Quantum Mechanical Tunneling

The square barrier:

Behaviour of a classical ball rolling towards a hill (potential barrier):

(a)

The ball has
kinetic energy K.
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(b)
A ball with this energy slows down
U(x) .Wwhile going over the hill, but it
+ makes it over.
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A ball with this cncrgy\ v &Y ma
reverses direction at Turning point

the turning point.

Copyright © 2004 Pearson Education, Inc.. publishing as Addison Wesley

If the ball has energy E less than the potential energy barrier (U=mgy),

then it will not get over the hill.

The other side of the hill is a classically forbidden region.




Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier

. ) Ulx)
Solving the TISE for the square barrier P
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problem yields a peculiar result: ’ sl i e e
0] . / t t \ f D l,)
If the quantum particle has energy E less 0 ; |
than the potential energy barrier U, there | decays exponentially
. . oy . ‘ , In the classically
is still a non-zero probability of finding K  forbjdden region.
the particle classically forbidden region ! /\ /\ /\ /\ /\
0
This phenomenon is called tunneling. J U U \/ V[m particle emerges
with the same de Bm glie
wavelength after lunncl.ing
To see how this works let us solve the through the energy barrier.
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Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier

To the left of the barrier (region I), U=0 ke T
Solutions are free particle plane waves: W e i
E—— VLA
do(x)= Ae™ + Be™, k= ' 1 L1
h <[, >
The first term is the incident wave moving - a)
to the right
The second term is the reflected wave
. incident
IIlOVll’lg tO the left. | Ap Hikx )_> (transmitted)
(reflected) — [ tik*
¢ ) 5 I —
° ° rejiecte B
Reflection coefficient: |R = L2 — = | |2 —
(pincident | A | _ (b)




Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier

To the right of the barrier (region III), ¥, T
U=0. Solutions are free particle plane }\N 5
waves: \PJ\/
I II I11
: 2mE
(b(X) = Felkxa k = . «] >
(a)
This is the transmitted wave moving to
the right
(incident)
o o o . Ag thY o (transmitted)
Transmission coefficient: reflected) o i
Be—ikx ——
2 2 X
T _ ¢transmitted . |F | 0 L
— 2 2 T+R=1
O |A] ©
incident A




Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier

In the barrier region (region II), the TISE is ke T
¢ \PII U i
" AVA
—2—F¢(X)=(E—U)¢(X) \PJ\/
A O 1 1 I
Solutions are <L~
—ox ax \/2m(U B E) e i@
O(x)=Ce ™" + De o= -
(incident)
Ap THh (transmitted)
(reflected) —  Fp Tk
I —

0 L,

(b)




Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier

. . . b
At x=0, region I wave function = region II 1 T
wave function: W i o
Ae™ + Be™ = Ce ™ + De™* — . \kjn\/
< [, >
A+B=C+D
(a)
At x=L, region II wave function = region
IIT wave function:
(incident)
—olL L kL Ap ThY ol (transmitted)
Ce “ oF Dea — Felk (reflected) ) R
Be—ikx ——

0 L,

(b)




Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier

At x=0, d@/dx in region I = d@/dx in region i T
! v
I1: W o
ikAe™ — ikBe™™ = —aCe ™ + aDe™ _\ ~V\/
I II [11
ikA —ikB=—-o0C +aD e
(a)
At x=L, dg/dx in region II = d@/dx in =
region III :
(incident)
—o o . i PR (transmitted)
—oCe ™" + aDe™ = ikFe™* (regected) e g
) m—

0 L,

(b)




Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier

Solving the 4 equations, we get

=
| U’ el 4ot | | : :
+4{E(U—E)}[ 2 } i i i
i l L
For low energies and wide barriers, 0 mmmmmmmmmmm Uk Ey E;

T - e—(XL

For some energies, T=1, so the wave function is fully transmitted
(transmission resonances).

This occurs due to wave interference, so that the reflected wave function
1s completely suppressed.



Quantum Mechanical Tunneling

The step barrier:

To the left of the barrier (region I), U=0.
Solutions are free particle plane waves:

. . 2mE
do(x)= Ae™ + Be™, k= /;n
Case 1 Case 2
S N
Energy VA=Y s
V(x)=0 L -
| & Il g

‘P‘X)f \//\ /\ ;

x Y



Quantum Mechanical Tunneling

The step barrier:

Inside Step: K2 d? T
U=V, P _%y¢(x):(E_Vo)¢(x) k, = \/ m(h 0)
Case 1 Case 2

¥(x) is oscillatory for E >V

Energy
E
Energy

V(x)=0

V(x) = V,

o
<V

w(x) &

3
S
C

¥(x) is decaying for E <V,

Energy T

V(x)=0

x Y



Quantum Mechanical Tunneling

The step barrier:

2
L T 4kk, 2
k +k, (k, +&,)
= 2mE = J2m(E =V,)
B L

R(reflection) + T(transmission) = 1

Reflection occurs at a barrier (R # 0), regardless if 1t is step-down

or step-up.

R depends on the wave vector difference (k; - k,) (or energy difference),
but not on which 1s larger.

Classically, R = 0 for energy E larger than potential barrier (V).



