain

p2
x + p2

y = (ipx + py)(−ipx + py)

=
(

a − b+

2η

)(
a+ − b

2η

)
, (A.11)

x2 + y2 = (x + iy)(x − iy)

=
(

a+ + b

2ε

)(
a + b+

2ε

)
, (A.12)

and

Lz = xpy − ypx =
1
2
[(x + iy)(ipx + py) − (x − iy)(ipx − ipy)]

=
1
2

[(
a+ + b

2ε

)(
a − b+

2η

)
−
(

a + b+

2ε

)(
b − a+

2η

)]
. (A.13)

Define

Ω2 = ω2
0 +

ω2
c

4
. (A.14)
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Then

H =
1

2m

1
4η2

(a − b+)(a+ − b) +
1
2
mΩ2 · 1

4ε2
(a+ + b)(a + b+)

+
1
2
ωc ·

1
8εη

[(a+ + b)(a − b−) − (a + b+)(b − a+)]

=
1

8mη2
(aa+ − ab − b+a+ + b+b) +

mΩ2

8ε2
(a+a + a+b+ + ba + bb+)

+
ωc

16εη
(a+a + b/a − a+\b+ − bb+ − a/b + aa+ − b+b + b+\a+).

(A.15)

Recall from (A.9) that 1/η = 4ε�. If we further require that

1
8mη2

=
mΩ2

8ε2
=

mΩ2

8
(4η�)2 = 2mΩ2η2

�
2,

i.e.

η =
1

2
√

�mΩ
, (A.16)

then from (A.15), we see that cross-terms ab, ab+, a+b, a+b+, etc. cancel out:

H =
�Ω
2
{[aa+ − a/b − b+\a+ + b+b] + [a+a + a+\b+ + b/a + bb+]}

+
�ωc

4
[a+a + aa+︸ ︷︷ ︸

2a+a+1

−bb+ − b+b︸ ︷︷ ︸
−2b+b−1

]

=
�Ω
2

[2a+a + 1 + 2b+b + 1] +
�ωc

2
[a+a − b+b]

= �

(
Ω +

ωc

2

)(
a+a +

1
2

)
+ �

(
Ω − ωc

2

)(
b+b +

1
2

)
= �ω+

[
a+a +

1
2

]
+ �ω−

[
b+b +

1
2

]
, (A.17)

where

ω± ≡ Ω ± ωc

2
. (A.18)

We can now define the Fock–Darwin states

|n+, n−〉 =
1

[(n+!)(n−!)]1/2
(a+)n+(b+)n− |0, 0〉, (A.19)

for any integers n+ and n−, n+ ≥ 0, n− ≥ 0, where{
a = ε(x − iy) + η(ipx + py),
b = ε(x + iy) + η(ipx − py),

(A.20)

with

η =
1

2
√

�mΩ
, ε =

1
4�η

=
1
4�

· 2
√

�mΩ =
1
2

√
mΩ
�

. (A.21)
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From (A.17)–(A.19), we have

H |n+, n−〉 =
[
�ω+

(
n+ +

1
2

)
+ �ω−

(
n− +

1
2

)]
|n+, n−〉, (A.22)

for integers n+ ≥ 0, n− ≥ 0.
Instead of using x and y, we can also use the complex variable z and its

conjugate z̄:

z = x + iy, z̄ = x − iy. (A.23)

Then 
∂x =

∂

∂x
=

∂z

∂x

∂

∂z
+

∂z̄

∂x

∂

∂z̄
= ∂z + ∂̄z,

∂y =
∂

∂y
=

∂z

∂y

∂

∂z
+

∂z̄

∂y

∂

∂z̄
= i∂z − i∂̄z,

(A.24)

from where we obtain in turn

∂z =
1
2
(∂x − i∂y), ∂̄z =

1
2
(∂x + i∂y). (A.25)

From (A.19)–(A.25), we thus have
a =

1
2

√
mΩ
�

z̄ +
1

2
√

�mΩ
2�∂z =

1√
2

[
z̄

2�0
+ 2�0∂z

]
,

b =
1
2

√
mΩ
�

z +
1

2
√

�mΩ
2�∂̄z =

1√
2

[
z

2�0
+ 2�0∂̄z

]
,

(A.26)

where �0 ≡ [�/(2mΩ)]1/2.

Theorem A.1. The ground state of the Fock–Darwin states are given by

|0, 0〉 =

√
mΩ
π�

e−
mΩ
2�

(x2+y2). (A.27)

Proof. Since

a|0, 0〉 = 0,

we have

|0, 0〉 = c̃e−
mΩ
2�

z̄z, (A.28)

where c is a normalization constant. We also see that (A.28) satisfies

b|0, 0〉 = 0.

Thus

|0, 0〉 = c̃e−
mΩ
2�

(x2+y2).

