Quantum-Espresso

Hande Üstünel

25 May 2007

Outline

- Introduction
- 2 The input
 - Namelists
 - Cards
- 3 Data analysis
- 4 Some examples

Web-site introduction

Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials (both norm-conserving and ultrasoft).

```
Source : http://www.quantum-espresso.org/
```

- ESPRESSO = opEn Source Package for Research in Electronic Structure, Simulation, and Optimization
- GNU General Public License

- PWSCF : Plane-wave self-consisten field
- CP : Car-Parrinello molecular dynamics
- PHONON : Phonon calculations
- FPMD : Molecular Dynamics
- Wannier
- We'll mostly deal with PWSCF. Other components have similar input structure.
- Basic knowledge of atomic and solid state physics is assumed throughout the talk.

Capabilities

- Self-consistent, planewave, pseudopotential total energy calculation
- Large xc library : LDA, GGA, BLYP, LDA+U
- Pseudopotential-generation code and pseudopotential library
 - Norm-conserving, ultrasoft
 - Scalar relativistic, fully relativistic
- Geometric optimization also with variable cells
- Phonon calculations, (harmonic/anharmonic/e-ph)
- Inclusion of electric field, macroscopic polarizability
- Noncollinear magnetism
- Infrared and Raman cross sections
- Dielectric tensors
- Metadynamics
- Ballistic conductance
- Maximally localized Wannier functions
- Nudged Elastic Bands (NEB)

Pros :

- Free ⇒ huge community
- Mature code, core is mostly well-tested
- MANY options, keywords
- Excellent mailing list, helpful developers

Cons :

- Poorly commented, user guide not great
- Hard to read the code
- Redundancies/obsolete keywords

General structure

• The input file is broken down into sections

Namelists — calculation specifications

&CONTROL: general variables controlling the run

\&SYSTEM: structural information on the system under investigation

&ELECTRONS: electronic variables &IONS (optional): ionic variables

&CELL (optional): variable-cell dynamics

&PHONON (optional): information required to produce data for

phonon calculations

General structure

Nonoptional and optional cards

ATOMIC SPECIES

ATOMIC POSITIONS

K_POINTS

CELL PARAMETERS(optional)

OCCUPATIONS(optional)

FIRST_IMAGE(optional)

LAST_IMAGE(optional)

CLIMBING IMAGES(optional)

Typical input file — diamond Si

```
&control
    calculation = 'scf'
    restart_mode='from_scratch',
    pseudo_dir = '~/pseudo',
    outdir='tmp', /
 &system
    ibrav = 2,
   celldm(1) = 11.0,
   nat = 2,
   ntyp = 1,
    ecutwfc = 20, /
 &electrons /
ATOMIC_SPECIES
Si 1.0 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS {alat}
Si 0 0 0
Si 0.25 0.25 0.25
K_POINTS {automatic}
666000
```

General keywords

• calculation:

scf : single point calculation without geometric optimization

 ${ t nscf}$: non-self-consistent calculation (needs previous $V_{\it eff}(ec{r})$)

 ${\tt relax}$: geometric optimization

md: molecular dynamics

 ${\tt vc-relax}: \ geometric\ optimization\ with\ variable\ unit\ cell$

coordinates

General keywords

calculation:

scf : single point calculation without geometric optimization

 \mathtt{nscf} : non-self-consistent calculation (needs previous $V_{\mathit{eff}}(\vec{r})$)

relax: geometric optimization

md: molecular dynamics

vc-relax: geometric optimization with variable unit cell

coordinates

restart_mode :

from_scratch : Start from an initial guess for the $\{\psi_i(\vec{r})\}$

restart: Start from earlier data

Note 1 : PWSCF writes to disk $n(\vec{r})$, $V_{eff}(\vec{r})$ and $\{\psi_i(\vec{r})\}$

Note 2: Must interrupt properly to resume calculation.

