
Chapter 6

Quantum Mechanical Addition of
Angular Momenta and Spin

In this section we consider composite systems made up of several particles, each carrying orbital
angular momentum decribed by spherical harmonics Y`m(θ, φ) as eigenfunctions and/or spin. Often
the socalled total angular momentum, classically speaking the sum of all angular momenta and spins
of the composite system, is the quantity of interest, since related operators, sums of orbital angular
momentum and of spin operators of the particles, commute with the Hamiltonian of the composite
system and, hence, give rise to good quantum numbers. We like to illustrate this for an example
involving particle motion. Further below we will consider composite systems involving spin states.

Example: Three Particle Scattering

Consider the scattering of three particles A, B, C governed by a Hamiltonian H which depends
only on the internal coordinates of the system, e.g., on the distances between the three particles,
but neither on the position of the center of mass of the particles nor on the overall orientation of
the three particle system with respect to a laboratory–fixed coordinate frame.
To specify the dependency of the Hamiltonian on the particle coordinates we start from the nine
numbers which specify the Cartesian components of the three position vectors ~rA, ~rB, ~rC of the
particles. Since the Hamiltonian does not depend on the position of the center of mass ~R =
(mA~rA + mB~rB + mC~rC)/(mA+mB+mC), six parameters must suffice to describe the interaction
of the system. The overall orientation of any three particle configuration can be specified by
three parameters1, e.g., by a rotational vector ~ϑ. This eleminates three further parameters from
the dependency of the Hamiltonian on the three particle configuration and one is left with three
parameters. How should they be chosen?
Actually there is no unique choice. We like to consider a choice which is physically most reasonable
in a situation that the scattering proceeds such that particles A and B are bound, and particle C
impinges on the compound AB coming from a large distance. In this case a proper choice for a
description of interactions would be to consider the vectors ~rAB = ~rA − ~rB and ~ρC = (mA~rA +
mB~rB)/(mA +mB)− ~rC , and to express the Hamiltonian in terms of |~rAB|, |~ρC |, and ^(~rAB, ~ρC).
The rotational part of the scattering motion is described then in terms of the unit vectors r̂AB and

1We remind the reader that, for example, three Eulerian angles α, β, γ are needed to specify a general rotational
transformation
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142 Addition of Angular Momenta and Spin

ρ̂C , each of which stands for two angles. One may consider then to describe the motion in terms
of products of spherical harmonics Y`1m1(r̂AB)Y`2m2(ρ̂C) describing rotation of the compound AB
and the orbital angular momentum of C around AB.
One can describe the rotational degrees of freedom of the three-particle scattering process through
the basis

B = {Y`1m1(r̂AB)Y`2m2(ρ̂C), `1 = 0, 1, . . . , `1,max,−`1 ≤ m1 ≤ `1;
`2 = 0, 1, . . . , `2,max,−`2 ≤ m1 ≤ `2 } (6.1)

where `1,max and `2,max denote the largest orbital and rotational angular momentum values, the
values of which are determined by the size of the interaction domain ∆V , by the total energy E,
by the masses mA, mB, mC , and by the moment of inertia IA−B of the diatomic molecule A–B
approximately as follows

`1,max =
∆
~

√
2mAmBmC E

mAmB + mBmC + mAmC
, `2,max =

1
~

√
2 IA−BE . (6.2)

The dimension d(B) of B is

d(B) =
`1,max∑
`1=0

(2 `1 + 1)
`2,max∑
`2=0

(2 `2 + 1) = (`1,max + 1)2 (`2,max + 1)2 (6.3)

For rather moderate values `1,max = `2,max = 10 one obtains d(B) = 14 641, a very large number.
Such large number of dynamically coupled states would constitute a serious problem in any detailed
description of the scattering process, in particular, since further important degrees of freedom, i.e.,
vibrations and rearrangement of the particles in reactions like AB + C → A + BC, have not
even be considered. The rotational symmetry of the interaction between the particles allows one,
however, to separate the 14 641 dimensional space of rotational states Y`1m1(r̂AB)Y`2m2(ρ̂C) into
subspaces Bk, B1⊕B2⊕ . . . = B such, that only states within the subspaces Bk are coupled in the
scattering process. In fact, as we will demonstrate below, the dimensions d(Bk) of these subspaces
does not exceed 100. Such extremely useful transformation of the problem can be achieved through
the choice of a new basis set

B′ = {
∑
`1,m1
`2,m2

c
(n)
`1,m1;`2,m2

Y`1m1(r̂AB)Y`2m2(ρ̂C), n = 1, 2, . . . 14 641} . (6.4)

The basis set which provides a maximum degree of decoupling between rotational states is of great
principle interest since the new states behave in many respects like states with the attributes
of a single angular momentum state: to an observer the three particle system prepared in such
states my look like a two particle system governed by a single angular momentum state. Obviously,
composite systems behaving like elementary objects are common, albeit puzzling, and the following
mathematical description will shed light on their ubiquitous appearence in physics, in fact, will make
their appearence a natural consequence of the symmetry of the building blocks of matter.
There is yet another important reason why the following section is of fundamental importance for
the theory of the microscopic world governed by Quantum Mechanics, rather than by Classical
Mechanics. The latter often arrives at the physical properties of composite systems by adding the
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corresponding physical properties of the elementary components; examples are the total momentum
or the total angular momentum of a composite object which are the sum of the (angular) momenta
of the elementary components. Describing quantum mechanically a property of a composite object
as a whole and relating this property to the properties of the elementary building blocks is then the
quantum mechanical equivalent of the important operation of addittion. In this sense, the reader
will learn in the following section how to add and subtract in the microscopic world of Quantum
Physics, presumably a facility the reader would like to acquire with great eagerness.

Rotational Symmetry of the Hamiltonian

As pointed out already, the existence of a basis (6.4) which decouples rotational states is connected
with the rotational symmetry of the Hamiltonian of the three particle system considered, i.e.,
connected with the fact that the Hamiltonian H does not depend on the overall orientation of the
three interacting particles. Hence, rotations R(~ϑ) of the wave functions ψ(~rAB, ~ρC) defined through

R(~ϑ)ψ(~rAB, ~ρC) = ψ(R−1(~ϑ)~rAB, R−1(~ϑ) ~ρC) (6.5)

do not affect the Hamiltonian. To specify this property mathematically let us denote by H′ the
Hamiltonian in the rotated frame, assuming presently that H′ might, in fact, be different from H.
It holds then H′R(~ϑ)ψ = R(~ϑ) Hψ. Since this is true for any ψ(~rAB, ~ρC) it follows H′R(~ϑ) =
R(~ϑ) H, from which follows in turn the well-known result that H′ is related to H through the
similarity transformation H′ = R(~ϑ) H R−1(~ϑ). The invariance of the Hamiltonian under overall
rotations of the three particle system implies then

H = R(~ϑ) H R−1(~ϑ) . (6.6)

For the following it is essential to note that H is not invariant under rotations of only ~rAB or ~ρC ,
but solely under simultaneous and identical rotations of ~rAB or ~ρC .
Following our description of rotations of single particle wave functions we express (6.5) according
to (5.48)

R(~ϑ) = exp
(
− i
~

~ϑ · ~J (1)

)
exp

(
− i
~

~ϑ · ~J (2)

)
(6.7)

where the generators ~J (k) are differential operators acting on r̂AB (k = 1) and on ρ̂C (k = 2). For
example, according to (5.53, 5.55) holds

− i
~

J (1)
1 = zAB

∂

∂yAB
− yAB

∂

∂zAB
; − i

~

J (2)
3 = ρy

∂

∂ρx
− ρx

∂

∂ρy
. (6.8)

Obviously, the commutation relationships[
J (1)
p , J (2)

q

]
= 0 for p, q = 1, 2, 3 (6.9)

hold since the components of ~J (k) are differential operators with respect to different variables. One
can equivalently express therefore (6.7)

R(~ϑ) = exp
(
− i
~

~ϑ ·~J
)

(6.10)
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where
~J = ~J (1) + ~J (2) . (6.11)

By means of (6.11) we can write the condition (6.6) for rotational invariance of the Hamiltonian in
the form

H = exp
(
− i
~

~ϑ ·~J
)

H exp
(

+
i

~

~ϑ ·~J
)

. (6.12)

We consider this equation for infinitesimal rotations, i.e. for |~ϑ| � 1. To order O(|~ϑ|) one obtains

H ≈
(

11 − i

~

~ϑ ·~J
)

H
(

11 +
i

~

~ϑ ·~J
)
≈ H +

i

~

H ~ϑ ·~J − i

~

~ϑ ·~JH . (6.13)

Since this holds for any ~ϑ it follows H~J − ~JH = 0 or, componentwise,

[H, Jk] = 0 , k = 1, 2, 3 . (6.14)

We will refer in the following to Jk, k = 1, 2, 3 as the three components of the total angular
momentum operator.
The property (6.14) implies that the total angular momentum is conserved during the scattering
process, i.e., that energy, and the eigenvalues of ~J2 and J3 are good quantum numbers. To describe
the scattering process of AB + C most concisely one seeks eigenstates YJM of ~J2 and J3 which can
be expressed in terms of Y`1m1(r̂AB)Y`2m2(ρ̂C).

Definition of Total Angular Momentum States

The commutation property (6.14) implies that the components of the total angular momentum
operator (6.12) each individually can have simultaneous eigenstates with the Hamiltonian. We
suspect, of course, that the components Jk, k = 1, 2, 3 cannot have simultaneous eigenstates a-
mong each other, a supposition which can be tested through the commutation properties of these
operators. One can show readily that the commutation relationships

[Jk, J`] = i~ εk`mJm (6.15)

are satisfied, i.e., the operators Jk, k = 1, 2, 3 do not commute. For a proof one uses (6.9), the
properties [J (n)

k ,J (n)
` ] = i~ εk`mJ

(n)
m for n = 1, 2 together with the property [A,B + C] =

[A,B] + [A,C].
We recognize, however, the important fact that the Jk obey the Lie algebra of SO(3). According
to the theorem above this property implies that one can construct eigenstates YJM of J3 and of

J
2 = J

2
1 + J

2
2 + J

2
3 (6.16)

following the procedure stated in the theorem above [c.f. Eqs. (5.71–5.81)]. In fact, we will find
that the states yield the basis B′ with the desired property of a maximal uncoupling of rotational
states.
Before we apply the procedure (5.71–5.81) we want to consider the relationship between YJM and
Y`1m1(r̂AB)Y`2m2(ρ̂C). In the following we will use the notation

Ω1 = r̂AB , Ω2 = ρ̂C . (6.17)
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6.1 Clebsch-Gordan Coefficients

In order to determine YJM we notice that the states Y`1m1(Ω1)Y`2m2(Ω2) are characterized by four
quantum numbers corresponding to eigenvalues of

[
J (1)

]2
, J (1)

3 ,
[
J (2)

]2
, and J (2)

3 . Since YJM

sofar specifies solely two quantum numbers, two further quantum numbers need to be specified
for a complete characterization of the total angular momentum states. The two missing quantum
numbers are `1 and `2 corresponding to the eigenvalues of

[
J (1)

]2
and

[
J (2)

]2
. We, therefore,

assume the expansion

YJM (`1, `2|Ω1,Ω2) =
∑
m1,m2

(J M |`1m1 `2m2)Y`1m1(Ω1)Y`2m2(Ω2) (6.18)

where the states YJM (`1, `2|Ω1, ρ̂C) are normalized. The expansion coefficients (J M |`1m1 `2m2)
are called the Clebsch-Gordan coefficients which we seek to determine now. These coefficients,
or the closely related Wigner 3j-coefficients introduced further below, play a cardinal role in the
mathematical description of microscopic physical systems. Equivalent coefficients exist for other
symmetry properties of multi–component systems, an important example being the symmetry
groups SU(N) governing elementary particles made up of two quarks, i.e., mesons, and three quarks,
i.e., baryons.

Exercise 6.1.1: Show that J2, J3,
(
J (1)

)2
,
(
J (2)

)2
, and ~J (1) · ~J (2) commute. Why can states YJM

then not be specified by 5 quantum numbers?

Properties of Clebsch-Gordan Coefficients

A few important properties of Clebsch-Gordan coefficients can be derived rather easily. We first
notice that YJM in (6.18) is an eigenfunction of J3, the eigenvalue being specified by the quantum
number M , i.e.

