Quantum Mechanical Tunneling

The square barrier:

Behaviour of a classical ball rolling towards a hill (potential barrier):

If the ball has energy E less than the potential energy barrier ($\mathrm{U}=\mathrm{mg}$) , then it will not get over the hill.
The other side of the hill is a classically forbidden region.

Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier
Solving the TISE for the square barrier problem yields a peculiar result:

If the quantum particle has energy E less than the potential energy barrier U, there is still a non-zero probability of finding the particle classically forbidden region !

This phenomenon is called tunneling.
To see how this works let us solve the TISE...

Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier
To the left of the barrier (region I), $\mathrm{U}=0$
Solutions are free particle plane waves:

$$
\phi(x)=A e^{i k x}+B e^{-i k x}, \quad k=\frac{\sqrt{2 m E}}{\hbar}
$$

The first term is the incident wave moving
 to the right
The second term is the reflected wave moving to the left.

Reflection coefficient: $R=\frac{\left|\phi_{\text {reflected }}\right|^{2}}{\left|\phi_{\text {incident }}\right|^{2}}=\frac{|B|^{2}}{|A|^{2}}$

Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier
To the right of the barrier (region III), $\mathrm{U}=0$. Solutions are free particle plane waves:

$$
\phi(x)=F e^{i k x}, \quad k=\frac{\sqrt{2 m E}}{\hbar}
$$

This is the transmitted wave moving to the right

Transmission coefficient:

$$
T=\frac{\left|\phi_{\text {transmited }}\right|^{2}}{\left|\phi_{\text {incident }}\right|^{2}}=\frac{|F|^{2}}{|A|^{2}} \quad T+R=1
$$

Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier
In the barrier region (region II), the TISE is
$-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \phi(x)=(E-U) \phi(x)$
Solutions are

$$
\phi(x)=C e^{-\alpha x}+D e^{\alpha x}
$$

$$
\alpha=\frac{\sqrt{2 m(U-E)}}{\hbar}
$$

Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier
At $x=0$, region I wave function $=$ region II wave function:

$$
A e^{i k x}+B e^{-i k x}=C e^{-\alpha x}+D e^{\alpha x}
$$

$$
A+B=C+D
$$

At $\mathrm{x}=\mathrm{L}$, region II wave function $=$ region III wave function:

$$
C e^{-\alpha L}+D e^{\alpha L}=F e^{i k L}
$$

Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier
At $x=0, d \varphi / d x$ in region $I=d \varphi / d x$ in region II:

$$
i k A e^{i k x}-i k B e^{-i k x}=-\alpha C e^{-\alpha x}+\alpha D e^{\alpha x}
$$

$$
i k A-i k B=-\alpha C+\alpha D
$$

At $\mathrm{x}=\mathrm{L}, \mathrm{d} \varphi / \mathrm{dx}$ in region $\mathrm{II}=\mathrm{d} \varphi / \mathrm{dx}$ in region III :

$$
-\alpha C e^{-\alpha L}+\alpha D e^{\alpha L}=i k F e^{i k L}
$$

Quantum Mechanical Tunneling

The square barrier:

Behaviour of a quantum particle at a potential barrier
Solving the 4 equations, we get

For low energies and wide barriers,

$$
T \approx e^{-\alpha L}
$$

For some energies, $\mathrm{T}=1$, so the wave function is fully transmitted (transmission resonances).
This occurs due to wave interference, so that the reflected wave function is completely suppressed.

Quantum Mechanical Tunneling

The step barrier:

To the left of the barrier (region I), $\mathrm{U}=0$.
Solutions are free particle plane waves:

$$
\phi(x)=A e^{i k x}+B e^{-i k x}, \quad k=\frac{\sqrt{2 m E}}{\hbar}
$$

Quantum Mechanical Tunneling

The step barrier:

Inside Step:
$\mathrm{U}=\mathrm{V}_{\mathrm{o}}$

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \phi(x)=\left(E-V_{0}\right) \phi(x)
$$

Case 1
$\Psi(x)$ is oscillatory for $\mathrm{E}>\mathrm{V}_{\text {。 }}$

$$
k_{2}=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar}
$$

$\Psi(x)$ is decaying for $\mathrm{E}<\mathrm{V}_{\text {。 }}$

Quantum Mechanical Tunneling

The step barrier:

$$
\begin{array}{ll}
\mathrm{R}=\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right)^{2} & \mathrm{~T}=\frac{4 k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}} \\
k_{1}=\frac{\sqrt{2 m E}}{\hbar} & k_{2}=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar}
\end{array}
$$

$$
R(\text { reflection })+T(\text { transmission })=1
$$

Reflection occurs at a barrier ($\mathrm{R} \neq 0$), regardless if it is step-down or step-up.
R depends on the wave vector difference ($k_{1}-k_{2}$) (or energy difference), but not on which is larger.
Classically, $\mathrm{R}=0$ for energy E larger than potential barrier $\left(\mathrm{V}_{\mathrm{o}}\right)$.

