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Preface

In this book, I have tried to bridge the gap between material learned in an undergraduate course in quantum
mechanics and an advanced relativistic field theory course. The book is a compilation of notes for a first year
graduate course in non-relativistic quantum mechanics which I taught at the University of New Hampshire
for a number of years. These notes assume an undergraduate knowledge of wave equation based quantum
mechanics, on the level of Griffiths[1] or Liboff [2], and undergraduate mathematical skills on the level of
Boas [3]. This book places emphasis on learning new theoretical methods applied to old non-relativistic
ideas, with a eye to what will be required in relativistic field theory and particle physics courses. The result
provides an introduction to quantum mechanics which is, I believe, unique.

The book is divided into two sections: Fundamental Principles and Applications. The fundamental
principles section starts out in the usual way by reviewing linear algebra, vector spaces, and notation in the
first chapter, and then in the second chapter, we discuss canonical quantization of classical systems. In the
next two chapters, Path integrals and in- and out-states are discussed. Next is a chapter on the density
matrix and Green functions in quantum mechanics where we also discuss thermal density matrices and
Green functions. This is followed by a chapter on identical particles and second quantized non-relativistic
fields. Next the Galilean group is discussed in detail and wave equations for massless and massive non-
relativistic particles explored. Finally, the last chapter of the fundamental principles section is devoted to
supersymmetry in non-relativistic quantum mechanics.

In the application section, I start by discussing finite quantum systems: the motion of electrons on
molecules and on linear and circular chains. This is followed by chapters one and two dimensional wave
mechanics and the WKB approximation. Then I discuss spin systems, the harmonic oscillator, and electrons
and phonons on linear lattices. Approximation methods are discussed next, with chapters on perturbative
and variational approximations. This is followed by a chapters on exactly solvable potential problems in non-
relativistic quantum mechanics, and a detailed chapter on angular momentum theory in quantum mechanics.
In the next chapter, we discuss several problems concerning the interactions of non-relativistic electrons with
a classical electromagnetic fields, including the Hydrogen atom, and lastly, we include a chapter on scattering
theory.

There are appendices giving operator identities, binomial coefficients, fourier transforms, and sections
reviewing classical physics, differential geometry, classical statistical mechanics, and Schwinger’s angular
momentum theory.

Much of the material for these notes come from the many excellent books on the subject, and in many
cases, I have only rearranged them in my own way. I have tried to give references to original material when
this was done. Of course, any misunderstandings are my own.

I would like to thank . . .

John Dawson
September, 2007

Durham, NH
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Chapter 1

Basic principles of quantum theory

Physical systems are represented in quantum theory by a complex vector space V with an inner product.
The state of the system is described by a particular vector |Ψ 〉 in this space. All the possible states of
the system are represented by basis vectors in this space. Observables are represented by Hermitian
operators acting in this vector space. The possible values of these observables are the eigenvalues of
these operators. Probability amplitudes for observing these values are inner products. Symmetries of
the physical system are represented by unitary transformations of the basis vectors in V. All this is
summarized in Table 1.1 below. Thus it will be important for us to study linear vector spaces in detail,
which is the subject of this chapter.

Nature Quantum Theory

The physical system a vector space V
The state of the system a vector |Ψ 〉 in V

All possible states of the system a set of basis vectors
Observables Hermitian operators

Possible values of observables eigenvalues of operators
Probability amplitudes for events inner products

Symmetries unitary transformations

Table 1.1: Relation between Nature and Quantum Theory

1.1 Linear vector spaces

In the following1, we will denote scalars (complex numbers) by a, b, c, . . ., and vectors by |α 〉, |β 〉, | γ 〉, . . ..

Definition 1 (linear vector space). A linear vector space V is a set of objects called vectors (|α 〉, |β 〉,
| γ 〉, . . .) which are closed under addition and scalar multiplication. That is, if |α 〉 and |β 〉 are in V, then
a|α 〉+ b|β 〉 is in V.

Vectors addition and scalar multiplication have commutative, associative, and distributive properties:

1. |α 〉+ |β 〉 = |β 〉+ |α 〉. commutative law

1Much of the material in this chapter was taken from Serot [1, chapter 1]
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2. (|α 〉+ |β 〉) + | γ 〉 = |α 〉+ (|β 〉+ | γ 〉). associative law

3. a(b|α 〉) = (ab)|α 〉. associative law

4. (a+ b)|α 〉 = a|α 〉+ b|α 〉. distributive law

5. a(|α 〉+ |β 〉) = a|α 〉+ a|β 〉. distributive law

6. There is a unique vector | 0 〉 in V, called the null vector, with the properties, |α 〉 + | 0 〉 = |α 〉 and
0|α 〉 = | 0 〉, for all |α 〉.

Example 1 (CN ). The set of N complex numbers (c1, c2, . . . , cN ), where ci ∈ C. Addition of vectors is
defined by addition of the components, and scalar multiplication by the multiplication of each element by
the scalar. We usually write vectors as column matrices:

| c 〉 =




c1
c2
...
cN


 (1.1)

Example 2 (PN ). The set of all real polynomials c(t) = c0 +c1t+c2t
2 + · · ·+cN t

N of degree less than N in
an independent real variable t, −1 ≤ t ≤ 1. A vector is defined by | c 〉 = c(t). Addition and multiplication
by a scalar are the ordinary ones for polynomials. Note that in this example, we define a secondary variable
t ∈ R, which is not in the vector space.

Example 3 (C[a, b]). The set of all continuous complex functions of a real variable on the closed interval
[a, b]. Thus | f 〉 = f(x), a ≤ x ≤ b. Again, in this example, we have a secondary base variable consisting of
a real variable x ∈ R.

1.2 Linear independence

A set of vectors | e1 〉, | e2 〉, . . . , | eN 〉, are linearly independent if the relation,

N∑

n=1

cn | en 〉 = 0 , (1.2)

can only be true if: cn = 0, n = 1, . . . , N . Otherwise, the set of vectors are linearly dependent, which means
that one of them can be expressed as a linear combination of the others.

The maximum number N of linearly independent vectors in a vector space V is called the dimension of
the space, in which case the set of vectors provides a basis set for V. Any vector in the space can be written
as a linear combination of the basis vectors. We can easily prove this:

Theorem 1. Let | en 〉, n = 1, . . . , N , be a basis in V. Then any vector |α 〉 in V can be represented by:

|α 〉 =
N∑

n=1

an| en 〉 ,

where an are complex numbers.

Proof. Since |α 〉 and | en 〉, n = 1, . . . , N are N + 1 vectors in V, they must be linearly dependent. So there
must exist complex numbers c, cn, n = 1, . . . , N , not all zero, such that

c |α 〉+
N∑

n=1

cn| en 〉 = 0 .

c© 2009 John F. Dawson, all rights reserved. 4
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But c 6= 0, otherwise the set | en 〉, n = 1, . . . , N , would be linearly dependent, which they are not. Therefore

|α 〉 =
N∑

n=1

−cn
c
| en 〉 =

N∑

n=1

an| en 〉 .

where an = −cn/c. If a different set of coefficients bn, n = 1, . . . , N existed, we would then have by
subtraction,

N∑

n=1

(an − bn)| en 〉 = 0 ,

which can be true only if bn = an, n = 1, . . . , N , since the set | en 〉 is linearly dependent. Thus the
components an are unique for the basis set | en 〉.

In this chapter, we mostly consider linear vector spaces which have finite dimensions. Our examples 1
and 2 above have dimension N, whereas example 3 has infinite dimensions.

1.3 Inner product

An inner product maps pairs of vectors to complex numbers. It is written: g( |α 〉, |β 〉 ). That is, g is a
function with two slots for vectors which map each pair of vectors in V to a complex number. The inner
product must be defined so that it is anti-linear with respect to the first argument and linear with respect
to the second argument. Because of this linearity and anti-linearity property, it is useful to write the inner
product simply as:

g( |α 〉, |β 〉 ) ≡ 〈α |β 〉 . (1.3)

The inner product must have the properties:

1. 〈α |β 〉 = 〈β |α 〉∗ = a complex number.

2. 〈 aα+ b β | γ 〉 = a∗ 〈α | γ 〉+ b∗ 〈β | γ 〉.

3. 〈 γ | aα+ b β 〉 = a 〈 γ |α 〉+ b 〈 γ |β 〉,

4. 〈α |α 〉 ≥ 0, with the equality holding only if |α 〉 = | 0 〉.

The norm, or length, of a vector is defined by ‖α‖2 ≡ 〈α |α 〉 > 0. A Hilbert space is a linear vector space
with an inner product for each pair of vectors in the space.

Using our examples of linear vector spaces, one possible definition of the inner products is:

Example 4 (CN ). For example:

〈 a | b 〉 = a∗1b1 + a∗2b2 + · · ·+ a∗NbN , (1.4)

Example 5 (PN ). We can take:

〈 a | b 〉 =
∫ +1

−1

a∗(t) b(t) dt , (1.5)

where a(t) and b(t) are members of the set.

Example 6 (C[a, b]). An inner product can be defined as an integral over the range with respect to a weight
function w(x):

〈 f | g 〉 =
∫ b

a

f∗(x) g(x)w(x) dx . (1.6)

c© 2009 John F. Dawson, all rights reserved. 5
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Definition 2. A basis set | en 〉, n = 1, . . . , N is orthonormal if

〈 ei | ej 〉 = δij .

We first turn to a property of the inner product: the Schwartz inequality.

Theorem 2 (The Schwartz inequality). The Schwartz, or triangle, inequality states that for any two vectors
in V,

‖ψ‖‖φ‖ ≥ |〈ψ |φ 〉| .

Proof. We let
|χ 〉 = |ψ 〉+ λ|φ 〉 .

Then the length of |χ 〉 is positive definite:

‖χ‖2 = 〈χ |χ 〉 = 〈ψ |ψ 〉+ λ〈ψ |φ 〉+ λ∗〈φ |ψ 〉+ |λ|2〈φ |φ 〉 ≥ 0 . (1.7)

This expression, as a function of λ and λ∗, will be a minimum when

∂〈χ |χ 〉
∂λ

= 〈ψ |φ 〉+ λ∗〈φ |φ 〉 = 0 ,

∂〈χ |χ 〉
∂λ∗

= 〈φ |ψ 〉+ λ〈φ |φ 〉 = 0 .

Thus
λ = −〈φ |ψ 〉/ ‖φ‖2 , λ∗ = −〈ψ |φ 〉/ ‖φ‖2 .

Substituting this into (1.7) and taking the square root, we find:

‖ψ‖‖φ‖ ≥ |〈ψ |φ 〉| .

The Schwartz inequality allows us to generalize the idea of an “angle” between two vectors. If we let

cos γ = |〈ψ |φ 〉|/( ‖ψ‖‖φ‖ ) ,

then the inequality states that 0 ≤ cos γ ≤ 1.

1.3.1 The dual space

The dual “vector” is not a vector at all, but a function which operates on vectors to produce complex
numbers defined by the inner product. The dual 〈α | is written with a “slot” ( ) for the vectors:

〈α |( ) = g( |α 〉, ) , (1.8)

for all vectors |α 〉 in V. That is, the dual only makes sense if it is acting on an arbitrary vector in V to
produce a number:

〈α |( |β 〉 ) = g( |α 〉, |β 〉 ) ≡ 〈α |β 〉 , (1.9)

in agreement with our notation for inner product. The anti-linear property of the first slot of the inner
product means that the set of dual functions form an anti-linear vector space also, called VD. So if we regard
the dual 〈α | as right acting, we can just omit the parenthesis and the slot when writing the dual function.

So if the set | ei 〉, i = 1, . . . , N are a basis in V, then the duals of the basis vectors are defined by:

〈 ei | = g( | ei 〉, ) , (1.10)

c© 2009 John F. Dawson, all rights reserved. 6
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with the property that 〈 ei | ej 〉 = gij . Then if |α 〉 is a vector in V with the expansion:

|α 〉 =
∑

i

ai | ei 〉 . (1.11)

Because of the anti-linear properties of the first slot in the definition of the inner product, the dual 〈α | is
given uniquely by:

〈α | =
∑

i

a∗i 〈 ei | . (1.12)

1.3.2 Non-orthogonal basis sets

If the basis set we have found for a linear vector space is not orthogonal, we have two choices: we can either
construct an orthogonal set from the linearly independent basis set, or introduce contra- and covariant
vectors. We first turn to the Gram-Schmidt orthogonalization method.

Gram-Schmidt orthogonalization

Given an arbitrary basis set, |xn 〉, n = 1, . . . , N , we can construct an orthonormal basis | en 〉, n = 1, . . . , N
as follows:

1. Start with | e1 〉 = |x1 〉/‖x1‖.

2. Next construct a vector orthogonal to | e1 〉 from |x2 〉 and | e1 〉, and normalize it:

| e2 〉 =
|x2 〉 − | e1 〉〈 e1 |x2 〉
‖ |x2 〉 − | e1 〉〈 e1 |x2 〉 ‖

.

3. Generalize this formula to the remaining vectors:

| en 〉 =

|xn 〉 −
n−1∑

m=1

| em 〉〈 em |xn 〉

‖ |xn 〉 −
n−1∑

m=1

| em 〉〈 em |xn 〉 ‖
.

for n = 2, . . . , N .

Contra- and co-variant vectors

Another method of dealing with non-orthogonal basis vectors is to introduce contra- and co-variant vectors.
We do that in this section. We first introduce a “metric” tensor gij by the definition:

gij ≡ g( | ei 〉, | ej 〉 ) = 〈 ei | ej 〉 , (1.13)

and assume that det{g} 6= 0, so that the inverse metric, which we write with upper indices g−1
ij ≡ gij exists:

∑

j

gij g
jk =

∑

j

gij gjk = δik , (1.14)

We sometimes write: gik ≡ δik.

c© 2009 John F. Dawson, all rights reserved. 7
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Definition 3 (covariant vectors). We call the basis vectors | ei 〉 with lower indices co-variant vectors,2 and
then define basis vectors | ei 〉 with upper indices by:

| ei 〉 =
∑

j

| ej 〉 gji . (1.15)

We call these vectors with upper indices contra-variant vectors. The duals of the contra-variant vectors are
then given by:

〈 ei | =
∑

j

[ gji ]∗ 〈 ej | =
∑

j

gij 〈 ej | . (1.16)

Remark 1. It is easy to show that the contra- and co-variant vectors obey the relations:

〈 ei | ej 〉 = 〈 ei | ej 〉 = δij ,
∑

i

| ei 〉〈 ei | =
∑

i

| ei 〉〈 ei | = 1 . (1.17)

The set of dual vectors | ei 〉 are not orthogonal with each other and are not normalized to one even if the set
| ei 〉 is normalized to one. If the basis vectors | ei 〉 are orthonormal, then the contra- and co-variant basis
vectors are identical, which was the case that Dirac had in mind when he invented the bra and ket notation.
Remark 2. Since the sets | ei 〉 and | ei 〉 are both complete linearly independent basis sets, although not
orthogonal, we can write a vector in one of two ways:

| v 〉 =
∑

i

vi | ei 〉 =
∑

i

vi | ei 〉 , (1.18)

from which we find:
〈 ei | v 〉 = vi , and 〈 ei | v 〉 = vi , (1.19)

which provides an easy methods to find the contra- and co-variant expansion coefficients of vectors. This
was the reason for introducing contra- and co-variant base vectors in the first place. The two components
of the vector vi and vi are related by the inner product matrix:

vi =
∑

j

gij v
j , and vi =

∑

j

gij vj . (1.20)

That is, gij and gij “lower” and “raise” indices respectively. We now turn to a few examples.

Example 7 (C2). Let us consider example 1 with N = 2, a two dimensional vector space of complex
numbers. Vectors in this space are called “spinors.” A vector | a 〉 is written as a two-component column
matrix:

| a 〉 =
(
a1

a2

)
. (1.21)

The inner product of two vectors | a 〉 and | b 〉 is given by definition (1.4):

〈 a | b 〉 = a∗1b1 + a∗2b2 . (1.22)

Let us now take two linearly independent non-orthogonal basis vectors given by:

| e1 〉 =
(

1
0

)
, | e2 〉 =

1√
2

(
i
1

)
. (1.23)

The basis bra’s 〈 e1 | and 〈 e2 | are then given by:

〈 e1 | =
(
1, 0

)
, 〈 e2 | =

1√
2

(
−i, 1

)
. (1.24)

2Sometimes the co-variant vectors are called dual vectors. We do not use that terminology here because of the confusion
with our definition of dual operators and the dual space of bra’s.

c© 2009 John F. Dawson, all rights reserved. 8
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So the gij matrix is given by:

gij =
(

1 i/
√

2
−i/
√

2 1

)
, (1.25)

with det{g} = 1/2. The inverse gij is then:

gij =
(

2 −i
√

2
i
√

2 2

)
. (1.26)

So the contra-variant vectors are given by:

| e1 〉 =
2∑

i=1

| ei 〉 gi1 =
(

1
i

)
, | e2 〉 =

2∑

i=1

| ei 〉 gi2 =
(

0√
2

)
, (1.27)

with the duals:
〈 e1 | =

(
1, −i

)
, 〈 e2 | =

(
0,
√

2
)
. (1.28)

It is easy to see that these contra- and co-variant vectors satisfy the relations:

〈 ei | ej 〉 = δij , and | e1 〉〈 e1 |+ | e2 〉〈 e2 | =
(

1 0
0 1

)
,

〈 ei | ej 〉 = δij , and | e1 〉〈 e1 |+ | e2 〉〈 e2 | =
(

1 0
0 1

)
,

(1.29)

Notice that the dual vectors are not normalized nor are they orthogonal with each other. They are orthonor-
mal with the base vectors, however, which is the important requirement.

Example 8 (P∞). In this example, we take the non-orthogonal basis set to be powers of x. So we define
co-variant vectors | ei 〉 by:

| ei 〉 = xi , for i = 0, 1, 2, . . . ,∞, (1.30)

with an inner product rule given by integration over the range [−1, 1]:

gij = 〈 ei | ej 〉 =
∫ +1

−1

xi xj dx =

{
0 for i+ j odd,
2/(i+ j + 1) for i+ j even.

=




2 0 2/3 0 · · ·
0 2/3 0 2/5 · · ·

2/3 0 2/5 0 · · ·
0 2/5 0 2/7 · · ·
...

...
...

...
. . .



.

(1.31)

We would have to invert this matrix to find gij . This is not easy to do, and is left to the reader.

1.4 Operators

An operator S maps a vector |α 〉 ∈ V to another vector |β 〉 ∈ V. We write: S(|α 〉) = |β 〉, which is defined
for some domain D and range R of vectors in the space. We usually consider cases where the domain and
range is the full space V.

