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Fermions add new issues. Before considering full-fledged QED,
we consider a slightly simpler theory, the "Yukawa theory", in
which we have a scalar field coupled to a fermion. We will take
for the lagrangian:

L =
1
2

(
(∂µφ)2 −m2

sφ
2
)

+
(
ψ̄(i 6∂ −mf )ψ

)
+ yφψ̄ψ. (1)

In the limit y → 0, this theory describes a free fermion and a
free scalar. The interaction Hamiltonian is:

H = −yφψ̄ψ (2)
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We want to study Green’s functions and S-matrices in this
theory. For example, we can calculate the Green’s function:

Gαβ(x , y) =
T 〈Ω|ψα(x)ψ̄β(y)|Ω〉

〈Ω|Ω〉
. (3)

In the interaction picture this becomes (we also note that G is
translationally invariant – why?)

Gαβ(x − y) =
T 〈0|ψα(x)ψ̄β(y)e−i

∫
d4zH(z)|0〉

〈0|0〉
. (4)
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Now we want to expand the exponent in powers of the
interaction Hamiltonian. As for scalars, we would like to use
Wick’s theorem. In fact, we need to be a little more careful
about how we define the time-ordered products. Recall that for
the fermion propagator, we defined

Tψ(x)ψ̄(y) = θ(x0 − y0)ψ(x)ψ̄(y)− θ(x0 − y0)ψ̄(y)ψ(x). (5)

For time ordered products of more fields, we generalize this by
switching signs in each term if we have to permute an odd
number of fermion fields. We can write this symbolically as:

Tψ(x1) . . . ψ(xn) =
∑
perm

(−1)perm
∏
i>j

θ(x0
iP − x0

jP )ψ(x1P ) . . . ψ(xnP ).

(6)
(The ψ’s denote either ψ’s or ψ̄’s.)
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Defining normal products similarly, Wick’s theorem holds as for
scalars. So we have, for G, to second order in y (noting that
disconnected diagrams cancel as for scalars)

Gαβ = SF (x − y)+ (7)

(−iy)2
∫

d4z1d4z2T 〈0|ψα(z)ψ̄β(y)φ(z1)ψ̄γ(z1)ψγ(z1)φ(z2)ψ̄δ(z2)ψδ(z2)|0〉

The first term is the free propagator; the second is, by Wick’s
theorem:

(−iy)2
∫

d4z1d4z2SF (x−z1)αγSF (z1−z2)γδSF (z2−y)δβDF (z1 = z2).

(8)
The S’s are multiplied as matrices (the product has indices α, β).
Note that the indices flow like coordinates. This has a natural
diagrammatic interpretation.
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Momentum Space

If we Fourier transform with respect to p, this becomes
Exercise: Check this

G(p) =
i

6p −mf
(−iy)2

∫
d4q

(2π)4
i

6q+ 6p −mf

i
6q −mf

i
q2 −m2

s

i
6p −mf

.

(9)
We can consider more complicated examples, but from this
exercise we can infer the Feynman rules:
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S-Matrix for the Yukawa Theory

Let’s modify the theory by including a second species of
fermion; we will call the fermions “electrons" and “muons", and
denote them by the letters e(x) and µ(x). For the lagrangian
we now take:

L =
1
2

(
(∂µφ)2 −m2

sφ
2
)

+(ē(i 6∂ −me)e)+(µ̄(i 6∂ −mµ)µ) (10)

+yeφē e + yµφµ̄ µ.

In the limit yi → 0, this theory describes two types of free
fermions and a free scalar. The interaction Hamiltonian is:

H = −(yeφē e + yµφµ̄ µ). (11)
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The Scattering States

We’ll consider the case of an incoming electron and an
incoming muon, and a final electron and a final muon.

|i〉 =
√

2E(k)2E(p)a†µ(k , s̃)a†e(p, s)|0〉 (12)

|f 〉 =
√

2E(k ′)2E(p′)a†µ(k ′, s̃′)a†e(p, s′)|0〉 (13)
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Contractions with External Fermions

Working to second order in the interaction will generate the
Feynman diagram below. We want to study

(−i)2

2!
〈k ′p′|

∫
d4z1d4z2yeē(z1)e(z1)φ(z1)µ̄(z2)µ(z2)φ(z2)|k p〉.