General keywords

calculation:

scf : single point calculation without geometric optimization

 \mathtt{nscf} : non-self-consistent calculation (needs previous $V_{\mathit{eff}}(\vec{r})$)

relax: geometric optimization

md: molecular dynamics

vc-relax: geometric optimization with variable unit cell

coordinates

restart_mode :

from_scratch : Start from an initial guess for the $\{\psi_i(\vec{r})\}$

restart : Start from earlier data

Note 1 : PWSCF writes to disk $n(\vec{r})$, $V_{eff}(\vec{r})$ and $\{\psi_i(\vec{r})\}$

Note 2: Must interrupt properly to resume calculation.

outdir: Directory where intermediates are dumped.

General keywords

• calculation:

scf: single point calculation without geometric optimization nscf: non-self-consistent calculation (needs previous $V_{eff}(\vec{r})$)

relax: geometric optimization

md: molecular dynamics

vc-relax: geometric optimization with variable unit cell coordinates

restart_mode :

from_scratch : Start from an initial guess for the $\{\psi_i(\vec{r})\}$

restart: Start from earlier data

Note 1 : PWSCF writes to disk $n(\vec{r})$, $V_{eff}(\vec{r})$ and $\{\psi_i(\vec{r})\}$

Note 2: Must interrupt properly to resume calculation.

- outdir: Directory where intermediates are dumped.
- pseudo_dir : Directory where the pseudopotentials live.

General keywords

- nat : number of atoms
- ntyp: number of types of atoms

General keywords

- nat : number of atoms
- ntyp: number of types of atoms
- nbnd : number of states to be calculated (unoccupied states as well)

General keywords

- nat : number of atoms
- ntyp: number of types of atoms
- nbnd : number of states to be calculated (unoccupied states as well)
- ecutwfc: kinetic energy cutoff (for planewaves)
- ecutrho : density cutoff (for the augmentation charge in USPP $\approx 10 \times$ ecutwfc)

Lattice structure

• ibrav : Bravais lattice index — easy way to set up a crystal

Up to fourteen

Lattice structure

- ibrav : Bravais lattice index easy way to set up a crystal
- celldm(1)-celldm(6): Various cell dimensions in B not all six are used for most ibrav

```
0 : user-specified
                        celldm(1) = given length
1: simple cubic
                        celldm(1) = a
                        celldm(1) = a
2 : face-centered cubic
                        celldm(1) = a
3 : body-centered cubic
                        celldm(1) = a
4 : hexagonal
                        celldm(3)=c/a
```

Some celldm(i) length, some angle

Occupations

 occupations : Occupation of Kohn-Sham states – important for metals

```
'smearing': smear occupations by a some function (below)
'tetrahedra':
'fixed': default (for insulators)
```

'from_input': read occupations from a file

Occupations

 occupations : Occupation of Kohn-Sham states – important for metals

```
'smearing': smear occupations by a some function (below)
'tetrahedra':
'fixed': default (for insulators)
'from_input': read occupations from a file
```

• smearing : types of smearing

```
'gaussian'
'methfessel-paxton'
'marzari-vanderbilt'
'fermi-dirac'
```

Occupations

 occupations : Occupation of Kohn-Sham states – important for metals

```
'smearing': smear occupations by a some function (below)
'tetrahedra':
'fixed': default (for insulators)
'from_input': read occupations from a file
```

• smearing : types of smearing

```
'gaussian'
'methfessel-paxton'
'marzari-vanderbilt'
'fermi-dirac'
```

degauss: Smearing width

```
Small degauss ⇒ better accuracy
Large degauss ⇒ smaller number of k-points
```

Magnetism

• nspin : spin type

1: non-polarized

2 : spin-polarized (single-axis magnetization)

Magnetism

- nspin : spin type
 - 1: non-polarized
 - 2 : spin-polarized (single-axis magnetization)
- starting_magnetization (i): between -1 and 1. To break symmetry for the initial configuration. The index i runs over atom types.