Observables in quantum theory are represented by Hermitian operators and symmetry transformations
by unitary or anti-unitary operators. These important operators are defined in this section for finite vector
spaces. We start with a number of useful definitions.

c© 2009 John F. Dawson, all rights reserved. 9
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Definition 4 (linear and anti-linear operators). A linear operator S = L has the properties:

L(a |α 〉+ b |β 〉 ) = aL(|α 〉) + b L(|β 〉) , (1.32)

for any |α 〉, |β 〉 ∈ V and a, b ∈ C. Similarly, an anti-linear operator S = A has the properties:

A(a |α 〉+ b |β 〉 ) = a∗A(|α 〉) + b∗A(|β 〉) . (1.33)

So, for linear and anti-linear operators, we can just write: L|α 〉 = |Lα 〉 = | γ 〉, and A|α 〉 = |Aα 〉 =
| γ 〉, without the parenthesis.

Definition 5 (inverse operators). If the mapping S |α 〉 = |β 〉 is such that each |β 〉 comes from a unique
|α 〉, the mapping is called injective. In addition, if every vector |β 〉 ∈ V is of the form |β 〉 = S |α 〉, then
the mapping is called surjective. If the mapping is both injective and surjective it is called bijective, and
the inverse exists. (Physicists usually don’t use such fancy names.) We write the inverse operation thus:
S−1 |β 〉 = |α 〉. Clearly, S S−1 = S−1 S = 1, the unit operator. A bijective, linear mapping is called an
isomorphism.

Remark 3. We note the following two theorems, which we state without proof:3

1. If L is a linear operator, then so is L−1.

2. A linear operator has an inverse if and only if L |α 〉 = | 0 〉 implies that |α 〉 = | 0 〉.
Definition 6 (adjoint operators). For linear operators, the adjoint operator L† is defined by:

〈α |L† β 〉 = 〈Lα |β 〉 . (1.34)

For anti-linear operators, the adjoint A† is defined by:

〈α |A† β 〉 = 〈Aα |β 〉∗ = 〈β |Aα 〉 . (1.35)

Remark 4. For an orthonormal basis, the adjoint matrix of a linear operator is

L†ij = 〈 ei |L† ej 〉 = 〈Lei | ej 〉 = 〈 ej |Lei 〉∗ = L∗ji ,

which is the complex conjugate of the transpose matrix. For an anti-linear operator, the adjoint matrix is
given by:

A†ij = 〈 ei |A† ej 〉 = 〈Aei | ej 〉∗ = 〈 ej |Aei 〉 = Aji ,

which is the transpose matrix.

Definition 7 (unitary operators). A linear operator U is unitary if

〈U α |U β 〉 = 〈α |U†U β 〉 = 〈α |β 〉 . (1.36)

An anti-linear and anti-unitary operator U is defined by:

〈U α |U β 〉 = 〈α |U†U β 〉∗ = 〈α |β 〉∗ = 〈β |α 〉 . (1.37)

Thus for both unitary and anti-unitary operators U−1 = U†. This was the reason for our differing definitions
of the adjoint for linear and anti-linear operators.

Definition 8 (Hermitian operators). A linear operator H is Hermitian if

〈α |H β 〉 = 〈H α |β 〉 = 〈α |H† β 〉 . (1.38)

That is H† = H.
3the proofs can be found in Serot[1]
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Remark 5. By convention, operators are right acting on kets: S |α 〉 = |β 〉. The product of two linear
operators is defined by:

(AB) |α 〉 = A (B |α 〉) = A |β 〉 = | γ 〉 , (1.39)

which is called the composition law, whereas

(BA) |α 〉 = B (A |α 〉) = B | δ 〉 = | ε 〉 . (1.40)

Thus in general AB 6= BA. Linear operators obey:

1. A(BC) = (AB)C; associative law

2. (A+B)C = AC +BC; distributive law
A(B + C) = AB +AC.

The difference between the order of operations are important in quantum mechanics — we call this difference,
the commutator, and write: [A,B] = AB − BA. In appendix B, we list some operator identities for
commutators.
Remark 6. left acting operators act in the space of linear functionals, or dual space VD of bra vectors, and
are defined by the relation:

( 〈α |S ) |β 〉 ≡ 〈α | (S |β 〉) = 〈α |S β 〉

=

{
〈S† α |β 〉 for linear operators,
〈S† α |β 〉∗ for anti-linear operators.

(1.41)

Thus, if for linear operators in V we have the relation

L |α 〉 = |Lα 〉 = |β 〉 , (1.42)

then the corresponding mapping in VD is given by:

〈α |L† = 〈Lα | = 〈β | . (1.43)

Dirac invented a notation for this. For an arbitrary operator S, he defined:

〈α |S |β 〉 ≡ 〈α |S β 〉 =

{
〈S† α |β 〉 for linear operators,
〈S† α |β 〉∗ for anti-linear operators.

(1.44)

We often call 〈α |S |β 〉 a matrix element, the reasons for which will become apparent in the next section.
In Dirac’s notation, we can think of S as right acting on a ket vector or left acting on a bra vector.

Definition 9. A Normal operator is one that commutes with it’s adjoint: [A,A†] = 0.

Remark 7. We shall learn below that normal operators are the most general kind of operators that can be
diagonalized by a unitary transformation. Both unitary and Hermitian operators are examples of normal
operators.

1.4.1 Eigenvalues and eigenvectors:

For any operator A, if we can find a complex number a and a ket | a 〉 such that

A| a 〉 = a| a 〉 , (1.45)

then a is called the eigenvalue and | a 〉 the eigenvector. We assume in this section that the domain and range
of the operator A is the full set V. Note that we have simplified our notation here by labeling the eigenvector
by the eigenvalue a, rather than using Greek characters for labeling vectors. Vectors are distinguished by
Dirac’s ket notation.

c© 2009 John F. Dawson, all rights reserved. 11
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Theorem 3 (Hermitian operators). The eigenvalues of Hermitian operators are real and the eigenvectors
can be made orthonormal.

Proof. The eigenvalue equation for Hermitian operators is written:

H |h 〉 = h |h 〉 (1.46)

Since H is Hermitian, we have the following relations:

〈h′ |H h 〉 = h 〈h′ |h 〉 ,
〈h′ |H† h 〉 = 〈H h′ |h 〉 = h′∗ 〈h′ |h 〉 .

But for hermitian operators H† = H, so subtracting these two equations, we find:

(h− h′∗) 〈h′ |h 〉 = 0 . (1.47)

So setting h′ = h, we have
(h− h∗) ‖h‖ = 0 .

Since ‖h‖ 6= 0, h = h∗. Thus h is real. Since all the eigenvalues are real, we have from (1.47),

(h− h′) 〈h′ |h 〉 = 0 . (1.48)

Thus, if h 6= h′, then 〈h′ |h 〉 = 0, and is orthogonal. The proof of orthogonality of the eigenvectors fails if
there is more that one eigenvector with the same eigenvalue (we call this degenerate eigenvalues). However,
by the Gram-Schmidt construction, that we can always find orthogonal eigenvectors among the eigenvectors
with degenerate eigenvalues. Since ‖h‖ 6= 0, it is always possible to normalize them. Thus we can assume
that hermitian operators have real and orthonormal eigenvectors, 〈h′ |h 〉 = δh′h.

Theorem 4 (Unitary operators). The eigenvalues of unitary operators have unit magnitude and the eigen-
vectors can be made orthogonal.

Proof. The eigenvalue equation for Unitary operators is written:

U |u 〉 = u |u 〉 (1.49)

Unitary operators obey U†U = 1, so we have:

〈u′ |U†U u 〉 = 〈U u′ |U u 〉 = u′∗u 〈u′ |u 〉 = 〈u′ |u 〉 .

So we find:
(1− u′∗u)〈u′ |u 〉 = 0 .

Therefore, if u′ = u, (1− |u|2)‖u‖ = 0, and we must have |u| = 1. This means we can write u = eiθ, where θ
is real. In addition if u 6= u′, then the eigenvectors are orthogonal, 〈u′ |u 〉 = 0. Degenerate eigenvalues can
again be orthonormalized by the Gram-Schmidt method.

Remark 8 (finding eigenvalues and eigenvectors). For finite systems, we can find eigenvalues and eigenvectors
of an operator A by solving a set of linear equations. Let | ei 〉, i = 1, . . . , N be an orthonormal basis in V.
Then we can write:

| a 〉 =
N∑

i=1

| ei 〉 ci(a) , ci(α) = 〈 ei | a 〉 . (1.50)

Then Eq. (1.45), becomes:
N∑

j=1

Aij cj(a) = a ci(a) , for i = 1, . . . , N , (1.51)

c© 2009 John F. Dawson, all rights reserved. 12
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where Aij = 〈 ei |A | ej 〉. We write A as the matrix with elements Aij . By Cramer’s rule[2][p. 92], Eq. (1.51)
has nontrivial solutions if

f(a) = det[A− aI ] = 0 . (1.52)

f(a) is a polynomial in a of degree N , and is called the characteristic polynomial. In general, it has N
complex roots, some of which may be the same. We call the number of multiple roots the degeneracy of
the root. If we call all these roots an then we can write formally:

f(a) =
N∑

n=1

cn a
n =

N∏

n=1

(a− an) = 0 , (1.53)

For Hermitian operators, these roots are all real. For unitary operators, they are complex with unit mag-
nitude. The coefficients ci(a) can be found for each eigenvalue from the linear set of equations (1.51). If
there are no multiple roots, the N eigenvectors so found are orthogonal and span V. For the case of multiple
roots, it is possible to still find N linearly independent eigenvectors and orthorgonalize them by the Schmidt
procedure. Thus we can assume that we can construct, by these methods, a complete set of orthonormal
vectors that span the vector space.

1.4.2 Non-orthogonal basis vectors

Let us examine in this section how to write matrix elements of operators using non-orthogonal basis sets.
First let A be a linear operator satisfying:

A | v 〉 = |u 〉 (1.54)

Expanding the vectors in terms of the co-variant basis set | ei 〉, we have:

A | v 〉 =
∑

j

vj A | ej 〉 = |u 〉 =
∑

i

ui | ei 〉 , (1.55)

Right operating on this by the bra 〈 ei | gives:
∑

j

Aij v
j = ui , where Aij = 〈 ei |Aej 〉 ≡ 〈 ei |A | ej 〉 . (1.56)

This can be interpreted as matrix multiplication of a square matrix Aij with the column matrix vj to give
the column matrix ui. Similarly, expanding the vectors in terms of the contra-variant basis vectors | ei 〉 gives
a corresponding expression:

A | v 〉 =
∑

j

vj A | ej 〉 = |u 〉 =
∑

i

ui | ei 〉 , (1.57)

Right operating again on this expression by 〈 ei | gives:
∑

j

Ai
j vj = ui , where Ai

j = 〈 ei |Aej 〉 ≡ 〈 ei |A | ej 〉 . (1.58)

This can also be interpreted as matrix multiplication of a square matrix Aij with the column matrix vj to
give the column matrix ui. One can easily check that

Ai
j =

∑

i′j′

gii′ A
i′
j′ g

j′j . (1.59)

Ai
j and Aij are not the same matrix. We can also define matrices Aij and Aij by:

Aij = 〈 ei |A | ej 〉 , and Aij = 〈 ei |A | ej 〉 . (1.60)
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These matrices are related to the others by raising or lowering indices using gii′ and gjj
′
. For example, we

have:
Aij =

∑

i′

gii′A
i′
j =

∑

j′

Ai
j′gj′j =

∑

i′j′

gii′A
i′j′gj′j . (1.61)

Example 9 (Adjoint). From definition (6) of the adjoint of linear operators, we find that matrix elements
in non-orthogonal basis sets are given by:

[L†]ij = [Lji]∗ , [L†]ij = [Lij ]∗ (1.62)

[L†]ij = [Lij ]∗ [L†]ij = [Lji]∗ .

Only the first and last of these matrix forms give a definition of adjoint matrix that relate the complex
conjugate of a matrix to the transpose of the same matrix. The second and third form relate complex
conjugates of matrices with upper and lower indices to the transpose of matrices with lower and upper
indices, and do not even refer to the same matrix.

Example 10 (Hermitian operators). For Hermitian operators such that Ĥ† = Ĥ, we find:

Hij = [Hji]∗ , Hi
j = [Hi

j ]∗ (1.63)

Hi
j = [Hi

j ]∗ Hij = [Hji]∗ .

Example 11 (P∞). Returning to our example of continuous functions defined on the interval [−1, 1] and
using the non-orthogonal basis P∞, as defined in Example 8 above, we define an operator X which is
multiplication of functions in the vector space by x. We take the co-variant basis vectors to be given by
Eq. (1.30). On this basis set, the X operation is easily described as:

X | ei 〉 = | ei+1 〉 , for i = 0, 1, . . . ,∞. (1.64)

So we easily construct the mixed tensor Xi
j :

Xi
j = 〈 ei |X | ej 〉 = 〈 ei | ej+1 〉 = δi,j+1 =




0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .



. (1.65)

However, there are three other tensors we can write down. For example, the matrix Xij is given by:

Xij = 〈 ei |X | ej 〉 = 〈 ei | ej+1 〉 = gi,j+1 =




0 2/3 0 2/5 · · ·
2/3 0 2/5 0 · · ·
0 2/5 0 2/7 · · ·

2/5 0 2/7 0 · · ·
...

...
...

...
. . .



. (1.66)

This matrix obeys X∗ji = Xij , and is clearly Hermitian. Since we (now) know that X is a hermitian operator,
we can deduce that:

Xi
j = [Xi

j ]∗ =




0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .



, (1.67)

without knowing what the contra-variant vectors are.
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1.4.3 Projection operators:

Divide the vector space into two parts: V = V1 ⊕V2. (This is called the direct sum.) Then any vector | a 〉
can be written as a sum of two vectors | a 〉 = | a1 〉+ | a2 〉, where | a1 〉 ∈ V1 and | a2 〉 ∈ V2. Then we define
projection operators P1 and P2 by their action on an arbitrary vector | a 〉 ∈ V:

P1 | a 〉 = | a1 〉 , | a1 〉 ∈ V1 ,

P2 | a 〉 = | a2 〉 , | a2 〉 ∈ V2 , (1.68)

Obviously, P1 +P2 = 1, and P 2
1 = P1, P †1 = P1, with similar relations for P2. We can continue to divide the

vector space into a maximum of N divisions. In fact, let | ei 〉 for i = 1, . . . , N be an orthonormal basis for
V. Then

Pi = | ei 〉〈 ei | , PiPj = δijPi ,

N∑

i=1

Pi = 1 , (1.69)

with Pi 6= 0, divides the vector space up into a direct sum of one-dimensional parts:

V = V1 ⊕ V2 ⊕ · · · ⊕ VN .

The action of Pi on an arbitrary vector | b 〉 gives

Pi | b 〉 = | ei 〉 〈 ei | b 〉 .

1.4.4 Spectral representations:

Let us now write the eigenvalue equation (1.45) for a normal operator in the following way:

A| aij 〉 = ai | aij 〉 , (1.70)
where i = 1, . . . , n, with n ≤ N,

and j = 1, . . . ,mi. (1.71)

Here ai are the mi-fold degenerate eigenvalues of A. From our discussion in Section 1.4.1, we conclude that
these eigenvectors are all orthonormal:

〈 aij | ai′j′ 〉 = δi,i′ δj,j′ , (1.72)

and span the space. Thus for any vector | b 〉, we can write:

| b 〉 =
n∑

i=1

mi∑

j=1

| aij 〉 cij(b) , where cij(b) = 〈 aij | b 〉 . (1.73)

Inserting cij(b) back into the first of Eq. (1.73) gives:

| b 〉 =
n∑

i=1

{mi∑

j=1

| aij 〉〈 aij |
}
| b 〉 =

n∑

i=1

Pi | b 〉 . (1.74)

Here we define a projection operator by:

Pi =
mi∑

j=1

| aij 〉〈 aij | , (1.75)

with the properties:

PiPj = δijPi ,

n∑

i=1

Pi = 1 . (1.76)
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Eq. (1.76) is called the completeness statement. From Eq. (1.70), we find the spectral representation
of the operator A:

A =
n∑

i=1

ai Pi , (1.77)

Matrix elements of a projection operator in an arbitrary basis | ei 〉 are defined by:

(Pk )ij = 〈 ei |Pk | ej 〉 =
mk∑

l=1

〈 ei | akl 〉〈 akl | ej 〉 .

The trace of the projection operator matrix is then easily found to be:

Tr[Pk ] =
N∑

i=1

mk∑

l=1

〈 ei | akl 〉〈 akl | ei 〉 =
mk∑

l=1

{ N∑

i=1

〈 akl | ei 〉〈 ei | akl 〉
}

= mk . (1.78)

Now since
Tr[PiPj ] = δij Tr[Pi ] = mi δij , (1.79)

We can invert Eq. (1.77) to find the coefficient ai in the spectral expansion:

ai = Tr[APi ]/mi . (1.80)

The following two lemmas are given without proof.

Lemma 1. For any power of a normal operator A, we have:

Ak =
n∑

i=1

aki Pi . (1.81)

So for any function f(A) of the operator A which we can write as a power series, we find:

f(A) =
∑

k

fkA
k =

n∑

i=1

{∑

k

fka
k
i

}
Pi =

n∑

i=1

f(ai)Pi .

Lemma 2. For a normal operator A, we can write:

f(A) =
∑

i

ck Pi , with ck = Tr[ f(A)Pi ]/mi . (1.82)

Note that the sum in Eq. (1.82) contains only n terms. This is the minimum number of terms in the
expansion.

We end our discussion in this section with some examples.

Example 12 (Hermitian operators). A Hermitian H operator has the spectral representation:

H =
∑

i

hi Pi , Pi = |hi 〉〈hi | . (1.83)

Example 13 (Unitary operators). A unitary operator U has the spectral representation:

U =
∑

i

uiPi , Pi = |ui 〉〈ui | .

with ui = eiθi .

Example 14 (Inverse). If A has an orthogonal and complete set of eigenvectors | ai 〉, i = 1, . . . , N , then
the inverse of A− λ I has the spectral representation:

(A− λ I )−1 =
∑

i

Pi
ai − λ

,

for λ 6= ai for any i, and where Pi = | ai 〉〈 ai |.
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1.4.5 Basis transformations

Let | ei 〉 and | fi 〉, i = 1, . . . , N be two orthonormal and complete bases for V. Then the two basis sets are
related by:

| fi 〉 =
N∑

j=1

| ej 〉〈 ej | fi 〉 = U | ei 〉 . (1.84)

Here U is an operator which maps | ei 〉 into | fi 〉 for all i = 1, . . . , N . Multiplying (1.84) on the right by
〈 ei | and summing over i gives:

U =
N∑

i=1

| fi 〉〈 ei | . (1.85)

The matrix elements of U are the same in both bases:

Uij = 〈 ei |U | ej 〉 = 〈 fi |U | fj 〉 = 〈 ei | fj 〉 . (1.86)

The adjoint of U is:

U† =
N∑

i=1

| ei 〉〈 fi | .

