Quantum Mechanics and Atomic Physics

Lecture 10:

Orthogonality, Superposition, Time-dependent wave functions, etc.
http://www.physics.rutgers.edu/ugrad/361
Prof. Sean Oh

Last time: The Uncertainty Principle Revisited

- Heisenberg's Uncertainty principle:

$$
\Delta x \Delta p \geq \hbar / 2
$$

- Position and momentum do not commute

$$
[x, P]=i \hbar
$$

- If we measure the particle's position more and more precisely, that comes with the expense of the particle's momentum becoming less and less well known.
- And vice-versa.

Ehrenfest's Theorem

- The expectation value of quantum mechanics follows the equation of motion of classical mechanics.
- In classical mechanics
$\vec{F}=\frac{d \vec{p}}{d t}=-\nabla U, \quad$ ip potential function
- In quantum mechanics, $\frac{\partial\langle p\rangle}{\partial t}=\langle-\nabla \square\rangle$
- See Reed 4.5 for the proof.
- Average of many particles behaves like a classical particle

Orthogonality

- Theorem: Eigenfunctions with different eigenvalues are orthogonal.
- Consider a set of wavefunctions satisfying the time independent S.E. for some potential V(x)
- Then orthogonality states:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \psi_{k}^{+} \psi_{n} d x=0 \\
& \text { for } k \neq n \text { and } \\
& E_{k} \neq E_{n}
\end{aligned}
$$

- In other words, if any two members of the set obey the above integral constraint, they constitute an orthogonal set of wavefunctions.
- Let's prove this...

Proof: Orthogonality Theorem

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}}{d x^{2}}+V \psi_{n}=E_{k} \psi_{n} \\
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{k}}{d x^{2}}+V \psi_{k}=E_{k} \psi_{k}
\end{aligned}
$$

\longrightarrow tare complex conjugate.

$$
\Rightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{k}^{*}}{d x^{2}}+V \psi_{k}^{*}=E_{k} \psi_{k}^{*}
$$

\Rightarrow Multiply by ψ_{h}
\Rightarrow Multiply iss eqn by $t_{k}{ }^{*}$
\Rightarrow Subtract:

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m}\left(\psi_{k}^{*} \frac{d^{2} \psi_{n}}{d x^{2}}-\psi_{n} \frac{d^{2} \psi_{k}^{*}}{d x^{2}}\right)+V(\underbrace{\psi_{k}^{*} \psi_{n}-\psi_{n} \psi_{k}^{*}}_{=0}) \\
& =\left(E_{n}-E_{k}\right) \psi_{k}^{*} \psi_{n}
\end{aligned}
$$

Proof, con't

$$
\Rightarrow \quad \frac{d}{d x}\left(\psi_{k}^{x} \frac{d \psi_{n}}{d x}\right)=\psi_{k}^{*} \frac{d^{2} \psi_{n}}{d x^{2}}+\frac{d \psi_{k}^{*}}{d x} \frac{d \psi_{n}}{d x}
$$

and

$$
\frac{d}{d x}\left(\psi_{n} \frac{d \psi_{k}^{*}}{d x}\right)=\psi_{n} \frac{d^{2} \psi_{k}^{*}}{d x^{2}}+\frac{d \psi_{n}}{d x} \frac{d \psi_{k}{ }^{2}}{d x}
$$

Take diff:

$$
\frac{d}{d x}\left(\psi_{k}^{*} \frac{d \psi_{n}}{d x}-\psi_{n} \frac{d \psi_{k}^{*}}{d x}\right)=\psi_{k}^{*} \frac{d^{2} \psi_{n}}{d x^{2}}-\psi_{n} \frac{d^{2} \psi_{k}^{*}}{d x}
$$

\Rightarrow Plug into eon above:

$$
\begin{aligned}
& \Rightarrow-\frac{\hbar^{2}}{2 m} \frac{d}{d x}\left(\psi_{k}^{*} \frac{d \psi_{n}}{d x}-\psi_{n} \frac{d \psi_{k}^{*}}{d x}\right)=\left(E_{n}-E_{k}\right) \psi_{k}^{*} \psi_{n} \\
& \Rightarrow \int_{-\infty}^{\infty}-\frac{\hbar^{2}}{2 m} d\left(\psi_{k}^{*} \frac{d \psi_{n}}{d x}-\psi_{n} \frac{d \psi_{k}^{*}}{d x}\right)=E_{n}-E_{k} \int_{-\infty}^{\infty} \psi_{k}^{*} \psi_{n} d x \\
& -\frac{\hbar^{2}}{2 m}\left[\psi_{k}^{*} \frac{d \psi_{n}}{d x}-\psi_{n} \frac{d \psi_{k}^{*}}{d x}\right]_{-\infty}^{\infty}=E_{n}-E_{k} \int_{-\infty}^{\infty} \psi_{k}^{*} \psi_{n} d x \\
& \psi_{k}^{*}=\psi_{n}=0 @ \pm \infty
\end{aligned}
$$