J3 YJM = ~M YJM . (6.19)

Noting J3 = J (1)
3 + J (2)

3 and applying this to the l.h.s. of (6.18) yields using the property
J (k)

3 Y`kmk(Ωk) = ~mk Y`kmk(Ωk) , k = 1, 2

M YJM (`1, `2|Ω1,Ω2) =∑
m1,m2

(m1 + m2) (J M |`1m1 `2m2)Y`1m1(Ω1)Y`2m2(Ω2) . (6.20)

This equation can be satisfied only if the Clebsch-Gordan coefficients satisfy

(J M |`1m1 `2m2) = 0 for m1 + m2 6= M . (6.21)

One can, hence, restrict the sum in (6.18) to avoid summation of vanishing terms

YJM (`1, `2|Ω1,Ω2) =
∑
m1

(J M |`1m1 `2M −m1)Y`1m1(Ω1)Y`2m2(Ω2) . (6.22)

We will not adopt such explicit summation since it leads to cumbersum notation. However, the
reader should always keep in mind that conditions equivalent to (6.21) hold.
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The expansion (6.18) constitutes a change of an orthonormal basis

B(`1, `2) = {Y`1m1(Ω1)Y`2m2(Ω2),m1 = −`1,−`1 + 1, . . . , `1 ,
m2 = −`2,−`2 + 1, . . . , `2} , (6.23)

corresponding to the r.h.s., to a new basis B′(`1, `2) corresponding to the l.h.s. The orthonormality
property implies∫

dΩ1

∫
dΩ2 Y`1m1(Ω1)Y`2m2(Ω2)Y`′1m′1Ω1)Y`′2m′2(Ω2) = δ`1`′1δm1m′1

δ`2`′2δm2m′2
. (6.24)

The basis B(`1, `2) has (2`1 + 1)(2`2 + 1) elements. The basis B′(`1, `2) is also orthonormal2 and
must have the same number of elements. For each quantum number J there should be 2J + 1
elements YJM with M = −J,−J + 1, . . . , J . However, it is not immediately obvious what the J–
values are. Since YJM represents the total angular momentum state and Y`1m1(Ω1) and Y`2m2(Ω2)
the individual angular momenta one may start from one’s classical notion that these states represent
angular momentum vectors ~J , ~J (1) and ~J (2), respectively. In this case the range of | ~J |–values would
be the interval [

∣∣∣| ~J (1)| − | ~J (2)|
∣∣∣ , | ~J (1)| + | ~J (2)|]. This obviously corresponds quantum mechanically

to a range of J–values J = |`1 − `2|, |`1 − `2|+ 1, . . . `1 + `2. In fact, it holds

`1+`2∑
J=|`1−`2|

( 2J + 1 ) = (2`1 + 1) (2`2 + 1) , (6.25)

i.e., the basis B′(`1, `2) should be

B2 = {YJM (`1, `2|Ω1,Ω2); J = |`1 − `2|, |`1 − `2|+ 1, `1 + `2 ,

M = −J,−J + 1, . . . , J} . (6.26)

We will show below in an explicit construction of the Clebsch-Gordan coefficients that, in fact, the
range of values assumed for J is correct. Our derivation below will also yield real values for the
Clebsch-Gordan coefficients.

Exercise 6.1.2: Prove Eq. (6.25)

We want to state now two summation conditions which follow from the orthonormality of the two
basis sets B(`1, `2) and B′(`1, `2). The property∫

dΩ1

∫
dΩ2 Y∗JM (`1, `2|Ω1,Ω2) YJ ′M ′(`1, `2|Ω1,Ω2) = δJJ ′δMM ′ (6.27)

together with (6.18) applied to Y∗JM and to YJ ′M ′ and with (6.24) yields∑
m1,m2

(J M |`1m1 `2m2)∗(J ′M ′|`1m1 `2m2) = δJJ ′δMM ′ . (6.28)

2This property follows from the fact that the basis elements are eigenstates of hermitian operators with different
eigenvalues, and that the states can be normalized.
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The second summation condition starts from the fact that the basis sets B(`1, `2) and B′(`1, `2)
span the same function space. Hence, it is possible to expand Y`1m1(Ω1)Y`2m2(Ω2) in terms of
YJM (`1, `2|Ω1,Ω2), i.e.,

Y`1m1(Ω1)Y`2m2(Ω2) =
`1+`2∑

J ′=|`1−`2|

J∑
M ′=−J

cJ ′M ′ YJ ′M ′(`1, `2|Ω1,Ω2) , (6.29)

where the expansion coefficients are given by the respective scalar products in function space

cJ ′M ′ =
∫
dΩ1

∫
dΩ2 Y∗J ′M ′(`1, `2|Ω1,Ω2)Y`1m1(Ω1)Y`2m2(Ω2) . (6.30)

The latter property follows from multiplying (6.18) by Y∗J ′M ′(`1, `2|Ω1,Ω2) and integrating. The
orthogonality property (6.27) yields

δJJ ′δMM ′ =
∑
m1,m2

(J M |`1m1 `2m2) cJ ′M ′ . (6.31)

Comparision with (6.28) allows one to conclude that the coefficients cJ ′M ′ are identical to (J ′M ′|`1m1 `2m2)∗,
i.e.,

Y`1m1(Ω1)Y`2m2(Ω2)

=
`1+`2∑

J ′=|`1−`2|

J∑
M ′=−J

(J ′M ′|`1m1 `2m2)∗YJ ′M ′(`1, `2|Ω1,Ω2) , (6.32)

which complements (6.18). One can show readily using the same reasoning as applied in the
derivation of (6.28) from (6.18) that the Clebsch-Gordan coefficients obey the second summation
condition ∑

JM

(J M |`1m1 `2m2)∗(J M |`1m′1 `2m′2) = δm1m′1
δm2m′2

. (6.33)

The latter summation has not been restricted explicitly to allowed J–values, rather the convention

(J M |`1m1 `2m2) = 0 if J < |`1 − `2| , or J > `1 + `2 (6.34)

has been assumed.

6.2 Construction of Clebsch-Gordan Coefficients

We will now construct the Clebsch-Gordan coefficients. The result of this construction will include
all the properties previewed above. At this point we like to stress that the construction will be based
on the theorems (5.71–5.81) stated above, i.e., will be based solely on the commutation properties of
the operators ~J and ~J (k). We can, therefore, also apply the results, and actually also the properties
of Clebsch-Gordan coefficients stated above, to composite systems involving spin-1

2 states. A similar
construction will also be applied to composite systems governed by other symmetry groups, e.g.,
the group SU(3) in case of meson multiplets involving two quarks, or baryons multiplets involving
three quarks.
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For the construction of YJM we will need the operators

J± = J1 + iJ2 . (6.35)

The construction assumes a particular choice of J ∈ {|`1 − `2|, |`1 − `2| + 1, . . . `1 + `2} and for
such J–value seeks an expansion (6.18) which satisfies

J+ YJJ(`1, `2|Ω1,Ω2) = 0 (6.36)
J3 YJJ(`1, `2|Ω1,Ω2) = ~ J YJJ(`1, `2|Ω1,Ω2) . (6.37)

The solution needs to be normalized. Having determined such YJJ we then construct the whole
family of functions XJ = {YJM (`1, `2|Ω1,Ω2), M = −J,−J + 1, . . . J} by applying repeatedly

J−YJM+1(`1, `2|Ω1,Ω2) = ~

√
(J +M + 1)(J −M)YJM (`1, `2|Ω1,Ω2) . (6.38)

for M = J − 1, J − 2, . . . ,−J .
We embark on the suggested construction for the choice J = `1 + `2. We first seek an unnormalized
solution GJJ and later normalize. To find GJJ we start from the observation that GJJ represents the
state with the largest possible quantum number J = `1 + `2 with the largest possible component
M = `1 + `2 along the z–axis. The corresponding classical total angular momentum vector ~Jclass

would be obtained by aligning both ~J (1)
class and ~J (2)

class also along the z–axis and adding these two
vectors. Quantum mechanically this corresponds to a state

G`1+`2,`1+`2(`1, `2|Ω1,Ω2) = Y`1`1(Ω1)Y`2`2(Ω2) (6.39)

which we will try for a solution of (6.37). For this purpose we insert (6.39) into (6.37) and replace
according to (6.11) J+ by J (1)

+ + J (2)
+ . We obtain using (5.66,5.68)(

J (1)
+ + J (2)

+

)
Y`1`1(Ω1)Y`2`2(Ω2) (6.40)

=
(
J (1)

+ Y`1`1(Ω1)
)
Y`2`2(Ω2) + Y`1`1(Ω1)

(
J (2)

+ Y`2`2(Ω2)
)

= 0 .

Similarly, we can demonstrate condition (6.25) using (6.11) and (5.64)(
J (1)

3 + J (2)
3

)
Y`1`1(Ω1)Y`2`2(Ω2)

=
(
J (1)

3 Y`1`1(Ω1)
)
Y`2`2(Ω2) + Y`1`1(Ω1)

(
J (2)

3 Y`2`2(Ω2)
)

= ~ (`1 + `2)Y`1`1(Ω1)Y`2`2(Ω2) . (6.41)

In fact, we can also demonstrate using (??) that G`1+`2,`1+`2(`1, `2|Ω1,Ω2) is normalized∫
dΩ1

∫
dΩ2 G`1+`2,`1+`2(`1, `2|Ω1,Ω2)

=
(∫

dΩ1Y`1`1(Ω1)
) (∫

dΩ2Y`2`2(Ω2)
)

= 1 . (6.42)

We, therefore, have shown

Y`1+`2,`1+`2(`1, `2|Ω1,Ω2) = Y`1`1(Ω1)Y`2`2(Ω2) . (6.43)
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We now employ property (6.38) to construct the family of functions B`1+`2 = {Y`1+`2M(`1, `2|
1,
2), M =
−(`1 + `2), . . . , (`1 + `2)}. We demonstrate the procedure explicitly only for M = `1 + `2 − 1.
The r.h.s. of (6.38) yields with J− = J (1)

− + J (1)
− the expression ~

√
2`1 Y`1`1−1(Ω1)Y`2`2(Ω2) +

~

√
2`2 Y`1`1−1(Ω1)Y`2`2−1(Ω2). The l.h.s. of (6.38) yields ~

√
2(`1 + `2)Y`1+`2`1+`2−1(`1, `2|Ω1,Ω2).

One obtains then

Y`1+`2 `1+`2−1(`1, `2|Ω1,Ω2) = (6.44)√
`1

`1+`2
Y`1`1−1(Ω1)Y`2`2(Ω2) +

√
`2

`1+`2
Y`1`1(Ω1)Y`2`2−1(Ω2) .

This construction can be continued to obtain all 2(`1 + `2) + 1 elements of B`1+`2 and, thereby,
all the Clebsch-Gordan coefficients (`1 + `2M |`1m1`2m2). We have provided in Table 1 the explicit
form of YJ M (`1`2|Ω1Ω2) for `1 = 2 and `2 = 1 to illustrate the construction. The reader should
familiarize himself with the entries of the Table, in particular, with the symmetry pattern and with
the terms Y`1m1Y`2m2 contributing to each YJ M .
We like to construct now the family of total angular momentum functions B`1+`2−1 = {Y`1+`2−1M(`1, `2|
1,
2), M =
−(`1 + `2 − 1), . . . , (`1 + `2 − 1)}. We seek for this purpose first an unnormalized solution
G`1+`2−1 `1+`2−1 of (6.36, 6.37). According to the condition (6.21) we set

G`1+`2−1 `1+`2−1(`1`2|Ω1Ω2) = Y`1`1−1(Ω1)Y`2`2(Ω2) + c Y`1`1(Ω1)Y`2`2−1(Ω2) (6.45)

for some unknown constant c. One can readily show that (6.37) is satisfied. To demonstrate (6.36)
we proceed as above and obtain(

J (1)
+ Y`1`1−1(Ω1)

)
Y`2`2(Ω2) + c Y`1`1(Ω1)

(
J (2)

+ Y`2`2−1(Ω2)
)

=
(√

2`1 + c
√

2`2
)
Y`1`1(Ω1)Y`2`2(Ω2) = 0 . (6.46)

To satisfy this equation one needs to choose c = −
√
`1/`2. We have thereby determined G`1+`2−1 `1+`2−1

in (6.45). Normalization yields furthermore

Y`1+`2−1 `1+`2−1(`1`2|Ω1Ω2) (6.47)

=
√

`2
`1 + `2

Y`1`1−1(Ω1)Y`2`2(Ω2) −
√

`1
`1 + `2

Y`1`1(Ω1)Y`2`2−1(Ω2) .

This expression is orthogonal to (6.39) as required by (6.27).
Expression (6.47) can serve now to obtain recursively the elements of the family B`1+`2−1 for
M = `1 + `2−2, `1 + `2−3, . . . ,−(`1 + `2−1). Having constructed this family we have determined
the Clebsch-Gordan coefficients (`1 + `2 − 1M |`1m1`2m2). The result is illustrated for the case
`1 = 2, `2 = 1 in Table 1.
One can obviously continue the construction outlined to determine Y`1+`2−2 `1+`2−2, etc. and all
total angular momentum functions for a given choice of `1 and `2.