One can easily check that U†U = UU† = 1. Thus basis transformations are unitary transformations. Unitary
transformations preserve lengths and angles. That is, if | a′ 〉 = U | a 〉 and | b′ 〉 = U | b 〉, then for unitary U ,

〈 a′ | b′ 〉 = 〈 a |U†U | b 〉 = 〈 a | b 〉 .

Unitary basis transformations are the quantum theory analog of the orthogonal transformation of the basis
vectors in a classical three-dimensional space coordinate systems which are related by a rotation of the
coordinate system.

Example 15 (Hermitian operators). We show here that Hermitian operators are diagonalized by unitary
transformations. Let the eigenvalue equation for the the Hermitian operator H be given by:

H |hi 〉 = hi |hi 〉 , for i = 1, . . . , N .

In the spectral representation, H is given by:

H =
N∑

i=1

hi |hi 〉〈hi | , (1.87)

Now let

U =
N∑

i=1

|hi 〉〈 ei | , U† =
N∑

i=1

| ei 〉〈hi | , (1.88)

so that Uij = 〈 ei |hj 〉. Then we define:

Hd = U†H U =
N∑

i,j,k=1

hk| ei 〉〈hi |hk 〉〈hk |hj 〉〈 ej | =
N∑

j=1

hj | ej 〉〈 ej | .

That is, Hd is diagonal in the original basis with the eigenvalues of H on the diagonal. Hd is not the spectral
representation of H. Eq. (1.88) shows that the matrix elements of U in the | ej 〉 basis is made up of columns
of the eigenvectors of H.
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1.4.6 Commuting operators

We start out this section with the important theorem:

Theorem 5 (Commuting operators). Two Hermitian operators A and B have common eigenvectors if and
only if they commute.

Proof. First, assume that A and B have common eigenvectors, which we call | ci 〉:

A | ci 〉 = ai | ci 〉 ,
B | ci 〉 = bi | ci 〉 ,

with i = 1, 2, . . . , N . Then
[A,B ] | ci 〉 = ( aibi − biai ) | ci 〉 = 0 ,

since ai and bi are numbers and commute.
Next, assume that A and B commute. Start with the basis in which B is diagonal, and let B | bi 〉 = bi | bi 〉,

with bi real. Then taking matrix elements of the commutation relation, we find:

〈 bi | [A,B ] | bj 〉 = (bj − bi) 〈 bi |A| bj 〉 = 0 .

So if bi 6= bj , then A is diagonal in the representation in which B is diagonal. If bi = bj , then we can
diagonalize A in the subspace of the degenerate eigenvalues of B without changing the eigenvalue of B. So,
in this way, we can obtain common eigenvectors of both A and B.

Remark 9. We denote the common eigenvectors by | a, b 〉 and write:

A | a, b 〉 = a | a, b 〉 ,
B | a, b 〉 = b | a, b 〉 .

Lemma 3. For two Hermitian operators A and B with the spectral representations,

A =
n∑

i=1

ai P
(A)
i , and B =

n∑

i=1

bi P
(B)
i ,

then [P (A)
i , P

(B)
k ] = 0 if and only if [A,B ] = 0.

Note that A and B must have the same degree of degeneracy.

Proof. First of all, it is obvious that if [P (A)
i , P

(B)
k ] = 0, then [A,B ] = 0. For the reverse, we find:

Example 16 (Serot). We will illustrate how to find common eigenvectors of commuting Hermitian operators
by an example.4 Consider the two matrices

A =




5 −1 2
−1 5 2
2 2 2


 and B =




2 −1 −1
−1 2 −1
−1 −1 2


 .

Then

AB = BA =




9 −9 0
−9 9 0
0 0 0


 , so [A,B ] = 0 , (1.89)

4Taken from Serot [1, pp. 32–36]
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and indeed these two matrices have common eigenvectors. So let us first diagonalize B. The secular equation
is: ∣∣∣∣∣∣

2− λ −1 −1
−1 2− λ −1
−1 −1 2− λ

∣∣∣∣∣∣
= −λ3 + 6λ2 − pλ = −λ(3− λ)(3− λ) = 0 , (1.90)

so the eigenvalues are λ = 0, 3, and 3. For λ = 0, the eigenvector equations are:

2a− b− c = 0 ,
−a+ 2b− c = 0 ,
−a− b+ 2c = 0 ,

(1.91)

the solution of which is a = b = c, so

| b1 〉 =
1√
3




1
1
1


 . (1.92)

For λ = 3, there is only one independent eigenvector equation:

a+ b+ c = 0 , (1.93)

which means that c = −a− b. Then a general solution is given by:

| b′ 〉 =




a
b

−a− b


 = a




1
0
−1


+ b




0
1
−1


 = a | b′2 〉+ b | b′3 〉 . (1.94)

Now | b′2 〉 and | b′3 〉 are linearly independent but not orthogonal. So use Gram-Schmidt. First take

| b2 〉 =
1√
2




1
0
−1


 , (1.95)

which is normalized and orthogonal to | b1 〉. Then the Gram-Schmidt procedure is to construct a vector
| b′′3 〉 by writing:

| b′′3 〉 = | b′3 〉 − | b2 〉〈 b2 | b′3 〉

=




0
1
−1


− 1

2




1
0
−1


 =



−1/2

1
−1/2


 = −1

2




1
−2
1


 ,

(1.96)

which is now orthogonal to | b2 〉 and | b1 〉. Normalizing this vector, we find:

| b3 〉 =
1√
6




1
−2
1


 . (1.97)

The phase of these vectors is arbitrary, and will not matter in the end. Putting these eigenvectors into
columns in a matrix, we find that the unitary matrix:

UB =
1√
6



√

2
√

3 1√
2 0 −2√
2 −

√
3 1


 ,
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diagonalizes the matrix B. That is:

Bd = U†B B UB =




0 0 0
0 3 0
0 0 3


 .

The next step is to compute the matrix A in the basis of the eigenvectors of B. That is:

A′ = U†B AUB =
1
2




12 0 0
0 3 3

√
3

0 3
√

3 9


 .

Note that this matrix is now block diagonal. We see by inspection that one eigenvalue of this matrix is 6
with eigenvector:

| a′1 〉 =




1
0
0


 . (1.98)

The other eigenvectors and eigenvalues can be found by diagonalizing the 2× 2 block. We find:
∣∣∣∣
3/2− λ 3

√
3/2

3
√

3/2 9/2− λ

∣∣∣∣ = λ(λ− 6) = 0 . (1.99)

The λ = 0 and 6 eigenvectors of A′ are then given by:

| a′2 〉 =
1
2




0√
3
−1


 , and | a′3 〉 =

1
2




0
1√
3


 . (1.100)

Again putting the eigenvectors associated with these eigenvalues into a unitary matrix, we have:

UA′ =
1
2




2 0 0
0
√

3 1
0 −1

√
3


 .

Then

Ad = U†A′ A
′ UA′ =




6 0 0
0 0 0
0 0 6


 , (1.101)

which brings A′ into diagonal form. So we define

U = UB UA′ =
1√
6



√

2 1
√

3√
2 1 −

√
3√

2 −2 0


 , (1.102)

the columns of which give the three eigenvectors. Now this matrix with bring both A and B into diagonal
form. We find:

Ad = U†AU =




6 0 0
0 0 0
0 0 6


 and Bd = U†B U =




0 0 0
0 3 0
0 0 3


 . (1.103)

Note that both A and B have degenerate eigenvalues. The common eigenvectors, which we label | ab 〉 where
a and b are the eigenvalues of A and B, are given by:

| 6, 0 〉 =
1√
3




1
1
1


 , | 0, 3 〉 =

1√
6




1
1
−2


 , | 6, 3 〉 =

1√
2




1
−1
0


 ,
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It is easy to check that these eigenvector are common eigenvector of both A and B. Note that there is no
common eigenvector with eigenvalues (0, 0), even though these are possible eigenvalues of A and B.

The spectral representation of Ad and Bd is given by:

Ad = 0P (A)
d 0 + 6P (A)

d 6 , Bd = 0P (B)
d 0 + 3P (B)

d 3 . (1.104)

where the projection operators in the common diagonal basis are given by:

P
(A)
d 0 =




0 0 0
0 1 0
0 0 0


 = | 2 〉〈 2 | , P

(A)
d 6 =




1 0 0
0 0 0
0 0 1


 = | 1 〉〈 1 |+ | 3 〉〈 3 | ,

P
(B)
d 0 =




1 0 0
0 0 0
0 0 0


 = | 1 〉〈 1 | , P

(B)
d 3 =




0 0 0
0 1 0
0 0 1


 = | 2 〉〈 2 |+ | 3 〉〈 3 | .

Products of the projection operators for Ad and Bd are given by:

P
(A)
d 6 P

(B)
d 0 =




1 0 0
0 0 0
0 0 0


 = | 1 〉〈 1 | = P

(B)
d 0 , P

(A)
d 0 P

(B)
d 3 =




0 0 0
0 1 0
0 0 0


 = | 2 〉〈 2 | = P

(A)
d 0 ,

P
(A)
d 6 P

(B)
d 3 =




0 0 0
0 0 0
0 0 1


 = | 3 〉〈 3 | , P

(A)
d 0 P

(B)
d 0 = 0 .

Theorem 6 (Normal operators). A linear operator can be brought to diagonal form by a unitary transfor-
mation if and only if it is normal.

Proof. We start by noting that any linear operator A can be written as: A = B + iC, with B and C
Hermitian. Now suppose that A is normal. Then [A,A†] = 2i[C,B] = 0. So by Theorem 5, B and C can be
simultaneously diagonalized and brought to diagonal form. Then A can be diagonalized also by the common
eigenvectors of B and C.

Now suppose A can be diagonalized by a unitary transformation U . Then U†AU = Ad. So we find:

[A,A†] = [U Ad U†, U A
†
d U
† ] = U [Ad, A∗d ]U† = 0 ,

since a diagonal operator always commutes with it’s complex conjugate.

We end this section with some results concerning determinates and traces. The results are true for
matrices. For operators in general, the results are “symbolic” and lack mathematical rigor, but can be
understood in terms of eigenvector expansions. We offer the following relations for normal operators, without
proof.

Lemma 4.

det[AB ] = det[BA ] = det[A ] det[B ] ,
Tr[A+B ] = Tr[A ] + Tr[B ] ,

Tr[AB ] = Tr[BA ] .

Lemma 5. For unitary operators, det[U ] = ±1.

Lemma 6. If A is a normal operator,

det[A ] =
∏

i

ai , Tr[A ] =
∑

i

ai ,

det[A ] = exp[ Tr[ ln{A } ] ] .

c© 2009 John F. Dawson, all rights reserved. 21



1.5. INFINITE DIMENSIONAL SPACES CHAPTER 1. LINEAR ALGEBRA

1.4.7 Maximal sets of commuting operators

We have seen that if a given Hermitian operator A1 in our vector space V has no degeneracies, then its
eigenvectors span the space. However if there are degenerate eigenvalues of A1, it is always possible to find
a second operator A2 which commutes with A1 and which has different eigenvalues of A2 for the degenerate
states of A1. We showed this in our example above. There could be additional degeneracies in these
common eigenvalues of both A1 and A2, in which case it must be possible to find a third operator A3 which
has different eigenvalues for these common degenerate eigenvectors of both A1 and A2. Continuing in this
way, we see that in general we might need a set of M commuting Hermitian operators: A1, A2, . . . , AM , all
of which commute, and which can be used to specify uniquely the states which span V.

In this way, we can, in principle, obtain a maximal set of commuting observables which span the vector
space, | a1, a2, . . . , aM 〉, such that

〈 a′1, a′2, . . . , a′M | a1, a2, . . . , aM 〉 = δa′1,a1δa′2,a2 · · · δa′M ,aM
,

∑

a1,a2···aM

| a1, a2, . . . , aM 〉〈 a1, a2, . . . , aM | = 1 .

For any given system, it is not obvious how many observables constitute a maximal set, or how exactly to
find them. We will see that degenerate eigenvalues for an operator are a result of symmetries inherent in the
operators, and these symmetries may not be obvious. We study symmetries in the next chapter.

1.5 Infinite dimensional spaces

In the study of the quantum mechanics of a single particle, it is useful to have a concept of the measurement
of the position or momentum of a particle. For one-dimensional quantum mechanics, this means that we
should define Hermitian operators X and P in our vector space which have continuous real eigenvalues. We
write these eigenvalue equations as:

X |x 〉 = x |x 〉 , −∞ ≤ x ≤ +∞ , (1.105)
P | p 〉 = p | p 〉 , −∞ ≤ p ≤ +∞ . (1.106)

There are an infinite number of these basis vectors.5 The inner product of the coordinate and momentum
vectors are defined using Dirac delta-functions. We take them to be:

〈x |x′ 〉 = δ(x− x′) , (1.107)
〈 p | p′ 〉 = (2π~) δ(p− p′) . (1.108)

Note that these vectors are not normalized, but in fact: ‖x‖2 = 〈x |x 〉 =∞. This violates one of our basic
assumptions about the property of the inner product, and requires care in dealing with such concepts as
traces and determinants of operators. However, it is common practice to relax the normalization requirement
of the inner product to include this kind of Dirac delta-function normalization. When we do so, the vector
space is called “rigged.”

When we study the canonical quantization methods in a later chapter, we will find that X and P , if
they are to describe the position and momentum of a single particle, do not commute, and so constitute
alternative descriptions of the particle. In fact, we will find that:

[X,P ] = i ~ . (1.109)

Thus the kets |x 〉 and | p 〉 are two different basis sets for a vector space describing a single particle. So let
the vector |ψ 〉 describe the state of the particle. Then we can expand |ψ 〉 in terms of either of these two
basis vectors:

|ψ 〉 =
∫

dx |x 〉ψ(x) =
∫

dp
(2π~)

| p 〉 ψ̃(p) , (1.110)

5x and p have units also!
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where
ψ(x) = 〈x |ψ 〉 , ψ̃(p) = 〈 p |ψ 〉 . (1.111)

Since in quantum mechanics, we interpret the probability of finding the particle somewhere as the length of
the vector |ψ 〉, we must have:

1 = ‖ψ‖2 = 〈ψ |ψ 〉 =
∫

dx |ψ(x)|2 =
∫

dp
(2π~)

|ψ̃(p)|2 . (1.112)

A note on units here. |ψ 〉 has no units. According to our conventions for the expansion of a general vector,
the amplitude ψ(x) has units of 1/

√
L and, since ~ has units of ML2/T , the amplitude ψ̃(p) has units of√

L. This means that |x 〉 as units of 1/
√
L and | p 〉 has units of

√
L. The operator X has units of L and

the operator P units of momentum (ML2/T 2). These choices of units are just conventions; other choices
work just as well.

1.5.1 Translation of the coordinate system

Suppose a coordinate frame Σ′ is displaced, in one dimension, along the x-axis from a fixed frame Σ by an
amount a. Then a point P is described by the coordinate x′ in frame Σ′ and by a point x = x′+a in frame Σ.
In this section, we want to find a unitary quantum operator which, when acting on the quantum coordinate
operator X, will displace the quantum operator by an amount a. Using the commutation relations (1.109),
we can construct such a unitary operator which does this displacement on quantum operators. We define
U(a) by:

U(a) = e−iPa/~ , (1.113)

where P is the momentum operator, then using Eq. (B.14) in appendix ??, we find:

U†(a)X U(a) = X + [ iPa/~, X ] +
1
2

[ iPa/~, [ iPa/~, X ] ] + · · ·
= X + a ,

(1.114)

and therefore we can write:
X U(a) = U(a) (X + a ) .

So the operation of X U(a) on the ket |x′ 〉 gives:

X {U(a) |x′ 〉 } = U(a) (X + a ) |x′ 〉 = (x′ + a ) {U(a) |x′ 〉 } = x {U(a) |x′ 〉 } . (1.115)

In other words, U(a) |x′ 〉 is an eigenvector of the operator X with eigenvalue x. That is:

U(a) |x′ 〉 = |x 〉 , or |x′ 〉 = U†(a) |x 〉 . (1.116)

U(a) is called a displacement operator. Then

ψ(x′) = 〈x′ |ψ 〉 = 〈x |U(a) |ψ 〉 = 〈x |ψ′ 〉 = ψ′(x) , (1.117)

where |ψ′ 〉 = U(a) |ψ 〉. So the function ψ′(x) in the displaced coordinate system is defined by the relation:

ψ′(x) = ψ(x′) = ψ(x− a) . (1.118)

For infinitesimal displacements by an amount a = ∆x, the displacement operator is given by the expansion:

U(∆x) = 1− i P∆x/~ + · · · . (1.119)
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Putting this into Eq. (1.117), we find:

ψ(x−∆x) = ψ(x)− ∂ψ(x)
∂x

∆x+ · · ·

= 〈x |
[

1− i

~
P ∆x+ · · ·

]
|ψ 〉 = ψ(x)− i

~
〈x |P |ψ 〉∆x+ · · · ,

(1.120)

so

〈x |P |ψ 〉 =
~
i

∂ψ(x)
∂x

. (1.121)

That is, the operator P acts as a derivative on a function in coordinate space.
We can also use these results to find the unitary connection between the |x 〉 and | p 〉 basis sets. We start

by noting that Eq. (1.116) can be used to find |x 〉 for any x, given the ket | 0 〉. That is, put x′ = 0 so that
a = x. This gives:

|x 〉 = U(x) | 0 〉 = e−iPx/~ | 0 〉 . (1.122)

so that:
〈 p |x 〉 = e−ipx/~ 〈 p | 0 〉 = e−ipx/~ . (1.123)

Here we have set 〈 p | 0 〉 = 1. This is an arbitrary p-dependent normalization factor. This choice of normal-
ization then gives:

〈x | p 〉 = eipx/~ , (1.124)

so that:

ψ(x) = 〈x |ψ 〉 =
∫

dp
(2π~)

〈x | p 〉 〈 p |ψ 〉 =
∫

dp
(2π~)

eipx/~ ψ̃(p) , (1.125)

which is just a Fourier transform of the function ψ(x).