$$
\text { So left hand side }=0
$$

And $E_{k} \neq E_{n}$
So,
Theorem is proven

$$
\left(E_{k}-E_{n}\right) \int_{-\infty}^{\infty} \psi_{k}^{*} \psi_{n} d x=0 \Rightarrow \int_{-\infty}^{\infty} \psi_{k}^{*} \psi_{n} d x=0
$$

Orthonormality
In addition, if each individual member of the set of wavefunctions is normalized, they constitute an orthonormal set:

$$
\text { If } n=k, E_{n}-E_{n}=0
$$

and integral need not be ϕ.
If ψ_{n} are normalized:

$$
\begin{aligned}
& \int_{\infty}^{\infty} \psi_{n}{ }^{*} \psi_{n} d x=1 \\
& \int \psi_{k}^{*} \psi_{n} d x=\left\langle\psi_{k} \mid \psi_{n}\right\rangle=\delta_{k}^{n} \\
& \delta_{k}^{n}= \begin{cases}1 & (k=n) \\
0 & \text { (otherwise) }\end{cases}
\end{aligned}
$$

Kronecker delta

Degenerate Eigenfunctions

- If $\mathrm{n} \neq \mathrm{k}$, but $\mathrm{E}_{\mathrm{n}}=\mathrm{E}_{\mathrm{k}}$, then we say that the eigenfunctions are degenerate
- Since $\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\mathrm{k}}=0$, the integral $\int_{-\infty}^{\infty} \psi_{k}{ }^{x} \psi_{n} d x$
need not be zero
- But it turns out that we can always obtain another set of Ψ 's, linear combinations of the originals, such that the new Ψ 's are orthogonal.

Principle of Superposition

- Any linear combination of solutions to the time-dependent S.E. is also a solution of the T.D.S.E.
- For example, particle in infinite square well can be in a superposition of states:

$$
\psi=c_{1} \psi_{1}+c_{2} \psi_{2}
$$

We covered this in lecture 4!

- T.D.S.E is:

$$
\begin{aligned}
& H_{s p} \mathcal{Z}(x, t)=i H_{t} \\
& H_{s p} \equiv-\frac{\hbar^{\prime}}{2 m} \frac{\hbar^{2}}{\partial t} \Psi(x, t) \\
& \partial x^{2} \\
& H^{2}(x, t)
\end{aligned}
$$

So if $H_{s p} \Psi_{1}=H_{t} \Psi_{1}$, $H_{s p} \psi_{2}=H_{t} \psi_{2}$

$$
\begin{aligned}
& \Rightarrow \quad H_{s p}\left(c_{1} \Psi_{1}\right)=H_{t}\left(c_{1} \Psi_{1}\right), H_{s_{p}}\left(c_{2} \Psi_{2}\right)=H_{t}\left(C_{2} \Psi_{2}\right) \\
& \Rightarrow \quad H_{s p}\left(c_{1} \Psi_{1}+c_{2} \Psi_{2}\right)=H_{t}\left(C_{1} \Psi_{1}+C_{2} \Psi_{2}\right)
\end{aligned}
$$

Principle of Superposition II

- Is any linear combination of solutions to the time-independent S.E. also a solution of the T.I.S.E?

$$
N_{0}!!!
$$

$$
\begin{aligned}
\text { T.I.S.E.: } H_{s p} \psi_{1}(x) & =E_{1} \psi_{1}(x) \\
H_{s p} \psi_{2}(x) & =E_{2} \psi_{2}(x) \\
\Rightarrow H_{s p}\left(c_{1} \psi_{1}+c_{2} \psi_{2}\right) & =E_{1} c_{1} \psi_{1}+E_{2} c_{2} \psi_{2} \\
& \neq E\left(c_{1} \psi_{1}+c_{2} \psi_{2}\right)
\end{aligned}
$$

- In other words, linear combinations of eigenstates are not generally solutions of the eigenequation.
- The measurement will yield either E_{1} or E_{2}, though not with equal probability
- The system need not be in an eigenstate - the superposition state Ψ "collapses" into one of the eigenstates when one makes a measurement to determine which state the system is actually in.