Exercise 6.2.1: Construct following the procedure above the three functions YJM (`1, `2|Ω1,Ω2)
for M = `1 + `2 − 2 and J = `1 + `2, `1 + `2 − 1, `1 + `2 − 2. Show that the resulting functions
are orthonormal.
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Y22(Ω1)Y11(Ω2)
Y33(2, 1|Ω1,Ω2) 1

Y21(Ω1)Y11(Ω2) Y22(Ω1)Y10(Ω2)

Y32(2, 1|Ω1,Ω2)
√

2
3 ' 0.816497

√
1
3 ' 0.57735

Y22(2, 1|Ω1,Ω2) −
√

1
3 ' −0.57735

√
2
3 ' 0.816497

Y20(Ω1)Y11(Ω2) Y21(Ω1)Y10(Ω2) Y22(Ω1)Y1−1(Ω2)

Y31(2, 1|Ω1,Ω2)
√

2
5 ' 0.632456

√
8
15 ' 0.730297

√
1
15 ' 0.258199

Y21(2, 1|Ω1,Ω2) −
√

1
2 ' −0.707107

√
1
6 ' 0.408248

√
1
3 ' 0.57735

Y11(2, 1|Ω1,Ω2)
√

1
10 ' 0.316228 −

√
3
10 ' −0.547723

√
3
5 ' 0.774597

Y2−1(Ω1)Y11(Ω2) Y20(Ω1)Y10(Ω2) Y21(Ω1)Y1−1(Ω2)

Y30(2, 1|Ω1,Ω2)
√

1
5 ' 0.447214

√
3
5 ' 0.774597

√
1
5 ' 0.447214

Y20(2, 1|Ω1,Ω2) −
√

1
2 ' −0.707107 0

√
1
2 ' 0.707107

Y10(2, 1|Ω1,Ω2)
√

3
10 ' 0.547723 −

√
2
5 ' −0.632456

√
3
10 ' 0.547723

Y2−2(Ω1)Y11(Ω2) Y2−1(Ω1)Y10(Ω2) Y20(Ω1)Y1−1(Ω2)

Y3−1(2, 1|Ω1,Ω2)
√

1
15 ' 0.258199

√
8
15 ' 0.730297

√
2
5 ' 0.632456

Y2−1(2, 1|Ω1,Ω2) −
√

1
3 ' −0.57735 −

√
1
6 ' −0.408248

√
1
2 ' 0.707107

Y1−1(2, 1|Ω1,Ω2)
√

3
5 ' 0.774597 −

√
3
10 ' −0.547723

√
1
10 ' 0.316228

Y2−2(Ω1)Y10(Ω2) Y2−1(Ω1)Y1−1(Ω2)

Y3−2(2, 1|Ω1,Ω2)
√

1
3 ' 0.57735

√
2
3 ' 0.816497

Y2−2(2, 1|Ω1,Ω2) −
√

2
3 ' −0.816497

√
1
3 ' 0.57735

Y2−2(Ω1)Y1−1(Ω2)
Y3−3(2, 1|Ω1,Ω2) 1

Table 6.1: Some explicit analytical and numerical values of Clebsch-Gordan coefficients and their
relationship to the total angular momentum wave functions and single particle angular momentum
wave functions.
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Exercise 6.2.2: Use the construction for Clebsch-Gordan coefficients above to prove the following
formulas

〈J,M |`,m− 1
2
, 1

2
,+ 1

2
〉 =


√

J+M
2J for ` = J − 1

2

−
√

J−M+1
2J+2 for ` = J + 1

2

〈J,M |`,m+ 1
2
, 1

2
,− 1

2
〉 =


√

J−M
2J for ` = J − 1

2√
J+M+1

2J+2 for ` = J + 1
2

.

The construction described provides a very cumbersome route to the analytical and numerical
values of the Clebsch-Gordan coefficients. It is actually possible to state explicit expressions for
any single coefficient (JM |`1m1`2m2). These expressions will be derived now.

6.3 Explicit Expression for the Clebsch–Gordan Coefficients

We want to establish in this Section an explicit expression for the Clebsch–Gordan coefficients
(JM |`1m1`2m2). For this purpsose we will employ the spinor operators introduced in Sections 5.9,
5.10.

Definition of Spinor Operators for Two Particles

In contrast to Sections 5.9, 5.10 where we studied single particle angular momentum and spin, we
are dealing now with two particles carrying angular momentum or spin. Accordingly, we extent
definition (5.287) to two particles

(1)Jk = 1
2

∑
ζ,ζ′ a

†
ζ < ζ |σk| ζ ′ > aζ′ (6.48)

(2)Jk = 1
2

∑
ζ,ζ′ b

†
ζ < ζ |σk| ζ ′ > bζ′ (6.49)

where ζ, ζ ′ = ± and the matrix elements < ζ |σk| ζ ′ > are as defined in Section 5.10. The creation
and annihilation operators are again of the boson type with commutation properties[

aζ , aζ′
]

=
[
a†ζ , a

†
ζ′

]
= 0 ,

[
aζ , a

†
ζ′

]
= δζζ′ (6.50)[

bζ , bζ′
]

=
[
b†ζ , b

†
ζ′

]
= 0 ,

[
bζ , b

†
ζ′

]
= δζζ′ . (6.51)

The operators aζ , a
†
ζ and bζ , b

†
ζ refer to different particles and, hence, commute with each other[
aζ , bζ′

]
=
[
a†ζ , b

†
ζ′

]
=
[
aζ , b

†
ζ′

]
= 0 . (6.52)

According to Section 5.10 [cf. (5.254)] the angular momentum / spin eigenstates |`1m1〉1 and |`2m2〉2
of the two particles are

|`1m1〉1 =

(
a†+

)`1+m1

√
(`1+m1)!

(
a†−

)`1−m1

√
(`1−m1)!

|Ψ0〉 (6.53)

|`2m2〉2 =

(
b†+

)`2+m2

√
(`2+m2)!

(
b†−

)`2−m2

√
(`2−m2)!

|Ψ0〉 . (6.54)
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It holds, in analogy to Eqs. (5.302, 5.303),
(1)J2|`1m1〉1 = `1(`1 + 1) |`1m1〉1 , (1)J3|`1m1〉1 = m1 |`1m1〉1 (6.55)
(2)J2|`2m2〉2 = `2(`2 + 1) |`2m2〉2 , (2)J3|`2m2〉2 = m2 |`2m2〉2 . (6.56)

The states |`1,m1〉1|`2,m2〉2, which describe a two particle system according to (6.53, 6.54), are

|`1,m1〉1 |`2,m2〉2 = (6.57)(
a†+

)`1+m1√
(`1 +m1)!

(
a†−

)`1−m1√
(`1 −m1)!

(
b†+

)`2+m2√
(`2 +m2)!

(
b†−

)`2−m2√
(`2 −m2)!

|Ψo〉 .

The operator of the total angular momentum/spin of the two particle system is
~J = (1) ~J + (2) ~J (6.58)

with Cartesian components

Jk = (1)Jk + (2)Jk ; k = 1, 2, 3 . (6.59)

We seek to determine states |J,M(`1, `2)〉 which are simultaneous eigenstates of the operators
J

2, J3,
(1)J

2
, (2)J

2
which, as usual are denoted by their respective quantum numbers J,M, `1, `2,

i.e., for such states should hold

J
2|J,M(`1, `2)〉 = J(J + 1) |J,M(`1, `2)〉 (6.60)
J3|J,M(`1, `2)〉 = M |J,M(`1, `2)〉 (6.61)

(1)J
2|J,M(`1, `2)〉 = `1(`1 + 1) |J,M(`1, `2)〉 (6.62)

(2)J
2|J,M(`1, `2)〉 = `2(`2 + 1) |J,M(`1, `2)〉 . (6.63)

At this point, we like to recall for future reference that the operators (1)J
2
, (2)J

2
, according to

(5.300), can be expressed in terms of the number operators

k̂1 =
1
2

(
a†+a+ + a†−a−

)
, k̂2 =

1
2

(
b†+b+ + b†−b−

)
, (6.64)

namely,
(j)J

2
= k̂j ( k̂j + 1 ) , j = 1, 2 . (6.65)

For the operators k̂j holds
k̂j |`j ,mj〉j = `j |`j ,mj〉j (6.66)

and, hence,
k̂j |J,M(`1, `2)〉 = `j |J,M(`1, `2)〉 (6.67)

We will also require below the raising and lowering operators associated with the total angular
momentum operator (6.59)

J± = J1 ± i J2 . (6.68)

The states |J,M(`1, `2)〉 can be expressed in terms of Clebsch-Gordan coefficients (6.18) as follows

|J,M(`1, `2)〉 =
∑

m1,m2
|`1,m1〉1|`2,m2〉2 (`1,m1, `2,m2|J,M(`1, `2)) ,

|`1 − `2| ≤ J ≤ `1 + `2 , −J ≤ M ≤ J . (6.69)

The aim of the present Section is to determine closed expressions for the Clebsch–Gordan coefficents
(`1,m1, `2,m2|J,M(`1, `2)).
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The Operator K†

The following operator
K† = a†+ b

†
− − a†− b

†
+ . (6.70)

will play a crucial role in the evaluation of the Clebsch-Gordan-Coefficients. This operator obeys the
following commutation relationships with the other pertinent angular momentum / spin operators[

k̂j , K
†
]

=
1
2
K† , j = 1, 2 (6.71)[

(j)J2, K†
]

= K† k̂j +
3
4
K† , j = 1, 2 (6.72)[

J3, K
†] = 0 (6.73)[

J±, K
†] = 0 . (6.74)

We note that, due to J2 = 1
2J+J− + 1

2J−J+ + J
2
3, the relationships (6.73, 6.74) imply[

J
2, K†

]
= 0 . (6.75)

The relationships (6.71–6.73) can be readily proven. For example, using (6.64, 6.50, 6.51) one
obtains [

k̂1, K
†
]

=
1
2

[
a†+a+ + a†−a−, a

†
+b
†
− − a†−b

†
+

]
=

1
2
a†+

[
a+, a

†
+

]
b†− −

1
2
a†−

[
a−, a

†
−

]
b†+

=
1
2

(
a†+b

†
− − a†−b

†
+

)
=

1
2
K† .

A similar calculation yields [k̂2,K
†] = 1

2K
†. Employing (6.65) and (6.71) one can show[

(j)J2, K†
]

=
1
2

[
k̂j(k̂j + 1), K†

]
=

1
2
k̂j

[
k̂j + 1, K†

]
+

1
2

[
k̂j , K

†
]

(k̂j + 1)

=
1
2
k̂jK

† +
1
2
K† (k̂j + 1)

= K† k̂j +
1
2

[
k̂j , K

†
]

+
1
2
K†

= K† k̂j +
3
4
K† .

Using J3 = (1)J3 + (2)J3, expressing (k)J3 through the creation and annihilation operators accord-
ing to (5.288), and applying the relationships (6.71–6.73) yields[

J3,K
†] =

1
2

[
a†+a+ − a†−a− + b†+b+ − b†−b−, a

†
+b
†
− − a†−b

†
+

]
=

1
2
a†+

[
a+, a

†
+

]
b†− +

1
2
a†−

[
a−, a

†
−

]
b†+

− 1
2
b†+a

†
−

[
b+, b

†
+

]
− 1

2
b†−a

†
+

[
b−, b

†
−

]
= 0 .
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Starting from (5.292) one can derive similarly[
J+,K

†] =
[
a†+a− + b†+b−, a

†
+b− − a†−b

†
+

]
= − a†+

[
a−, a

†
−

]
b†+ + b†+a

†
+

[
b−, b

†
−

]
= 0 .

The property [J−, K†] = 0 is demonstrated in an analoguous way.

Action of K† on the states |J,M(`1, `2)〉

We want to demonstrate now that the action of K† on the states |J,M(`1, `2)〉 produces again
total angular momentum eigenstates to the same J and M quantum numbers of J2 and J3, but for
different `1 and `2 quantum numbers of the operators (1)J2 and (2)J2.
The commutation properties (6.73, 6.75) ascertain that under the action ofK† the states |J,M(`1, `2)〉
remain eigenstates of J2 and J3 with the same quantum numbers. To demonstrate that the resulting
states are eigenstates of (1)J2 and (2)J2 we exploit (6.72) and (6.62, 6.63, 6.67)

(j)J2K† |J,M(`1, `2)〉 =
( [

(j)J2, K†
]

+ K† (j)J
2
)
|J,M(`1, `2)〉

=
(
K† k̂j +

3
4
K† + K†`j (`j + 1)

)
|J,M(`1, `2)〉

= K†
(
`j +

3
4

+ `j (`j + 1)
)
|J,M(`1, `2)〉

=
(
`j +

1
2

)(
`j +

3
2

)
K† |J,M(`1, `2)〉 .

However, this result implies that K†|J,M(`1, `2)〉 is a state with quantum numbers `1 + 1
2 and

`2 + 1
2 , i.e., it holds

K† |J,M(`1, `2)〉 = N |J,M(`1 +
1
2
, `2 +

1
2

)〉 . (6.76)

Here N is an unknown normalization constant.
One can generalize property (6.76) and state(

K†
)n
|J,M(`1, `2)〉 = N ′ |J,M(`1 +

n

2
, `2 +

n

2
)〉 (6.77)

where N ′ is another normalization constant. We consider now the case that (K†)n acts on the
simplest total angular momentum / spin state, namely, on the state

|j1 + j2, j1 + j2(j1, j2)〉 = |j1, j1〉1 |j2, j2〉2 , (6.78)

a state which has been used already in the construction of Clebsch-Gordan coefficients in Section 6.2.
Application of (K†)n to this state yields, according to (6.77),

|j1 + j2, j1 + j2 (j1 +
n

2
, j2 +

n

2
)〉 (6.79)

= N(n, j11 +
n

2
, j1 +

n

2
)
(
K†
)n
|j1 + j2, j1 + j2(j1, j2)〉
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where we denoted the associated normalization constant by N(n, j1 + n
2 , j2 + n

2 ).
It is now important to notice that any state of the type |J, J(`1, `2)〉 can be expressed through the
r.h.s. of (6.79). For this purpose one needs to choose in (6.79) n, j1, j2 as follows

J = j1 + j2 , `1 = j1 +
n

2
, `2 = j2 +

n

2
(6.80)

which is equivalent to

n = `1 + `2 − J

j1 = `1 −
n

2
=

1
2

(J + `1 − `2)

j2 = `2 −
n

2
=

1
2

(J + `1 − `2) . (6.81)

Accodingly, holds

|J, J(`1, `2)〉 = N(`1 + `2 − J, `1, `2)
(
K†
)`1+`2−J

×

× |1
2

(J + `1 − `2) ,
1
2

(J + `1 − `2)〉1 ×

× |1
2

(J + `2 − `1) ,
1
2

(J + `2 − `1)〉2 . (6.82)

The normalization constant appearing here is actually

N(`1 + `2 − J, `1, `2) =
[

(2J + 1)!
(`1 + `2 − J)! (`1 + `2 + J + 1)!

] 1
2

. (6.83)

The derivation of this expression will be provided further below (see page 158 ff).