Quantum Mechanical Tunneling

The step barrier:

A free particle of mass m, wave number k, , and energy E =2V  1s
traveling to the right. At x = 0, the potential jumps from zero to -V and
remains at this value for positive x. Find the wavenumber k, 1n the region
x > 0 1n terms of k, and V. Find the reflection and transmission
coefficients R and T.

k

1

g _\2m() Jamy,
h h h

2m\V — E 2m\=V =2V 2m(3V 6mV. 3
o \h | \h \:J;E ) " Bk

2 2 2
k. —k k, —\3k —0.
:( 1 2) :[1\/;1J :( OZZSJ =10.0102 | (1% reflected)

k, +k, K, ++3k, 2.225

T'=1-R=1-0.0102=0.99 (99% transmitted)




Quantum Mechanical Tunneling

Sketch the wave function y(x) corresponding to a particle with energy E in
the potential well shown below. Explain how and why the wavelengths and
amplitudes of y(x) are different in regions 1 and 2.

AP(x) Vi

Region 1 Region 2 E

Y(x) oscillates inside the potential well because E > V(x), and decays
exponentially outside the well because E < V(x).

The frequency of y(x) 1s higher in Region 1 vs. Region 2 because the kinetic
energy 1s higher [E, = E - V(x)].

The amplitude of y(x) 1s lower in Region 1 because its higher E, gives a higher
velocity, and the particle therefore spends less time in that region.




Quantum Mechanical Tunneling
Sketch the wave function y(x) corresponding to a particle with energy E in
the potential shown below. Explain how and why the wavelengths and
amplitudes of y(x) are different in regions 1 and 3.

L)

Region 1 Region 3

X

Y(x) oscillates in regions 1 and 3 because E > V(x), and decays exponentially
in region 2 because E < V(x).

Frequency of y(x) 1s higher in Region 1 vs. 3 because kinetic energy is higher
there.

Amplitude of y(x) in Regions 1 and 3 depends on the initial location of the wave
packet. If we assume a bound particle in Region 1, then the amplitude is higher
there and decays into Region 3 (case shown above).



Quantum Mechanical Tunneling

The scanning tunneling microscope:

Scanning-tunneling microscopes allow us to see objects at the atomic

level.

* A small air gap between the probe and the
sample acts as a potential barrier.

* Energy of an electron is less than the
energy of a free electron by an amount
equal to the work function.

* Electrons can tunnel through the barrier to
create a current in the probe.

* The current 1s highly sensitive to the
thickness of the air gap.

* As the probe is scanned across the
sample, the surface structure is mapped by
the change in the tunneling current.

(a)

Sea of electrons

Air gap = 0.5 nm
® (—
Sample @
@ Probe tip
Positive ions
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(b) Energy level of
an electron in the
U(x) sample or the probe
w ‘-_
—> .
Uy T E
=~ 4 eV
. . 'x
Sample  Air gap Probe tip




Quantum Mechanical Tunneling

The scanning tunneling microscope:

Scanning-tunneling microscopes allow us to see objects at the atomic

level.

* A small air gap between the probe and
the sample acts as a potential barrier.

* Energy of an electron is less than the
energy of a free electron by an amount
equal to the work function.

 Electrons can tunnel through the barrier
to create a current in the probe.

* The current 1s highly sensitive to the
thickness of the air gap.

* As the probe 1s scanned across the
sample, the surface structure is mapped
by the change in the tunneling current.

Carbon Monoxide
on Platinum

Iron on Copper

www.almaden.ibm.com/vis/stm/




Quantum Mechanical Tunneling

Decay of radioactive elements:

Emission of o particles (helium nucleii) in the decay of radioactive

elements 1s an example of tunneling

e o particles are confined in the
nucleus modeled as a square well

* o particles can eventually tunnel
through the Coulomb potential
barrier.

* Tunneling rate 1s very sensitive to
small changes in energy, accounting
for the wide range of decay times:

f fE
8 Q-‘Lﬂ:z EO
— )
T =e¢e ,

r, =725 fim, E, = 0.0993MeV

Nucleus (+Z¢)

Alpha particle (+2¢)

®

U(r)

Alpha particle
annot escape | o
(classically)

0

Y

U(r) = 2kZe?/r

E  Kinetic energy
of escaping
alpha particle

|
|
|
|
l -
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R, =2kZe*/E

(b)




Quantum Mechanical Tunneling

Decay of radioactive elements:

Emission of o particles (helium nucleii) in the decay of radioactive

elements 1s an example of tunneling

Nucleus (+Ze) Alpha particle (+2¢)

Y

e Transmission probability: Q ’

(a)
E,
8 §—47r2‘/—0
— "o E
T =e¢e ,

r, = 7.25 fim, E, = 0.0993MeV

Ul(r)

U(r) = 2kZe“/1
L4 TransmiSSion rate }\d = frequency Of Alpha ]);u‘li('lc___ _________________ E Ki .
o« o . . -annot escape | o | ’ \lm[l((tl)]l:]lt:"'\
collisions with the barrier x T (classcally) | e
0 l > 7
i ﬁ_mz\]% Nodeaw AT
K radius
A= fT =10%¢ V" , l
(b)
0’693 ® 2005 Brooks/Cole - Thomson

o Half life:

L = 2




Quantum Mechanical Tunneling

Other applications of quantum mechanical tunneling:
e Tunneling diodes (used in digital chips in computers)
e Explanation of ammonia inversion (see text)

» Theory of black hole decay



