Quantum Mechantar

 Mode ot He Arom

Let's Review

- Dalton's Atomic Theory
- Thomson's Model - Plum Pudding
- Rutherford's Model
- Bohr's Model - Planetary
- Quantum Mechanical Model cloud of probability

Study of Light

- Light consists of electromagnetic waves.
- Electromagnetic radiation includes the following spectrum.

Waves

- Parts of a wave:
- Amplitude, crest, trough
- Wavelength - distance from crest to crest or trough to trough
- Frequency - how many waves pass a point during a given unit of time

Wave Equations

Frequency is inversely related to the wavelength by the speed of light.

$c=\lambda v$

where $\lambda=$ wavelength, $v=$ frequency, and $\mathbf{c}=$ speed of light $=3 \times 10^{8} \mathbf{~ m} / \mathrm{s}$

Dual Nature of Light

- Light also has properties of particles.
- These particles have mass and velocity.
- A particle of light is called a photon.

Energy

How much energy is emitted by a photon of light can be calculated by
E = hv
where
E = energy of the photon,
h = Planck's constant $=\mathbf{6 . 6 2 6} \times 10^{-34} \mathbf{~ J ~ s}$
$v=$ frequency

Wave and Particle

To relate the properties of waves and particles, use DeBroglie's equation:

$$
\lambda=h / m v
$$

Where λ = wavelength, $\mathbf{h}=$ Planck's constant, $\mathbf{m}=$ mass and $\mathbf{v}=$ velocity.

Typical Units

$v=$ waves per second (s-1)
$\lambda=$ meters, (m)
(noter $1 \mathrm{~m}=1 \times 10^{9} \mathrm{~mm}$),
E = Joules (J),
h, Planck's constant = Joules x Seconds, (J s)
m = kilograms
v = meters per second, m/s

Quantum Mechanica Model or Wave mode

- Small, dense, positively charged nucleus surrounded by electron clouds of probability. Does not define an exact path an electron takes around the nucleus.
- Electron cloud - the volume in which the electron is found $\mathbf{9 0 \%}$ of the time
- Energy Level - the region around a nucleus where alr
electron is likely to be mortig.
- Planck's Hypothesis - energy is given off in Iftle packets, or quanta, instead of continuously.

A Quantum of energy

- A packet of energy or the amount of energy required to move an electron from its present energy level to the next higher one.

Splitting Light

Spectrums

- The lines on the emission or $\{$ absorption spectrums of an element are produced when the electrons in that atom change energy levels.

Spectrums

Continuous Spectrum

Emission Spectrum

Absorption Spectrum

Sources of Spectrumis

Continuous Spectrum

Emission Spectrum

Absorption Spectrum

Quantum Numbers

- Used to describe an electron's behavior or likely location
- There are four with variablest $\boldsymbol{n}, \boldsymbol{l}, \boldsymbol{m}, \mathcal{E} \boldsymbol{s}$

Principal Quantum Number

- Corresponds to the energy levels 1 through n. However, we will only deal with 1-7.
- Average distance from the nucleus increases with increasing principal quantum number, therefore \boldsymbol{n} designates the size of the electron cloud
- Maximum \# of electrons in each energy level is calculated by $2 n^{2}$ where $n=$ the energy level (1-7).

Energy Sublevels

- 2nd quantum number
- The number of sublevels equals the value of the principal quantum number (n) for that level.
- Sublevels are named in the following order - s, p, d, f.
- The I number designates the shape of the electron cloud.

S sublevel spherical shape

P sublevel - dumb shaped

D sublevel clover-leaf shaped

F sublevel - irregularly

 shaped

FIGURE 9-13. One set of proba-
bility shapes for the f orbitals.

Orbitals (m)

- 3rd quantum number (m)
- The space occupied by a pair of electrons in a certain sublevel.

Sublevel

> s - 1 orbital
> $\underline{p}-\underline{3}$ orbitals
> $\underline{d}-\underline{5}$ orbitals
> $\underline{f}-\underline{7}$ orbitals

- Each orbital can hold two electrons.
- m represents the orientation in space of the orbitals (x axis, y axis, \mathbf{z} axis)

Spin (s)

- 4th quantum number

- Distinguishes between the electrons in the same orbital.
- describes the electrons spin as either clockwise or counterclockwise

Shape of the electron cloud

- Size (diameter) is related to n, the principle quantum number. The larger n, the larger the electron cloud.
- Shape is given by the sublevel, (1).
- The direction in space is given by the orbital,(m).

Bectron Conficuration

Must follow these rules:

- Aufibau Principle - electrons enter orbitals of lowest energy first.
- Pauli Exclusion Principle - only 2 electrons can occupy an orbital and they must have opposite spins.
- Hund's Rule - When electrons occupy orbitals of equal energy (degenerate orbitals), one electron enters each orbital until all the orbitals contain one with parallel spins, then they will pair up.