1.6 Measurement

The state of a system is described by a vector |ψ 〉 in a vector space V. Any vector that differs from |ψ 〉
by a phase describes the same physical state. Observables are represented in quantum theory by Hermitian
operators acting on vectors in V. For example, observables for a single particle are the position, momentum,
and spin. The values of these observable operators that can be measured are the eigenvalues and the
probabilities of observing them for the state |ψ 〉 are given by Pa = |〈 a |ψ 〉|2. The probability of finding the
particle with any value of the observables is called the expectation value, and is given by:

〈A 〉 =
∑

a

a |〈 a |ψ 〉|2 = 〈ψ |A |ψ 〉 .

The expectation value of A2 is given by:

〈A2 〉 =
∑

a

a2 |〈 a |ψ 〉|2 = 〈ψ |A2 |ψ 〉 ,

with a similar relation for any power of the observable A. The mean uncertainty ∆a in a measurement of A
is given by:

(∆a)2 =
∑

a

(a− 〈A 〉)2 |〈 a |ψ 〉|2 = 〈 (A− 〈A 〉)2 〉 = 〈A2 〉 − 〈A 〉2 .

It is possible to set up devices to prepare the system to be in a particular state. For example, in a Stern-
Gerlach type experiment, one can pass a beam, described by the state |ψ 〉 through a device, which we call
property A. The device then selects out beams with value a of the property A by blocking all other beams.
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The experiment is described in quantum mechanics by the action of a projection operator Pa = | a 〉〈 a | on
the initial state |ψ 〉:

Pa |ψ 〉 = | a 〉 〈 a |ψ 〉 .
The act of blocking all other beams puts the system in a known state | a 〉. For a second measurement of the
property B, we have:

PbPa|ψ 〉 = | b 〉〈 b | a 〉〈 a |ψ 〉 ,
and so on, for any number of measurements. If properties A and B do not commute, the measurement of A
produces an eigenstate of A but the measurement of B puts the system into an eigenstate of B and erases
the effect of the measurement of A. If properties A and B commute, then there is a common eigenvector
| ab 〉 and a common projection operator: Pab = | ab 〉〈 ab | so that the experimental device can put the system
into a eigenstate of both A and B.

Example 17. Let us take A = X and B = P . Then since these two observables do not commute, then
cannot be measured simultaneously. That is a measurement of first X and then P yields:

Pp Px |ψ 〉 = | p 〉 〈 p |x 〉 〈x |ψ 〉 = |x 〉 e−ipx/~ ψ(x) , (1.126)

On the other hand, a measurement of first P and then X yields:

Px Pp |ψ 〉 = |x 〉 〈x | p 〉 〈 p |ψ 〉 = |x 〉 eipx/~ ψ̃(p) , (1.127)

an entirely different result than found in Eq. (1.126).

1.6.1 The uncertainty relation

Theorem 7 (Uncertainty principle). If A and B are two Hermitian operators and if [A,B ] = iC, then the
uncertainty of a common measurement of A and B for the state |ψ 〉 is given by:

(∆a) (∆b) ≥ |〈C 〉|/2 . (1.128)

Proof. We first put:
∆A = A− 〈A 〉 , ∆B = B − 〈B 〉 . (1.129)

Then using the Schwartz inequality, we find:

(∆a)2 (∆b)2 = 〈 (∆A)2 〉 〈 (∆B)2 〉
= ‖∆A|ψ 〉‖2 ‖∆B|ψ 〉‖2 ≥ |〈ψ |∆A∆B|ψ 〉|2 .

(1.130)

Using

∆A∆B =
1
2

[ ∆A∆B + ∆B∆A ] +
i

2
[ ∆A∆B −∆B∆A ]/i

=
1
2

[ ∆A∆B + ∆B∆A ] +
i

2
[A,B ]/i

=
1
2

[F + iC ] .

where F is given by:
F = ∆A∆B + ∆B∆A , (1.131)

So from (1.130), we find:

〈 (∆A)2 〉 〈 (∆B)2 〉 =
1
4

[〈F 〉2 + 〈C 〉2] ≥ 1
4
〈C 〉2 ,

or, ∆a∆b ≥ |〈C 〉|/2 ,

which proves the theorem.
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Remark 10. A state of minimum uncertainty in the measurements is reached if the following holds:

• ∆B |ψ 〉 = λ∆A |ψ 〉, and

• 〈F 〉 = 0,

where λ is some constant. From the first requirement, we find that:

〈∆A∆B 〉 = λ 〈∆A 〉2 = λ (∆a)2

〈∆B∆A 〉 = 〈∆B 〉2/λ = (∆b)2/λ .

So adding and subtracting these last two equations gives:

λ (∆a)2 +
(∆b)2

λ
= 〈F 〉 = 0 ,

λ (∆a)2 − (∆b)2

λ
= i〈C 〉 .

Thus we find that

λ = i
〈C 〉

2(∆a)2
= i

∆b
∆a

.

So the ket |ψ 〉 which produces the minimum uncertainty in the product of the variances is given by the
solution of:

{∆b∆A+ i∆a∆B}|ψ 〉 = 0 .

or
{∆bA+ i∆aB }|ψ 〉 = {∆b 〈A 〉+ i∆a 〈B 〉 }|ψ 〉 . (1.132)

That is, |ψ 〉 is an eigenvector of the non-hermitian operator D, given by:

D = ∆bA+ i∆aB ,

with complex eigenvalue d given by:
d = ∆b 〈A 〉+ i∆a 〈B 〉 .

We have D|ψ 〉 = d|ψ 〉. This state ψ is called a “coherent state” of the operators A and B.

Example 18. For the case when A = X and B = P , with [X,P ] = i~. The minimum wave packet has
∆x∆p = ~/2. Then Eq. (1.132) becomes:

{∆pX + i∆xP } |ψ 〉 = {∆p x̄+ i∆x p̄ } |ψ 〉 , (1.133)

where x̄ = 〈X 〉 and p̄ = 〈P 〉. Operating on this equation on the left by 〈x | gives the differential equation:
{

∆p x+ ~ ∆x
d

dx

}
ψ(x) =

{
∆p x̄+ i∆x p̄

}
ψ(x) ,

which can be rearranged to give:
{
d

dx
+
[
x− x̄

2 (∆x)2
− ip̄

~

]}
ψ(x) = 0 ,

the solution of which is:

ψ(x) = N exp
{
− (x− x̄)2

4 (∆x)2
+
i

~
p̄ x

}
, (1.134)

where N is a normalization constant. Thus the wave function for the minimum uncertainty in position and
momentum of the particle is a Gaussian wave packet.

c© 2009 John F. Dawson, all rights reserved. 26



REFERENCES 1.7. TIME IN NON-RELATIVISTIC QUANTUM MECHANICS

1.7 Time in non-relativistic quantum mechanics

Time plays a special role in non-relativistic quantum mechanics. All vectors in the vector space which
describe the physical system are functions of time. To put it another way, in non-relativistic quantum
mechanics, time is considered to be a base manifold of one real dimension (t), and a different vector space
V(t) is attached to this manifold at each value of the parameter t. Thus a vector describing the state of
the system at time t is written as |Ψ(t) 〉. A hermitian operator describing the property A for the vector
space at time t is written as A(t). Eigenvalues of this operator are written as ai and eigenvectors of the
operator are written as | ai, t 〉. Now one of Natures symmetries we want to preserve in a quantum theory is
the inability to measure absolute time. By this, we mean that an observer with a clock measuring a time t
does an experiment measuring property A with values ai and probabilities Pi(t) = | 〈ψ(t) | ai, t 〉 |2, then an
observer looking at the very same experiment but with a clock measuring a time t′ = t + τ must measure
exactly the same values ai with the same probabilities Pi(t′) = | 〈ψ(t′) | ai, t′ 〉 |2. Writing

|ψ(t′) 〉 = U(τ) |ψ(t) 〉 , and | ai, t′ 〉 = U(τ) | ai, t 〉 , (1.135)

we see that U(τ) must be either linear and unitary or anti-linear and anti-unitary. Wigner proved this in
the 1930’s. For the case of time translations, the operator is linear and unitary. For infinitesimal time
displacements ∆τ , the unitary operator representing this displacement is:

U(∆τ) = 1− i

~
H ∆τ + · · · . (1.136)

since U(∆τ) is unitary, we have introduced a factor of i/~ so as to make H Hermitian with units of energy.
From this point of view, ~ is a necessary factor. The negative sign is a convention. So from (1.135), we have:

〈x |U(∆τ) |ψ(t) 〉 = 〈x |
{

1− i

~
H ∆τ + · · ·

}
|ψ(t) 〉

= 〈x |ψ(t+ ∆τ) 〉 = ψ(x, t) +
∂ψ(x, t)
∂t

∆τ + · · ·
(1.137)

where we have set ψ(x, t) = 〈x |Ψ(t) 〉. So from (1.137), we find:

〈x |H |ψ(t) 〉 = i~
∂ψ(x, t)
∂t

. (1.138)

If we choose H to be the total energy:

H =
P 2

2m
+ V (X) , (1.139)

then (1.138) becomes: {
− ~2

2m
∂2

∂x2
+ V (x)

}
ψ(x, t) = i~

∂ψ(x, t)
∂t

, (1.140)

which is called Schrödinger’s equation. We will re-derive these results from different points of view in the
following chapters.

References

[1] B. D. Serot, “Introduction to Quantum Mchanics,” (May, 1997).

[2] M. L. Boaz, Mathematical Methods in the Physical Sciences (John Wiley & Sons, New York, NY, 1983).

c© 2009 John F. Dawson, all rights reserved. 27



REFERENCES REFERENCES

c© 2009 John F. Dawson, all rights reserved. 28



Chapter 2

Canonical quantization

We show in this chapter how to construct quantum theories from classical systems using canonical quanti-
zation postulates, which can be formulated for most physical systems of interest. The canonical formulation
is stated in the form of generalized coordinates and an action, from which equations of motion are obtained.
There is a relationship between cannonical transformations in classical physics and unitary transformations
in quantum mechanics, so that exactly which canonical variables are used in the quantization procedure are
irrelevant and give the same experimental results. So it is sometimes useful to try to find “good” classical
variables first before quantization of the system is carried out. By good, we mean variables that describe the
system in a simple way. Since in this method classical variables are replaced by non-commuting quantum
operators, there can be ordering ambiguities in carrying out a canonical quantization procedure. Quantum
mechanics does not tell us how to resolve such ambiguities, and so one must be resigned to realize that
quantum systems can be reduced to classical systems, but the opposite may not be true. Only experiment
will tell us what is the correct quantum realization of a system. In addition, some systems have no classical
analog at all! For example a Fermi oscillator has no classical description. In general quantum systems
containing anti -commuting operators belong to this class. Nevertheless, we shall see by some examples, that
canonical quantization is very often a useful tool to obtain the correct quantum mechanics, and so we will
study this method in this chapter.

2.1 Classical mechanics review

We start by considering a classical system, described by a Lagrangian which is a function of the generalized
coordinates qi(t), velocities, q̇i(t), for i = 1, . . . , n, and time. The classical action is given by:

S[q] =
∫
L(q, q̇, t) dt , (2.1)

and is a functional of the paths of the system qi(t) in q-space. We show in Section 2.1.1 below that Lagrange’s
equations of motion are obtained by requiring the action to be stationary under variation of the functional
form of the paths qi(t) in q-space, with no variation of the end points:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , for i = 1, . . . , n.

The canonical momentum pi, conjugate to qi, is given by:

pi =
∂L

∂q̇i
, for i = 1, . . . , n.
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The Hamiltonian is defined by the transformation,

H(q, p, t) =
n∑

i=1

piq̇i − L(q, q̇, t) ,

and Hamilton’s equations of motion are:

ṗi = −∂H
∂qi

= { pi, H } , q̇i = +
∂H

∂pi
= { qi, H } ,

for i = 1, . . . , n. These equations are equivalent to Newton’s laws. Here the curly brackets are classical
Poisson brackets, not to be confused with quantum mechanical anti-commutators, and are defined by:

{A,B } =
n∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi

)
.

In particular, we have:

{ qi, qj } = 0 , { pi, pj } = 0 , { qi, pj } = δij .

For any function F of p, q, and t, we have:

dF (p, q, t)
dt

=
n∑

i=1

(
∂F

∂qi
q̇i +

∂F

∂pi
ṗi

)
+
∂F

∂t
,

=
n∑

i=1

(
∂F

∂qi

∂H

∂pi
− ∂H

∂qi

∂F

∂pi

)
+
∂F

∂t
,

= {F,H }+
∂F

∂t
.

(2.2)

Constants of the motion are those for which dF (q, p, t)/dt = 0. In particular, for F = H, the Hamiltonian,
we find:

dH(q, p, t)
dt

=
∂H(q, p, t)

∂t
. (2.3)

Thus the Hamiltonian is a constant of the motion if H doesn’t dependent explicitly on time.

2.1.1 Symmetries of the action

We study in this section the consequences of classical symmetries of the action. We suppose that the action
is of the form given in Eq. (2.1). We consider infinitesimal variations of time and the generalized coordinates
of the form:

t′ = t+ δt(t) , q′i(t
′) = qi(t) + ∆qi(t) , (2.4)

where, to first order,

∆qi(t) = δqi(t) + q̇i(t) δt(t) , δqi(t) = q′i(t)− qi(t) . (2.5)

Here ∆qi(t) is the total change in qi(t) whereas δqi(t) is a change in functional form. To first order in δt,
that the differential time element dt changes by:

dt′ = ( 1 + δ̇t(t) ) dt . (2.6)
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The change in the action under this variation is given by:

∆S[q] =
∫
L(q′, q̇′, t′) dt′ −

∫
L(q, q̇, t) dt

=
∫ { ∂L

∂qi
∆qi(t) +

∂L

∂q̇i
∆q̇i(t) +

∂L

∂t
δt(t) + L δ̇t(t)

}
dt

=
∫ { ∂L

∂qi
δqi(t) +

∂L

∂q̇i
δq̇i(t) +

[ ∂L
∂qi

q̇i(t) +
∂L

∂q̇i
q̈i(t) +

∂L

∂t

]
δt(t) + L δ̇t(t)

}
dt

=
∫ { ∂L

∂qi
δqi(t) +

∂L

∂q̇i
δq̇i(t) +

dL
dt

δt(t) + L δ̇t(t)
}

dt

=
∫ { ∂L

∂qi
δqi(t) +

∂L

∂q̇i

d δqi(t)
dt

+
d
dt

[Lδt(t) ]
}

dt

=
∫ { [ ∂L

∂qi
− d

dt

( ∂L
∂q̇i

) ]
δqi(t) +

d
dt

[ ∂L
∂q̇i

δqi(t) + Lδt(t)
]}

dt

=
∫ { [ ∂L

∂qi
− d

dt

( ∂L
∂q̇i

) ]
δqi(t) +

d
dt

[ ∂L
∂q̇i

∆qi(t)−
( ∂L
∂q̇i

q̇i − L
)
δt(t)

]}
dt

=
∫ { [ ∂L

∂qi
− ṗi

]
δqi(t) +

d
dt

[
pi ∆qi(t)−H δt(t)

]}
dt

(2.7)

In the last line, we have set pi = ∂L/∂q̇i and H = piq̇i−L. So if we require the action to be stationary with
respect to changes δqi(t) in the functional form of the paths in q-space, with no variations at the end points
so that δqi(t1) = δqi(t2) = 0 and no changes in the time variable δt(t) = 0 so that ∆qi(t) = δqi(t), then the
second term above vanishes, and we find Lagrange’s equations of motion for the qi(t) variables:

ṗi =
∂L

∂qi
, for i = 1, . . . , n. (2.8)

On the other hand, if the qi(t) variables satisfy Lagrange’s equation, then the first term vanishes, and if the
action is invariant under the variations ∆qi(t) and δt(t), then the second term requires that

pi ∆qi(t)−H δt(t) , (2.9)

are constants of the motion. What we have shown here is that symmetries of the action lead to conservation
laws for the generators of the transformation.

Example 19. If the action is invariant under time translations, then δt(t) = δτ and ∆qi(t) = 0 for all i.
Then Eq. (2.9) shows that the Hamiltonian H is a constant of the motion. This is in agreement with our
statement that H is conserved if the Lagrangian does not depend explicitly on time.

If the action is invariant under space translation of all coordinates qi, then δt(t) = 0 and ∆qi(t) = δa for
all i. Then Eq. (2.9) shows that the total momentum of the system is conserved, and that

P =
∑

i

pi , (2.10)

is a constant of the motion.

2.1.2 Galilean transformations

Let us now specialize to a system of N particles of mass m described by n = 3N generalized cartesian
coordinates: x = (x1,x2, . . . ,xN ), and with interactions between the particles that depend only on the
magnitude of the distance between them. The Lagrangian for this system is given by:

L(x, ẋ) =
1
2

N∑

i=1

m | ẋi |2 −
1
2

N∑

i,j=1(j 6=i)
V (|xi − xj |) , (2.11)
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The canonical momentum is given by: pi = m ẋi, and the equations of motion are:

ṗi = −∇i

N∑

j=1(j 6=i)
V (|xi − xj |) , for i = 1, . . . , N . (2.12)

If V (x) depends only on the difference of coordinates of pairs of particles, the action for this Lagrangian is
stationary with respect to infinitesimal Galilean transformations of the form:

∆xi(t) = ( n̂× xi )∆θ + ∆v t+ ∆a , δt(t) = ∆τ , (2.13)

for all i = 1, . . . , N .

Exercise 1. Prove that the action for the many-particle Lagrangian (2.11) is invariant under Galiliean
transformations.

From (2.9) and (2.13), the conserved generators are then:

N∑

i=1

pi ·∆xi(t)−H δt(t) = −∆θ n̂ · J−∆v ·K + ∆a ·P−∆τ H , (2.14)

where

J =
N∑

i=1

xi × pi , K =
N∑

i=1

tpi , (2.15)

P =
N∑

i=1

pi , H =
N∑

i=1

pi · ẋi − L . (2.16)

So the set of ten classical generators (J,K,P, H) are all conserved if the action is invariant under Galilean
transformations.

2.2 Canonical quantization postulates

The canonical quantization method attempts to create a quantum system from the classical description
in terms of generalized coordinated, by associating the classical generalized coordinates and momenta to
Hermitian operators in a linear vector space. The associated operators are considered to be observables
of the system. These observable operators obey a commutation algebra. Possible states of the system are
described by vectors in this space. The dynamics of the system are found by mapping Poisson bracket
relations in the classical system to commutation relations in the quantum system. This mapping is best
described in what is called the Heisenberg picture, and is what we discuss in Section 2.2.1 below. A second
way of looking at the dynamics is called the Schrödinger picture, and is discussed Section 2.2.2.

In the Heisenberg picture, the observable operators change with time, moving in relation to the basis
vectors in the vector space. The state of the system, on the other hand, remains fixed. In the Schrödinger
picture, the observable operators remain fixed in space, but the state of the system changes with time. Both
pictures are equivalent and can be made to coincide at t = 0.