Principle of Superposition III

- If $\psi_{i}(x)$ are energy eigenfunctions, that is the solution of the T.I.S.E. and the wavefunction at $t=0$ is given by $\Psi(x, 0)=\sum_{i} \psi_{i}(x)$, then at a later time t, the wavefunction is given by

$$
\Psi(x, t)=\sum_{i} a_{i} \psi_{i}(x) e^{-i \frac{E_{i}}{\hbar} t} \text {, where }
$$

E_{i} is the eigenenergy corresponding to $\psi_{i}(x)$,

$$
\text { that is } H \psi_{-}(x)=E_{i} \psi(x) .
$$

Then, the expectation value of the energy is given by $\langle E\rangle=\sum_{i} a_{i}^{2} E_{i}$, (See Roed 4.7 ,

Principle of Superposition IV
Normalization also requires that

$$
\begin{aligned}
& \text { If } \Psi(x, 0)=\Sigma a_{i} \psi_{i}(x) \\
& \Rightarrow \quad 1=\sum_{i}\left|a_{i}\right|^{2}
\end{aligned}
$$

A Time-Dependent Wave-Packet

- See Reed Section 4.8 for a very nice example:

$$
\begin{aligned}
\psi & =\alpha \psi_{1} e^{-i \omega_{t} t}+\beta_{2} e^{i \omega_{2} t} \\
\Rightarrow \psi^{2} & \left.=\alpha^{2} \psi_{1}^{2}+\beta^{2} \psi_{2}^{2}+2 \alpha \beta\left(\psi_{1} \psi_{2}\right) \cos \left(\omega_{1}-\omega_{2}\right) t\right] \\
\omega T & =2 \pi \\
\Rightarrow \quad T & =\frac{2 \pi}{\omega_{1}-\omega_{2}}=\frac{2 \pi}{(1 / \hbar)\left(E_{1}-E_{2}\right)}=\frac{h}{\left(E_{1}-E_{2}\right)}
\end{aligned}
$$

Normalization gives.

Illustrates concept of a traveling wave and the principle of superposition

FIGURE 4.3 Time varying proctabilitp-density distribution of a superposition state of the $n=2$ and $n=3$ infinite-rectangular well ($l=1$) wavefunctions with $\alpha=0.7$ and $\beta=\sqrt{0.51}$. (See Equations 4.8 .3 and 4.8.8) The curves are vertically (offesen from each other purely for clarity, they should all lie at $\Psi^{2}=0$ an
$x=0$ and 1 . $x=0$ and 1 .

$$
\begin{aligned}
& \alpha^{2}+b^{2}=1 \\
&\langle x\rangle= \alpha^{2} \int\left(x \psi_{1}^{2}\right) d x+b^{2} \int\left(x \psi_{2}^{2}\right) d x \\
&+2 \alpha \varepsilon^{\left.\cos \left[\omega_{1}-\omega_{2}\right) t\right] \int\left(x \psi_{1} \psi_{2}\right) d x}
\end{aligned}
$$

Measurement and wavefunction collapse

- Consider the infinite potential well problem.
- If at $\mathrm{t}=0 \quad \psi^{*}(x, 0)=\frac{3}{5} \psi_{1}(x)+\frac{4}{5} \psi_{2}(x)$, where $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)$ for $0<x<L$
- Then at a later time $t, \psi(x, t)=\frac{3}{5} \psi_{1}(x) e^{-i \frac{E_{t}}{\hbar} t}$ $+\frac{4}{5} 2 r_{2}(x) e^{-i \frac{E_{2}}{\hbar} t}$, where $E_{n}=\frac{\hbar_{n}^{2}}{2 m}\left(\frac{n \pi}{L}\right)^{2}$
- At $t>0$, if you measure the energy of the system, what energy values can you measure with what probabilities?

Continued

$$
\begin{aligned}
& P\left(E_{1}\right)=\left(\frac{3}{5}\right)^{2}=\frac{9}{25}, P\left(E_{2}\right)=\left(\frac{4}{5}\right)^{2}=\frac{16}{25} \\
& P\left(E_{1}\right)+P\left(E_{1}\right)=1
\end{aligned}
$$

- Now, if your measurement yielded E_{1}, what is the new wavefunction afterwards?

$$
W(x, t) \text { collapses to } \psi_{1}(x)
$$

- Now, after this measurement, if you measure the energy again, what are the possible energy values with what probabilities?
E_{1} with $P\left(E_{l}\right)=1$

Measurement continued

- Now if you measure the position of the particle, what position would you measure with what probabilities?

$$
P(x)=|\psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}=\left(\left.\sqrt{\frac{2}{L}} \sin \left(\frac{\pi}{c} x\right)\right|^{2}\right.
$$

■ Now if your measurement yielded $x=4 / L$, and then if you measure energy again, what energy values are possible?