(14)
In the case of scalars we contracted the fields in the vertices
with the external states. This meant simply that we commuted
the positive frequency parts through the creation operators on
the right, and the negative frequency parts through the
destruction operators on the left. We were left with simply e−ip·x

factors, which, after the integration over the location of the
vertices, gave momentum conservation at each vertex.
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For fermions, we have

ψ+
α =

∑
s

∫
d3p

2π3
√

2E(p)
a(p, s)uα(p, s)e−ip·x (15)

ψ−α =
∑

s

∫
d3p

2π3
√

2E(p)
b†(p, s)vα(p, s)eiip·x (16)

ψ̄+
α =

∑
s

∫
d3p

2π3
√

2E(p)
b(p, s)v̄α(p, s)e−ip·x (17)

ψ̄−α =
∑

s

∫
d3p

2π3
√

2E(p)
a†(p, s)ūα(p, s)eip·x (18)
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Here the contractions give, in addition to canceling the√
2E(2π)3 factors, and the e±ip·x leading to momentum

conservation at the vertices, a factor of:
1 uα(p, s) for each initial state fermion
2 v̄α(p, s) for each initial state anti-fermion
3 ūα(p, s) for each final state fermion
4 vα(p, s) for each final state anti-fermion.
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Note to avoid cluttering the equations too much, we have
not always put a subscript e, µ, so, as appropriate:
E(p) =

√
~p2 + m2

µ, or E(p) =
√
~p2 + m2

e Similarly, u(p, s)

satisfies ( 6p −me)u(p, s) = 0 or (6p −mµ)u(p, s) = 0
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So, by analogy with our scalar field studies, we can read off the
scattering amplitude:

M(e(p)+µ(k)→ e(p′)+µ(k ′)) = −yeyµū(p′, s′)u(p, s)ū(k ′, s̃′)u(k , s̃)
(19)

× i
(p′ − p)2 −m2

s

To construct the cross section, we need to take the absolute square
of this expression. In many experimental situations, we are not
sensitive to the polarizations of the incoming and outgoing fermions
(i.e. the beams are unpolarized and we do not measure the spins of
the final state particles). In this case we can average over initial spins
and sum over final spins. So we compute:

1
4

∑
s,s′,s̃,s̃′

|M|2 (20)
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This summing over spins will allow us to use the polarization
sums for spinors we developed in the homework. Let’s examine
what happens when we square the spinor terms. Consider
those for the electron:∑

s,s′
ūα(p′, s′)uα(p, s)ū∗β(p′, s′)u∗β(p, s) (21)

Rearranging:

=
∑
s,s′

ūα(p′, s′)uα(p, s)ū∗β(p′, s′)u∗β(p, s)γ0
β,γuγ(p′, s′)

Using our spin sums:

−Tr
(
(6p′ + me)(6p + me)

)
.

Make sure you understand the trace here!
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The traces can readily be evaluated, using the identities:
1 Tr(1) = 4.
2 Tr(6a 6b) = 4a · b.

The last identity follows from

Tr(6a 6b) = aµbνTr(γµγν) (22)

and
Tr(γµγν) = 4. (23)
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So we have, for the spin-averaged amplitude:

|M|2avg = 4y2
e y2

µ

1
(t −m2

s)2
(p · p′ + m2

e)(k · k ′ + m2
µ). (24)

To obtain the cross section, we can proceed exactly as for
scalars,
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e+e− → µ+µ−

Alternatively we will consider an incident electron and positron, and
an outgoing µ+µ−.

M(e−(p)+e+(p′)→ µ−(k)+µ+(k ′)) = −yeyµv̄(p′, s′)u(p, s)ū(k , s̃)v(k ′, s̃′)
(25)

× i
(p′ + p)2 −m2

s

We can spin average and sum as before. We again obtain traces:

|M|2avg =
1
4

Tr (( 6p + me)(− 6p′ + me)) Tr
(
(6k + mµ)(− 6k ′ + mµ)

)
(26)

×
y2

e y2
µ

(s −m2
s )2
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We can evaluate the traces as before, and obtain the cross
section.

|M|2avg = 4y2
e y2

µ

1
(s −m2

s)2
(−p · p′ + m2

e)(−k · k ′ + m2
µ). (27)

We can rewrite the invariants in terms of s, t and u.
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Quantum Electrodynamics – At Last!