The constant of normalization is easily computed to be c̃ = [(mΩ)/(π�)]1/2. The
rest can also be easily verified.
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Appendix B Evaluation of the Exchange Energy

The point of view taken by Burkard, Loss and DiVincenzo10 is to regard the two
coupled QDs as a “molecule” obtained by combining two QDs through perturbation
with a Fock–Darwin-like ground state as the ground state of the single electron spin
on each dot.

Let us rewrite the overall Hamiltonian in (3.10) of the coupled system as

Horb = H1(p1, r1) + H2(p2, r2) + C(r1, r2) + W (r1, r2), (B.1)

(p1 = (px1 , py1, 0), r1 = (x1, y1), p2 = (px2 , py2 , 0), r2 = (x2, y2))

H1(p1, r1) =
1

2m

∣∣∣p1 −
e

c
A(x1, y1, 0)

∣∣∣2 + eEx1 +
mω2

0

2
[(x1 + a)2 + y2

1 ], (B.2)

H2(p2, r2) =
1

2m

∣∣∣p2 −
e

c
A(x2, y2, 0)

∣∣∣2 + eEx2 +
mω2

0

2
[(x2 − a)2 + y2

2 ], (B.3)

C(r1, r2) =
e2

κ|r1 − r2|
[the same as (3.8)],

W (r1, r2) = W1(x1) + W2(x2), (B.4)

with

Wj(xj) ≡
mω2

0

2

[
1

4a2
(x2

j − a2)2 − (xj − a)2
]

, for j = 1, 2. (B.5)

H1 and H2 given above are not Fock–Darwin Hamiltonians. However, after simple
similarity transformations, they become Fock–Darwin plus a constant.

Lemma B.1. Given H1 and H2 as in (B.1) and (B.3), define

H̃1 = e
i
�

(
e2BE

2mω2
0c

+ eBa
2c

)
y1

H1e
− i

�

(
e2BE

2mω2
0c

+ eBa
2c

)
y1

,

H̃2 = e
i
�

(
e2BE

2mω2
0c

− eBa
2c

)
y2

H2e
− i

�

(
e2BE

2mω2
0c

− eBa
2c

)
y2

.

 (B.6)

Then

H̃j = Hj,FD −
(
− e2E2

2mω2
0

∓ eEa

)
; “−” for j =1, “+” for j = 2, (B.7)

where Hj,FD is a Fock–Darwin Hamiltonian for j = 1, 2 defined by

Hj,FD =
1

2m

∣∣∣pj −
e

c
A(xj∓, yj, 0)

∣∣∣2 +
mω2

0

2
(x2

j∓ + y2
j ); (B.8)

where

xj∓ ≡ xj − (−1)ja +
eE

mω2
0

, (B.9)

and “−” for j = 1 and “+” for j = 2.
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Proof. For j = 1, the similarity transformation (B.6)1 effects a translation of py1 ,
the y-component of p1, as follows

py1 → py1 +
e2BE

2mω2
0c

+
eBa

2c
, (B.10)

while the remaining variables x1, y1 and px1 are left unchanged. Thus, from (B.6)

H̃1 =
1

2m

[(
px1 +

eBy1

2c

)2

+
(

py1 −
e2BE

2mω2
0c

+
eBa

2c
− eBx1

2c

)2
]

+
mω2

0

2

[(
x1 − a +

eE

mω2
0

)2

+ y2
1

]
− eE

(
eE

2mω2
0

− a

)
. (B.11)

Define

x1 = x1 + a +
eE

mω2
0

(B.12)

as in (B.9). Then

H̃1 =
1

2m

∣∣∣⇀p
1
− e

c
⇀
A (x1−, y1, 0)

∣∣∣2 +
mω2

0

2
(x2

1− + y2
1) −

e2E2

2mω2
0

+ eEa (B.13)

≡ H1,F̂D +
(

eEa − e2E2

2mω2
0

)
, (B.14)

where H1,FD is a Fock–Darwin Hamiltonian (of variables p1, x1− and y1). H2 and
H̃2 can be similarly treated.

We thus have

H1 = e
− i

�

(
e2BE

2mω2
0c

− eBa
2c

)
y1

H1,FDe
i
�

(
e2BE

2mω2
0c

− eBa
2c

)
y1

+
(

eEa − e2E2

2mω2
0

)
, (B.15)

whose eigenstates are

e
− i

�

(
e2BE

2mω2
0c

− eBa
2c

)
y1 |n(1)

+ , n
(1)
− 〉 [cf. (A.22)], (B.16)

with eigenvalues

ε(n(1)
+ n

(1)
− ) ≡ �ω+

(
n

(1)
+ +

1
2

)
+ �ω−

(
n

(1)
− +

1
2

)
+
(

eEa − eE2

2mω2
0

)
, (B.17)

(
ωω ≡

√
ω2

0 +
(

eB

2mc

)2

± eB

2mc

)
. (B.18)

Similarly, H2 and H2,FD can be obtained from (B.3), (B.14) and (B.15) by
simply replacing the index 1 by 2 and x− by

x+ ≡ x − a +
eE

mω2
0

. (B.19)
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Since the ground state |0, 0〉 of the Fock–Darwin Hamiltonian, HFD, is [cf. (A.27)]