Strategy for Generating the States |J,M(`1, `2)〉

Our construction of the states |J,M(`1, `2)〉 exploits the expression (6.82) for |J, J(`1, `2)〉. The
latter states, in analogy to the construction (5.104, 5.105) of the spherical harmonics, allow one to
obtain the states |J,M(`1, `2)〉 for −J ≤ M ≤ J as follows

|J,M(`1, `2)〉 = ∆(J,M) (J−)J−M |J, J(`1, `2)〉 (6.84)

∆(J,M) =
[

(J + M)!
(2J)! (J − M)!

] 1
2

. (6.85)

Combining (6.84) with (6.82, 6.57) and exploiting the fact that J− and K† commute [c.f. (6.74)]
yields

|J,M(`1, `2)〉 =
N(`1 + `2 − J, `1, `2) ∆(J,M)√

(J + `1 − `2)! (J + `2 − `1)!
× (6.86)

×
(
K†
)`1+`2−J

(J−)J−M
(
a†+

)J+`1−`2 (
b†+

)J+`2−`1
|Ψo〉
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Our strategy for the evaluation of the Clebsch-Gordan-coefficients is to expand (6.86) in terms of
monomials (

a†+

)`1+m1
(
a†−

)`1−m1
(
b†+

)`2+m2
(
b†−

)`2−m2

|Ψo〉 , (6.87)

i.e., in terms of |`1,m1〉1|`2,m2〉2 [cf. (6.57)]. Comparision with (6.69) yields then the Clebsch-
Gordan-coefficients.

Expansion of an Intermediate State

We first consider the expansion of the following factor appearing in (6.86)

|Grst〉 = J
r
−

(
a†+

)s (
b†+

)t
|Ψo〉 (6.88)

in terms of monomials (6.87). For this purpose we introduce the generating function

I(λ, x, y) = exp (λJ−) exp
(
x a†+

)
exp

(
x b†+

)
|Ψo〉 . (6.89)

Taylor expansion of the two exponential operators yields immediately

I(λ, x, y) =
∑
r,s,t

λrxsyt

r!s!t!
|Grst〉 , (6.90)

i.e., I(λ, x, y) is a generating function for the states |Grst〉 defined in (6.88).
The desired expansion of |Grst〉 can be obtained from an alternate evaluation of I(λ, x, y) which is
based on the properties

aζf(a†ζ) |Ψo〉 =
∂

∂a†ζ
f(a†ζ) |Ψo〉 bζf(b†ζ) |Ψo〉 =

∂

∂b†ζ
f(b†ζ) |Ψo〉 (6.91)

which, in analogy to (5.264), follows from the commutation properties (6.50–6.52). One obtains
then using

J− = a†−a+ + b†−b+ (6.92)

and noting [a+, a
†
−] = [b+, b

†
−] = 0 [cf. (6.50)]

exp (λJ− ) f(a†+) g(b†+) |Ψo〉 = exp
(
a†−a+

)
f(a†+) exp

(
b†b+

)
g(b†+) |Ψo〉

=
∑
u

λu

u!

(
a†−a+

)u
f(a†+) ×

×
∑
v

λv

v!

(
b†−b+

)v
g(b†+) |Ψo〉

=
∑
u

(
λ a†−

)u
u!

(
∂

∂a†+

)u
f(a†+) ×

×
∑
v

(
λ b†−

)v
v!

(
∂

∂b†+

)v
g(b†+) |Ψo〉

= f(a†+ + λ a†−) g(b†+ + λ b†−) |Ψo〉 . (6.93)
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We conclude
I(λ, x, y) = exp

(
a†+ + λa†−

)
exp

(
b†+ + λ b†−

)
|Ψo〉 . (6.94)

One can infer from this result the desired expressions for |Grst〉. Expanding the exponentials in
(6.94) yields

I(λ, x, y) =
∑
s,t

xs

s!
yt

t!

(
a†+ + λ a†−

)s (
b†+ + λ b†−

)t
|Ψo〉

=
∑
s,t

xs

s!
yt

t!

∑
t

∑
v

(
s
u

)(
t
v

)
×

×
(
a†+

)s−u
λu
(
a†−

)u (
b†+

)t−v
λv
(
b†−

)v
|Ψo〉

=
∑
r,s,t

λr

r!
xs

s!
yt

t!

∑
q

r!
(
s
q

)(
t

r − q

)
×

×
(
a†+

)s−q (
a†−

)q (
b†+

)t−r+q (
b†−

)r−q
|Ψo〉 (6.95)

Comparision with (6.90) allows one to infer

|Grs,t〉 =
∑
q

r!
(
s
q

)(
t

r − q

)
×

×
(
a†+

)s−q (
a†−

)q (
b†+

)t−r+q (
b†−

)r−q
|Ψo〉 (6.96)

and, using the definition (6.88), one can write the right factor in (6.86)

(J−)J−M
(
a†+

)J+`1−`2 (
b†+

)J+`2−`1
|Ψo〉 (6.97)

=
∑
q

(J −M)!(J + `1 − `2)!(J + `2 − `1)!
q!(J + `1 − `2 − q)!(J −M − q)!(M + `2 − `1 + q)!

×

×
(
a†+

)J+`1−`2−q (
a†−

)q (
b†+

)M+`2−`1+q (
b†−

)J−M−q
|Ψo〉

Final Result

Our last step is to apply the operator (K†)`1+`2−J to expression (6.97), to obtain the desired
expansion of |J,M(`1, `2)〉 in terms of states |`1,m1〉1|`2,m2〉2. With K† given by (6.70) holds

(
K†
)`1+`2−J =

∑
s

(
`1 + `2 − J

s

)
(−1)s (6.98)

(
a†+

)`1+`2−J−s (
b†−

)`1+`2−J−s (
a†−

)s (
b†+

)s
.

Operation of this operator on (6.97) yields, using the commutation property (6.50),

|J,M(`1, `2)〉 =
∑
s,q

(−1)s (6.99)
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(`1 + `2 − J)!(J −M)!(J + `1 − `2)!(J + `2 − `1)!
s!(`1 + `2 − J − s)!q!(J + `1 − `2 − q)!(J −M − q)!(M + `2 − `1 + q)!(
a†+

)2`1−q−s (
a†−

)q+s (
b†+

)M+`2−`1+q+s (
b†−

)`1+`2−M−q−s
|Ψo〉

The relationships (6.53,6.54) between creation operator monomials and angular momentum states
allow one to write this

|J,M(`1, `2)〉 =
N(`1 + `2 − J, `1, `2) ∆(J,M)√

(J + `1 − `2)! (J + `2 − `1)!

∑
s,q

(−1)s × (6.100)

× (`1 + `2 − J)!(J −M)!(J + `1 − `2)!(J + `2 − `1)!
s!(`1 + `2 − J − s)!q!(J + `1 − `2 − q)!(J −M − q)!(M + `2 − `1 + q)!

×
√

(2`1 − q − s)!(q + s)!
×
√

(M + `2 − `1 + q + s)!(`1 + `2 −M − q − s)!
×|`1, `1 − q − s〉1 |`2,M − `1 + q + s〉2

One can conclude that this expression reproduces (6.69) if one identifies

m1 = `1 − q − s , m2 = M − `1 + q + s . (6.101)

Note that m1 + m2 = M holds. The summation over q corresponds then to the summation
over m1, m2 in (6.69) since, according to (6.101), q = `1 − m1 − s and m2 = M − m1. The
Clebsch-Gordan coefficents are then finally

(`1,m1, `2,m2|J,M) =

√
2J + 1

[
`1 + `2 − J)!(`1 − `2 + J)!(−`1 + `2 + J)!

(`1 + `2 + J + 1)!

] 1
2

× [(`1 +m1)!(`1 −m1)!(`2 +m2)!(`2 −m2)!(J +M)!(J −M)!]
1
2

×
∑
s

(−1)s

s!(`1 −m1 − s)!(`2 +m2 − s)!

× 1
(`1 + `2 − J − s)!(J − `1 −m2 + s)!(J − `2 +m1 + s)!

(6.102)

The Normalization

We want to determine now the expression (6.83) of the normalization constant N(`1 + `2−J, `1, `2)
defined through (6.82). For this purpose we introduce

j1 =
1
2

(J + `1 − `2) , j2 =
1
2

(J + `2 − `1) , n = `1 + `2 − J . (6.103)

To determine N = N(`1+`2−J, `1, `2) we consider the scalar product 〈J, J(`1, `2)|J, J(`1, `2)〉 = 1.
Using (6.82) and (6.103) this can be written

1 = N2 〈ψ(j1, j2, n)|ψ(j1, j2, n)〉 (6.104)
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where
|ψ(j1, j2, n)〉 =

(
K†
)n
|j1, j1〉1|j2, j2〉2 . (6.105)

The first step of our calculation is the expansion of ψ(j1, j2, n) in terms of states |j′1,m1〉1|j′2,m2〉2.
We employ the expression (6.57) for these states and the expression (6.70) for the operator K†.
Accordingly, we obtain

|ψ(j1, j2, n)〉 =
1√

(2j1)!(2j2)!

∑
s

(
n
s

)(
a†+b

†
−

)n−s
(−1)s

(
a†−b

†
+

)s
(
a†+

)2j1 (
b†+

)2j2
|Ψo〉 =

n!√
(2j1)!(2j2)!

∑
s

(−1)s
√

(2j1 + n− s)!s!(2j2 + s)!(n− s)!
s!(n− s)!(

a†+

)2j1−n−s (
a†−

)s (
b†+

)2j2+s (
b†−

)n−s
√

(2j1 + n− s)!s!(2j2 + s)!(n− s)!
|Ψo〉 . (6.106)

The orthonormality of the states occurring in the last expression allows one to write (6.104)

1 = N2 (n!)2

(2j1)!(2j2)!

∑
s

(2j1 + n− s)!(2j2 + s)!
s!(n− s)!

= (n!)2
∑
s

(
2j1 + n− s

2j1

)(
2j2 + s

2j2

)
(6.107)

The latter sum can be evaluated using(
1

1 − λ

)n1+1

=
∑
m1

(
n1 +m1

n1

)
λm1 (6.108)

a property which follows from

∂ν

∂λν

(
1

1 − λ

)n1+1
∣∣∣∣∣
λ=0

=
(n1 + ν)!

n1!
(6.109)

and Taylor expansion of the left hand side of (6.108). One obtains then, applying (6.108) twice,(
1

1 − λ

)n1+1( 1
1 − λ

)n2+1

=
∑
m1,m2

(
n1 +m1

n1

)(
n2 +m2

n2

)
λm1+m2 (6.110)

which can be written(
1

1 − λ

)n1+n2+2

=
∑
r

[∑
s

(
n1 + r − s

n1

)(
n2 + s
n2

)]
λr (6.111)

Comparision with (6.108) yields the identity∑
s

(
n1 + r − s

n1

)(
n2 + s
n2

)
=
(
n1 + n2 + r + 1
n1 + n2 + 1

)
. (6.112)
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Applying this to (6.107) yields

1 = N2 (n!)2

(
2j1 + 2j2 + n+ 1

2j1 + 2j2 + 1

)
= N2 n!(2j1 + 2j2 + n+ 1)!

(2j1 + 2j2 + 1)!
. (6.113)

Using the identities (6.103) one obtains the desired result (6.83).

6.4 Symmetries of the Clebsch-Gordan Coefficients

The Clebsch-Gordan coefficients obey symmetry properties which reflect geometrical aspects of the
operator relationship (6.11)

~J = ~J (1) + ~J (2) . (6.114)

For example, interchanging the operators ~J (1) and ~J (2) results in

~J = ~J (2) + ~J (1) . (6.115)

This relationship is a trivial consequence of (6.114) as long as ~J, ~J (1), and ~J (2) are vectors in
R
3. For the quantum mechanical addition of angular momenta the Clebsch Gordan coefficients

(`1,m1, `2,m2|J,M) corresponding to (6.114) show a simple relationship to the Clebsch Gordan
coefficients (`2,m2, `1,m1|J,M) corresponding to (6.115), namely,

(`1,m1, `2,m2|J,M) = (−1)`1+`2−J (`2,m2, `1,m1|J,M) . (6.116)

If one takes the negatives of the operators in (6.114) one obtains

−~J = − ~J (1) − ~J (2) . (6.117)

The respective Clebsch-Gordan coefficients (`1,−m1, `2,−m12|J,−M) are again related in a simple
manner to the coefficients (`1,m1, `2,m2|J,M)

(`1,m1, `2,m2|J,M) = (−1)`1+`2−J (`1,−m1, `2,−m2|J,−M) . (6.118)

Finally, one can interchange also the operator ~J on the l.h.s. of (6.114) by, e.g., ~J (1) on the r.h.s.
of this equation

~J (1) = ~J (2) − ~J . (6.119)

The corresponding symmetry property of the Clebsch-Gordan coefficients is

(`1,m1, `2,m2|J,M) = (−1)`2+m2

√
2J + 1
2`1 + 1

(`2,−m2, J,M |`1,m1) . (6.120)

The symmetry properties (6.116), (6.118), and (6.120) can be readily derived from the expression
(6.102) of the Clebsch-Gordan coefficients. We will demonstrate this now.
To derive relationship (6.116) one expresses the Clebsch-Gordan coefficient on the r.h.s. of (6.116)
through formula (6.102) by replacing (`1,m1) by (`2,m2) and, vice versa, (`2,m2) by (`1,m1), and
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seeks then to relate the resulting expression to the original expression (6.102) to prove identity with
the l.h.s. Inspecting (6.102) one recognizes that only the sum

S(`1,m1, `2,m2|J,M) =
∑
s

(−1)s

s!(`1 −m1 − s)!(`2 +m2 − s)!