Quantum Mechanical Tunneling

The step barrier:

A free particle of mass m, wave number k_{1}, and energy $E=2 V_{o}$ is traveling to the right. At $x=0$, the potential jumps from zero to $-V_{0}$ and remains at this value for positive x . Find the wavenumber k_{2} in the region $\mathrm{x}>0$ in terms of k_{1} and V_{o}. Find the reflection and transmission coefficients R and T .

$$
\begin{gathered}
k_{1}=\frac{\sqrt{2 m E}}{\hbar}=\frac{\sqrt{2 m\left(2 V_{o}\right)}}{\hbar}=\frac{\sqrt{4 m V_{o}}}{\hbar} \text { and } \\
k_{2}=\frac{\sqrt{2 m|V-E|}}{\hbar}=\frac{\sqrt{2 m\left|-V_{o}-2 V_{o}\right|}}{\hbar}=\frac{\sqrt{2 m\left(3 V_{o}\right)}}{\hbar}=\frac{\sqrt{6 m V_{o}}}{\hbar} \text { or } \sqrt{\frac{3}{2}} k_{1} \\
\left.R=\left(\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\right)^{2}=\left(\frac{k_{1}-\sqrt{\frac{3}{2}} k_{1}}{k_{1}+\sqrt{\frac{3}{2}} k_{1}}\right)^{2}=\left(\frac{-0.225}{2.225}\right)^{2}=0.0102 \text { (1\% reflected }\right) \\
T=1-R=1-0.0102=0.99(99 \% \text { transmitted })
\end{gathered}
$$

Quantum Mechanical Tunneling

Sketch the wave function $\psi(x)$ corresponding to a particle with energy E in the potential well shown below. Explain how and why the wavelengths and amplitudes of $\psi(x)$ are different in regions 1 and 2 .

$\psi(\mathrm{x})$ oscillates inside the potential well because $\mathrm{E}>\mathrm{V}(\mathrm{x})$, and decays exponentially outside the well because $\mathrm{E}<\mathrm{V}(\mathrm{x})$.
The frequency of $\psi(x)$ is higher in Region $\mathbb{1}$ vs. Region 2 because the kinetic energy is higher $\left[E_{k}=E-V(x)\right]$.
The amplitude of $\psi(\mathrm{x})$ is lower in Region 1 because its higher E_{k} gives a higher velocity, and the particle therefore spends less time in that region.

Quantum Mechanical Tunneling

Sketch the wave function $\psi(\mathrm{x})$ corresponding to a particle with energy E in the potential shown below. Explain how and why the wavelengths and amplitudes of $\psi(x)$ are different in regions 1 and 3 .

$\psi(x)$ oscillates in regions 1 and 3 because $\mathrm{E}>\mathrm{V}(\mathrm{x})$, and decays exponentially in region 2 because $\mathrm{E}<\mathrm{V}(\mathrm{x})$.
Frequency of $\psi(\mathrm{x})$ is higher in Region 1 vs. 3 because kinetic energy is higher there.
Amplitude of $\psi(x)$ in Regions 1 and 3 depends on the initial location of the wave packet. If we assume a bound particle in Region 1, then the amplitude is higher there and decays into Region 3 (case shown above).

Quantum Mechanical Tunneling

The scanning tunneling microscope:

Scanning-tunneling microscopes allow us to see objects at the atomic level.

- A small air gap between the probe and the sample acts as a potential barrier.
- Energy of an electron is less than the energy of a free electron by an amount equal to the work function.
- Electrons can tunnel through the barrier to create a current in the probe.
- The current is highly sensitive to the thickness of the air gap.
- As the probe is scanned across the sample, the surface structure is mapped by the change in the tunneling current.

Quantum Mechanical Tunneling

The scanning tunneling microscope:

Scanning-tunneling microscopes allow us to see objects at the atomic level.

- A small air gap between the probe and the sample acts as a potential barrier.
- Energy of an electron is less than the energy of a free electron by an amount equal to the work function.
- Electrons can tunnel through the barrier to create a current in the probe.
- The current is highly sensitive to the thickness of the air gap.
- As the probe is scanned across the sample, the surface structure is mapped by the change in the tunneling current.

Carbon Monoxide
on Platinum

Quantum Mechanical Tunneling

Decay of radioactive elements:

Emission of α particles (helium nucleii) in the decay of radioactive elements is an example of tunneling

- α particles are confined in the nucleus modeled as a square well
- α particles can eventually tunnel through the Coulomb potential barrier.
- Tunneling rate is very sensitive to small changes in energy, accounting for the wide range of decay times:

$$
\begin{aligned}
& T=e^{8 \sqrt{\frac{Z R}{r_{0}}}-4 \pi z \sqrt{\frac{E_{0}}{E}}}, \\
& r_{0} \approx 7.25 \mathrm{fm}, E_{0}=0.0993 \mathrm{MeV}
\end{aligned}
$$

Quantum Mechanical Tunneling

Decay of radioactive elements:

Emission of α particles (helium nucleii) in the decay of radioactive elements is an example of tunneling

- Transmission probability:

$$
\begin{aligned}
& T=e^{8 \sqrt{\frac{\sqrt{2}}{r_{0}}}-4 \pi z \sqrt{\frac{E_{0}}{E}}}, \\
& r_{0} \approx 7.25 \mathrm{fm}, E_{0}=0.0993 \mathrm{MeV}
\end{aligned}
$$

- Transmission rate $\lambda=$ frequency of collisions with the barrier x T

$$
\lambda=f T \approx 10^{21} e^{8 \sqrt{\frac{Z R}{I_{0}}}-4 \pi z \sqrt{\frac{E_{0}}{E}}},
$$

- Half life: $t_{1 / 2}=\frac{0.693}{\lambda}$

Quantum Mechanical Tunneling

Other applications of quantum mechanical tunneling:

- Tunneling diodes (used in digital chips in computers)
- Explanation of ammonia inversion (see text)
- Theory of black hole decay
-