Φ0(x, y) =

√
mΩ
π�

e−
mΩ
2�

(x2+y2)

Ω ≡

√
ω2

0 +
(

eB

2mc

)2
 ,

therefore, the ground state of the Hamiltonians H1 and H2 are, respectively,

Φ(1)
0 (x, y) = e

− i
�

(
e2BE

2mω2
0c

+ eBa
2c

)
y
√

mΩ
π�

e−
mΩ
2�

(x2
−+y2), (B.20)

Φ(2)
0 (x, y) = e

− i
�

(
e2BE

2mω2
0c

− eBa
2c

)
y
√

mΩ
π�

e−
mΩ
2�

(x2
++y2). (B.21)

We are now in a position to apply the well-known Heitler–London method in
quantum molecular chemistry to model the coupled system. The method utilizes
“quantum dot” orbitals:

a(j) ≡ Φ(1)
0 (xj , yj), j = 1, 2,

b(j) ≡ Φ(2)
0 (xj , yj), j = 1, 2,

}
(B.22)

from which we further define

|Ψ±〉 = ν[a(1)b(2) ± a(2)b(1)], (B.23)

where ν is the normalization factor. Note that |Ψ+〉 is the singlet state, while |Ψ−〉
is the triplet state. Note that our notation in (B.21) and (B.23) follows from the
convention used by Slater (Ref. 10, Chap. 3).

Lemma B.2. We have the overlap integral

S ≡ 〈Φ(2)
0 |Φ(1)

0 〉 = e−bd2−d2(b− 1
b ), (B.24)

where

b ≡ Ω
ω0

, d = (mω0/�)1/2a. (B.25)

Consequently, the normalized singlet and triplet states are

|Ψ±〉 =
1√

2(1 ± S2)
[a(1)b(2) ± a(2)b(1)], (B.26)

satisfying

〈Ψ+|Ψ+〉 = 1, 〈Ψ−|Ψ−〉 = 1

and

〈Ψ+|Ψ−〉 = 0.
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Proof. We evaluate (B.24):

S ≡
∫ ∞

−∞

∫ ∞

−∞
Φ̄(2)

0 (x, y)Φ(1)
0 (x, y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
e
− i

�

(
e2BE

2mω2
0c

+ eBa
2C − e2BE

2mω2
0c

+ eBa
2c

)
y
· mΩ

π�
· e

−mΩ
�

[(
x+ eE

mω2
0

)2
+a2+y2

]
dxdy

= e−
mΩ

�
a2− e2B2a2

4�mΩc2

(
mΩ
π�

)∫ ∞

−∞
e
−mΩ

�

(
x+ eE

mω2
0

)2
dx︸ ︷︷ ︸√

π
(mΩ/�)

·
∫ ∞

−∞
e−

mΩ
�

(
y+i eBa

2mΩc

)2
dy︸ ︷︷ ︸√

π
(mΩ/�)

= e−
mΩ

�
a2− e2B2a2

4�mΩc2 = e−bd2−d2(b− 1
2 ).

The rest follows from straightforward calculations.

The exchange energy, from (3.12), can now be written as

J ≡ 〈Ψ−|Horb|Ψ−〉 − 〈Ψ+|Horb|Ψ+〉

=
1

2(1 − S2)
{
〈a(1)b(2)|Horb|a(1)b(2)〉 + 〈a(2)b(1)|Horb|a(2)b(1)〉

− 〈a(1)b(2)|Horb|a(2)b(1)〉 − 〈a(2)b(1)|Horb|a(1)b(2)〉
}

− 1
2(1 + S2)

{
〈a(1)b(2)|Horb|a(1)b(2)〉 + 〈a(2)b(1)|Horb|a(2)b(1)〉

+ 〈a(1)b(2)|Horb|a(2)b(1)〉 + 〈a(2)b(1)|Horb|a(1)b(2)〉
}

= · · · (combining the two parentheses, using (B.1) and expanding)

=
S2

1 − S4

{[
〈a(1)|H1|a(1)〉 + 〈a(2)|H2|a(2)〉 + 〈b(1)|H1|b(1)〉 + 〈a(2)|H2|a(2)〉

]
− 1

S2

[
〈a(1)|H1|b(1)〉〈b(2)|a(2)〉 + 〈b(2)|H2|a(2)〉〈a(1)|b(1)〉

+ 〈b(1)|H1|a(1)〉〈a(2)|b(2)〉 + 〈a(2)|H2|b(2)〉〈b(1)|a(1)〉
]

+ [〈a(1)b(2)|C|a(1)b(2)〉 + 〈a(2)b(1)|C|a(2)b(1)〉]

− 1
S2

[
〈a(1)b(2)|C|a(2)b(1)〉 + 〈a(2)b(1)|C|a(1)b(2)〉

]
+
[
〈a(1)b(2)|W |a(1)b(2)〉 + 〈a(2)b(1)|W |a(2)b(1)〉

− 1
S2

(
〈a(1)b(2)|W |a(2)b(1)〉 + 〈a(2)b(1)|W |a(1)b(2)〉

)]}
(B.27)

≡ S2

1 − S4

{
B1 −

1
S2

B2 + B3 −
1
S2

B4 + B5

}
, (B.28)

where each Bj , j = 1, 2, 3, 4 and 5, represents a square bracket inside the curly
parentheses in (B.27) in the correct sequential order. We evaluate these Bj one by
one below.