× 1
(`1 + `2 − J − s)!(J − `1 −m2 + s)!(J − `2 +m1 + s)!

(6.121)

is affected by the change of quantum numbers, the factor in front of S being symmetric in (`1,m1)
and (`2,m2). Correspondingly, (6.116) implies

S(`1,m1, `2,m2|J,M) = (−1)`1+`2−J S(`2,m2, `1,m1|J,M) . (6.122)

To prove this we note that S on the r.h.s. reads, according to (6.121),

S(`2,m2, `1,m1|J,M) =
∑
s

(−1)s

s!(`2 −m2 − s)!(`1 +m1 − s)!

× 1
(`1 + `2 − J − s)!(J − `2 −m1 + s)!(J − `1 +m2 + s)!

. (6.123)

Introducing the new summation index

s′ = `1 + `2 − J − s (6.124)

and using the equivalent relationships

s = `1 + `2 − J − s′ , −s = J − −`1 − `2 + s′ (6.125)

to express s in terms of s′ in (6.123) one obtains

S(`2,m2, `1,m1|J,M) =

(−1)`1 + `2− J
∑
s′

(−1)−s
′

(`1 + `2 − J − s′)!(J − `1 −m2 + s′)!(J − `2 +m1 + s′)!

× 1
s′!(`1 −m1 − s′)!(`2 +m2 − s′)!

. (6.126)

Now it holds that `1 + `2 − J in (6.124) is an integer, irrespective of the individual quantum
numbers `1, `2, J being integer or half-integer. This fact can best be verified by showing that the
construction of the eigenstates of ( ~J (1) + ~J (2))2 and ( ~J (1) + ~J (2))3 in Sect. 6.2 does, in fact,
imply this property. Since also s in (6.102) and, hence, in (6.122) is an integer, one can state that
s′, as defined in (6.124), is an integer and, accordingly, that

(−1)− s
′

= (−1)s
′

(6.127)

holds in (6.126). Reordering the factorials in (6.126) to agree with the ordering in (6.121) leads
one to conclude the property (6.122) and, hence, one has proven (6.116).
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To prove (6.118) we note that in the expression (6.102) for the Clebsch-Gordan coefficients the pref-
actor of S, the latter defined in (6.121), is unaltered by the change m1, m2, M → −m1, −m2, −M .
Hence, (6.118) implies

S(`1,m1, `2,m2|J,M) = (−1)`1+`2−J S(`1,−m1, `2,−m12|J,−M) . (6.128)

We note that according to (6.121) holds

S(`1,−m1, `2,−m12|J,−M) =
∑
s

(−1)s

s!(`1 +m1 − s)!(`2 −m2 − s)!

× 1
(`1 + `2 − J − s)!(J − `1 +m2 + s)!(J − `2 −m1 + s)!

. (6.129)

Introducing the new summation index s′ as defined in (6.124) and using the relationships (6.125)
to replace, in (6.129), s by s′ one obtains

S(`1,−m1, `2,−m2|J,−M) =

(−1)`1+`2−J
∑
s

(−1)−s
′

(`1 + `2 − J − s′)!(J − `2 +m1 + s′)!(J − `1 −m2 + s′)!

× 1
s′!(`2 +m2 − s′)!(`1 −m1 − s′)!

. (6.130)

For reasons stated already above, (6.127) holds and after reordering of the factorials in (6.130) to
agree with those in (6.121) one can conclude (6.128) and, hence, (6.118).
We want to prove finally the symmetry property (6.120). Following the strategy adopted in the
proof of relationships (6.116) and (6.118) we note that in the expression (6.102) for the Clebsch-
Gordan coefficients the prefactor of S, the latter defined in (6.121), is symmetric in the pairs of
quantum numbers (`1,m1), (`2,m2) and (J,M), except for the factor

√
2J + 1 which singles out

J . However, in the relationship (6.120) this latter factor is already properly ‘repaired’ such that
(6.120) implies

S(`1,m1, `2,m2|J,M) = (−1)`2+m2 S(`2,−m2, J,M |`1,m1) . (6.131)

According to (6.121) holds

S(`2,−m2, J,M |`1,m1) =
∑
s

(−1)s

s!(`2 +m2 − s)!(J +M − s)!

× 1
(`2 + J − `1 − s)!(`1 − `2 −M + s)!(`1 − J −m2 + s)!

. (6.132)

Introducing the new summation index

s′ = `2 + m2 − s (6.133)

and, using the equivalent relationships

s = `2 + m2 − s′ , −s = −`2 − m2 + s′ (6.134)
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to replace s by s′ in (6.132), one obtains

S(`1,−m1, `2,−m12|J,−M) =

(−1)`2+m2
∑
s

(−1)−s
′

(`2 +m2 − s′)!s′!(J − `2 +m1 + s′)!

× 1
(J − `1 −m2 + s′)!(`1 −m1 − s′)!(`1 + `2 − J − s′)!

. (6.135)

Again for the reasons stated above, (6.127) holds and after reordering of the factorials in (6.135)
to agree with those in (6.121) one can conclude (6.131) and, hence, (6.120).

6.5 Example: Spin–Orbital Angular Momentum States

Relativistic quantum mechanics states that an electron moving in the Coulomb field of a nucleus
experiences a coupling ∼ ~J · ~S between its angular momentum, described by the operator ~J and
wave functions Y`m(r̂), and its spin-1

2 , described by the operator ~S and wave function χ 1
2
± 1

2
. As a

result, the eigenstates of the electron are given by the eigenstates of the total angular momentum-
spin states

Yjm(`, 1
2
|r̂) =

∑
m′,σ

(`,m′, 1
2
, σ|j,m)Y`m′(r̂)χ 1

2
σ (6.136)

which have been defined in (6.18). The states are simultaneous eigenstates of (J (tot))2, J (tot)
3 , J 2,

and S2 and, as we show below, also of the spin-orbit coupling term ∼ ~J · ~S. Here J (tot) is defined
as

~J (tot) = ~J + ~S . (6.137)

Here we assume for ~S the same units as for ~J , namely, ~, i.e., we define

~S =
~

2
~σ (6.138)

rather than (5.223).

Two-Dimensional Vector Representation

One can consider the functions χ 1
2
± 1

2
to be represented alternatively by the basis vectors of the

space C2

χ 1
2

1
2

=
(

1
0

)
, χ 1

2
− 1

2
=
(

0
1

)
. (6.139)

The states Yjm(`, 1
2
|r̂), accordingly, can then also be expressed as two-dimensional vectors. Using

m′ = m − σ ; σ = ± 1
2

(6.140)

one obtains

Yjm(`, 1
2
|r̂) = (`,m− 1

2
, 1

2
, 1

2
|j,m)Y`m− 1

2
(r̂)

(
1
0

)
+ (`,m+ 1

2
,− 1

2
, 1

2
|j,m)Y`m+ 1

2
(r̂)

(
0
1

)
(6.141)
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or

Yjm(`, 1
2
|r̂) =

(
(`,m− 1

2
, 1

2
, 1

2
|j,m)Y`m− 1

2
(r̂)

(`,m+ 1
2
,− 1

2
, 1

2
|j,m)Y`m+ 1

2
(r̂)

)
. (6.142)

In this expression the quantum numbers (`,m′) of the angular momentum state are integers. Ac-
cording to (6.140), m is then half-integer and so must be j. The triangle inequalities (6.220) state
in the present case |` − 1

2
| ≤ j ≤ ` + 1

2
and, therefore, we conclude j = ` ± 1

2
or, equivalently,

` = j ± 1
2
. The different Clebsch-Gordon coefficients in (6.141) have the values

(j − 1
2
,m− 1

2
, 1

2
, 1

2
|j,m) =

√
j + m

2j
(6.143)

(j − 1
2
,m+ 1

2
, 1

2
,− 1

2
|j,m) =

√
j − m

2j
(6.144)

(j + 1
2
,m− 1

2
, 1

2
, 1

2
|j,m) = −

√
j − m + 1

2j + 2
(6.145)

(j + 1
2
,m+ 1

2
, 1

2
,− 1

2
|j,m) =

√
j + m + 1

2j + 2
(6.146)

which will be derived below (see pp. 170). Accordingly, the spin-orbital angular momentum states
(6.141, 6.142) are

Yjm(j − 1
2
, 1

2
|r̂) =


√

j+m
2j Yj− 1

2
m− 1

2
(r̂)√

j−m
2j Yj− 1

2
m+ 1

2
(r̂)

 (6.147)

Yjm(j + 1
2
, 1

2
|r̂) =

 −
√

j−m+1
2j+ 2 Yj+ 1

2
m− 1

2
(r̂)√

j+m+1
2j+ 2 Yj+ 1

2
m+ 1

2
(r̂)

 . (6.148)

Eigenvalues

For the states (6.147, 6.148) holds

( ~J + ~S)2 Yjm(j ∓ 1
2
, 1

2
|r̂) = ~

2 j(j + 1)Yjm(j ∓ 1
2
, 1

2
|r̂) (6.149)

( ~J + ~S)3 Yjm(j ∓ 1
2
, 1

2
|r̂) = ~mYjm(j ∓ 1

2
, 1

2
|r̂) (6.150)

J 2 Yjm(j ∓ 1
2
, 1

2
|r̂) = (6.151)

~
2 (j ∓ 1

2
) ( j ∓ 1

2
+ 1)Yjm(j ∓ 1

2
, 1

2
|r̂)

S2 Yjm(j ∓ 1
2
, 1

2
|r̂) =

3
4
~

2 Yjm(j ∓ 1
2
, 1

2
|r̂) (6.152)

Furthermore, using
(J (tot))2 = ( ~J + ~S )2 = J 2 + S2 + 2 ~J · ~S (6.153)

or, equivalently,
2 ~J · ~S = (J (tot))2 − J 2 − S2 (6.154)



6.5: Spin–Orbital Angular Momentum States 165

one can readily show that the states Yjm(`, 1
2
|r̂) are also eigenstates of ~J · ~S. Employing (6.149,

6.151, 6.152) one derives

2 ~J · ~S Yjm(j − 1
2
, 1

2
|r̂)

= ~
2 [j(j + 1) − (j − 1

2
)(j + 1

2
) − 3

4
]Yjm(j − 1

2
, 1

2
|r̂)

= ~
2 (j − 1

2
)Yjm(j − 1

2
, 1

2
|r̂) (6.155)

and

2 ~J · ~S Yjm(j + 1
2
, 1

2
|r̂)

= ~
2[j(j + 1) − (j + 1

2
)(j + 3

2
) − 3

4
]Yjm(j + 1

2
, 1

2
|r̂)

= ~
2 (−j − 3

2
)Yjm(j + 1

2
, 1

2
|r̂) . (6.156)

Orthonormality Properties

The construction (6.141) in terms of Clebsch-Gordon coefficients produces normalized states. Since
eigenstates of hermitean operators, i.e., of ( ~J + ~S)2, ( ~J + ~S)3, J 2 with different eigenvalues are
orthogonal, one can conclude the orthonormality property∫ +π

−π
sin θdθ

∫ 2π

0
dφ [Y∗j′m′(`′, 1

2
|θ, φ) ]T Y∗jm(`, 1

2
|θ, φ) = δjj′δmm′δ``′ (6.157)

where we have introduced the angular variables θ, φ to represent r̂ and used the notation [· · ·]T
to denote the transpose of the two-dimensional vectors Y∗j′m′(`′, 1

2
|θ, φ) which defines the scalar

product (
a∗

b∗

)T (
c
d

)
=
(
a∗ b∗

) ( c
d

)
= a ∗ c + b∗ d . (6.158)

The Operator σ · r̂

Another important property of the spin-orbital angular momentum states (6.147, 6.148) concerns
the effect of the operator ~σ · r̂ on these states. In a representation defined by the states (6.139),
this operator can be represented by a 2× 2 matrix.
We want to show that the operator ~σ · r̂ in the basis

{(Yjm(j − 1
2
, 1

2
|r̂),Yjm(j + 1

2
, 1

2
|r̂) ) ,

j = 1
2
, 3

2
. . . ; m = −j, −j + 1, . . .+ j } (6.159)

assumes the block-diagonal form

~σ · r̂ =


0 −1
−1 0

0 −1
−1 0

. . .