We know how to deal with initial and final state fermions. We
also know how to deal with virtual photons (photons internal to
the Feynman diagrams). The photon vertex is very similar to
the scalar vertex in the Yukawa theory. Now, however, we get a
factor of e (the electron charge), and, instead of δαβ, we obtain
a factor γµαβ, where the µ is the index on the photon. So, for
example, for e+e− → µ+µ−, we obtain the amplitude:

M(e−(p) + e+(p′)→ µ−(k) + µ+(k ′)) = −e2v̄(p′, s′)γµu(p, s)
(28)

×ū(k , s̃)γνv(k ′, s̃′)
−igµν

(p′ + p)2 −m2
s
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We can spin average and sum as before. We again obtain
traces:

|M|2avg =
1
4

Tr
(
(6p + me)γµ(− 6p′ + me)γν

)
Tr
(
(6k + mµ)γµ(− 6k ′ + mµ)γν

)
(29)

× e2

(s −m2
s)2

Now we need another trace identity:

Tr(6a 6b 6c 6d) = 4(a · b c · d − a · c b · d + a · d b · c). (30)

Derive! Hint: anticommute 6a through the various terms.
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This computation is particularly simple in the high energy limit (center
of mass energy) where we can neglect the masses of the electron
and muon. Then the product is simply

1
4

∑
|M|2 =

e4

s2 4 (p′µpρ − p · p′gµρ + p′ρpµ)
(
k ′µkρ − k · k ′gµρ + k ′ρkµ

)
(31)

=
8e4

s2 (p′ · k ′ p · k + p′ · k p · k ′) .
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In the center of mass frame, this is

8e4p4

s2

[
(1− cos θ)2 + (1 + cos θ)2

]
(32)

=
16e4p4

s2 [1 + cos2 θ].

Physics 217 2013, Quantum Field Theory Quantum Electrodynamics



The cross section is then, noting |v1 − v2| = 2:

dσ =
8e4p4

2s2

∫
d3p′d3k ′

16p4(2π6)
(2π)4δ(p+p′−k−k ′)[1+cos2 θ]. (33)

The d3k ′ integral is done trivially with the momentum
delta-function; the energy delta function just gives a factor of
1/2. So we are left with

dσ
dΩ

=
e4

16π2E2
cm

(1 + cos2 θ). (34)

σtot =
4πα2

3E2
cm

(35)
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Processes with external photons

To have a sensible notion of creation of states, we saw that we need
to work in a gauge like Coulomb gauge. Here we’ll have the photon
field, ~A, with positive and negative frequency parts:

A+
i +A−i =

∑
pol

∫
d3p

(2π)3
√

E(p)

(
a(p, λ)εi (p, λ)e−ip·x + a†(p, λ)ε∗i (p, λ)eip·x) .

(36)
Contracting will give us an εi . When we square, if we average and
sum as we did for spins, we will have factors like Pij (~p).
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We would like to convert this into something more
relativistic-looking. Crucial is that the photon couples to a
conserved current. When we square the amplitude, this means
that we have

PijJ ij . (37)

But 1
k0 kiJ iν = −J0ν , so

(δij −
k ik j

k2
0

)J ij = J ii − J00 = −Jµµ . (38)

So in effect we can write∑
pol

εµεν = −gµν . (39)

This is the analog of our spin sums for fermions.

With this, we are ready to go on to Compton scattering, pair
annihilation of electrons and positrons to photons, and similar
processes.
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Compton Scattering

This is slightly more complicated than the electron-muon scattering
examples because we now have two diagrams and interference. At
this point we are adept at writing down the scattering amplitudes
upon examination of the diagrams. Calling the initial electron and
photon momenta p and k , and the final momenta p′ and k ′, and the
initial and final photon polarizations ε(k) and ε(k ′), we have

M = (−ie)2 (40)

×ū(p′)
[
γµi

6p+ 6k + m
(p + k)2 −m2 γ

ν − γν i
6p− 6k ′ + m

(p − k ′)2 −m2 γ
µ

]
u(p)ε(k)µε(k ′)ν .