For the remainder of this chapter, we will assume that the Hamiltonian does not dependent explicitly on
time.

2.2.1 The Heisenberg picture

The canonical quantization postulates are easily stated in the Heisenberg picture using the Hamiltonian
formalism from classical mechanics. These postulates are:
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• The generalized coordinates qi(t) and canonical momenta pi(t) map to hermitian operators in quantum
mechanics:

qi(t) 7→ Qi(t) , pi(t) 7→ Pi(t) , (2.17)

• and the classical Poisson brackets map to commutators of operators in quantum mechanics, divided
by i~:

{ a(q, p, t), b(q, p, t) } 7→ [A(Q,P, t), B(Q,P, t) ]
i~

. (2.18)

In particular, at any time t, the operators Qi(t) and Pi(t) obey the equal time commutation relations:

[Qi(t), Qj(t) ] = 0 , [Pi(t), Pj(t) ] = 0 , [Qi(t), Pj(t) ] = i~ δij . (2.19)

The equations of motion in the Heisenberg representation are then described by the operator equations:

i~
dQi(t)

dt
= [Qi(t), H(Q(t), P (t), t) ] ,

i~
dPi(t)

dt
= [Pi(t), H(Q(t), P (t), t) ] .

(2.20)

Eqs. (2.20) were called by Dirac the Heisenberg equations of motion. Thus at any time t, we can simultan-
iously diagonalize all the Qi(t) operators and (separately) all the Pi(t) operators:

Qi(t) | q, t 〉 = qi | q, t 〉 ,
Pi(t) | p, t 〉 = pi | p, t 〉 ,

(2.21)

where | q, t 〉 and | p, t 〉 stand for the set:

| q, t 〉 = | q1, q2, . . . , qn, t 〉 ,
| p, t 〉 = | p1, p2, . . . , pn, t 〉 .

(2.22)

Here qi and pi are real, with ranges and normalizations decided by the physical situation. Note that the
eigenvectors of the operators Qi(t) and Pi(t) depend on time, but the eigenvalues do not. The eigenvectors
have the same spectrum for all time.

The construction of the the quantum mechanical Hamiltonian operator H(Q(t), P (t), t) from the classical
Hamiltonian is usually straightforward and leads to a Hermitian operator in most cases. However, there can
be ordering problems involving non-commuting operators, such as Q(t) and P (t), in which case some method
must be used to make the Hamiltonian Hermitian. We must require H to be Hermitian in order to conserve
probability.

It is easy to show that the solution of the Heisenberg equations of motion, Eqs. (2.20), is given by:

Qi(t) = U†(t)Qi U(t) , and Pi(t) = U†(t)Pi U(t) , (2.23)

where we have set Qi ≡ Qi(0) and Pi ≡ Pi(0) and where U(t), the time-development operator, is the solution
of the equation:

i~
∂U(t)
∂t

= U(t)H(Q(t), P (t), t) , and − i~ ∂U
†(t)
∂t

= H(Q(t), P (t), t)U†(t) , (2.24)

with U(0) = 1. But since
H(Q(t), P (t), t) = U†(t)H(Q,P, t)U(t) , (2.25)

so that U(t)H(Q(t), P (t), t) = H(Q,P, t)U(t), we can write Eqs. (2.24) as:

i~
∂U(t)
∂t

= H(Q,P, t)U(t) , and − i~ ∂U
†(t)
∂t

= U†(t)H(Q,P, t) . (2.26)
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Now since H(Q,P, t) is Hermitian, the time development operators are unitary:

d

dt
{U†(t)U(t)} = 0 , ⇒ U†(t)U(t) = 1 . (2.27)

That is probability is conserved even if energy is not. If the Hamiltonian is independent of time explicitly,
the time-development operator U(t) has a simple solution:

U(t) = e−iH(Q,P )t/~ , U†(t) = e+iH(Q,P )t/~ . (2.28)

We discuss the case when the Hamiltonian has an explicit time dependence in the next chapter in Section 4.2.
From the eigenvalue equations (2.21), we find:

U†(t)Qi U(t) | q, t 〉 = qi | q, t 〉 ,
U†(t)Pi U(t) | p, t 〉 = pi | p, t 〉 .

(2.29)

Operating on these equations on the left by U(t) gives:

Qi
{
U(t) | q, t 〉

}
= qi

{
U(t) | q, t 〉

}
,

Pi
{
U(t) | p, t 〉

}
= pi

{
U(t) | p, t 〉

}
,

(2.30)

which means that:

U(t) | q, t 〉 = | q, 0 〉 ≡ | q 〉 ,
U(t) | p, t 〉 = | p, 0 〉 ≡ | p 〉 , (2.31)

or

| q, t 〉 = U†(t) | q 〉 ,
| p, t 〉 = U†(t) | p 〉 ,

(2.32)

from which we find:

H(Q,P, t) | q, t 〉 = −i~ ∂

∂t
| q, t 〉 ,

H(Q,P, t) | p, t 〉 = −i~ ∂

∂t
| p, t 〉 .

(2.33)

So in the Heisenberg picture, the base vectors change in time according to the unitary operator U†(t).
Any operator function of Q(t), P (t) and t in the Heisenberg representation can be written as:

F (Q(t), P (t), t ) = F (U†(t)QU(t), U†(t)P U(t), t ) = U†(t)F (Q,P, t )U(t) .

Then, using Eqs. (2.24), the total time derivative of the operator F (Q(t), P (t), t ) is given by:

dF (Q(t), P (t), t )
dt

=
∂U†(t)
∂t

F (Q,P, t )U(t) + U†(t)
∂F (Q,P, t )

∂t
U(t) + U†(t)F (Q,P, t )

∂U(t)
∂t

=
{
U†(t)F (Q,P, t )U(t)H(Q(t), P (t), t)−H(Q(t), P (t), t)U†(t)F (Q,P, t )U(t)

}
/(i~)

+ U†(t)
∂F (Q,P, t )

∂t
U(t)

=
[F (Q(t), P (t), t ), H(Q(t), P (t), t) ]

i~
+
∂F (Q(t), P (t), t )

∂t
,

(2.34)

in agreement with the classical result, Eq. (2.2), with the arguments replaced by time-dependent operators
and the Poisson Bracket replaced by a commutator divided by i~. The last partial derivative term in (2.34)
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means to calculate the partial derivative of the explicit dependence of F (Q(t), P (t), t) with respect to time.
If we set F (Q(t), P (t), t) = H(Q(t), P (t)), we find that if the Hamiltonian is independent explicitly of time,

dH(Q(t), P (t))
dt

=
∂H(Q(t), P (t))

∂t
= 0 , (2.35)

and is conserved. That is H(Q(t), P (t)) = H(Q,P ) for all t. In this section, we have tried to be very careful
with the time-dependent arguments of the operators, and to distinguish between operators like Qi(t) and
Qi, the last of which is time-independent. Eqs. (2.24) and Eqs. (2.26) are examples of the importance of
making this distinction.

In the Heisenberg picture, the goal is to solve the equation of motion of the operators using Eqs. (2.20)
with initial values of the operators. This gives a complete description of the system, but very often, this is
a difficult job, and one resorts to finding equations of motion for average values of the operators and their
moments. However we will see another way to solve for the dynamics in the next section.

2.2.2 The Schrödinger picture

The probability amplitude of finding the system in the state ψ with coordinates q at time t is:

ψ(q, t) = 〈 q, t |ψ 〉 = 〈 q |U(t) |ψ 〉 = 〈 q |ψ(t) 〉 , (2.36)

where we have set:
|ψ(t) 〉 = U(t) |ψ 〉 . (2.37)

Differentiating both sides of this equation with respect to t, and using Eq. (2.26), gives Schrödinger’s equation:

H(Q,P, t) |ψ(t) 〉 = i~
∂

∂t
|ψ(t) 〉 . (2.38)

Here Q and P have no time-dependence. In the Schrödinger picture, the state vector |ψ(t) 〉 moves but the
operators Q and P and the base vectors remain stationary. The effort then is to solve Schrödinger’s equation
in this picture. The length of the state vector is conserved:

〈ψ(t) |ψ(t) 〉 = 〈ψ |U†(t)U(t) |ψ 〉 = 〈ψ |ψ 〉 , (2.39)

so that the probability of finding the system in some state is always unity. Note that Eq. (2.33) looks like
Schrödinger’s equation (2.38) but for a negative sign on the right-hand side. That is, it evolves “backward”
in time. Wave functions in coordinate and momentum space are defined by:

ψ(q, t) = 〈 q |U(t)|ψ 〉 = 〈 q |ψ(t) 〉 = 〈 q, t |ψ 〉 ,
ψ̃(p, t) = 〈 p |U(t)|ψ 〉 = 〈 p |ψ(t) 〉 = 〈 p, t |ψ 〉 .

For a Hamiltonian of the form:

H(Q,P ) =
P 2

2m
+ V (Q) , (2.40)

the coordinate representation wave function satisfies the differential equation:

{
− ~2

2m
∂2

∂q2
+ V (q)

}
ψ(q, t) = i~

∂ψ(q, t)
∂t

. (2.41)

When the Hamiltonian is independent explicitly of time, the solution for the state vector can be found in a
simple way in a representation of the eigenvectors of the Hamiltonian operator. For example, let |Ei 〉 be an
eigenvector of H(Q,P ) with eigenvalue Ei:

H(Q,P ) |Ei 〉 = Ei |Ei 〉 , (2.42)
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Then we find:

ψ(Ei, t) = 〈Ei |ψ(t) 〉 = 〈Ei | e−iHt/~ |ψ 〉 = e−iEit/~ 〈Ei |ψ 〉 = e−iEit/~ ψ(Ei) , (2.43)

where ψ(Ei) is the value of ψ(Ei, t) at t = 0. So the state vector in the energy representation just oscillates
with frequency e−iEit/~ for each energy mode. The vector itself is given by a sum over all energy eigenstates:

|ψ(t) 〉 =
∑

i

ψ(Ei) e−iEit/~ |Ei 〉 . (2.44)

The average value of operators can be found in both the Heisenberg and Schrödinger picture:

〈F (t) 〉ψ = 〈ψ |F (Q(t), P (t), t ) |ψ 〉 = 〈ψ(t) |F (Q,P, t) |ψ(t) 〉 .
In the Schrödinger picture, we solve the time-dependent Schrödinger’s equation for |ψ(t) 〉. In the coordinate
representation, this amounts to solving a partial differential equation. Since we know a lot about solutions
of partial differential equations, this method is sometimes easier to use than the Heisenberg picture. The
quantum dynamics of a single particle in three-dimensions is usually studied in the Schrödinger picture
whereas the dynamics of multiple particles are usually studied in the Heisenberg picture using quantum field
theory.

We now turn to some simple examples.

Example 20. Free particle: The Hamiltonian for a free particle with mass m in one-dimension is:

H(Q,P ) =
P 2

2m
, and [Q(t), P (t) ] = i~ . (2.45)

(i) We first solve this problem in the Heisenberg picture. The Heisenberg equations of motion give:

Q̇(t) = [Q(t), H ]/(i~) = P/(2m) ,

Ṗ (t) = [P (t), H ]/(i~) = 0 ,
(2.46)

which have the solutions:

P (t) = P0 , and Q(t) = Q0 +
P0

m
t . (2.47)

So the average values of position and momentum are given by:

〈P (t) 〉 = 〈P0 〉 = p0 ,

〈Q(t) 〉 = 〈Q0 〉+
〈P0 〉
m

t = q0 +
p0

m
t ,

(2.48)

as expected from the classical result. Now since

[Q(t), Q0 ] = [Q0 + P0
t

m
,Q0 ] = −i~ t

m
, (2.49)

we find from the minimum uncertainty principle (Theorem 7 on page 25) that

∆q(t) ∆q0 ≥
~ t
2m

, or ∆q(t) ≥ ~ t
2m∆q0

. (2.50)

So the uncertainty of the position of the particle grows with time for any initial state. The uncertainties
in momentum and position must be calculated from the relation:

( ∆p(t) )2 = 〈 (P (t)− p0 )2 〉 = 〈P 2(t) 〉 − p2
0 = 〈P 2

0 〉 − p2
0 = ( ∆p0 )2 ,

( ∆q(t) )2 = 〈 (Q(t)− q0 )2 〉 = 〈Q2(t) 〉 − q2
0 = 〈Q2

0 + (Q0P0 + P0Q0)
t

m
+ P 2

0

t2

m2
〉 − q2

0

= ( ∆q0 )2 + C
t

m
+
{

(∆p0)2 + p2
0

} t2

m2
,

(2.51)
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where C = 〈Q0P0 + P0Q0 〉. For a coherent state C = 2p0q0, so for a coherent state:

( ∆q(t) )2 = ( ∆q0 )2 − q2
0 +

(
q0 + p0

t

m

)2

+
(

∆p0
t

m

)2

≥
[ ~ t

2m∆q0

]2
, (2.52)

in agreement with (2.50). So the uncertainty in momentum does not change with time, but the
uncertainty in position always grows.

(ii) In the Schrödinger picture, we want to solve Schrödinger’s equation, given by:

P 2

2m
|ψ(t) 〉 = i~

d
dt
|ψ(t) 〉 .

It is simpler if we solve this equation in the momentum representation. Multiplying through on the
left by 〈 p |, we get:

p2

2m
ψ̃(p, t) = i~

∂ψ̃(p, t)
∂t

, (2.53)

where ψ̃(p, t) = 〈 p |ψ(t) 〉. The solution of (2.53) is:

ψ̃(p, t) = ψ̃(p, 0) exp
{
− i

~
p2

2m
t

}
. (2.54)

So the average value of the position is given by:

〈Q(t) 〉 =
−i
~

∫ ∞

−∞

dp
2π~

ψ̃∗(p, t)
∂ψ̃(p, t)
∂p

=
∫ ∞

−∞

dp
2π~

{
ψ̃∗(p, 0)

( −i
~

∂

∂p
ψ̃(p, 0)

)
+
p t

m
| ψ̃(p, 0) |2

}

= q0 +
p0

m
t ,

(2.55)

in agreement with the result (2.48) in the Heisenberg picture. We will not bother to calculate the
uncertainties in position and momentum in the Schrödinger equation.

2.3 Canonical transformations

The quantization rules we have used apply to any physical system described by canonical coordinates (with
some restrictions to be described below). However, we know that we can transform the classical system by
very general transformations to new coordinates which preserve Poisson brackets relations between the trans-
formed coordinates and momenta and the form of Hamilton’s equations. These canonical transformations to
new coordiantes provide a completely equivalent description of the classical system. Thus, we must be able to
quantize the system in any canonically equivalent system of coordinates, and obtain the same physics. What
we need to show is that for every classical canonical transformation, we can find a unitary transformation in
quantum mechanics which effects the change of coordinates. That is, if the classical transformation is given
by:

q′i = q′i(q, p, t) ,
p′i = p′i(q, p, t) , (2.56)

and is invertable, with (q, p) satisfying Hamilton’s equations,

q̇i = +
∂H(q, p, t)

∂pi
= {qi, H(q, p, t)}(q,p) ,

ṗi = −∂H(q, p, t)
∂qi

= {pi, H(q, p, t)}(q,p)
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for some Hamiltonian H(q, p, t), then the transformation (2.56) is canonical if we can find some new Hamil-
tonian H ′(q′, p′, t) such that the new set of coordinates and momentum (q′, p′) satisfy:

q̇′i =
∂q′i
∂qj

q̇j +
∂q′i
∂pj

ṗj +
∂q′i
∂t

= {q′i, H(q, p, t)}(q,p) +
∂q′i
∂t

= +
∂H ′(q′, p′, t)

∂p′i
= {q′i, H ′(q′, p′, t)}(q′,p′) ,

ṗ′i =
∂p′i
∂qj

q̇j +
∂p′i
∂pj

ṗj +
∂p′i
∂t

= {p′i, H(q, p, t)}(q,p) +
∂p′i
∂t

= −∂H
′(q′, p′, t)
∂q′i

= {p′i, H ′(q′, p′, t)}(q′,p′) .

The Poission bracket relations are preserved by canonical transformations:

{qi, pj}(q,p) = {q′i, p′j}(q′,p′) = δij .

Clearly, this cannot be done for any transformation. The restriction that we can find a new Hamiltonian
H ′(q′, p′, t) such that the new coordinates satisfy Hamilton’s equations is a severe one. We can prove that
for transformations which can be obtained from a “generating function,” it is always possible to find a
new Hamiltonian. In order to show this, we start by constructing the Lagrangians in the two systems of
coordinates:

L(q, q̇, t) = piq̇i −H(q, p, t) ,
L′(q′, q̇′, t) = p′iq̇

′
i −H ′(q′, p′, t) . (2.57)

Now L(q, q̇, t) and L′(q′, q̇′, t) must satisfy Lagrange’s equations in both systems, since Hamilton’s equations
are satisfied. Therefore they can differ by, at most, a total derivative of the coordinates q, q′, and t:

L(q, q̇, t) = L′(q′, q̇′, t) +
dW (q, q′, t)

dt
. (2.58)

So using (2.57) and (2.58), we find:

pi = +
∂W (q, q′, t)

∂qi
= pi(q, q′, t) , (2.59)

p′i = −∂W (q, q′, t)
∂q′i

= Pi(q, q′, t) , (2.60)

H ′(q′, p′, t) = H(q, p, t) +
∂W (q, q′, t)

∂t
. (2.61)

Inverting (2.59) and (2.60) gives the canonical transformation (2.56), with the new Hamiltonian (2.61).
Now let the corresponding unitary transformation in quantum mechanics be U(Q,P, t). Then the canon-

ical transformation (2.56) is, in quantum mechanics, given by the unitary transformation,

Q′i = U†(Q,P, t)Qi U(Q,P, t) ,

P ′i = U†(Q,P, t)Pi U(Q,P, t) .

Everything here is in the Heisenberg picture. It is easy to show that

U(Q′, P ′, t) = U(Q,P, t) .

So the eigenvectors of Q(t) and P (t) are transformed according to:

| q′, t 〉 = U†(Q,P, t) | q, t 〉 ,
| p′, t 〉 = U†(Q,P, t) | p, t 〉 ,
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So what we seek are the matrix elements,

U(q, q′, t) = 〈 q, t | q′, t 〉 = 〈 q, t |U†(Q,P, t) | q, t 〉 .

For the transformation generated by W (q, q′, t), we try to simply replace the classical function by a function
of operators. This may result in ordering problems, which will need to be resolved in each case. Then from
(2.59) and (2.60),

Pi = +
∂W (Q,Q′, t)

∂Qi
, P ′i = −∂W (Q,Q′, t)

∂Q′i
,

H ′(Q′, P ′, t)−H(Q,P, t) =
∂W (Q,Q′, t)

∂t
.