 (6.160)
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where the blocks operate on two-dimensional subspaces spanned by {Yjm(j − 1
2
, 1

2
|r̂), Yjm(j +

1
2
, 1

2
|r̂)}. We first demonstrate that ~σ · r̂ is block-diagonal. This property follows from the commu-

tation relationships
[J (tot)
k , ~σ · ~r ] = 0 , k = 1, 2, 3 (6.161)

where J totk is defined in (6.137) To prove this we consider the case k = 1. For the l.h.s. of (6.161)
holds, using (6.137),

[J1 + S1, σ1x1 + σ2x2 + σ3x3 ]
= σ2 [J1, x2 ] + [S1, σ2 ]x2 + σ3 [J1, x3 ] + [S1, σ3 ]x3 . (6.162)

The commutation properties [cf. (5.53) for J1 and (5.228), (6.138) for ~σ and S1]

[J1, x2 ] = −i~ [x2∂3 − x3∂2, x2 ] = i~x3 (6.163)
[J1, x3 ] = −i~ [x2∂3 − x3∂2, x3 ] = − i~x2 (6.164)

[S1, σ2 ] =
~

2
[σ1, σ2 ] = i~σ3 (6.165)

[S1, σ3 ] =
~

2
[σ1, σ3 ] = − i~σ2 (6.166)

allow one then to evaluate the commutator (6.161) for k = 1

[J (tot)
1 , ~σ · ~r] = i~ (σ2x3 + σ3x2 − σ3x2 − σ2x3 ) = 0 . (6.167)

One can carry out this algebra in a similar way for the k = 2, 3 and, hence, prove (6.161).
Since the differential operators in J (tot)

k do not contain derivatives with respect to r, the property
(6.161) applies also to ~σ · r̂, i.e., it holds

[J (tot)
k , ~σ · r̂] = 0 , k = 1, 2 3 . (6.168)

From this follows (
J (tot)

)2
~σ · r̂ Yjm(j ± 1

2
, 1

2
|r̂)

= ~σ · r̂
(
J (tot)

)2
Yjm(j ± 1

2
, 1

2
|r̂)

= ~
2 j(j + 1)~σ · r̂Yjm(j ± 1

2
, 1

2
|r̂) , (6.169)

i.e., ~σ · r̂Yjm(j ± 1
2
, 1

2
|r̂) is an eigenstate of (J (tot))2 with eigenvalue ~2j(j + 1). One can prove

similarly that this state is also an eigenstate of J (tot)
3 with eigenvalue ~m. Since in the space

spanned by the basis (6.159) only two states exist with such eigenvalues, namely, Yjm(j ± 1
2
, 1

2
|r̂),

one can conclude

~σ · r̂Yjm(j + 1
2
, 1

2
|r̂) = α++(jm)Yjm(j + 1

2
, 1

2
|r̂) + α+−(jm)Yjm(j − 1

2
, 1

2
|r̂) (6.170)

and, similarly,

~σ · r̂Yjm(j − 1
2
, 1

2
|r̂) = α−+(jm)Yjm(j + 1

2
, 1

2
|r̂) + α−−(jm)Yjm(j − 1

2
, 1

2
|r̂) . (6.171)
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We have denoted here that the expansion coefficients α±±, in principle, depend on j and m.
We want to demonstrate now that the coefficients α±±, actually, do not depend on m. This property
follows from

[J (tot)
± , ~σ · r̂ ] = 0 (6.172)

which is a consequence of (6.168) and the definition of J (tot)
± [c.f. (6.35)]. We will, hence, use the

notation α±±(j)

Exercise 6.5.1: Show that (6.172) implies that the coefficients α±± in (6.170, 6.171) are indepen-
dent of m.

We want to show now that the coeffients α++(j) and α−−(j) in (6.170, 6.171) vanish. For this
purpose we consider the parity of the operator ~σ · r̂ and the parity of the states Yjm(j ± 1

2
, 1

2
|r̂),

i.e., their property to change only by a factor ±1 under spatial inversion. For ~σ · r̂ holds

~σ · r̂ → ~σ · (−r̂) = −~σ · r̂ , (6.173)

i.e., ~σ · r̂ has odd parity. Replacing the r̂-dependence by the corresponding (θ, φ)-dependence and
noting the inversion symmetry of spherical harmonics [c.f. (5.166)]

Yj+ 1
2
m± 1

2
(π − θ, π + φ) = (−1)j+

1
2Yj+ 1

2
m± 1

2
(θ, φ) (6.174)

one can conclude for Yjm(j + 1
2
, 1

2
|r̂) as given by (6.142)

Yjm(j + 1
2
, 1

2
|θ, φ) → Yjm(j + 1

2
, 1

2
|π − θ, π + φ) = (−1)j+

1
2Yjm(j + 1

2
, 1

2
|θ, φ) . (6.175)

Similarly follows for Yjm(j − 1
2
, 1

2
|r̂)

Yjm(j − 1
2
, 1

2
|θ, φ) → (−1)j−

1
2Yjm(j + 1

2
, 1

2
|θ, φ) . (6.176)

We note that Yjm(j + 1
2
, 1

2
|r̂) and Yjm(j − 1

2
, 1

2
|r̂) have opposite parity. Since ~σ · r̂ has odd parity,

i.e., when applied to the states Yjm(j ± 1
2
, 1

2
|r̂) changes their parity, we can conclude α++(j) =

α−−(j) = 0. The operator ~σ ·r̂ in the two-dimensional subspace spanned by Yjm(j± 1
2
, 1

2
|r̂) assumes

then the form

~σ · r̂ =
(

0 α+−(j)
α−+(j) 0

)
. (6.177)

Since ~σ · r̂ must be a hermitean operator it must hold α−+(j) = α∗+−(j).
According to (5.230) one obtains

(~σ · r̂ )2 = 11 . (6.178)

This implies |α+−(j)| = 1 and, therefore, one can write

~σ · r̂ =
(

0 eiβ(j)

e−iβ(j) 0

)
, β(j) ∈ R . (6.179)

One can demonstrate that ~σ · r̂ is, in fact, a real operator. For this purpose one considers the
operation of ~σ · r̂ for the special case φ = 0. According to the expressions (6.147, 6.148) for
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Yjm(j ± 1
2
, 1

2
|θ, φ) and (5.174–5.177) one notes that for φ = 0 the spin-angular momentum states

are entirely real such that ~σ · r̂ must be real as well. One can conclude then

~σ · r̂ = ±
(

0 1
1 0

)
(6.180)

where the sign could depend on j.
We want to demonstrate finally that the “−”-sign holds in (6.180). For this purpose we consider
the application of ~σ · r̂ in the case of θ = 0. According to (5.180) and (6.147, 6.148) the particular
states Yj 1

2
(j − 1

2
, 1

2
|r̂) and Yj 1

2
(j + 1

2
, 1

2
|r̂) at θ = 0 are

Yj 1
2
(j − 1

2
, 1

2
|θ = 0, φ) =

( √
j+ 1

2
4π

0

)
(6.181)

Yj 1
2
(j + 1

2
, 1

2
|θ = 0, φ) =

(
−
√

j+ 1
2

4π

0

)
. (6.182)

Since ~σ · r̂, given by

~σ · r̂ = σ1 sin θ cosφ + σ2 sin θ sinφ + σ3 cos θ , (6.183)

in case θ = 0 becomes in the standard representation with respect to the spin-1
2 states χ 1

2
± 1

2

[c.f. (5.224)]

~σ · r̂ =
(

1 0
0 1

)
space χ 1

2±
1
2

, for θ = 0 (6.184)

one can conclude from (6.181, 6.182)

~σ · r̂Yj 1
2
(j − 1

2
, 1

2
|θ = 0, φ) = −Yj 1

2
(j + 1

2
, 1

2
|θ = 0, φ) , for θ = 0. (6.185)

We have, hence, identified the sign of (6.180) and, therefore, have proven (6.160). The result can
also be stated in the compact form

~σ · r̂Yjm(j ± 1
2
, 1

2
|r̂) = −Yjm(j ∓ 1

2
, 1

2
|r̂) (6.186)

The Operator ~σ · ~̂p

The operator ~σ · ~̂p plays an important role in relativistic quantum mechanics. We want to determine
its action on the wave functions f(r)Yjm(j ± 1

2
, 1

2
|r̂). Noting that ~̂p = −i~∇ is a first order

differential operator it holds

~σ · ~̂p f(r)Yjm(j ± 1
2
, 1

2
|r̂) = ((~σ · ~̂p f(r)))Yjm(j ± 1

2
, 1

2
|r̂) + f(r)~σ · ~̂pYjm(j ± 1

2
, 1

2
|r̂) (6.187)

Here (( · · · )) denotes again confinement of the diffusion operator ∂r to within the double bracket.
Since f(r) is independent of θ and φ follows

((~σ · ~̂p f(r))) = −i~(( ∂rf(r) ))~σ · r̂ . (6.188)
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Using (6.186) for both terms in (6.187) one obtains

~σ · ~̂p f(r)Yjm(j ± 1
2
, 1

2
|r̂) =

[
i~∂rf(r) − f(r)~σ · ~̂p ~σ · r̂

]
Yjm(j ∓ 1

2
, 1

2
|r̂) . (6.189)

The celebrated property of the Pauli matrices (5.230) allows one to express

~σ · ~̂p ~σ · r̂ = ~̂p · r̂ + i ~σ · (~̂p× r̂) . (6.190)

For the test function h(~r) holds

~̂p · r̂ h = −i~∇ ·
(
~r

r
h

)
= −i~h

r
∇ · ~r − i~~r · ∇h

r

= −i~ 3
r
h − i~h~r · ∇1

r
− i~ r̂ · ∇h . (6.191)

Using ∇(1/r) = −~r/r3 and r̂ · ∇h = ∂rh one can conclude

~̂p · r̂ h = −i~
(

2
r

+ ∂r

)
h (6.192)

The operator ~̂p× r̂ in (6.190) can be related to the angular momentum operator. To demonstrate
this we consider one of its cartision components, e.g.,

( ~̂p× r̂ )1 h = −i~ (∂2
x3

r
− ∂3

x2

r
)h (6.193)

= −i~ 1
r

(∂2x3 − ∂3x2)h− i~h (x3∂2
1
r
− x2∂3

1
r

) .

Using ∂2(1/r) = −x2/r
3, ∂3(1/r) = −x3/r

3 and ∂2x3 = x3∂2, ∂3x2 = x2∂3 we obtain

( ~̂p× r̂ )1 h = −i~ 1
r

(x3∂2 − x2∂3)h = −1
r
J1 h (6.194)

where J1 is defined in (5.53). Corresponding results are obtained for the other components of ~̂p× r̂
and, hence, we conclude the intuitively expected identity

~̂p× r̂ = − 1
r
~J . (6.195)

Altogether we obtain, using ∂rYjm(j ± 1
2
, 1

2
|r̂) = 0 and ~σ = 2~S/~,

~σ · ~̂p f(r)Yjm(j ± 1
2
, 1

2
|r̂) = i [ ~∂r +

2~
r

+
1
r

~J · ~S
~

] f(r)Yjm(j ∓ 1
2
, 1

2
|r̂) (6.196)

Using (6.155, 6.156) this yields finally

~σ · ~̂p f(r)Yjm(j + 1
2
, 1

2
|r̂) = i~

[
∂r +

j + 3
2

r

]
f(r)Yjm(j − 1

2
, 1

2
|r̂)

(6.197)

~σ · ~̂p g(r)Yjm(j − 1
2
, 1

2
|r̂) = i~

[
∂r +

1
2 − j
r

]
g(r)Yjm(j + 1

2
, 1

2
|r̂)

(6.198)
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To demonstrate the validity of this key result we note that according to (5.230, 5.99) holds

(~σ · ~̂p)2 = −~2∇2 =
~

2

r

∂2

∂r2
r +

J 2

r2
. (6.199)

We want to show that eqs. (6.197, 6.198), in fact, are consistent with this identity. We note

(~σ · ~̂p)2f(r)Yjm(j + 1
2
, 1

2
|r̂)

= ~~σ · ~̂p [ i∂r +
i

r
(j +

3
2

) ] f(r)Yjm(j − 1
2
, 1

2
|r̂)

= ~
2 [ i∂r +

i

r
(
1
2
− j) ] [ i∂r +

i

r
(j +

3
2

) ] f(r)Yjm(j + 1
2
, 1

2
|r̂)

= ~
2 [−∂2

r −
2
r
∂r +

j + 3
2

r2
−

(1
2 − j)(j + 3

2)
r2

] f(r)Yjm(j + 1
2
, 1

2
|r̂)

= ~
2 [−∂2

r −
2
r
∂r +

j2 + 2j + 3
4

r2
] f(r)Yjm(j + 1

2
, 1

2
|r̂) (6.200)

and, using (5.101), j2 + 2j + 3
4 = (j + 1

2)(j + 3
2), as well as (6.151), i.e.,

~
2 (j +

1
2

)(j +
3
2

)Yjm(j + 1
2
, 1

2
|r̂) = J 2 Yjm(j + 1

2
, 1

2
|r̂) (6.201)

yields

(~σ · ~̂p)2 f(r)Yjm(j + 1
2
, 1

2
|r̂) =

(
−~

2

r
∂2
r r +

J 2

r2

)
f(r)Yjm(j + 1

2
, 1

2
|r̂)

which agrees with (6.199).