Before squaring, it is useful to simplify this expression. In the
denominators, we can use k2 = k ′2 = 0, p2 = p′2 = m2, while in the
numerators we can anticommute the 6p factors with the γ matrices
and use 6pu(p) = mu(p), to write:

M = (−ie)2ū(p′)
[

2pνγµ + γµ 6kγν

2p · k
+

2pµγν + γν 6k ′γµ

(−2p · k ′)

]
u(p)ε(k)µε(k ′)ν .

(41)
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Now we consider the spin-averaged and spin-summed
expression. As in the simple cases we have considered up to
now, the effect of taking the absolute square leads us to simple
expressions. It is important to introduce additional dummy
indices for the sums over the polarization vectors, and to use
the rule for the sum over polarizations we have derived above.
This gives

1
4

∑
s,s′;λ,λ′

|M|2 =
A

(p · k)2 +
B + C

(p · k)(−p · k ′)
+

D
p · (k ′)2.

(42)

Here

A = Tr [(6p′ + m)(2pνγµ + γµ 6kγν)( 6p + m)(2pνγµ + γµ 6kγν)] (43)

B = Tr [( 6p′ + m)(2pνγµ + γµ 6kγν)(6p + m)(2pmuγν − γν 6kγµ)] (44)

C and D are quite similar; in fact, it is a simple exercise to show that
B = C, A(k) = D(k ′).
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Here we have traces of up to eight gamma matrices, but the identities
we have proven are adequate to evaluate all of them. Consider, for
example, A. The term with 8 γ matrices simplifies immediately due to
the following identity:

γν 6aγν = −2 6a (45)

which follows from

aργνγργν = aρ(2γνgρν − γνγνγρ). (46)

Then (the braces below indicate traces)

[6p′γµ 6kγν 6pγν 6kγµ] = [−2 6p′γµ 6k 6p 6kγµ] (47)

= [4 6p′ 6k 6p 6k ]

which can be evaluated using our earlier identities.
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One finds

A = 16(4m4 − 2m2p · p′ + 4m2p · k − 2m2p′ · k + 2p · kp′ · k). (48)

and working through all four terms:

1
4

∑
|M|2 (49)

= 2e4

[
p · k ′

p · k
+

p · k
p · k ′

+ 2m2
(

1
p · k

− 1
p · k ′

)
+ m4

(
1

p · k
− 1

p · k ′

)2
]
.

Now we can work out the cross section in various frames.
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Compton Scattering in the Lab Frame

It is helpful to be methodical and to write the four vectors in detail

k = (ω, ωẑ) p = (m, ~0) k ′ = (ω′, ω′ sin θ,0, ω′ cos θ).

(Note that this defines the z axis).
Then four momentum conservation allows us to solve for ω′:

p′2 = m2 = (p + k − k ′)2 = p2 + 2p · (k − k ′)− 2k · k ′. (50)

Evaluating the invariants in terms of the lab frame ω, ω′, and θ, this is:

0 = 2m(ω − ω′)− 2ωω′(1− cos θ). (51)

Solving for ω′:
ω′ =

ω

1 + ω
m (1− cos θ)

. (52)
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The invariants appearing in |M|2 are simple:

p · k = mω; p · k ′ = mω′. (53)

Finally, we need to evaluate the phase space integral. For this we
need an expression for Ep′ . Starting with

~p′ = ~k − ~k ′ ⇒ ~p′2 = ω2 + ω′2 − 2ωω′ cos θ (54)

we have
Ep′ =

√
m2 + ω2 + ω′2 − 2ωω′ cos θ (55)

In the energy conserving δ function, we have f = ω′ + Ep′ − ω −m, so

∂f
∂ω′

=
m + ω − ω cos θ

Ep′
(56)

Physics 217 2013, Quantum Field Theory Quantum Electrodynamics



Klein-Nishina Expression for the Compton Cross
Section

So

dσ =
d3k ′d3p′

(2π)6(2ω′)2E ′p
(2π)4δ(4)(k ′ + p′ − k − p)|M|2 (57)

=
ω′2dω′dΩk ′

(2π)24ω′Ep′
δ(ω′ + E ′p − ω −m)|M|2.