Lemma B.3. We have

B1 −
1
S2

B2 = 4ma2ω2
0 . (B.29)
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Proof. Note the following pairs of cancellations:

〈a(1)|H1|a(1)〉 − 〈b(1)|H1|a(1)〉〈b(2)|a(2)〉
S2

= 0, (B.30)

〈b(2)|H2|b(2)〉 − 〈a(2)|H2|b(2)〉〈b(1)|a(1)〉
S2

= 0, (B.31)

because

H1|a(1)〉 = E0|a(1)〉

as |a(1)〉 is the ground state of H1 and E0 is the ground state energy (cf. (B.17)
with n

(1)
+ = n

(1)
− = 0 therein) and so

left-hand side of (B.30) = E0〈a(1)|a(1)〉 − E0〈b(1)|a(1)〉〈b(2)|a(2)〉
S2

= E0 −
E0 · S · S

S2
= 0.

Similarly,

H2|b(2)〉 = E0|b(2)〉,

so (B.31) also holds.
For the two remaining terms in B1, we have

〈b(1)|H1|b(1)〉 + 〈a(2)|H2|a(2)〉 = 2〈b(1)|H1|b(1)〉 (B.32)

and by translation along the x2-axis:

2〈b(1)|H1|b(1)〉 = 2〈b(2)|e i
�
[( eBa

c )y2−2apx2 )]H2e
− i

�
[( eBa

c )y2−2apx2 ]|b(2)〉.

For H2(p2, r2) in (B.3), we have

H2(px2 , py2 , x2, y2)

=
1

2m

[(
px2 +

eB

2c
y2

)2

+
(

py2 −
eBa

2c
+

e2BE

2mcω2
0

− eB

2c
x2+

)2
]

+
mω2

0

2
(x2

2+ + y2
2) − eE

(
eE

2mω2
0

− a

)
,

so

e
i
�
[( eBa

c )y2−2apx2 ]H2(px2 , py2 , x2, y2)e−
i
�
[( eBa

c )y2−2apx2 ]

= H2

(
px2 , py2 −

eBa

c
, x2 − 2a, y2

)
= · · · (substituting and simplifying)

= H2(px2 , py2 , x2, y2) +
mω2

0

2
(4a2 − 4ax2+).
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Therefore

(B.32) = 2〈b(1)|H2|b(1)〉 = 2[〈b(2)|H2|b(2)〉 − 2amω2
0 〈 b(2)|x2+|b(2)〉 + 2ma2ω2

0 ]

� �

= 0 because the integrand

is an odd function of x2+

= 2(E0 + 2ma2ω2
0). (B.33)

The remaining terms in − 1
S2 B2 are

− 1
S2

[〈a(1)|H1|b(1)〉S + 〈b(2)|H2|a(2)〉S] = − S

S2
[〈E0a(1)|b(1)〉 + 〈E0b(2)|a(2)〉]

= − S

S2
· 2E0S = −2E0. (B.34)

By adding (B.33) and (B.34), we obtain (B.29).

Lemma B.4. We have

B3 −
1
S2

B4 = 2�ω0

[
c
√

b e−bd2
I0(bd2) − c

√
b ed2(b− 1

b )I0

(
d2

(
b − 1

b

))]
.

(B.35)

Proof. Note that by the symmetry C(r1, r2) = C(r2, r1), we have

B3 = 2〈a(1)b(2)|C|a(1)b(2)〉

=
∫

R2

∫
R2

Φ(1)
0 (x1, y1)Φ

(2)
0 (x2, y2)

× e2

κ|⇀r
1
− ⇀r

2
|
Φ(1)

0 (x1, y1)Φ
(2)
0 (x2, y2)dx1dy1dx2dy2

=
(

mΩ
π�

)2
e2

κ

∫
R2

∫
R2

1

|⇀r
1
− ⇀r

2
|

× e
−mΩ

�

[(
x1+a+ eE

mω2
0

)2
+y2

1+
(
x2−a+ eE

mω2
0

)2
+y2

2

]
dx1dy1dx2dy2. (B.36)

Introduce the center of mass coordinates:
⇀
R =

1
2
(⇀r

1
+ ⇀r

2
) (center of mass),

⇀r = ⇀r
1
− ⇀r

2
(relative coordinates),

(B.37)


X =

1
2
(x1 + x2), Y =

1
2
(y1 + y2), X = R cosΦ, Y = R sin Φ,

x =
1
2
(x1 − x2), y =

1
2
(y1 − y2), x = r cosφ, y = r sin φ.