Evaluation of Relevant Clebsch-Gordan Coefficients

We want to determine now the Clebsch-Gordan coefficients (6.143–6.146). For this purpose we use
the construction method introduced in Sec. 6.2. We begin with the coefficients (6.143, 6.144) and,
adopting the method in Sec. 6.2, consider first the case of the largest m-value m = j. In this case
holds, according to (6.43),

Yjj(j − 1
2
, 1

2
|r̂) = Yj− 1

2
j− 1

2
(r̂)χ 1

2
1
2
. (6.202)

The Clebsch-Gordan coefficients are then

(j − 1
2
, j − 1

2
, 1

2
, 1

2
|j, j) = 1 (6.203)

(j − 1
2
, j + 1

2
, 1

2
,− 1

2
|j, j) = 0 (6.204)

(6.205)

which agrees with the expressions (6.143, 6.144) for m = j.
For m = j − 1 one can state, according to (6.45),

Yjj−1(j − 1
2
, 1

2
|r̂) =

√
2j − 1

2j
Yj− 1

2
j− 3

2
χ 1

2
1
2

+
√

1
2j

Yj− 1
2
j− 1

2
χ 1

2
− 1

2
(6.206)
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The corresponding Clebsch-Gordan coefficients are then

(j − 1
2
, j − 3

2
, 1

2
, 1

2
|j, j − 1) =

√
2j − 1

2j
(6.207)

(j − 1
2
, j − 1

2
, 1

2
,− 1

2
|j, j − 1) =

√
1
2j

(6.208)

(6.209)

which again agrees with the expressions (6.143, 6.144) for m = j − 1.
Expression (6.206), as described in Sec. 6.2, is obtained by applying the operator [c.f. (6.137)]

J (tot)
− = J− + S− (6.210)

to (6.202). The further Clebsch-Gordan coefficients (· · · |jj − 2), (· · · |jj − 3), etc., are obtained
by iterating the application of (6.210). Let us verify then the expression (6.143, 6.144) for the
Clebsch-Gordan coefficients by induction. (6.143, 6.144) implies for j = m

Yjm(j − 1
2
, 1

2
|r̂) =

√
j +m

2j
Yj− 1

2
m− 1

2
χ 1

2
1
2

+

√
j −m

2j
Yj− 1

2
m+ 1

2
χ 1

2
− 1

2
. (6.211)

Applying J (tot)
− to the l.h.s. and J− + S− to the r.h.s. [c.f. (6.210)] yields√

(j +m)(j −m+ 1)Yjm−1(j − 1
2
, 1

2
|r̂) =√

j +m

2j

√
(j +m− 1)(j −m+ 1) Yj− 1

2
m− 3

2
χ 1

2
1
2

+

√
j +m

2j
Yj− 1

2
m− 1

2
χ 1

2
− 1

2

+

√
j −m

2j

√
(j +m)(j −m) Yj− 1

2
m− 1

2
χ 1

2
− 1

2

or

Yjm−1(j − 1
2
, 1

2
|r̂) =√

j +m− 1
2j

Yj− 1
2
m− 3

2
χ 1

2
1
2

+(
(j − m)

√
1

2j(j −m+ 1)
+

√
1

2j(j −m+ 1)

)
Yj− 1

2
m− 1

2
χ 1

2
− 1

2

=

√
j +m− 1

2j
Yj− 1

2
m− 3

2
χ 1

2
1
2

+

√
j −m+ 1

2j
Yj− 1

2
m− 1

2
χ 1

2
− 1

2
.

This implies

(j − 1
2
,m− 3

2
, 1

2
, 1

2
|j,m− 1) =

√
j + m − 1

2j
(6.212)
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(j − 1
2
,m− 1

2
, 1

2
,− 1

2
|j,m− 1) =

√
j − m + 1

2j
(6.213)

which is in agreement with (6.143, 6.144) for j = m − 1. We have, hence, proven (6.143, 6.144)
by induction.
The Clebsch-Gordan coefficients (6.146) can be obtained from (6.143) by applying the symmetry
relationships (6.116, 6.120). The latter relationships applied together read

(`1,m1, `2,m2|`3,m3) = (−1)`2+`3−`1+`2+m2 × (6.214)

×
√

2`3 + 1
2`1 + 1

(`3,m3, `2,−m2|`1,m1)

For

(j,m, 1
2
, 1

2
|j + 1

2
,m+ 1

2
) =

√
j +m+ 1

2j + 1
, (6.215)

which follows from (6.143), the relationship (6.214) yields

(j,m, 1
2
, 1

2
|j + 1

2
,m+ 1

2
) =

√
2j + 2
2j + 1

(j + 1
2
,m+ 1

2
, 1

2
,− 1

2
|j,m) (6.216)

and, using (6.215), one obtains

(j + 1
2
,m+ 1

2
, 1

2
,− 1

2
|j,m) =

√
j +m+ 1

2j + 2
. (6.217)

Similarly, one can obtain expression (6.145) from (6.144).

6.6 The 3j–Coefficients

The Clebsch-Gordan coefficients describe the quantum mechanical equivalent of the addition of two
classical angular momentum vectors ~J (1)

class and ~J (2)
class to obtain the total angular momentum vector

~J (tot)
class = ~J (1)

class + ~J (2)
class. In this context ~J (1)

class and ~J (2)
class play the same role, leading quantum

mechanically to a symmetry of the Clebsch-Gordan coefficients (JM |`1m1`2m2) with respect to
exchange of `1m1 and `2m2. However, a higher degree of symmetry is obtained if one rather
considers classically to obtain a vector ~J (−tot)

class with the property ~J (1)
class + ~J (2)

class + ~J (−tot)
class = 0.

Obviously, all three vectors ~J (1)
class, ~J

(2)
class and ~J (−tot)

class play equivalent roles.
The coefficients which are the quantum mechanical equivalent to ~J (1)

class + ~J (2)
class + ~J (−tot)

class = 0
are the 3j–coefficients introduced by Wigner. They are related in a simple manner to the Clebsch-
Gordan coefficients(

j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2+m3(2j3 + 1)−

1
2 (j3 −m3|j1m1, j2m2) (6.218)

where we have replaced the quantum numbers J,M, `1,m1, `2,m2 by the set j1,m1, j2,m2, j3,m3

to reflect in the notation the symmetry of these quantities.
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We first like to point out that conditions (6.21, 6.34) imply(
j1 j2 j3
m1 m2 m3

)
= 0 if not m1 + m2 + m3 = 0 (6.219)(

j1 j2 j3
m1 m2 m3

)
= 0 if not |j1 − j2| ≤ j3 ≤ j1 + j2 . (6.220)

The latter condition |j1 − j2| ≤ j3 ≤ j1 + j2, the so-called triangle condition, states that j1, j2, j3
form the sides of a triangle and the condition is symmetric in the three quantum numbers.
According to the definition of the 3j–coefficients one would expect symmetry properties with respect
to exchange of j1,m1, j2,m2 and j3,m3 and with respect to sign reversals of all three values
m1,m2,m3, i.e. with respect to alltogether 12 symmetry operations. These symmetries follow the
equations (

j1 j2 j3
m1 m2 m3

)
=
(

j2 j3 j1
m2 m3 m1

)
= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
(6.221)

where the the results of a cyclic, anti-cyclic exchange and of a sign reversal are stated. In this way
the values of 12 3j-coefficients are related.
However, there exist even further symmetry properties, discovered by Regge, for which no known
classical analogue exists. To represent the full symmetry one expresses the 3j–coefficients through
a 3× 3–matrix, the Regge-symbol, as follows(

j1 j2 j3
m1 m2 m3

)
=

 −j1 + j2 + j3 j1 − j2 + j3 j1 + j2 − j3
j1 −m1 j2 −m2 j3 −m3

j1 +m1 j2 +m2 j3 +m3

 . (6.222)

The Regge symbol vanishes, except when all elements are non-negative integers and each row and
column has the same integer value Σ = j1 + j2 + j3. The Regge symbol also vanishes in case that
two rows or columns are identical and Σ is an odd integer. The Regge symbol reflects a remarkable
degree of symmetry of the related 3j–coefficients: One can exchange rows, one can exchange columns
and one can reflect at the diagonal (transposition). In case of a non-cyclic exchange of rows and
columns the 3j–coefficent assumes a prefactor (−1)Σ. These symmetry operations relate altogether
72 3j–coefficients.
The reader may note that the entries of the Regge-symbol, e.g., −j1 + j2 + j3, are identical to the
integer arguments which enter the analytical expression (6.102) of the Clebsch-Gordan coefficients,
safe for the prefactor

√
2j3 + 1 which is cancelled according to the definition (6.218) relating 3j-

coefficients and Clebsch-Gordan coefficients. The two integer entries J − `1 −m2 and J − `2 +m1

in (6.102) are obtained each through the difference of two entries of the Regge-symbol.
Because of its high degree of symmetry the Regge symbol is very suited for numerical evaluations
of the 3j–coefficents. For this purpose one can use the symmetry transformations to place the
smallest element into the upper left corner of the Regge symbol. Assuming this placement the
Regge symbol can be determined as follows (n11 is the smallest element!) n11 n12 n13

n21 n22 n23

n31 n32 n33

 = (−1)n23+n32

√
n12!n13!n21!n31!

(Σ + 1)!n11!n22!n33!n23!n32!))

n11∑
n=0

sn (6.223)
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where

Σ = n11 + n12 + n13 = j1 + j2 + j3 (6.224)
s0 = n23!

(n23−n11)!
n32!

(n32−n11)! (6.225)

sn = − (n11+1−n)(n22+1−n)(n33+1−n)
n(n23−n11+n)(n32−n11+n) sn−1 . (6.226)

We like to state finally a few explicit analytical expressions for Clebsch-Gordan coefficients which
were actually obtained using (6.223-6.226) by means of a symbolic manipulation package (Mathe-
matica)

(1m|2m11m2) =
(−1)1+m+m1 δ(m,m1 +m2)

√
(2−m1)!

√
(2 +m1)!

√
10
√

(1−m)!
√

(1 +m)!
√

(1−m2)!
√

(1 +m2)!
1 ≥ |m| ∧ 1 ≥ |m2| ∧ 2 ≥ |m1| (6.227)

(2m|2m11m2) =
(−1)m+m1 (m+ 2m2) δ(m,m1 +m2)

√
(2−m1)! (2 +m1)!

√
6
√

(2−m)!
√

(2 +m)!
√

(1−m2)!
√

(1 +m2)!
1 ≥ |m2| ∧ 2 ≥ |m| ∧ 2 ≥ |m1| (6.228)

(3m|2m11m2) =
(−1)2m1−2m2

√
7 δ(m,m1 +m2)

√
(3−m)!

√
(3 +m)!

√
105
√

(2−m1)!
√

(2 +m1)!
√

(1−m2)!
√

(1 +m2)!
1 ≥ |m2|) ∧ 2 ≥ |m1| ∧ 3 ≥ |m| (6.229)

(0m|1
2
m1

1
2
m2) =

i(−1)1−m2 δ(0,m) δ(−m1,m2)√
2

1
2
≥ |m1|) (6.230)

(1m|1
2
m1

1
2
m2) =

(−1)2m1−2m2
√

3 δ(m,m1 +m2)
√

(1−m)!
√

(1 +m)!
√

6
√(

1
2 −m1

)
!
√(

1
2 +m1

)
!
√(

1
2 −m2

)
!
√(

1
2 +m2

)
!

1
2
≥ |m1| ∧

1
2
≥ |m2| ∧ 1 ≥ |m| (6.231)

Here is an explicit value of a Clebsch-Gordan coefficient:

(701
2 −151

2 |120−10 601
2 −51

2) =
4793185293503147294940209340

√
127
√

142√
35834261990081573635135027068718971996984731222241334046198355

' 0.10752786393409395427444450130056540562826159542886 (6.232)

We also illustrate the numerical values of a sequence of 3j-coefficients in Figure 6.1.
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Figure 6.1: Oscillatory behavior of 3j-coefficients.

Irreducible Representation

We had stated above that the spherical harmonics Y`m(Ω)), eigenfunctions of the single particle
angular momentum operators J 2 and J3, provide the irreducible representation for D(ϑ), i.e. the
rotations in single particle function space. Similarly, the 2–particle total angular momentum wave
functions YJM (`1, `2|Ω1,Ω2) provide the irreducible representation for the rotation R(ϑ) defined in
(6.5), i.e. rotations in 2–particle function space. If we define the matrix representation of R(ϑ) by
D(ϑ), then for a basis {Y`1m1(Ω1)Y`2m2(Ω2), `1, `2 = 1, 2, . . . , m1 = −`1, . . .+`1, m2 = −`2, . . .+`2}
the matrix has the blockdiagonal form

D(ϑ) =



1·1×1·1

1·3×1·3

. . .

(2`1 + 1)
(2`2 + 1) ×

(2`1 + 1)
(2`2 + 1)

. . .



. (6.233)
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For the basis {YJM (`1, `2|Ω1,Ω2), `1, `2 = 1, 2, . . . , J = |`1 − `2|, . . . , `1 + `2, M = −J, . . . J}
each of the blocks in (6.233) is further block-diagonalized as follows

(2`1 + 1)
(2`2 + 1) ×

(2`1 + 1)
(2`2 + 1) =

(2|`1 − `2|+ 1)
×(2|`1 − `2|+ 1)

(2|`1 − `2|+ 3)
×(2|`1 − `2|+ 3)

. . .

(2(`1 + `2) + 1)
×(2(`1 + `2) + 1)

(6.234)

Partitioning in smaller blocks is not possible.

Exercise 6.6.1: Prove Eqs. (6.233,6.234)
Exercise 6.6.2: How many overall singlet states can be constructed from four spin–1

2 states
|12m1〉(1)|12m2〉(2)|12m3〉(3)|12m4〉(4)? Construct these singlet states in terms of the product wave
functions above.
Exercise 6.6.3: Two triplet states |1m1〉(1)|1m2〉(2) are coupled to an overall singlet state Y00(1, 1).
Show that the probability of detecting a triplet substate |1m1〉(1) for arbitrary polarization (m2–
value) of the other triplet is 1

3 .
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6.7 Tensor Operators and Wigner-Eckart Theorem

In this Section we want to discuss operators which have the property that they impart angular
momentum and spin properties onto a quantum state. Such operators T can be characterized
through their behaviour under rotational transformations.
Let T |ψ〉 denote the state obtained after the operator T has been applied and let R(~ϑ) denote
a rotation in the representation of SO(3) or SU(2) which describes rotational transformations
of the quantum states under consideration, e.g. the operator (5.42) in case (i) of the position
representation of single particle wave functions or the operator (5.222) in case (ii) of single particle
spin operators. Note that in the examples mentioned the operator T would be defined within the
same representation as R(~ϑ). This implies, for example, that in

case (i) T is an operator C∞(3) → C∞(3) acting on single particle wave functions, e.g. a mul-
tiplicative operator T ψ(~r) = f(~r)ψ(~r) or a differential operator T ψ(~r) = ( ∂2

∂x2
1

+ ∂2

∂x2
2

+
∂2

∂x2
3
)ψ(~r);

case (ii) the operator T could be a spin operator Sk defined in (5.223), e.g. S2 = S2
1 + S2

2 + S2
3

or any other polynomial of Sk.