Using our expressions above

dσ =
1

8π

∫
d cos θ
2m2ω

ω′

m(1 + ω
m (1− cos θ))

1
4

∑
|M|2. (58)
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dσ
d cos θ

=
πα2

m2

(
ω′

ω

)2 [ω′
ω

+
ω

ω′
− sin2 θ

]
. (59)

At low frequencies:

dσ
d cos θ

=
πα2

m2 (1 + cos2 θ). (60)

σtot =
8πα2

3m2 . (61)

This is the same as the Thompson formula we derive in E and
M.
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The High Energy Limit

Here we will uncover an interesting feature. Work in the center of
mass frame; take

k = (ω,0,0, ω); p = (E ,−ωẑ) p′ = (E ,−ω sin sin θ,0,−ω cos θ).

We have all of the ingredients we need to compute the cross section:

dσ
d cos θ

≈ 2πα2

2m2 + s(1 + cos θ)
(62)

where s = m2 + 2p · k . The total cross section is:

σtot ≈
2πα2

s
ln(s/m2). (63)
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Colinear Singularities

Why the singularity as m→ 0. Should be able to see a problem
if set m = 0 from the start problem comes when 2p · k or
2p · k ′ = 0. Corresponds to p along k or k ′. The precise form of
the singularity requires understanding the behavior of the
spinors u(p) (see Peskin and Schroder).

Physics 217 2013, Quantum Field Theory Quantum Electrodynamics



Radiative Corrections

So far, we have considered “tree" diagrams; now we consider
diagrams with loops (in particular, this means diagrams which
have an internal momentum integration). To perform these
integrals, we will need to develop certain tools. We’ll do this in
the course of three examples which are particularly important
at one loop (e2 corrections to the leading order result). We’ll
also have to face the problem of ultraviolet divergences (high
momentum). This will lead us to the problem of
renormalization. Finally, we will face infrared divergences –
these are associated with real physics.

Physics 217 2013, Quantum Field Theory Quantum Electrodynamics



Fermion Self Energy

This one is the easiest in some ways. We will see that there is a
correction to the fermion mass, and an overall constant
correction to the propagator. We might expect a linearly
divergent correction to the mass. This follows by analogy to
Lorentz’s calculation of the self-energy of the electron, and also
from dimensional analysis. But let’s check. We’ll work with the
fermion Green’s function. We’ll drop the external lines; the
result is called the "one-particle irreducible graph." We’ll call it
−iΣ, the "fermion self energy".

−iΣ(p) = (−i)2(i)(−i)
∫

d4k
(2π)4γ

µ 6p+ 6k + m
(p − k)2 −m2γµ

1
k2 . (64)

Doing this integral would seem to require introducing angles in
the four dimensional space. But there is a much better trick,
introduced by Feynman.
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Start with the simple identity:

1
AB

=

∫ 1

0

dx
(Ax + B(1− x))2 . (65)

While we’re at it, we can write a generalization we will need
later.

1
ABC

=

∫
dα1dα2dα3δ(1−

∑
αi)

1
Aα1 + Bα2 + Cα3

. (66)

I’ll leave you to prove this second one; the generalization to
more denominator factors should be clear. This is known as the
“Feynman parameter trick."
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Let’s apply it to Σ(p):

−iΣ(p) = −
∫

d4k
(2π)4

∫
dα

6p+ 6k + m
[p2α− 2p · kα + k2]2

(67)

Now we can make one further simplification – and this is the
critical one. The change of variables k → k − αp gets rid of the
nasty cross term in the denominator, leaving us with

−iΣ(p) = −
∫

d4k
(2π)4

∫
dα
6p(1− α)+ 6k + m

[k2 + p2α(1− α)]2
. (68)
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iε’s and the Wick rotation

So far I have been sloppy about the iε factors in the
denominator. In fact, at this stage, we have a +iε in the
denominator factor. We can deal with this by doing the k0

integral first as a contour integral, locating the poles, etc. But
we can be more clever. Note that we can rotate the contour
90o, avoiding both poles, provided p2 is space-like. Then
k0 2 → −k0 2, and

k0 2 − ~k2 → −k2
E (69)

i.e. we can reduce the integral to a Euclidean integral. We may
be interested eventually in p2 time-like (e.g. p2 = m2), but often
we can deal with this by analytic continuation, as we will see
(we will also understand some of the analytic properties of
Feynman diagrams as functions of momenta).
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So we now have