(B.38)
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This change of coordinates has the Jacobian equal to 1. Then, the integral in (B.36)
becomes

(B.36) =
(

mΩe

π�

)2 1
κ

∫
R2

∫
R2

1
r
e
−mΩ

�

[
X2+xX+ x2

4 +
(
a+ eE

mω2
0

)
(2X−x)+

(
a+ eE

mω2
0

)2
+X2−xX

+ x2
4 +
(

eE

mω2
0
−a
)
(2X−x)+

(
eE

mω2
0
−a
)2

+Y 2+yY + y2

4 +Y 2−yY + y2

4

]
r dr dφR dR dΦ

=
(

mΩe

π�

)2 1
κ

∫ 2π

0

∫ ∞

0

∫ 2π

0

∫ ∞

0

(dr dφ)(R dR dΦ)

×
{

e
−mΩ

�

[
2R2+ r2

2 +2
(
a2+
(

eE

mω2
0

)2)
+2ax+ 4eE

mω2
0

X2
]}

=
(

mΩe

π�

)2 1
κ

e
− 2mΩ

�

(
a2+ e2E2

m2ω4
0

) ∫ 2π

0

∫ ∞

0

R dR dΦ · e
−mΩ

�

[
2R2+ 4cE

mω2
0

X
]

·
∫ 2π

0

∫ ∞

0

drdφ · e−
mΩ

�

[
r2
2 +2ar cos φ

]
=
(

mΩe

π�

)2 1
κ

e
− 2mΩ

�

(
a2+ e2E2

m2ω4
0

) {∫ ∞

−∞
e
−mΩ

�

»
2X2+ 4eE

mω2
0

X

–

×
[∫ ∞

−∞
e−

2mΩ
�

Y 2
dY

]
dX

}
·

·


∫ ∞

0

e−
mΩ
2�

r2
[∫ 2π

0

e−
2mΩa

�
r cos φ dφ

]
︸ ︷︷ ︸

(J1)

dr

 . (B.39)

We evaluate the integral (J1) above by using the expansion

e−( 2mΩa
�

r) cos φ =
∞∑

m=−∞
(−1)mIm

(
2mΩa

�
r

)
eimφ

= I0

(
2mΩa

�
r

)
+ 2

∞∑
m=1

Im

(
2mΩa

�
r

)
cos(mφ)

[cf. Abramowitz and Stegun (Ref. 1, p. 376, Formula 9.6.34)]

(J1) =
∫ 2π

0

{
I0

(
2mΩa

�
r

)
+ 2

∞∑
m=1

Im

(
2mΩa

�
r

)
cosmφ

}
dφ

= 2πI0

(
2mΩa

�
r

)
.
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Substituting (J1) into (B.39) above and continuing, we obtain

(B.36) =
(

mΩe

π�

)2 1
κ

e
− 2mΩ

�

(
a2+ e2E2

m2ω4
0

)
· e

2mΩ
�

e2E2

m2ω4
0 ·
∫ ∞

−∞
e
− 2mΩ

�

(
X+ eE

mω2
0

)2
dX︸ ︷︷ ︸

( π�

2mΩ )1/2

·
∫ ∞

−∞
e−

2mΩ
�

Y 2
dY︸ ︷︷ ︸

( π�

2mΩ )1/2

·2π

∫ ∞

0

e−
mΩ
2�

r2
I0

(
2mΩa

�
r

)
dr︸ ︷︷ ︸

(J2)

.

To evaluate the integral (J2), we use∫ ∞

0

e−ax2
Iν(bx)dx =

1
2

√
π

a
e

b2
8a I 1

2 ν

(
b2

8a

)
(for Re ν > −1, Re a > 0)

[cf. Abramowitz and Stegun (Ref. 1, p. 487, Formula 11.4.31)].

Then

(J2) =
1
2

√
2�π

mΩ
e

mΩa2
� I0

(
mΩa2

�

)
.

Therefore, we have arrived at

B3 = 2〈a(1)b(2)|C|a(1)b(2)〉 = 2
(

πmΩ
2�

)1/2
e2

κ
e−

mΩa2
� I0

(
mΩa2

�

)
= 2�ω0c

√
b e−bd2

I0(bd2);
(

with c =
e2

κ

1
�ω0

√
πmω0

2�
, cf. (3.9)

)
. (B.40)

Next, we proceed to evaluate integral in B4:

B4 = 〈a(1)b(2)|C|a(2)b(1)〉 + 〈a(2)b(1)|C|a(1)b(2)〉
= 2 Re〈a(1)b(2)|C|a(2)b(1)〉
= · · · (similar to (B.36)–(B.39), using the center of mass coordinates

(B.37) and (B.38))