Therefore taking matrix elements of these three expressions between 〈 q, t | and | q′, t 〉, and using Schrödinger’s
equation of motion for 〈 q, t | and | q′, t 〉, gives:

〈 q, t |∂W (Q,Q′, t)
∂Qi

| q′, t 〉 = +〈 q, t |Pi| q′, t 〉 = +
~
i

∂

∂qi
〈 q, t | q′, t 〉 ,

〈 q, t |∂W (Q,Q′, t)
∂Q′i

| q′, t 〉 = −〈 q, t |P ′i | q′, t 〉 = +
~
i

∂

∂q′i
〈 q, t | q′, t 〉 ,

〈 q, t |∂W (Q,Q′, t)
∂t

| q′, t 〉 = 〈 q, t |{H ′(Q′, P ′, t)−H(Q,P, t) }| q′, t 〉 ,

=
~
i

∂

∂t
〈 q, t | q′, t 〉 .

Multiplying the first expression by δqi, the second by δq′i, the third by δt, and adding all three gives
Schwinger’s equation [?] for the transformation bracket:

δ〈 q, t | q′, t 〉 =
i

~
〈 q, t | δW (Q(t), Q′(t), t) | q′, t 〉 , (2.62)

where the δ variation means:

δ = δqi
∂

∂qi
+ δq′i

∂

∂q′i
+ δt

∂

∂t
.

A useful application of Schwinger’s formula is when the classical transformation W (q, q′, t) is chosen such
that the transformed Hamiltonian is identically zero. In this case, since H ′(q′, p, t) = 0, we find:

q̇′ = 0 , ṗ′ = 0 .

Thus q′(t) = q′ and p′(t) = p′ are constants of the motion. The classical generator of this transformation is
given by the solution of the Hamiltonian-Jacobi equation,

H(q,
∂W (q, q′, t)

∂q
, t) +

∂W (q, q′, t)
∂t

= 0 . (2.63)

However, since q′ is a constant of the motion, a formal solution of the Hamiltonian-Jacobi equation is given
by the action, expressed in terms of the variables q(t), q′, and t. We can prove this by noting that in this
case,

dW (q(t), q′, t)
dt

=
∂W

∂qi
q̇i +

∂W

∂t
= piq̇i −H(q, p, t) = L(q(t), q′, t) ,

so

W (q(t), q′, t) =
∫ t

0

L(q(t), q′, t) dt , (2.64)
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where the integration of (2.64) is along the classical path. So Schwinger’s formula for this case becomes:

δ〈 q, t | q′ 〉 =
i

~
〈 q, t | δ

∫ t

0

L(Q(t), Q′, t) dt | q′ 〉 . (2.65)

This variational principle is the starting point for Schwinger’s development of quantum mechanics. It relates
the solution of the Hamilton-Jacobi equation to the quantum mechanical transfer matrix, 〈 q, t | q′ 〉. Note,
however, that the Lagrangian here is to be written as a function of Q′ and the solution Q(t), and not Q(t)
and Q̇(t). That is, to calculate the integral in (2.65), one needs to know the solution to the dynamics.
For infinitesimal transformations such that q = q′ + ∆q, we can use this formula to find the infinitesimal
transformation, but then one needs to sum the result over all paths in coordinate space. We do this in
Chapter 3, where we discuss Feynman’s path integral approach to quantum mechanics. Here, we illustrate
the use of Schwinger’s formula with several examples.

Example 21 (exchange of position and momentum). As an example, we consider the time-independent
classical canonical transformation generated by W (q, q′) = qq′. Then

p =
∂W (q, q′)

∂q
= q′ , p′ = −∂W (q, q′)

∂q
= −q . (2.66)

Therefore this transformation sets q′ = p and p′ = −q, that is, it interchanges q and −p. Using (2.62) we
find:

〈 q |δW (Q,Q′)| q′ 〉 = 〈 q |{δq Q′ + δq′Q}| q′ 〉
= (δq q′ + δq′ q)〈 q | q′ 〉
= δ〈 q | q′ 〉 .

So the solution of this equation for 〈 q | q′ 〉 is:

〈 q | q′ 〉 = 〈 q | p 〉 = N eiqq′/~ = N eipq/~ .

The normalization is fixed by the requirement that

〈 q | q′ 〉 =
∫ ∞

−∞

dp
2π~
〈 q | p 〉〈 p | q′ 〉 = |N |2δ(q − q′) ≡ δ(q − q′) .

Therefore N = 1, and we find:
〈 q | p 〉 = eipq/~ ,

in agreement with our previous result.

Example 22 (the free particle). As an example of the use of the Hamilton-Jacobi solutions, Eq. (2.65), we
consider first the free particle. Here we have

Q(t) = Q′ +
P ′

m
t ,

Q̇(t) =
P

m
=
Q(t)−Q′

t
,

[Q′, Q(t)] =
i~t
m

.

So we find

W (Q(t), Q′, t) =
∫ t

0

L(Q(t′), Q′, t′) dt′ =
1
2
mQ̇2(t) t =

m

2t
(Q(t)−Q′)2 .
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Now we have:
∂W (Q(t), Q′, t)

∂Q(t)
=
m

t
(Q(t)−Q′ ) ,

∂W (Q(t), Q′, t)
∂Q′

= −m
t

(Q(t)−Q′ ) ,

∂W (Q(t), Q′, t)
∂t

= − m

2t2
(Q(t)−Q′ )2 = − m

2t2
(Q2(t)−Q(t)Q′ −Q′Q(t) +Q′2 )

= − m

2t2
(Q2(t)− 2Q(t)Q′ +Q′2 − [Q′, Q(t) ] )

= − m

2t2
(Q2(t)− 2Q(t)Q′ +Q′2 )− ~

i

1
2t
.

Note in the last line, that we must find the partial derivative of W (Q(t), Q′, t) with respect to t, holding Q′

and Q(t) constant. Now that we have correctly ordered this expression, we can find the matrix elements
needed to apply Eq. (2.65). We find:

∂〈 q, t | q′ 〉
∂q

= +
i

~
m

2t
(q(t)− q′) 〈 q, t | q′ 〉 ,

∂〈 q, t | q′ 〉
∂q′

= − i
~
m

2t
(q(t)− q′) 〈 q, t | q′ 〉 ,

∂〈 q, t | q′ 〉
∂t

= −
{
i

~
m

2t2
(q − q′)2 +

1
2t

}
〈 q, t | q′ 〉 ,

which has the solution,

〈 q, t | q′ 〉 =
N√
t

exp
{
i

~
m

2t
(q − q′)2

}
. (2.67)

The normalization is fixed by the requirement that,

lim
t→0
〈 q, t | q′ 〉 = 〈 q | q′ 〉 = δ(q − q′) .

A representation for the delta function is:

lim
λ→0+

1√
πλ

e−x
2/λ = δ(x) .

This gives N =
√
m/2πi~, so that

〈 q, t | q′ 〉 =
√

m

2πi~ t
exp

{
i

~
m

2t
(q − q′)2

}
. (2.68)

Remark 11. We can also find the free particle transformation function directly, using the time-development
operator. We find:

〈 q, t | q′, t′ 〉 = 〈 q |U†(t− t′) | q′ 〉 = 〈 q | exp
{
− i

~
P 2

2m
(t− t′)

}
| q′ 〉

=
∫ ∞

−∞

dp
2π~
〈 q | p 〉 exp

{
− i

~
p2

2m
(t− t′)

}
〈 p | q′ 〉 ,

=
∫ ∞

−∞

dp

2π~
exp

i

~

{
p (q − q′)− p2

2m
(t− t′)

}

=
√

m

2πi~ (t− t′) exp
{
i

~
m

2
(q − q′)2

(t− t′)

}
Θ(t− t′) ,

(2.69)

where we have done the last integral by completing the square, and assuming that t > t′ to converge the
integral. What we have found here is the retarded propagator for a free particle.
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2.4 Schwinger’s transformation theory

Schwinger developed a quantum mechanics based on solving the variational equation (2.65) for the transition
matrix element 〈 q, t | q′, t′ 〉, which we write here as:

δ〈 q, t | q′, t′ 〉 =
i

~
〈 q, t | δ

∫ t

t′
L(Q(t), Q′, t) dt | q′, t′ 〉 . (2.70)

Let us first note that the variational principle can be applied to any set of complete states at time t, for
example, eigenvectors of the energy |n, t 〉, since:

|n, t 〉 =
∫

dq | q, t 〉 〈 q, t |n, t 〉 , (2.71)

Eq. (2.70) can be written as:

δ〈n, t |n′, t′ 〉 =
i

~
〈n, t | δ

∫ t

t′
L(Q(t), Q′, t) dt |n′, t′ 〉 . (2.72)

Secondly, the variation of the action can include source terms in the action as well as coordinate terms. In
order to illustrate this, let us study a one-dimentional harmonic oscillator with a driving force, where the
Lagrangian is given by:

L =
1
2
m (Q̇2 − ω2Q2) + F (t)Q , (2.73)

where F (t) is an external driving force. Then the variation of the action with respect to this driving force
is given by:

δ〈n, t |n′, t′ 〉 =
i

~
〈n, t |

∫ t

t′
Q(t)δF (t) dt |n′, t′ 〉 . (2.74)

References
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Chapter 3

Path integrals

Path integrals were invented by Feynman, as an alternative formulation of quantum theory. It appears that
Feynman was trying to make sense of a remark in Dirac’s book on quantum mechanics that an exponent of
the classical Lagrangian was somehow equivalent to the transformation bracket 〈 q, t | q′, t′ 〉 in the Heisenberg
representation. We have seen in Section 2.4 from Schwinger’s action principle that the Lagrangian, rather
than the Hamiltonian, is the correct weighting factor for variations of the Heisenberg transformation bracket.
Sometime later, it was recognized that path integrals provided generating functionals for the Green func-
tions needed for computation of the dynamics in the Heisenberg representation. Path integrals are seldom
calculated directly and very few of them are known; however, extensive use of them is made in quantum field
theory to prove various theorems. Subsequently path integrals were developed for quantities obeying Fermi
statistics, as well as Bose statistics, using Grassmann anti-commuting variables. Feynman’s original paper
[1] was published in the Reviews of Modern Physics in 1948. He subsequently developed more material and
published a book [2] in 1965. Other useful references are Schulman [3], and a more technical book by Rivers
[4]. Numerous additional references can be found in these books.

We first consider quantum mechanics in one dimension. Recall that if ψ(q, t) is the Schrödinger wave
function at point (q, t) for the system, then we can write

ψ(q, t) = 〈 q, t |ψ 〉 =
∫

dq′ 〈 q, t | q′, t′ 〉 〈 q′, t′ |ψ 〉 =
∫

dq′ 〈 q, t | q′, t′ 〉ψ(q′, t′) , for t > t′. (3.1)

where 〈 q, t | q′, t′ 〉 is in the Heisenberg representation. We found this propagator for a free particle in
Section 22, but it is very difficult to find for other Hamiltonian systems. We will find it useful to have a
general expression for this propagator when we study Green functions.

In this chapter, we will find a general expression for the Heisenberg bracket 〈 q, t | q′, t′ 〉 by splitting up the
space-time path in many small intervals. For simplicity, we develop path integrals here for systems with one
degree of freedom, the results in this chapter are readily generalized to systems with n degrees of freedom.

3.1 Space-time paths

Consider first a particle in one-dimension described by the Hamiltonian H(q, p). We define an arbitrary path
q(t) in space-time from t′ to t such that q(t) = q and q(t′) = q′, and set up an equal spaced time grid given
by

ti = i∆t , qi = q(ti) , i = 1, 2, . . . , n, (3.2)

Then we write:

〈 q, t | q′, t′ 〉 =
∫

dqn · · ·
∫

dq2

∫
dq1 〈 q, t | qn, tn 〉 · · · 〈 q2, t2 | q1, t1 〉〈 q1, t1 | q′, t′ 〉 , (3.3)
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where t > tn > tn−1 > · · · > t2 > t1 > t′. Now the bracket of the Heisenberg basis states is given by:

〈 qi+1, ti+1 | qi, ti 〉 = 〈 qi+1 |U(ti+1)U†(ti) | qi 〉 = 〈 qi+1 |U(ti+1 − ti) | qi 〉 (3.4)

So to first order in ∆t, we find:

〈 qi+1, ti+1 | qi, ti 〉 = 〈 qi+1 | exp
{
− i

~
H(Q,P )∆t

}
| qi 〉 = exp

{
− i

~
H
(
qi,

~
i

∂

∂qi+1

)
∆t
}
〈 qi+1 | qi 〉

= exp
{
− i

~
H
(
qi,

~
i

∂

∂qi+1

)
∆t
} ∫ dpi

2π~
〈 qi+1 | pi 〉〈 pi | qi 〉

= exp
{
− i

~
H
(
qi,

~
i

∂

∂qi+1

)
∆t
} ∫ dpi

2π~
exp
{ i

~
pi(qi+1 − qi)

}

=
∫

dpi
2π~

exp
{ i

~
[
piq̇i −H(qi, pi)

]
∆t
}
.

(3.5)

Here we have used the the relation ∆q = qi+1 − qi = q̇i∆t, and the fact that

H
(
qi,

~
i

∂

∂qi+1

)
exp
{ i

~
pi(qi+1 − qi)

}
= exp

{ i
~
pi(qi+1 − qi)

}
H(qi, pi) . (3.6)

So we find (there is one less p integral):

〈 q, t | q′, t′ 〉 =
∫

dqn · · ·
∫

dq2 dp2

2π~

∫
dq1 dp1

2π~
exp

{
i

~

n∑

i=1

{ piq̇i −H(qi, pi) }∆t

}
. (3.7)

We define a path integral as the infinite limit of a sum over all possible paths in coordinate space.

lim
n→∞

{∫
dqn · · ·

∫
dq2 dp2

2π~

∫
dq1 dp1

2π~

}
=
∫

DqDp
2π~

. (3.8)

In this limit, Eq. (3.7) becomes:

〈 q, t | q′, t′ 〉 = 〈 q |U(t− t′) | q′ 〉 = 〈 q | e−iH(t−t′)/~ | q′ 〉 =
∫

DqDp
2π~

eiS[q,p]/~ ,

where: S[q, p] =
∫ t′

t

{ p q̇ −H(q, p) }dt . (3.9)

The path integral is over all paths q(t) and p(t) such that the end point are fixed: q(t) = q, q(t′) = q′ and
p(t) = p, p(t′) = p′. The paths do not go backward in time. If H(q, p) is of the form:

H(q, p) =
p2

2m
+ V (q) , (3.10)

we can carry out the path integral over all pi’s and simplify the path integral. We find:

〈 qi+1, ti+1 | qi, ti 〉 =
∫ +∞

−∞

dpi
2π~

ei[ piq̇i−p2i /2m]∆t/~ =
√

m

2πi~ ∆t
ei

1
2mq̇

2
i ∆t/~ =

√
m

2πi~ ∆t
eiL(qi,q̇i)∆t/~ .

(3.11)
where we have evaluated the integral using (3.78d). Putting this into the path integral, we find

〈 q, t | q′, t′ 〉 = 〈 q |U(t− t′) | q′ 〉 = N
∫ q(t)=q

q(t′)=q′
Dq(t′′) exp

{
i

~

∫ t

t′
L(q, q̇) dt′′

}
for t > t′. (3.12)
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Here the normalization factor is given by

N = lim
n→∞

[ m

2πi~ ∆t

](n−1)/2

. (3.13)

This limit is not well defined, so that the normalization of the path integral is usually determined in other
ways. Often it is not needed, as we will see in the following sections of this chapter. Here S[q] is the classical
action integral for the path q(t). The sum over paths in the integral is over all possible paths that go forward
in time between fixed end points, not only the classical path. The paths must be continuous paths but need
not be continuous in the derivative q̇(t), so they can be quite wild-looking.

For paths that go backward in time,

〈 q, t | q′, t′ 〉 = 〈 q |U(t− t′) | q′ 〉 = N
∫ q(t)=q

q(t′)=q′
Dq(t′′) exp

{
− i

~

∫ t′

t

L(q, q̇) dt′′
}

for t < t′. (3.14)

Eqs. (3.12) and (3.14) are the major results of Feynman, and can be thought of as a third way to quantize
a classical system, equivalent in every way to Schrödinger’s equation or the Heisenberg equations of motion.
Planck’s constant ~ appears here as a factor to make the exponent dimensionless.

3.2 Some path integrals

Evaluating path integrals presents a considerable challenge, and only two are known. Essentially the only
way to do functional integrals is to break the integral into small intervals. We illustrate this with several
examples in the following exercises

Exercise 2. Let us evaluate the Feynman path integral for a free particle in one dimension, where L(q, q̇) =
mq̇2/2. Let us split up the integral into small time steps, and put q̇i∆t ≈ qi+1 − qi. Then the path integral
we want to evaluate is

〈 q, t | q′, t′ 〉 = lim
n→∞

[ m

2πi~ ∆t

](n−1)/2
∫

dqn · · ·
∫

dq2

∫
dq1 exp

{ im

2~∆t

n∑

i=0

( qi+1 − qi)2
}
, (3.15)

where q0 ≡ q′ and qn+1 ≡ q. The integrals are actually easy to do using (3.78g), and we find the result
(which is left as an exercise)

〈 q, t | q′, t′ 〉 =
N√

(t− t′)
exp
{ i

~
m (q − q′)2

2(t− t′)
}
, (3.16)

in agreement with Eq. (2.69).

Exercise 3. A more difficult problem is to evaluate the path integral for a harmonic oscillator, where
L(q, q̇) = m( q̇2 + ω2q2)/2. In this case, we find

〈 q, t | q′, t′ 〉 =
N√

sin[ω(t− t′)]
exp
{ i

~
mω

2 sin[ω(t− t′) ]
[

(q2 + q′2) cos[ω(t− t′) ]− 2 qq′
] }

. (3.17)

Exercise 4. The path integral

〈+∞,+∞| −∞,−∞〉 = N
∫ +∞

−∞
Dq exp

{ i

~

∫ +∞

−∞
j(t) q(t) dt

}
= N δ[ j ] , (3.18)

is a δ-functional of j(t), which is not well defined. Here N an (infinite) constant.
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3.3 Matrix elements of coordinate operators

One of the most important uses of path integrals is to find matrix elements and Green functions of Heisenberg
operators. For example, suppose we want to find the matrix element

〈 q, t |Q(ti) | q′, t′ 〉 , (3.19)

where t > ti > t′. Then from (3.20), we have

〈 q, t |Q(ti) | q′, t′ 〉 =
∫

dqn · · ·
∫

dq2

∫
dq1 〈 q, t | qn, tn 〉 · · · 〈 qi+1, ti+1 |Q(ti) | qi, ti 〉 · · · 〈 q1, t1 | q′, t′ 〉

=
∫

dqn · · ·
∫

dq2

∫
dq1 qi 〈 q, t | qn, tn 〉 · · · 〈 q2, t2 | q1, t1 〉〈 q1, t1 | q′, t′ 〉 .