Σ(p) =

∫
d4k

(2π)4

∫
dα

6p(1− α)+ 6k + m
[k2 + α(1− α)(−p)2]2

. (70)

The integral is now an ordinary integral without peculiar
singularities anywhere (remember p2 < 0).
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First simplification: the integral over the 6k term in the numerator
is odd, so gives zero.
First complication: the integral is not well-defined. It diverges
(logarithmically) for large k .
This latter problem we might deal with as follows. We don’t
know about physics at arbitrarily large |k |. So we might just
include all of the physics we know, and cut off the integrals
above that. Call that scale Λ; we might think of this as 100 TeV,
or perhaps something larger. This is, in fact, what we will do.
But we would like a way to cut off the integral so that the result
is simple and Lorentz invariant.
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To start, we construct an integral table in arbitrary numbers of
dimensions. We will evaluate:∫

ddk
(k2 + ∆)n (71)

We can try to write this in terms of a d dimensional solid angle and an
integral over powers of k . To figure out the d dimensional solid angle,
we can use a trick familiar from integrals over Gaussian’s.∫

dΩd

∫ ∞
0

dkkd−1e−k2
=

[∫ ∞
−∞

dke−k2
]d

=
√
π

d
. (72)

The integral on the left hand side can be converted into an integral
familiar from Γ functions by simply substituting u = k2. The k integral
becomes ∫ ∞

0
duud/2−1e−u = Γ(d/2). (73)

In this way one obtains ∫
dΩd

1
2

Γ(d/2). (74)
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So we have for the d dimensional solid angle:∫
dΩd =

2πd/2

Γ(d/2)
. (75)

To construct the integral of interest we need:∫ ∞
0

dk
kd−1

(k2 + ∆)2 =
1
2

(
1
∆

)2− d
2
∫ 1

0
dxx1−d/2(1− x)

d
2−1. (76)

The integral here is a standard integral, and the final result is an
integral table:
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∫
ddk

(2π)d
1

(k2 + ∆)n =
1

(4π)d/2

Γ(n − d
2 )

Γ(n)

(
1
∆

)n− d
2

. (77)

∫
ddk

(2π)d
k2

(k2 + ∆)n =
1

(4π)d/2
d
2

Γ(n − d
2 − 1)

Γ(n)

(
1
∆

)n− d
2−1

.

(78)
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’t Hooft observed that these expressions make sense for any
number of dimensions, including non-integers. Consider
d = 4− ε. The integral∫

d4k
(2π)4

1
(k2 + m2)2 ≈

1
16π2

∫ ∞
m

dk
k1+ε ∝

1
ε
. (79)

So we have
1
ε
∼ log(Λ/m). (80)

So rather than cutting off integrals in the ultraviolet at some
momentum scale, we can use this dimensional regularization to
define ill-defined Feynman integrals.
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This allows us to put together a result for Σ:

Σ ≈ e2

16π2 Γ(ε/2)

∫ 1

0
dα(6p(1− α) + m) (81)

=
2
ε

e2

16π2
1
2

( 6p −m) +
3
2

m).

We can use this to correct the propagator. Calling

Σ(p) = (1− Z−1) + δm (82)

we have
SF (p) = i

Z
6p − (m + δm)

. (83)

So we see that there is a shift in the normalization of the propagator,
and also of the physical mass. This correction to the mass is
logarithmically divergent (Weiskopf).
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Physical Meaning of Wave Function and Mass
Renormalization: The Spectral Representation

We will focus on scalar field theories, to avoid writing lots of indices,
and consider, in the interacting theory, the Green’s function:

G(x − y) = T 〈Ω|φ(x)φ(y)|Ω〉. (84)

Let’s consider one particular time ordering, x0 > y0, and introduce a
complete set of states. which we take to be energy eigenvalues.
These states can be labeled by their total energy-momentum, p, and
some other quantum numbers, n. In other words:

G(x − y) =

∫
d3p

2E(p)
〈Ω|φ(x)|n,p〉〈n,p|φ(y)|Ω〉 (85)

Now we use translation invariance to rewrite this as:

G(x − y) =

∫
d3

2E(p)
|〈Ω|φ(0)|p,n〉|2e−ip·(x−y). (86)
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Now we separate off states of definite mass
(
√

E(p)2 − p2 = M2). We define

ρ(M2) = δ(p2 −M2)|〈p,n|φ(0)|Ω〉|2. (87)

Then we have, including the other time ordering, and noting the
connection to the free propagator:

G(x − y) =

∫
dM2ρ(M2)DF (x − y ; M). (88)

One can immediately Fourier transform this expression. In
simple field theories, ρ(M2) includes a δ function (at the mass
of the meson) and a continuum (e.g. starting at 9M2 in the case
of the φ4 theory).
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One writes:

ρ(M2) = Zδ(M2 −m2) + fcont (M2). (89)

m2 is the actual mass of the physical state, by our construction.

This is known as the “spectral representation", or the
"Kallen-Lehman representation".
We can identify the Z and δm we have computed with the
quantities here (to the order we have worked).
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Renormalization

In δm, we have our first real example of the renormalization of a
parameter. The observed, physical mass is m + δm. δm is
“infinite" (depends on the cutoff, 1ε ∼ log(Λ), but we only care
about the observable quantity, the physical mass, and this is a
parameter of the theory in any case (not something we can
predict). We will see that the electromagnetic coupling is also
renormalized.

For this, we consider the corrections to the photon propagator,
focussing on the one loop expressions. This is equivalent to

T 〈Ω|jµ(x)jν(y)|Ω〉 ≡ −iΠµν(q). (90)

(after Fourier transform).

The first thing to note is that since this involves conserved
currents, we have

qµΠµν = 0. (91)
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We can write
Πµν = (gµνq2 − qµqν)Π(q2) (92)

This makes the calculation easier; it is not hard to read off the
qµqν piece.

To simplify the analysis, we will take q2 � m2. Then writing
down the full diagram, it is not hard to pull out the qµqν pieces.
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Introducing Feynman parameters, combining denominators,
and shifting the k integral in the usual way:

−iΠµν = −e2
∫

d4k
(2π)4 dα

Tr ((6k+ 6q(1− α) + m)γµ(6k− 6qα + m)γν)

[k2 + q2α(1− α)−m2]2
.

(93)
The qµqν part can only arise from the numerator piece involving

Tr(6q(1− α)γµ 6qαγν) = 8qµqνα(1− α). (94)
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So we have

Π(q2) = −e2
∫

d4k
(2π)4 dα

8α(1− α)

[k2 + q2α(1− α)−m2]2
. (95)

Now we consider q2 < 0 (this is natural here, e.g. for scattering
in the field o f a nucleus). Then we can use our integral table to
obtain (for q2 � m2):

Π =
4
3

e2

16π2

(
2
ε

)
(1− 2ε/2 log(µ2/m2)). (96)
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Renormalization of the electric charge (e):

Consider Coulomb scattering. The amplitude is now
proportional to:

e2

q2

(
1− 4

3
e2

16π2
2
ε

(1− 2ε/2 log(µ2/m2))

)
(97)

Since what we call the electron charge∗ is the coefficient of e2

q2 ,
we can simply define the “renormalized" charge

e2
R = e2

(
1− 4

3
e2

16π2
2
ε

(1− 2ε/2 log(µ2/m2))

)
(98)
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The Vertex

Finally, we need to think about one more diagram at one loop,
the vertex. This introduces some new features. We will see
another infinity, which cancels against the infinite wave function
renormalization in the fermion self-energy. Then we will
encounter an infrared divergence, which we will have to explain
(we can’t “renormalize" away). Finally, we will see a correction
to the electron magnetic moment from its Dirac value, the
famous g − 2.

Γµ(p,p′,q) = −e3
∫

d4k
(2π)4

ū(p′)γν( 6p′+ 6k + m)γµ( 6p+ 6k + m)γνu(p)

[(p′ + k)2 −m2][(p + k)2 −m2]k2 .