Theorem
If Ψ is in an eigenstate of $Q_{o p}$ with eigenvalue λ, then $<Q>=\lambda$ and $\triangle Q=0$.

- So, λ is the only value we'll observe for Q !
- Proof:

$$
\text { of: } \begin{aligned}
& \bar{Q}=\langle Q\rangle=\int \psi^{*} Q_{0 p} \psi d x=\int \psi^{*} \lambda \psi d x \\
& \Rightarrow\langle Q\rangle=\lambda \int \psi^{*} \psi d x=\lambda \\
& \overline{Q^{2}}=\left\langle Q^{2}\right\rangle=\int \psi^{*} Q_{0 \rho}\left(Q_{0 \rho} \psi\right) d x=\int \psi^{*} Q_{0 \psi} \lambda \psi d x \\
&=\lambda \int \psi^{*} Q_{0 p} \psi d x=\lambda \int \psi^{*} \lambda \psi d x= \\
&=\lambda^{2} \int \psi^{* *}+d x \\
&=\lambda^{2} \\
& \Delta Q=\sqrt{\left\langle Q^{2}\right\rangle-\langle Q\rangle^{2}}=\sqrt{\lambda^{2}-\lambda^{2}}=\varnothing
\end{aligned}
$$

No uncertainty! Observe λ only.

Virial Theorem

- The Virial Theorem (VT) is an expression that relates the expectation values of the $\mathrm{KE}_{\text {op }}$ and $\mathrm{PE}_{\text {op }}$ for any potential.
- Suppose operator A is time-independent

$$
\begin{aligned}
{\left[A_{0} \text { Hop }\right] \psi } & =A_{\varphi}\left(H_{o p} \psi\right)-H_{o p}\left(A_{o p} \psi\right) \\
& =i \hbar\left[A \frac{\partial \psi}{\partial t}-\frac{\partial}{\partial t}(A \psi)\right] \\
& =i \hbar\left[A \frac{\partial \psi}{\partial t}-A \frac{\partial \psi}{\partial t}\right]=0
\end{aligned}
$$

- In VT, A is defined as:

$$
A \equiv \vec{r}_{o p} \vec{p}_{o p}=-i \hbar \vec{r} \cdot \vec{v}
$$

- Section 4.9 in Reed goes through the proof of the VT in great detail which gives:

$$
\Rightarrow 2\langle K E\rangle=\langle\vec{r} \cdot \nabla V\rangle \text { for any potential } V
$$

Example: VT using a radial potential

$$
\begin{aligned}
& V(r)=\pi r^{r} \\
& \nabla V=\left(\frac{\partial V}{\partial r}\right) \hat{r}=n k r^{n-1} \hat{r} \\
& \hat{r} \cdot \vec{D} V=(r \hat{r}) \cdot\left(n \pi r^{n-1}\right) \hat{r}=n k r^{n}=n V \\
& \Rightarrow 2\langle k E\rangle=n\langle V\rangle
\end{aligned}
$$

VT for Coulomb Potential
Coulomb potential $n=-1$

$$
\begin{aligned}
& V(r)=\frac{\hbar}{r} \\
& \langle E\rangle=\langle K E\rangle+\langle V\rangle \\
& \Rightarrow\langle E\rangle=-\langle K E\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle p^{2}\right\rangle=2 m_{e}\langle k E\rangle \Rightarrow\left\langle p^{2}\right\rangle= & -2 m_{e}\left\langle E_{n}\right\rangle \\
= & \frac{\hbar^{2}}{a_{0}^{2} n^{2}} \\
& \uparrow \\
\text { Consistent with the Bohr model } & \uparrow a_{0} \equiv \text { Bohr radius }
\end{aligned}
$$

Summary/Announcements

- We covered various things today: Orthogonality, Superposition, Measurement, Time-dependent wave function, and various theoems
- Time for quiz: Closed book, and closed note !

■ Midterm exam Wed. Oct. 19 in class - it will be closed book with a letter size formula-ONLY (no solutions, or extra texts allowed) sheet- Need to turn in together with the answer book.