Magnetism

- nspin : spin type
 - 1: non-polarized
 - 2 : spin-polarized (single-axis magnetization)
- starting_magnetization (i): between -1 and 1. To break symmetry for the initial configuration. The index i runs over atom types.
- tot_magnetization : Fix (n_{maj} n_{min})

Magnetism

- nspin : spin type
 - 1: non-polarized
 - 2 : spin-polarized (single-axis magnetization)
- starting_magnetization (i): between -1 and 1. To break symmetry for the initial configuration. The index i runs over atom types.
- tot_magnetization : Fix (n_{maj} n_{min})
- noncolin : (.true./.false.) Turn on noncollinear magnetism

The namelist &electrons

Charge mixing

```
mixing_mode : improves convergence
```

'plain': Broyden mixing

'TF': simple Thomas-Fermi screening (homogeneous systems)

'local-TF': local-density-dependent TF screening (surfaces

etc.)

• mixing_beta : $n_{i+1} = (1-\beta)n_{i+1}^{KS} + \beta n_i$

• mixing_nstep : number of iterations used in mixing scheme

The namelist &electrons

Charge mixing

mixing_mode : improves convergence

'plain': Broyden mixing 'TF': simple Thomas-Fermi screening (homogeneous systems)

'local-TF': local-density-dependent TF screening (surfaces etc.)

• mixing_beta: $n_{i+1} = (1-\beta)n_{i+1}^{KS} + \beta n_i$

• mixing_nstep : number of iterations used in mixing scheme

Solution of KS equations

diagonalization : Minimization or iterative diagonalization

david: Davidson iterative diagonalization

cg: Minimization using the conjugate-gradients algorithm

 Various diagonalization-related keywords : diago_david_ndim, diago_thr_init, diago_cg_maxiter

The namelist & ions

Ion dynamics — mostly for md

 ion_dynamics: Different possibilities are allowed for different calculation keywords

bfgs: for relax

 ${\tt damp}$: for relax and ${\tt vc\text{-}relax}$

verlet: for md

 ion_temperature : Method of fixing the temperature during md runs

'rescaling': rescale the velocity every given number of steps

'langevin': use Langevin thermostat

'not_controlled': self-evident

• NEB keywords : opt_scheme, CI_scheme, k_min, k_max

Cards

Related to atoms

ATOMIC_SPECIES

```
[ type
                pseudopotential ]
        mass
         10.811
                 B.pbe-n-van.UPF
        14.007
                 N.pbe-van_bm.UPF
   Mn
         54.938
                 Mn.pbe-sp-van.UPF
```

The pseudopotentials are taken from the PWSCF library or self-generated.

Cards

Related to atoms

ATOMIC_SPECIES

```
[ type mass pseudopotential ]
   B 10.811 B.pbe-n-van.UPF
   N 14.007 N.pbe-van_bm.UPF
   Mn 54.938 Mn.pbe-sp-van.UPF
```

The pseudopotentials are taken from the PWSCF library or self-generated.

• ATOMIC_POSITIONS {alat|bohr|crystal|angstrom}

[type	x	У	Z	fix_x	fix_y	fix_z]
N	0.00	0.00	0.00	0	1	1
Mn	1.00	1.00	1.00			
В	2.25	2.25	2.25	1	0	1

Cards

Others

```
M_POINTS { automatic }
```

```
[ nkx nky nkz shiftx shifty shiftz] 6 6 6 0 1 0
```

• K_POINTS { tpiba | crystal | gamma }

```
[ k_x k_y k_z wk ]
0.25 0.25 0.25 0.333
0.75 0.25 0.00 0.666
```

CELL_PARAMETERS

Bohr if celldm(1)=0, alat units otherwise

• Suite of codes that take in the output $\psi_i(\vec{r})$, $V_{eff}(\vec{r})$ and ϵ_i 's and produces various kinds of post-processed data

Data analysis

Each post-processing routine has its own input.

```
&inputpp
 &plot
   nfile = 3
    filepp(1) = "Rh100+C60.charge"
   filepp(2) = "C60.charge"
   filepp(3) = "Rh100.charge"
    weight(1) = 1.0
    weight(2) = -1.0
    weight(3) = -1.0
    iflag = 3
    output_format = 5
```

What are the available post-processing routines?

- DOS, PDOS, LDOS, ILDOS
- Charge density
- STM images
- Total potential, plane-averaged potential
- Band structure
- Electron localization function
- $|\psi_i(\vec{r})|^2$

Total and partial density of states

Plane-averaged effective potential

Charge density — isosurface

Charge density — contour