(99)
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Let’s look for the ultraviolet divergent part of the vertex. This comes
from the term with most factors of k in the numerator, So we have:

−e3
∫

d4k
(2π)4

ū(p′)γν 6kγµ 6kγνu(p)

[k2 + 2p′ · kα1 + 2p · kα2 −m2α12]3
. (100)

Under the integral,

kρkσγργµγσ → −
2
4

k2γµ. (101)

The k integral can be done shifting as usual, and using our integral
table. The result is

−ieū(p′)γµu(p)

(
e2

16π2
2
ε

)
(102)

This is also a renormalization of the electron charge, but it cancels
against a similar infinity from the self energy (Ward identity).
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Infrared Divergences

Now we consider the behavior of the vertex at low (virtual)
photon momentum. We can neglect factors of k in the
numerator, and use the Dirac equation to write as:

Γµ = −e3
∫

d4k
(2π)4

(4p · p′)γµ

k2(2p · k)(2p′ · k)
. (103)

Doing the k0 integral (restoring the iε gives:

−e3 2πi
(2π)4

∫
d3k
2|k |

(
(4p · p′ − 2m2)γµ

(2p · k)(2p′ · k)
. (104)

Physics 217 2013, Quantum Field Theory Quantum Electrodynamics



Cancelation by soft photon emission

Consider the interference of the tree graph and one loop vertex
correction, and compare with the interference diagram involving
photon emission before and after the virtual photon exchange.
The latter is

ū(p′)γν
6p′+ 6k + m

2p′ · k
γµu(p)ū(p)

γν(6p− 6k + m)γρ

−2p · k
u(p). (105)

For low k , these have the same form up to a sign.
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Now no experiment can resolve photons of arbitrarily small ~k .
So we can introduce an energy resolution, Er . The actual
divergence then cancels between the two diagrams, and we are
left with a result proportional to log(Er/E), where E is a typical
energy scale in the process. For high energies, we also get a
log of the mass, as we saw in Compton scattering, from the
integral over angles, The result is known as a “Sudakov double
logarithm". There are actually such logs in every order of
perturbation theory, and it is possible to add up these large
terms (they exponentiate; see Peskin and Schroeder).
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The magnetic moment

For the magnetic moment, we look for a coupling of the form

F2(q2)qµσµν (106)

Taking q to have spatial components, and taking µ = j , ν = k ,
this is

∂iAjσk = ~σ · ~B. (107)

It is not hard to isolate this coupling.
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Starting with our expression for the vertex:

−iΓµ(p,p′,q) = −e3
∫

d4k
(2π)4 (108)

× ū(p′)γν( 6p′+ 6k + m)γµ(6p+ 6k + m)γνu(p)

[(p′ + k)2 −m2][(p + k)2 −m2]k2 .

introduce Feynman parameters:

Γµ(p,p′,q) = −2e3
∫

d4k
(2π)4 dα1dα2dα3δ(1− α123) (109)

ū(p′)γν( 6p′(1− α12+ 6k+ 6qα1 + m)γµ(6p+ 6k + m)γνu(p)

[k2 − (pα1 + p′α2)2]3
.
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Terms in the numerator containing only k cannot contribute to F2
(they can contribute to F1, the coefficient of γµ). We can rewrite the
numerator using the Dirac equation:

ū(p′)(2p′ν(1−α12)+γνmα12+γρ 6qα1)γµ(2pρ(1−α12)+mγρα12− 6qγρα2)u(p).
(110)

There are nine terms in the product. Many don’t contribute to F2. E.g.
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1 4p · p′(1− α12)2γµ: F1 only.

2

2mγµ 6p′α12(1− α12)2m 6pα12(1− α12)γµ

= 2mγµ(6p+ 6q)α3(1− α3) + 2m( 6p′− 6q)γµα3(1− α3)

= 2mα3(1− α3)[γµ, 6q] + F1 term.
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Combining the rest, the result is:

Γµ = · · · − 2e3
∫

d4kdα1dα2dα3δ(1− α123)mα3(1− α3)[γµ, 6q]

(2π)4[k2 −m2(1− α3)]3
.

(111)
(In the denominator we have set q2 = 0.) The k integral yields:

Γµ = −ie3
∫

dα1dα2dα3δ(1− α123)4α3(1− α3)

16π2
iqνσνµ

2m(1− α3)2 (112)

= −i
α

π

iqνσνµ

2m
.

This yields
g − 2

2
=

α

2π
= 0.0011614 (113)

vs. measured 0.0011596.
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