The operator T may also act on multi-particle states like Y`1m1(r̂1)Y`2m2(r̂2). In fact, some of the
examples considered below involve tensor operators T of this type.
Rotations transform |ψ〉 as |ψ′〉 = R(~ϑ)|ψ〉 and T |ψ〉 as R(~ϑ)T |ψ〉. The latter can be written
T ′|ψ′〉 where T ′ denotes T in the rotated frame given by

T ′ = R(~ϑ)T R−1(~ϑ) . (6.235)

The property that T imparts onto states |ψ〉 angular momentum or spin corresponds to T behaving
as an angular momentum or spin state multiplying |ψ〉. The latter implies that T transforms like
an angular momentum or spin state |`m〉, i.e. that T belongs to a family of operators {Tkq, q =
−k,−k + 1, . . . k} such that

T ′kq =
k∑

q′=−k
D(k)
q′q (~ϑ)Tkq′ . (6.236)

In this equation D(k)
q′q (~ϑ) denotes the rotation matrix

D(k)
q′q (~ϑ) = 〈kq′|R(~ϑ)|kq〉 . (6.237)

The operators T ∈ {Tkq, q = −k,−k + 1, . . . k} with the transformation property (6.236, 6.237)
are called tensor operators of rank k.

Examples of Tensor Operators

The multiplicative operators C∞(3) → C∞(3)

Ykq(~r) def= r
k
Ykq(̃r) (6.238)
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are tensor operators of rank k. Examples are

Y00 =
1√
4π

Y1±1 = ∓
√

3
8π
r sinθ e±iφ = ∓

√
3

8π
(x1 ± ix2)

Y10 =

√
3

4π
r cosθ =

√
3

4π
x3

Y2±2 =
1
4

√
15
2π
r2 sin2θ e±2iφ =

1
4

√
15
2π

(x1 ± ix2)2

Y2±1 = ∓
√

15
8π
r2 sinθ e±iφ = ∓

√
15
8π

(x1 ± ix2)x3

Y20 =

√
5

4π
r2

(
3
2

cos2θ − 1
2

)
=

√
5

4π

(
3
2
x2

3 −
r2

2

)
(6.239)

These operators can be expressed in terms of the coordinates x1, x2, x3. The fact that these opera-
tors form tensor operators of rank 1, 2, 3 follows from the transformation properties of the spherical
harmonics derived in Section 1.3.

Exercise 6.7.1: Show that the following set of spin operators

T00 = 1

T1±1 = ∓ 1√
2
S±

T10 = S3

T2±2 =
(
S±
)2

T2±1 = ∓(S3S
± + S±S3)

T20 =

√
2
3

(3S2
3 − S2)

are tensor operators of rank 0, 1, 2.
Exercise 6.7.2: Express the transformed versions of the following operators (a) T = x2

1 − x2
2 and

(b) S2S3 in terms of Wigner rotation matrices and untransformed operators.

For the following it is important to note that the rotation matrix elements (6.237) do not require
that the rotation R−1(~ϑ) is expressed in terms of Euler angles according to (5.203), but rather
any rotation and any parametrization can be assumed. In fact, we will assume presently that the
rotation is chosen as follows

R(~ϑ) = exp (ϑ+L+ + ϑ−L− + ϑ3L3 ) (6.240)

where we have defined ϑ± = 1
2(ϑ1 ∓ iϑ2) and L± = L1 ± iL2. This choice of parametrization

allows us to derive conditions which are equivalent to the property (6.235 - 6.237), but are far easier
to ascertain for any particular operator.
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The conditions can be derived if we consider the property (6.235 - 6.237) for transformations
characterized by infinitesimal values of ϑ+, ϑ−, ϑ3. We first consider a rotation with ~ϑ = (ϑ+, 0, 0)T

in case of small ϑ+. The property (6.235 - 6.237) yields first

R(~ϑ)TkqR−1(~ϑ) =
k∑

q′=−k
〈kq′|R(~ϑ)|kq〉Tkq′ . (6.241)

Using R(~ϑ) = 11 + ϑ+L+ + O(ϑ2
+) this equation can be rewritten neglecting terms of order O(ϑ2

+)

(11 + ϑ+L+)Tkq (11 − ϑ+L+) =
k∑

q′=−k
〈kq′|11 + ϑ+L+|kq〉Tkq′ . (6.242)

from which follows by means of 〈kq′|11|kq〉 = δqq′ and by subtracting Tkq on both sides of the
equation

ϑ+ [L+, Tkq] =
k∑

q′=−k
ϑ+〈kq′|L+|kq〉Tkq′ . (6.243)

From (5.80) follows 〈kq′|L+|kq〉 = −i
√

(k + q + 1)(k − q)δq′ q+1 and, hence,

[L+, Tkq] = −iTk q+1

√
(k + q + 1)(k − q) . (6.244)

Similar equations can be derived for infinitesimal rotations of the form ~ϑ = (0, ϑ−, 0)T , (0, 0, ϑ3)T .
Expressing the results in terms of the angular momentum operators J+, J−, J3 yields

[J+, Tkq] = ~Tkq+1

√
(k + q + 1)(k − q) (6.245)

[J−, Tkq] = ~Tkq−1

√
(k + q)(k − q + 1) (6.246)

[J3, Tkq] = ~ q Tkq . (6.247)

These properties often can be readily demonstrated for operators and the transformation properties
(6.235 - 6.237) be assumed then.

Exercise 6.7.3: Derive Eqs. (6.246, 6.247).
Exercise 6.7.4: Is the 1-particle Hamiltonian

H = − ~
2

2m
∇2 + V (|~r|) (6.248)

a tensor operator?
Exercise 6.7.5: Consider a system of two spin-1

2 particles for which the first spin is described by
the operator ~S(1) and the second spin by the operator ~S(2). Show that ~S(1) · ~S(2) is a tensor operator
of rank 0 in the space of the products of the corresponding spin states |12m1〉(1)|12m2〉(2). For this
purpose state first the proper rotation operator R(~ϑ) and note then that ~S(1) · ~S(2) commutes with
the generators of the rotation of |12m1〉(1)|12m2〉(2).
Exercise 6.7.6: Form tensor operators of rank 1 in terms of the three components of ∇ acting on
the space of 1-particle wave functions.
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6.8 Wigner-Eckart Theorem

A second important property of tensor operators Tkq beside (6.235 - 6.237) is that their matrix ele-
ments 〈`1m1γ1|Tkq|`2m2γ2〉 obey simple relationships expressed in terms of Clebsch-Gordan coeffi-
cients. |`1m1γ1〉 denotes an angular momentum (spin) state, possibly the total angular momentum–
spin state of a compositie system, which is characterized also by a set of other quantum numbers γ1

which are not affected by the rotational transformation R(~ϑ). The relationships among the matrix
elements 〈`1m1γ1|Tkq|`2m2γ2〉 are stated by the Wigner–Eckart theorem which we will derive now.
Starting point of the derivation is the fact that the states Tkq|`2m2γ2〉 behave like angular momen-
tum states of a composite system of two particles each carrying angular momentum or spin, i.e.
behave like |kq〉|`1m1〉. To prove this we consider the transformation of Tkq|`2m2γ2〉

R(~ϑ)Tkq |`2m2γ2〉 = R(~ϑ)TkqR−1(~ϑ)R(~ϑ) |`2m2γ2〉

=
∑
q′m′2

D(k)
q′qTkq′ D

(`2)
m′2m2

|`2m′2γ2〉 (6.249)

which demonstrates, in fact, the stated property. One can, hence, construct states Φ`1m1(k, `2|γ2)
which correspond to total angular momentum states. These states according to (6.18) are defined
through

Φ`1m1(k, `2|γ2) =
∑
q,m2

(`1m1|kq `2m2)Tkq |`2m2γ2〉 . (6.250)

We want to show now that these states are eigenstates of J2 = J2
1 + J2

2 + J2
3 and of J3 where

J1, J2, J3 are the generators of the rotation R(~ϑ). Before we proceed we like to point out that the
states |`2m2γ2〉 are also eigenstates of J2, J3, i.e.

J2 |`2m2γ2〉 = ~
2`2(`2 + 1) |`2m2γ2〉 ; J3 |`2m2γ2〉 = ~m2 |`2m2γ2〉 . (6.251)

The corresponding property for Φ`1m1(k, `2|γ2) can be shown readily as follows using (6.247),
J3|`2m2γ2〉 = ~m2γ2|`2m2〉 and the property (6.21) of Clebsch-Gordan coefficients

J3 Φ`1m1(k, `2|γ2) =
∑
q,m2

(`1m1|kq `2m2) (J3Tkq − TkqJ3︸ ︷︷ ︸
=~qTkq

+TkqJ3) |`2m2γ2〉

= ~

∑
q,m2

(`1m1|kq `2m2)︸ ︷︷ ︸
∼δm1 q+m2

(q + m2)Tkq |`2m2γ2〉

= ~m1

∑
q,m2

(`1m1|kq `2m2)Tkq |`2m2γ2〉 (6.252)

Similarly, one can show that Φ`1m1(k, `2|γ2) is an eigenstate of J2 with eigenvalue ~2`1(`1 +1). The
hermitian property of J3 and J2 implies that states Φ`1m1(k, `2|γ2) are orthogonal to |`′1m′1〉 in case
of different quantum numbers `1,m1, i.e.

〈`′1m′1|Φ`1m1(k, `2|γ2) = C δ`1`′1δm1m′1
(6.253)

Exercise 6.8.1: Show that Φ`1m1(k, `2|γ2) is an eigenstate of J2 with eigenvalue ~2`1(`1 + 1).
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In order to evaluate the matrix elements 〈`1m1γ1|Tkq|`2m2γ2〉 we express using the equivalent of
(6.32)

Tkq |`2m2γ2〉 =
∑
`1m1

(`1m1|kq`2m2) Φ`1m1(k`2|γ2) (6.254)

and orthogonality property (6.253)

〈`1m1γ1|Tkq|`2m2γ2〉 = 〈`1m1γ1|Φ`1m1(k`2|γ2)〉 (`1m1|kq`2m2) . (6.255)

At this point the important property can be proven that 〈`1m1γ1|Φ`1m1(k`2|γ2)〉 is independent
of m1, i.e. the matrix elements 〈`1m1γ1|Tkq|`2m2γ2〉 can be reduced to an m1–independent factor,
its m1–dependence being expressed solely through a Clebsch-Gordan coefficient. To prove this
property we consider 〈`1m1γ1|Φ`1m1(k`2|γ2)〉 for a different m1 value, say m1 + 1. Using

|`1m1 + 1γ1〉 =
1√

(`1 +m1 + 1)(`1 −m1)
J+|`1m1γ1〉 (6.256)

and noting that the operator adjoint to J+ is J−, one obtains

〈`1m1 + 1γ1|Φ`1m1+1(k`2|γ2) =
1√

(`1+m1+1)(`1−m1)
〈`1m1γ1|J−Φ`1m1+1(k`2|γ2)〉 =

〈`1m1γ1|Φ`1m1(k`2|γ2)〉 (6.257)

which establishes the m1–independence of 〈`1m1γ1|Φ`1m1(k`2|γ2)〉. In order to express the m1–
independence explicitly we adopt the following notation

〈`1m1γ1|Φ`1m1(k`2|γ2)〉 = (−1)k−`2+`1 1√
2`1 + 1

〈`1, γ1||Tk||`2, γ2〉 . (6.258)

We can then finally express the matrix elements of the tensor operators Tkq as follows

〈`1m1, γ1|Tkq|`2m2, γ2〉 =
(`1m1|kq`2m2) (−1)k−`2+`1 1√

2`1+1
〈`1, γ1||Tk||`2, γ2〉 (6.259)

The socalled reduced matrix element 〈`1, γ1||Tk||`2, γ2〉 is determined by applying (6.259) to a
combination of magnetic quantum numbers m′1, q

′,m′2, e.g. m′1 = q′ = m′2 = 0, for which
the l.h.s. can be evaluated as easily as possible. One can then evaluate also the corresponding
Clebsch-Gordan coefficient (`1m′1|kq′`2m′2) and determine

〈`1, γ1||Tk||`2, γ2〉 =
√

2`1 + 1
〈`1m′1, γ1|Tkq′ |`2m′2, γ2〉

(−1)k−`2+`1(`1m′1|kq′`2m′2)
(6.260)

Exercise 6.8.2: Determine the matrix elements of the gradient operator ∇ of the type∫
d3rF (~r)∇G(~r) (6.261)
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when the functions F (~r) and G(~r) are of the type f(r)Y`m(r̂). For this purpose relate ∇ to a tensor
operator T1q, evaluate the matrix for m1 = q = m2 = 0 using

cosθ Y`m(θ, φ) =√
(`+1−m)(`+1+m)

(2`+1)(2`+3) Y`+1m(θ, φ) +
√

(`−m)(`+m)
(2`−1)(2`+1) Y`−1m(θ, φ)

sinθ Y`m(θ, φ) =
`(`+1)√

(2`+1)(2`+3)
Y`+1m(θ, φ) − `(`−1)√

2`−1)(2`+1)
Y`−1m(θ, φ)

and express the remaining matrix elements using the Wigner–Eckart theorem. (The necessary
evaluations are cumbersome, but a very useful exercise!)