= 2 Re
(

mΩe

π�

)2 1
κ

∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ ∞

0

1
r

exp

{
i
eBa

�c
y − mΩ

�

[(
2X + x

2

)2

+
(

2X − x

2

)2

+ 2a2 +
(

2Y + y

2

)2

+
(

2Y − y

2

)2
]}

r dr R dR · dφ dΦ

= 2 Re
(

mΩe

π�

)2 1
κ

e−
2mΩa2

�

∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ ∞

0

× exp
{

ieBa

�c
y − mΩ

�

[
2X2 + 2Y 2 +

x2

2
+

y2

2

]}
·

· dr R dR dφdΦ
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= 2 Re
(

mΩe

φ�

)2 1
κ

e−
2mΩa2

�

∫ ∞

−∞
e−

2mΩ
�

X2
dX ·

∫ ∞

−∞
e−

2mΩ
�

Y 2
dY

·
∫ ∞

0

e−
mΩ
2�

r2
[∫ 2π

0

e
ieBa

�c r sin φdφ

]
︸ ︷︷ ︸

(J3)

dr

= 2 Re
(

mΩe

π�

)2 1
κ

e−
2mΩa2

� ·
(

π�

2mΩ

)1/2

·
(

π�

2mΩ

)1/2 ∫ ∞

0

e−
mΩ
2�

r2
(J3)dr︸ ︷︷ ︸

(J4)

,

where

(J3) =
∫ 2π

0

e
ieBa

�c r sin φdφ = J0

(
eBa

�c
r

)
· 2π

[cf. Abramowitz and Stegun (Ref. 1, p. 360, Formula 9.1.18)]

and

(J4) = 2π

∫ ∞

0

e−
mΩ
2�

r2
J0

(
eBa

�c
r

)
dr

= 2π

√
�π

2mΩ
e−( eBa

�c )2 �

4mΩ · I0

((
eBa

�c

)2
�

4mΩ

)
[cf. Gradshteyn and Ryzhik (Ref. 19, p. 732, Formula 6.618(1))].

Therefore, we have arrived at

B4 = 2 Re〈a(1)b(2)|C|a(2)b(1)〉

= 2 Re
(

mΩ
�

)1/2√
π

2
e2

κ
e−

2mΩ
�

a2− e2B2a2

4�c2mΩ I0

(
e2B2a2

4�c2mΩ

)
= 2�ω0c

√
b e−2bd2

e−d2(b− 1
b )I0

(
d2

(
b − 1

b

))
. (B.41)

Using S in (B.24), we obtain from (B.40) and (B.41) that B3 − (1/S2)B4 is indeed
equal to (B.35).

Finally, we evaluate B5.

Lemma B.5. We have

B5 = −4mω2
0a

2 + 2 ·
(

mω2
0

2

)[
3�

2mΩ
+ 3
(

eE

mω2
0

)2

+
3
2
a2

]
. (B.42)

Proof. First, we want to show that

〈a(1)b(2)|W |a(1)b(2)〉 + 〈a(2)b(1)|W |a(2)b(1)〉
= 2〈a(1)b(2)|W |a(1)b(2)〉 − 4mω2

0a
2. (B.43)
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The first term in B5 [and on the left-hand side of (B.43)] satisfies

〈a(1)b(2)|W |a(1)b(2)〉 = 〈a(1)|W1|a(1)〉 + 〈b(2)|W2|b(2)〉 [see (B.4) and (B.4)]

= 〈b(1)|e i
�( eBa

c y1−2apx1)W1e
− i

� ( eBa
c y1−2apx1)|b(1)〉

+ 〈a(2)|e− i
� ( eBa

c y2−2apx2)W2e
i
� ( eBa

c y2−2apx2)|a(2)〉.
(B.44)

But

W1(x) =
mω2

0

2

[
1

4a2
(x2 − a2)2 − (x + a)2

]
,

so

e
i
� ( eBa

c y1−2apx1)W1(x1)e−
i
� ( eBa

c y1−2apx1)

= W1(x1 − 2a)

=
mω2

0

2

[
1

4a2
((x1 − 2a)2 − a2)2 − (x1 − 2a + a)2

]
= · · · (expanding and regrouping terms)

= W1(x1) +
mω2

0

2

[
4ax1 −

2
a
(x1 − a)3

]
. (B.45)

Similarly, for W2 given in (B.4),

e−
i
�
( eBa

c y2−2apx2 )W2(x2)e
i
�
( eBa

c y2−2apx2)

= W2(x2 + 2a)

= W2(x2) +
mω2

0

2

[
−4ax2 +

2
a
(x2 + a)3

]
. (B.46)

Thus, continuing from (B.44) using (B.45) and (B.46), we have

(B.44) = 〈b(1)|W1|b(1)〉 + 〈b(1)|mω2
0

2

[
4ax1 −

2
a
(x1 − a)3

]
|b(1)〉

+ 〈a(2)|W2|a(2)〉 + 〈a(2)|mω2
0

2

[
−4ax2 +

2
a
(x2 + a)3

]
|a(2)〉

= 〈b(1)a(2)|W |b(1)a(2)〉 + 2mω2
0a[〈b(1)|x1|b(1)〉 − 〈a(2)|x2|a(2)〉]