(3.20)

So in the limit, n→∞,

〈 q, t |Q(t1) | q′, t′ 〉 = N
∫ q(t)=q

q(t′)=q′
Dq q(t1) ei

R t
t′ L(q,q̇) dt/~ . (3.21)

In a similar way, the expectation value of two Heisenberg coordinate operators at two different times is given
by

〈 q, t |Q(t1)Q(t2) | q′, t′ 〉 = N
∫ q(t)=q

q(t′)=q′
Dq q(t1) q(t2) ei

R t
t′ L(q,q̇) dt/~ , (3.22)

as long as t > t1 > t′ and t > t2 > t′. Now the time-ordered product is defined by

T {Q(t1)Q(t2) } = Q(t1)Q(t2) Θ(t1 − t2) +Q(t2)Q(t1) Θ(t2 − t1) , (3.23)

so from (3.22), we find

〈 q, t | T {Q(t1)Q(t2) } | q′, t′ 〉 = N
∫ q(t)=q

q(t′)=q′
Dq q(t1) q(t2) ei

R t
t′ L(q,q̇) dt/~ , (3.24)

since matrix elements of the operators for both time-ordering cases are given by the same path integral. The
step functions then factor out of the integral and sum to one. Generalizing this equation to the case of the
time-ordered product of any number of Heisenberg operators, we have:

〈 q, t | T {Q(t1)Q(t2) · · ·Q(tn) } | q′, t′ 〉 = N
∫ q(t)=q

q(t′)=q′
Dq q(t1) q(t2) · · · q(tn) ei

R t
t′ L(q,q̇) dt/~ , (3.25)

for t > t′. Similarly for matrix elements of anti-time-ordered operators, we find

〈 q, t | T ∗{Q(t1)Q(t2) · · ·Q(tn) } | q′, t′ 〉 = N
∫ q(t)=q

q(t′)=q′
Dq q(t1) q(t2) · · · q(tn) e−i

R t′
t
L(q,q̇) dt/~ , (3.26)

for t < t′.

3.4 Generating functionals

Transitions amplitudes of time-ordered products can be obtained from a path integral generating functional.
We introduce a classical external driving function j+(t) and define a generating functional Z(+)(q, t; q′, t)[ j+ ]
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by a sum of functional derivatives

Z(+)(q, t; q′, t′)[ j+ ] =
∞∑

n=0

1
n!

( i
~

)n∫ t

t′
dt1
∫ t

t′
dt2 · · ·

∫ t

t′
dtn

× 〈 q, t | T {Q(t1)Q(t2) · · ·Q(tn) } | q′, t′ 〉 j+(t1) j+(t2) · · · j+(tn)

= N
∫ q(t)=q

q(t′)=q′
Dq ei

R t
t′ L(q,q̇) dt/~

∞∑

n=0

1
n!

( i
~

)n [ ∫ t

t′
dt q(t) j+(t)

]n

= N
∫ q(t)=q

q(t′)=q′
Dq exp

{
i

~

∫ t

t′
[L(q, q̇) + q(t) j+(t) ] dt

}
.

(3.27)

But expanding Z(+)(q, t; q′, t′)[ j+ ] in a power series in j+, we have

Z(+)(q, t; q′, t′)[ j+ ]

=
∞∑

n=0

1
n!

∫ t

t′
dt1
∫ t

t′
dt2 · · ·

∫ t

t′
dtn

[
δnZ(+)(q, t; q′, t)[ j ]

δj+(t1)δj+(t2) · · · δj+(tn)

]

j=0

j+(t1) j+(t2) · · · j+(tn) . (3.28)

Comparing Eq. (3.27) with Eq. (3.28), we find

〈 q, t | T {Q(t1)Q(t2) · · ·Q(tn) } | q′, t′ 〉 =
(~
i

)n δn Z(+)(q, t; q′, t′)[ j ]
δj+(t1)δj+(t2) · · · δj+(tn)

∣∣∣∣
j=0

, (3.29)

for t > t′. So if we compute the generating functional Z(+)(q, t; q′, t′)[ j+ ], we can find expectation values
for all the time-ordered products by functional differentiation.

In a similar way, the generating functional for anti-time-ordered products is given by

Z(−)(q, t; q′, t′)[ j− ] = N
∫ q(t)=q

q(t′)=q′
Dq exp

{
− i

~

∫ t′

t

[L(q, q̇) + q(t) j+(t) ] dt

}
, (3.30)

from which we find matrix elements of all the anti-time-ordered products

〈 q, t | T ∗{Q(t1)Q(t2) · · ·Q(tn) } | q′, t′ 〉 =
(
−~
i

)n δn Z(−)(q, t; q′, t′)[ j− ]
δj−(t1)δj−(t2) · · · δj−(tn)

∣∣∣∣
j−=0

, (3.31)

for t < t′.

3.5 Closed time path integrals

Time-ordered products are useful in problems when we know the state of the system in the distant future
or past. However for initial value problems where we want to find the density matrix as a function of time,
we will need two propagators and two path integrals, one which propagates forward in time from a point q′′

at t = 0 to a point q at time t and then one which propagates backward in time from a point q′ at time t to
a point q at time t = 0, as explained in the introduction to this chapter.

The use of closed-time-path Green functions was first done by Schwinger [5], later by Keldysh [6], and
further developed by Bakshi and Mahanthappa [7, 8].
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t-plane

+ contour

− contour

t = 0

t

Figure 3.1: The closed time path contour.

From Eq. (??), the density matrix ρ(q, q′, t) at time t is given by

ρ(q, q′, t) =
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′) 〈 q, t | q′′, 0 〉 〈 q′′′, 0 | q′, t 〉

= N
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(t)=q

q(0)=q′′
Dq+

∫ q(0)=q′′′

q(t)=q′
Dq−

× exp

{
i

~

∫ t

0

L(q+, q̇+) dt′ −
∫ 0

t

L(q−, q̇−) dt′
}

(3.32)

Normalization of the state vector requires

〈Ψ(t) |Ψ(t) 〉 =
∫ +∞

−∞
dq 〈Ψ(t) | q 〉 〈 q |Ψ(t) 〉 =

∫ +∞

−∞
dq 〈 q | ρ(t) | q 〉 =

∫ +∞

−∞
dq ρ(q, q, t)

= N
∫∫∫ +∞

−∞
dq dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(t)=q

q(0)=q′′
Dq+

∫ q(0)=q′′′

q(t)=q

Dq−

× exp

{
i

~

∫ t

0

L(q+, q̇+) dt′ −
∫ 0

t

L(q−, q̇−) dt′
}

= N
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(0)=q′′′

q(0)=q′′
Dq exp

{
i

~

∫

C
L(q, q̇) dt′

}
≡ 1 ,

(3.33)

which fixes the normalization factor,

1/N =
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(0)=q′′′

q(0)=q′′
Dq exp

{
i

~

∫

C
L(q, q̇) dt′

}
. (3.34)

Here the path integral goes from q′′ at t = 0 to all points q at t and then back to q′′′ at t = 0. We have
included the integral over dq in the path integral. The time integral for the action goes over a closed time
path contour C in the complex t-plane shown in Fig. 3.1. The integral goes from t = 0 a distance ε above
the real t-axis up to an arbitrary time t and back a distance ε below the real t-axis to t = 0. We then take
the limit ε → 0 and define q(t + iε) = q+(t) and q(t − iε) = q−(t), so that both q±(t) are included in the
integral. Note that the path below the real axis is in the negative real t-direction.

Now let us find the average value of the Heisenberg operator Q(t) at time t for the initial state |Ψ 〉. This
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is given by

〈Q(t) 〉 = 〈Ψ |Q(t) |Ψ 〉 = 〈Ψ(t) |Q |Ψ(t) 〉 =
∫ +∞

−∞
dq q ρ(q, q, t)

= N
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(0)=q′′′

q(0)=q′′
Dq q(t) exp

{
i

~

∫

C
L(q, q̇) dt′

}
.

(3.35)

Here q(t) is evaluated at the point t of the closed time path, on either the upper or lower branch. From our
analysis in Section 3.3, the path integral for the expectation value of two Heisenberg operators 〈Q(t1)Q(t2) 〉
is given by

〈Q(t1)Q(t2) 〉 = N
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(0)=q′′′

q(0)=q′′
Dq q(t1) q(t2) exp

{
i

~

∫

C
L(q, q̇) dt′

}
. (3.36)

In this case, however, we can evaluate q(t1) and q(t2) in four different ways, depending on which branch of
the closed-time-path contour they are on. Keeping in mind the direction of time as shown in the closed time
path of Fig. 3.1, we define:

ΘC(t1, t2) =

{
1 , for t1 later than t2,
0 , for t1 earlier than t2.

(3.37)

Recall that all times on the lower branch are later and run backward than those on the upper branch!

Exercise 5. Show that

ΘC(t1, t2) =





Θ(t1 − t2) , for t1 on upper contour and t2 on upper contour,
1 , for t1 on upper contour and t2 on lower contour,
0 , for t1 on lower contour and t2 on upper contour,
Θ(t2 − t1) , for t1 on lower contour and t2 on lower contour.

(3.38)

So let us define the closed-time-path ordering by

TC{Q(t1)Q(t2) } = Q(t1)Q(t2) ΘC(t1, t2) +Q(t2)Q(t1) ΘC(t2, t1) . (3.39)

Then we have

〈 TC{Q(t1)Q(t2) } 〉 = N
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(0)=q′′′

q(0)=q′′
Dq q(t1) q(t2) exp

{
i

~

∫

C
L(q, q̇) dt′

}
, (3.40)

where q(t1) and q(t2) are evaluated on the closed time path contour. We can generalize this to expectation
values of any number of closed-time-path time-ordered products

〈 TC{Q(t1)Q(t2) · · ·Q(tn) } 〉

= N
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(0)=q′′′

q(0)=q′′
Dq q(t1) q(t2) · · · q(tn) exp

{
i

~

∫

C
L(q, q̇) dt′

}
. (3.41)

Now we are in a position to find a generating function for these closed-time-path Green functions. Following
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our methods in Section 3.4, we define a generating functional ZC [ j ] by

ZC [ j ] =
∞∑

n=0

1
n!

( i
~

)n∫

C
dt1
∫

C
dt2 · · ·

∫

C
dtn

× 〈TC{Q(t1)Q(t2) · · ·Q(tn) } 〉 j(t1) j(t2) · · · j(tn)

= N
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(0)=q′′′

q(0)=q′′
Dq ei

R
C L(q,q̇) dt′/~

∞∑

n=0

1
n!

( i
~

)n [ ∫

C
q(t′) j(t′) dt′

]n

= N
∫∫ +∞

−∞
dq′′ dq′′′ ρ0(q′′, q′′′)

∫ q(0)=q′′′

q(0)=q′′
Dq exp

{
i

~

∫

C
[L(q, q̇) + q(t′) j(t′) ] dt′

}
.

(3.42)

Using the normalization factor given in Eq. (3.34), the generating functional is normalized so that ZC [j =
0] = 1. Then

〈 TC{Q(t1)Q(t2) · · ·Q(tn) } 〉 =
(~
i

)n δn ZC [ j ]
δj(t1)δj(t2) · · · δj(tn)

∣∣∣∣
j=0

. (3.43)

The average value of Q(t) is given by

q(t) = 〈 TC{Q(t) } 〉 =
(

~
i

)
δZC [ j ]
δj(t)

∣∣∣∣
j=0

(3.44)

The closed-time-path Green function is defined by

G(t, t′) = i 〈 TC{Q(t)Q(t′) } 〉/~ =
(

~
i

)
δ2ZC [ j ]
δj(t) δj(t′)

∣∣∣∣
j=0

. (3.45)

There are four such Green functions, depending on where we evaluate t and t′ on the closed-time-path
contour. These are the Green functions we used in previous chapters to study problems in the Heisenberg
representation.

Exercise 6. Writing the four closed-time-path contour Green functions in a matrix notation, show that

Gab(t, t′) =
i

~

(
〈 T {Q(t)Q(t′) } 〉 〈Q(t)Q(t′) 〉
〈Q(t′)Q(t) 〉 〈 T ∗{Q(t)Q(t′) } 〉

)

= G>(t, t′) Θab
c (t, t′) +G<(t, t′) Θab

c (t′, t) ,
(3.46)

where

〈 T {Q(t)Q(t′) } 〉 = 〈Q(t)Q(t′) 〉Θ(t− t′) + 〈Q(t′)Q(t) 〉Θ(t′ − t) ,
〈 T ∗{Q(t)Q(t′) } 〉 = 〈Q(t′)Q(t) 〉Θ(t− t′) + 〈Q(t)Q(t′) 〉Θ(t′ − t) , (3.47)

and

Θab
c (t, t′) =

(
Θ(t− t′) 0

1 Θ(t′ − t)

)
, Θab

c (t′, t) =
(

Θ(t′ − t) 1
0 Θ(t− t′)

)
. (3.48)

and where we have put

G>(t, t′) = i〈Q(t)Q(t′) 〉/~ , G<(t, t′) = i〈Q(t′)Q(t) 〉/~ . (3.49)
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3.6 Initial value conditions

We have yet to set initial conditions for the Green functions. These can be fixed by the initial density matrix,
which we can always write as an exponent of a power series in q and q′. We put

ρ(q, q′) = eiΦ(q,q′)/~ , where Φ(q, q′) = J0 + J1,0 q + J0,1 q
′ + J1,1 q q

′ + · · · , (3.50)

where Ji,j are constants, fixed by the initial density matrix. Here q and q′ are the end points of the path
integral at t = 0. We can incorporate these initial density matrix expansion terms into the Lagrangian as
multi-point currents with support only at t = 0. That is, we put

Φ(q, q′) =
∫

C
φ(t) dt , where φ(t) =

∑

i,j

ji,j(t) qi(t) q′j(t) , with ji,j(t) = Ji,j δ(t) . (3.51)

where ji,j(t) = Ji,j δ(t). So we can redefine the Lagrangian to include these extra current terms, L′(t) =
L(t) + φ(t), and simplify the generating functional to give the expression

ZC [ j ] = N
∫

Dq eiS[ q,j ]/~ , where S[ q, j ] =
∫

c

[L′(q, q̇) + q j ] dt′ . (3.52)

We will see in the next section that these extra currents and driving forces do not effect the equations of
motion for t 6= 0, and only serve to provide initial conditions for the vertex functions.

3.7 Connected Green functions

A generator W [ j ] for connected Green functions are defined by

Z[ j ] = eiW [ j ]/~ . (3.53)

Now let us define

q[j](t) =
(

~
i

)
1
Z[j]

δZ[ j ]
δj(t)

=
δW [ j ]
δj(t)

, (3.54)

which is a functional of j. We assume that we can invert this expression to find j(t) as a function of q(t).
For the two-point functions, we find

G[ j ](t, t′) =
(

~
i

)
1
Z[j]

δ2Z[ j ]
δj(t) δj(t′)

= W [ j ](t, t′) +
( i

~

)
q(t) q(t) , (3.55)

where

W [ j ](t, t′) =
δ2W [ j ]
δj(t) δj(t′)

, (3.56)

which is also a functional of j. We will now find it useful to define a vertex function Γ[ q ](t, t′), which is a
functional of q(t) by a Legendre transformation,

Γ[ q ] =
∫

C
dt q(t) j(t)−W [ j ] . (3.57)

Then

j(t) =
δΓ[ q ]
δq(t)

. (3.58)

Vertex functions are defined by multiple derivatives of Γ[ q ] with respect to q(t). For example, the two-point
vertex function Γab[ q ](t, t′) is defined by

Γ[ q ](t, t′) =
δ2Γ[ q ]

δq(t) δq(t′)
. (3.59)
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The vertex function Γab[ q ](t, t′) and the connected Green function W ab[ j ](t, t′) are inverses of each other.
We find ∫

C
dt′ Γ[ q ](t, t′) Γ[ q ](t′, t′′) = δC(t, t′′) , (3.60)

where the closed-time-path delta function is defined as the derivative of the closed-time-path step function
defined in Eq. (3.37).

3.8 Classical expansion

In order to find the path integral, we must sum over all paths from a point q′ at time t′ to a point q at time
t; however one might suppose that for some problems, the most probable path would be the classical path,
and that for such problems, a good approximation of the path integral would be the classical path plus small
variations about the classical path. We look at such an approximate scheme in this section. We can think
of this approximation as a limit as ~ → 0 so that we can use a method of steepest descent to evaluate the
path integral, much like the WKB approximation for the Schrödinger equation.