+
mω2

0

a
[〈a(2)|(x2 + a)3|a(2)〉 − 〈b(1)|(x1 − a)3|b(1)〉]

= 〈b(1)a(2)|W |b(1)a(2)〉 + 2mω2
0a

[
〈b(1)|(x1)+ + a − eE

mω2
0

|b(1)〉

− 〈a(2)|(x2)− − a − eE

mω2
0

|a(2)〉
]

+
mω2

0

a

[
〈a(2)|

(
(x2)− − eE

mω2
0

)3

|a(2)〉 − 〈b(1)|
(

(x1)+ − eE

mω2
0

)3

|b(1)〉
]

(
where, recall that x+ = x − a +

eE

mω2
0

and x− = x + a +
eE

mω2
0

)
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= 〈b(1)a(2)|W |b(1)a(2)〉 + 4mω2
0a

2

+
mω2

0

a

[
〈a(2)|(x2)3− − 3eE

mω2
0

(x2)2− + 3
(

eE

mω2
0

)2

(x2)− −
(

eE

mω0

)3

|a(2)〉

− 〈b(1)|(x1)3+ − 3
eE

mω2
0

(x1)2+ + 3
(

eE

mω2
0

)2

(x1)+ −
(

eE

mω0

)3

|b(1)〉
]

= 〈b(1)a(2)|W |b(1)a(2)〉 + 4mω2
0a

2. (B.47)

By (B.44) and (B.47), we have confirmed (B.43). So our objective now is to evaluate
〈a(1)b(2)|W |a(1)b(2)〉:

〈a(1)b(2)|W |a(1)b(2)〉 = 〈a(1)|W1|a(1)〉 + 〈b(2)|W2|b(2)〉; (B.48)

〈a(1)|W1|a(1)〉 =
mΩ
π�

∫ ∞

−∞

∫ ∞

−∞
e
−mΩ

�

[(
x1+a+ eE

mω2
0

)2
+y2

1

]

· mω2
0

2

[
1

4a2
(x2

1 − a2)2 − (x1 + a)2
]
dx1dy1 ≡ f(a);

(B.49)

〈b(2)|W2|b(2)〉 =
mΩ
π�

∫ ∞

−∞

∫ ∞

−∞
e
−mΩ

�

[(
x2−a+ eE

mω2
0

)2
+y2

2

]

· mω2
0

2

[
1

4a2
(x2

2 − a2)2 − (x2 − a)2
]
dx2dy2. (B.50)

By comparing (B.49) and (B.50), we see that if the outcome of (B.49) is f(a)
(with all the parameters other than a being fixed), then the outcome of (B.50) will
be f(−a).

Similarly,

〈a(1)|W1|b(1)〉 =
mΩ
π�

∫ ∞

−∞

∫ ∞

−∞
e

i
�

eBa
c y1e

−mΩ
�

[(
x1+

eE

mω2
0

)2
+a2+y2

1

]

· mω2
0

2

[
1

4a2
(x2

1 − a2)2 − (x1 + a)2
]
dx1dy1 ≡ g(a), (B.51)

then

〈b(2)|W2|a(2)〉 =
mΩ
π�

∫ ∞

−∞

∫ ∞

−∞
e−

i
�

eBa
c y2e

−mΩ
�

[(
x2+

eE

mω2
0

)2
+a2+y2

2

]
·

· mω2
0

2

[
1

4a2
(x2

2 − a2)2 − (x2 − a)2
]
dx2dy2 = g(−a). (B.52)
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By translating x �→ x − a − eE
mω2

0
, we have

〈a(1)|W1|a(1)〉 = (B.49) =
mΩ
π�

[∫ ∞

−∞
e−

mΩ
�

y2
dy

]
×
[∫ ∞

−∞
e−

mΩ
�

x2
W1

(
x − a − eE

mω2
0

)
dx

]
. (B.53)

Here

W1

(
x − a − eE

mω2
0

)
= W1(x − a − β)

(
β ≡ eE

mω2
0

)
(B.54)

=
mω2

0

2

{
1

4a2
[(x − a − β)2 − a2]2 − (x − β)2

}
=

mω2
0

2

[
1

4a2
(x − β)4 − 1

a
(x − β)3

]
=

mω2
0

2

[
1

4a2
x4 −

(
β

a2
+

1
a

)
x3 +

(
3
2

β2

a2
+

3β

a

)
x2

−
(

β3

a2
+

3β2

a

)
x +

(
β4

4a2
+

β3

a

)]
. (B.55)

Recalling the formulas for Gaussian integrals∫ ∞

−∞
x2ne−αx2

dx = −
(

∂

∂α

)n ∫ ∞

−∞
e−αx2

dx =
(
− ∂

∂α

)n√
π

α

=

[
n∏

k=1

(
1
2

+ k − 1
)](

1
αn

√
π

α

)
, for n = 1, 2, . . . , (B.56)∫ ∞

−∞
x2n+1e−αx2

dx = 0, for n = 0, 1, 2, . . . , (B.57)

from (B.53), (B.55)–(B.57), we obtain

〈a(1)|W1|a(1)〉 =
mΩ
π�

(
π�

mΩ

)1/2(
mω2

0

2

)
·
[

1
4a2

∂2

∂α2
−
(

3β2

2a2
+

3β

a

)
∂

∂α
+
(

β4

4a2
+

β3

a

)](√
π

α

)
(where α ≡ mΩ/�)

=
mΩ
π�

(
π�

mΩ

)1/2
mω2

0

2

(
π�

mΩ

)1/2

·
[

1
4a2

3�
2

4m2Ω2
+

1
2

(
3β2

2a2
+

3β

a

)
�

mΩ
+

β4

4a2
+

β3

a

]
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=
mω2

0

2

[
3�

2

16m2Ω2a2
+
(

3β2

4a2
+

3β

2a

)
�

mΩ
+

β4

4a2
+

β3

a

]
= f(a) [cf. (B.49)].

Then, 〈b(2)|W2|b(2)〉 = f(−a) and so from (B.48), we obtain

〈a(1)b(2)|W |a(2)b(1)〉 =
mω2

0

2

[
3�

2

8m2Ω2a2
+

3β2
�

2a2mΩ
+

β4

2a2

]
. (B.58)

Next, repeat similar procedures,

(B.51) =
mΩ
π�

e−
mΩ

�
a2
[∫ ∞

−∞
e

i
�

eBa
c y−mΩ

�
y2

dy

] [∫ ∞

−∞
e−

mΩ
�

x2
W1(x − β)dx

]
=

mΩ
π�

e−
mΩ

�
a2
[∫ ∞

−∞
e−

mΩ
�

(y−i eBa
2mΩc )2−mΩ

�

e2B2a2

4m2Ω2c2 dy

]
·
∫ ∞

−∞
e−

mΩ
�

x2 · mω2
0

2

[
1

4a2
(x − β + a)4 − 1

a
(x − β + a)3

]
dx

=
(

mΩ
π�

)
e−

mΩ
�

a2− e2B2a2

4�mΩc2

(
π�

mΩ

)1/2

·
(

π�

mΩ

)1/2

· mω2
0

2

·
{

3�
2

16m2Ω2a2
+
[
3(β − a)2

4a2
+

3(β − a)
2a

]
· �

mΩ
+

(β − a)4

4a2
+

(β − a)3

a

}
= g(a). (B.59)

Therefore,

〈a(1)b(2)|W |a(2)b(1)〉
= 〈a(1)|W1|b(1)〉〈b(2)|a(2)〉 + 〈a(1)|b(1)〉 · 〈b(2)|W2|a(2)〉
= S[〈a(1)|W1|b(1)〉 + 〈b(2)|W2|a(2)〉]
= S[g(a) + g(−a)] [by (B.52)]

= S · e−
a2
�

(
mΩ+ e2B2

4mΩc2

)
mω2

0

2

[
3�

2

8m2Ω2a2
+
(

3β2

2a2
+

3
2
− 3
)

�

mΩ

+
β4

2a2
+ 3β2 +

a2

2
− 6β2 − 2a2

]
[from (B.58) and (B.52)].

But the factor e−
a2
�

(
mΩ+ e2B2

4mΩc2

)
behind S is just S itself from (B.24). Thus,

1
S2

〈a(1)b(2)|W |a(2)b(1)〉

=
mω2

0

2

[
3�

2

8m2Ω2a2
+

3
2

(
β2

a2
− 1
)

�

mΩ
+

β4

2a2
− 3β2 − 3

2
a2

]
. (B.60)
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Summarizing (B.43), (B.58) and (B.60), we have

B5 = 2〈a(1)b(2)|W |a(1)b(2)〉 − 4mω2
0a

2 − 2 Re · 1
S2

〈a(1)b(2)|W |a(2)b(1)〉

= −4mω2
0a

2 + 2 ·
(

mω2
0

2

)(
3�

2mΩ
+ 3β2 +

3
2
a2

)
.

This is (B.42).

We can now combine all the preceding lemmas and finally obtain the following.

Theorem B.1. The exchange energy is given by

J = 〈Ψ−|Horb|Ψ−〉 − 〈Ψ+|Horb|Ψ+〉
= (3.4).

Proof. We only need note that with S given in (B.24), we have

S2

1 − S4
=

1
S−2 − S2

=
1

2 sinh
(
2d2
(
2b − 1

b

)) .
Thus, the coefficient outside the parentheses in (B.28) is determined as above. We
now collect all the terms in (B.29), (B.35), and (B.42), noting the cancellation of
the terms 4ma2ω2

0 and −4ma2ω2
0 in (B.28) and (B.42), and then simplify (just a

little). We then obtain (3.4).
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