We start by expanding the action given in Eq. (3.52) about a value qc(t),

S[ q, j ] = S[ qc, j ] +
∫

C
dt

δS[ q, j ]
δq(t)

∣∣∣∣
qc

(q(t)− qc(t))

+
∫

C
dt
∫

C
dt′

δ2S[ q, j ]
δq(t) δq(t′)

∣∣∣∣
qc

(q(t)− qc(t)) (q(t′)− qc(t′)) + · · · (3.61)

Setting the first variation equal to zero
δS[ q, j ]
δq(t)

= 0 , (3.62)

yields the classical Lagrange equations of motion

d
dt

∂L(q, q̇)
∂q̇

− ∂L(q, q̇)
∂q

= j , (3.63)

which are to be evaluated at q(t) = qc[j](t). qc[j](t) is to be regarded as a functional of j. Then the first term
S[ qc, j ] in (3.61) is just the classical action, which is a functional of j and comes out of the path integral.
So we are left with the following expression for the generating functional

ZC [ j ] = N eiS[ qc,j ]/~
∫

Dq exp
{
i

~

∫

C
dt
∫

C
dt′ (q(t)− qc(t)) γ(t, t′) (q(t′)− qc(t′)) + · · ·

}
, (3.64)

where

γ(t, t′) =
δ2S[ q, j ]
δq(t) δq(t′)

∣∣∣∣
qc

. (3.65)

The quadratic path integral in Eq. (3.64) can easily be done. We first change variables by setting q′(t) =
q(t)− qc(t). Then we break the integral into finite pieces. This gives

N
∫ +∞

−∞
dq′1

∫ +∞

−∞
dq′2 · · ·

∫ +∞

−∞
dq′n exp

{
i

2~

n∑

i,j=1

q′i γij q
′
j

}
(3.66)

Next, we assume that we can bring γij to diagonal form by a unitary transformation, γij = U†ik γ
′
k Ukj and
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we define new variables q′′i = Uijq
′
j . Then (3.66) becomes

N
∫ +∞

−∞
dq′′1

∫ +∞

−∞
dq′′2 · · ·

∫ +∞

−∞
dq′′n exp

{
i

2~
∑

k

γ′k q′′2k
}

=
N ′√∏
k γ
′
k

=
N ′√

det[ γ′ ]
=

N ′√
det[U†γU ]

=
N ′√

det[ γ ]
= N ′ exp

{
−1

2
Tr[ ln[ γ ] ]

}

→ N ′ exp
{
−1

2

∫

C
dt ln[ γ(t, t) ]

}
. (3.67)

Adding this to the first term, we find that the expansion of the generating functional can be written as

ZC [ j ] = eiSeff[j]/~ , (3.68)

where the effective action is given by the expansion

Seff[j] = S0 + S[ qc, j ] +
i~
2

∫

C
dt ln{ γ[j](t, t) }+ · · · , (3.69)

where S0 is a constant and qc(t) is the solution of the classical equations of motion. Here γ[j](t, t) is a
functional of j. So the generating function is the classical action plus a trace-log term, which is proportional
to ~ and is therefore a quantum effect. Comparing the definition of the generator of connected Green
functions W [ j ] in Eq. (3.56) with Eq. (3.68), we see that the effective action is just this generator

W [ j ] = Seff[j] . (3.70)

This enables us to construct vertex function by the Lagendre transformation (3.57)

Γ[ q ] =
∫

C
dt q(t) j(t)− Seff[j] . (3.71)

Example 23. Let us take a (not so simple) example, and work out the Green and vertex functions explicitly.
The action S[ q, j ] for an anharmonic oscillator is of the form

S[ q, j ] =
∫

C
dt
{
m

2
[
q̇2(t) + ω2 q2(t)

]
+
λ

4
q4(t) + q(t)j(t)

}

=
∫

C
dt
{
m

2
q(t)

[
− d2

dt2
+ ω2

]
q(t) +

λ

4
q4(t) + q(t)j(t)

}
.

(3.72)

Here we have integrated the kinetic energy term by parts and discarded the integrated factor at the end
points of the closed-time-path integral. The first derivative of the action gives

δS[ q, j ]
δq(t)

= m

[
− d2

dt2
+ ω2

]
q(t) + λ q3(t) + j(t) (3.73)

Setting this equal to zero gives a differential equation for qc(t) in terms of the current j(t),

m

[
d2

dt2
− ω2

]
qc(t)− λ q3

c (t) = j(t) . (3.74)

The second functional derivative with respect to q(t) gives

γ(t, t′) =
δ2S[ q, j ]
δq(t) δq(t′)

∣∣∣∣
qc

=
{
m

[
− d2

dt2
+ ω2

]
+ 3λ q2

c (t)
}
δC(t, t′) , (3.75)
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which is a differential operator. It’s inverse is a Green function. Differenting Eq. (3.74) with respect to j(t′)
gives {

m

[
d2

dt2
− ω2

]
− 3λ q2

c (t)
}
δqc(t)
δj(t′)

= δC(t, t′) . (3.76)

So if we put g(t, t′) = δqc(t)/δj(t′), Eq. (3.76) states that
∫

C
dt′ γ(t, t′) g(t′, t′′) = δC(t, t′′) . (3.77)

That is g(t′, t′′) is the inverse of γ(t, t′).

3.9 Some useful integrals

Some useful integrals are
∫ +∞

−∞
dx e−ax

2
=
√
a

π
, (3.78a)

∫ +∞

−∞
dxx2 e−ax

2
=
√
a

π

( 1
2a

)
, (3.78b)

∫ +∞

−∞
dxx4 e−ax

2
=
√
a

π

( 3
4a2

)
, (3.78c)

∫ +∞

−∞
dx e−ax

2+bx =
√
π

a
eb

2/4a , (3.78d)

∫ +∞

−∞
dxx e−ax

2+bx =
√
π

a

( b

2a

)
eb

2/4a , (3.78e)

∫ +∞

−∞
dxx2 e−ax

2+bx =
√
π

a

( 1
2a

+
b2

4a2

)
eb

2/4a , (3.78f)

∫ +∞

−∞
dy
√
a

π
e−a (x−y)2

√
b

π
e−a (y−z)2 =

√
ab

π(a+ b)
e−ab (x−z)2/(a+b) , (3.78g)
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Chapter 4

In and Out states

Very often it happens that the Hamiltonian for a given problem has the property that as t→ ±∞,

H(t) =

{
Hout , as t→ +∞,
Hin , as t→ −∞.

(4.1)

For example, a parametric Hamiltonian of the form,

H(t) =
1
2
[
P 2 + ω2(t)Q2

]
, where ω(t) =

{
ωout , as t→ +∞,
ωin , as t→ −∞.

(4.2)

is of this type. Here, the in-states oscillate at a frequency ωin whereas the out-states oscillate at a frequency
ωout. We know the eigenvalues and eigenstate of the initial and final system, but not the dynamics in
between.

A second example is a parametric Hamiltonian of the form

H(t) = H0 +H1(t) , with H1(t)→ 0 as t→ ±∞. (4.3)

Here the Hamiltonian is divided into two parts, one of which is time-independent and the other time-
dependent. The time-dependent part vanishes as t → ±∞. In this case Hout = Hin, but the Hamiltonian
changes as a function of time. In both cases, we can define in and out states as solutions of the in and out
Hamiltonian,

Hin |Ψin 〉 = Ein |Ψin 〉 , Hout |Ψout 〉 = Eout |Ψout 〉 . (4.4)

Solutions of the time-dependent Hamiltonian are related to eigenvectors of the in and out Hamiltonians by
the time-development operator,

|Ψ(t) 〉 = U(t,−∞) |Ψin 〉 = U(t,+∞) |Ψout 〉 , (4.5)

so
|Ψout 〉 = U†(t,+∞)U(t,−∞) |Ψin 〉 = U(+∞,−∞) |Ψin 〉 . (4.6)

Here the out state depends on what the in state is. The transition amplitude Sout,in for obtaining a specific
out-state at t = +∞ starting from a specific in state at t = −∞ is given by

Sout,in = 〈Ψout |U(+∞,−∞) |Ψin 〉 , (4.7)

the probability being the absolute magnitude of this amplitude. In this chapter, we develop methods to
calculate Sout,in. For Hamiltonians of the form (4.3), if the matrix elements of H1(t) in eigenstates of H0 are
small, we can use perturbation theory to get an approximate answer. Here it is useful to introduce a new
representation, called the interaction representation, in order to carry out the calculation. We discuss this
new representation in the next section.
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4.1 The interaction representation

So suppose that the Hamiltonian is of the form given in Eq. (4.3). Schrödinger’s equation for this problem
is:

[H0 +H1(t) ] |ψ(t) 〉 = i~
∂

∂t
|ψ(t) 〉 , (4.8)

with H0 and H1(t) Hermitian. Let H0 satisfy the eigenvalue problem:

H0 |n 〉 = En |n 〉 , with 〈n |n′ 〉 = δn,n′ . (4.9)

We can remove the H0 factor from the time-dependent part of the problem by setting:

|ψ(t) 〉 = e−iH0t/~ |φ(t) 〉 . (4.10)

Then |φ(t) 〉 satisfies:

H ′1(t) |φ(t) 〉 = i~
∂

∂t
|φ(t) 〉 , where H ′1(t) = e+iH0t/~ H1(t) e−iH0t/~ . (4.11)

This representation of the dynamics is called the interaction representation. We can now put formally:

|φ(t) 〉 = U ′(t, t′) |φ(t′) 〉 , (4.12)

where U ′(t, t′) is a time translation operator in the interaction representation. We will find an expression for
U ′(t, t′) as an expansion in powers of H1(t) in the next section. Initial and final conditions on the interaction
representation state vector are:

|φ(t) 〉 =

{
|n 〉 as t→ +∞,
|n′ 〉 as t→ −∞,

(4.13)

both of which are eigenstates of H0. From our discussion in the previous section, the transition amplitude
for a transition from the in state |n′ 〉 to the out state |n 〉 is given by

Sn,n′ = 〈n |U ′(+∞,−∞) |n′ 〉 . (4.14)

4.2 The time development operator

When the Hamiltonian has an explicit dependence on time from some external source, the time development
operator U(t) no longer has the simple form:

U(t) = e−iHt/~ , (4.15)

and we must revisit the derivation of the operator. Such a situation occurred in the interaction representation
discussed in the last section. When H(Q,P, t) has an explicit time dependence, the time-development
operator U(t) satisfies Eq. (2.24), which we found in the last chapter:

H(Q,P, t)U(t, t′) = i~
∂U(t, t′)

∂t
, and U†(t, t′)H(Q,P, t) = −i~∂U

†(t, t′)
∂t

. (4.16)

We have introduced an initial time variable t′, and put |ψ(t) 〉 = U(t, t′) |ψ(t′) 〉, with U(t, t) = 1. Here we
are in the Schrödinger representation so that Q and P are time-independent — as a result, we will drop
explicit reference to them in the following. Eqs. (4.16) can be written as integral equations of the form:

U(t, t′) = 1− i

~

∫ t

t′
H(t1)U(t1, t′) dt1 , U†(t, t′) = 1 +

i

~

∫ t

t′
U†(t1, t′)H(t1) dt1 . (4.17)
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Iterating the first of Eq. (4.17), we find:

U(t, t′) = 1 +
(−i

~

)∫ t

t′
dt1H(t1) +

(−i
~

)2 ∫ t

t′
dt1

∫ t1

t′
dt2H(t1)H(t2) + · · · .

Interchanging the order of integration in the last term gives:
∫ t

t′
dt1

∫ t1

t′
dt2H(t1)H(t2) =

∫ t

t′
dt2

∫ t

t2

dt1H(t1)H(t2) =
∫ t

t′
dt1

∫ t

t1

dt2H(t2)H(t1) .

So we find that the last term can be written:

1
2

∫ t

t′
dt1

∫ t

t′
dt2 [Θ(t1 − t2)H(t1)H(t2) + Θ(t2 − t1)H(t2)H(t1)] =

1
2

∫ t

t′
dt1

∫ t

t′
dt2 T {H(t1)H(t2) }

where T is the time-ordered product, defined by

T {H(t1)H(t2) } = Θ(t1 − t2)H(t1)H(t2) + Θ(t2 − t1)H(t2)H(t1) ,

and has the effect of time ordering the operators from right to left. Continuing in this way, we see that
U(t, t′) has the expansion:

U(t, t′) = 1 +
∞∑

n=1

1
n!

(−i
~

)n ∫ t

t′
dt1

∫ t

t′
dt2 · · ·

∫ t

t′
dtnT {H(t1)H(t2) · · ·H(tn) }

= T
{

exp
[
− i

~

∫ t

t′
dt′′H(Q,P, t′′)

]}
.

(4.18)

In a similar way, iteration of the second of (4.17) gives:

U†(t, t′) = 1 +
(
i

~

)∫ t

t′
dt1H(t1) +

(
i

~

)2 ∫ t

t′
dt1

∫ t1

t′
dt2H(t2)H(t1) + · · · .

in this case, we find:

U†(t, t′) = 1 +
∞∑

n=1

1
n!

(
i

~

)n ∫ t

t′
dt1

∫ t

t′
dt2 · · ·

∫ t

t′
dtnT ∗{H(t1)H(t2) · · ·H(tn) }

= T ∗
{

exp
[
+
i

~

∫ t

t′
dt′′H(Q,P, t′′)

]}
,

(4.19)

where T ∗ is the anti-time-ordered product, defined by

T ∗{H(t1)H(t2) } = Θ(t2 − t1)H(t1)H(t2) + Θ(t1 − t2)H(t2)H(t1) .

which has the effect of time ordering from left to right, rather than right to left as in the time-ordered
product. The Hamiltonian H(Q,P, t) in Eqs. 4.18 and 4.19 is in the Schrödinger representation, with Q and
P time-independent. We can also work out the time-development operator with the operators Q(t) and P (t)
in the Heisenberg representation. For this case, we start with Eqs. (2.24):

i~
∂U(t, t′)

∂t
= U(t, t′)H(Q(t), P (t), t) , and − i~ ∂U

†(t, t′)
∂t

= H(Q(t), P (t), t)U†(t, t′) , (4.20)

which can be written as the following integral equations:

U(t, t′) = 1− i

~

∫ t

t′
U(t1, t′)H(Q(t1), P (t1), t1) dt1 , (4.21)

U†(t, t′) = 1 +
i

~

∫ t

t′
H(Q(t1), P (t1), t1)U†(t1, t′) dt1 . (4.22)
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Iteration of these equations leads to results similar to what we found in the Schrödinger picture. We get in
this case:

U(t, t′) = T ∗
{

exp
[
− i

~

∫ t

t′
dt′′H(Q(t′′), P (t′′), t′′)

]}
, (4.23)

U†(t, t′) = T
{

exp
[

+
i

~

∫ t

t′
dt′′H(Q(t′′), P (t′′), t′′)

]}
. (4.24)

We note here that U†(t, t′) = U(t′, t). In addition, one can show that U(t1, t2)U(t2, t3) = U(t1, t3).

4.3 Forced oscillator

As an example of the use of the interaction representation and the perturbation expansion of the time-
development operator, we study a forced harmonic oscillator with the Hamiltonian (See Chapter 16, Sec-
tion 16.6 where we solved this problem exactly.):

H(t) = H0 +H1(t) , (4.25)

H0 =
P 2

2m
+

1
2
mω2

0 Q
2 , and H1(t) = −QF (t) . (4.26)

where F (t) is an external force which commutes with Q and P , and where F (t) → 0 as t → ±∞. We first
need to find the eigenvalues and eigenvectors for H0. So we put:

Q =
√

~
2mω0

(
A+A†

)
, P =

√
~mω0

2
1
i

(
A−A†

)
, (4.27)

[Q,P ] = i~ , [A,A† ] = 1 . (4.28)

Then

H0 =
P 2

2m
+

1
2
mω2

0 Q
2 = ~ω0

[
A†A+ 1/2

]
, [H0, A ] = −~ω0A . (4.29)

The eigenvalues and eigenvectors are given by:

H0 |n 〉 = ~ω0

[
n+ 1/2

]
|n 〉 , |n 〉 =

(A† )n√
n!
| 0 〉 . (4.30)

Next, we want to find H ′1(t) in the interaction representation. This is given by:

H ′1(t) = e+iH0t/~ H1(t) e−iH0t/~ = −e+iH0t/~ Qe−iH0t/~ J(t) = −Q′(t)F (t) . (4.31)

where

Q′(t) = e+iH0t/~ Qe−iH0t/~ =
√

~
2mω0

(
A′(t) +A′ †(t)

)
, (4.32)

with:

A′(t) = e+iH0t/~ Ae−iH0t/~

= A+
(
it

~

)
[H0, A ] +

1
2!

(
it

~

)2

[H0, [H0, A ] ] + · · ·

= A+ (−iω0t) A+
1
2!

(−iω0t)
2
A+ · · · = e−iω0tA .

(4.33)

Here we have used Eq. (B.14) in Appendix ??. Similarly,

A′ †(t) = e+iω0tA† . (4.34)
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So

Q′(t) =
√

~
2mω0

(
Ae−iω0t +A† e+iω0t

)
, (4.35)

which satisfies the oscillator equation of motion:
{

d2

dt2
+ ω2

0

}
Q′(t) = 0 . (4.36)

So from (4.14), the probability of finding an out state |n′ 〉 of the free oscillator from an in state |n′ 〉 is given
by:

Pn,n′ = | out〈n |U(+∞,−∞) |n′ 〉in |2 (4.37)

where the matrix element is given by (4.18):

out〈n |U(+∞,−∞) |n′ 〉in

= 〈n |
{

1 +
∞∑

m=1

1
m!

(−i
~

)m ∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 · · ·

∫ +∞

−∞
dtmT {H(t1)H(t2) · · ·H(tm) }

}
|n′ 〉

= δn,n′ +
∞∑

m=1

1
m!

(
i

~

)m ∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 · · ·

∫ +∞

−∞
dtm τ

(m)
n,n′(t1, t2, . . . , tm)F (t1)F (t2) · · ·F (tm) , (4.38)

where
τ

(m)
n,n′(t1, t2, . . . , tm) = 〈n | T {Q′(t1)Q′(t2) · · ·Q′(tm) } |n′ 〉 . (4.39)

These τ -functions are the time-ordered product of the position operator Q′(t) in the interaction representa-
tion, and are the quantities we want to calculate here. Let us first look at the τ -functions for the n′ = 0 to
n = 0 transition. That is, the amplitude that nothing happens to the oscillator after the application of the
external force. For this case, we see that there are no odd-m terms, since we will always have a creation or
destruction operator left over. So the first non-zero term is τ (2)

0,0 (t, t′) which is easily calculated to be:

τ
(2)
0,0 (t, t′) = 〈 0 | T {Q′(t)Q′(t′) } | 0 〉 =

~
2mω0

{
e−iω0(t−t′) θ(t− t′) + eiω0(t−t′) θ(t− t′)

}
, (4.40)

where we have used (4.35). Comparing this to our result for GF (t − t′) in Chapter 16, Example 42 on
page 192, we see that τ (2)

0,0 (t, t′) is proportional to GF (t− t′), and we find:

GF (t− t′) =
im

~
τ

(2)
0,0 (t, t′) =

im

~
〈 0 | T {Q′(t)Q′(t′) } | 0 〉

=
i

2ω0

{
e−iω0(t−t′) θ(t− t′) + eiω0(t−t′) θ(t− t′)

}
.

(4.41)

That is, the Feynman Green function can be defined in terms of the time-ordered product of two positions
operators. Let us make sure that the Feynman Green function defined in this way satisfies the correct
differential equation. The first derivative is given by:

d
dt
GF (t− t′) =

im

~
〈 0 |

(
Q̇′(t)Q′(t′) θ(t− t′) +Q′(t′)Q̇′(t) θ(t′ − t)

)
| 0 〉 , (4.42)

and the second derivative is:

d2

dt2
GF (t− t′) =

im

~
〈 0 |

(
Q̈′(t)Q′(t′) θ(t− t′) +Q′(t′)Q̈′(t) θ(t′ − t)

)
| 0 〉

+
i

~
〈 0 |

(
P ′(t)Q′(t)−Q′(t)P ′(t)

)
| 0 〉 δ(t− t′)

= −ω2
0 GF (t− t′) + δ(t− t′) ,

(4.43)
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where we have used the equations of motion given in Eq. (4.36). So GF (t−t′) satisfies the required differential
equation: {

d2

dt2
+ ω2

0

}
GF (t− t′) = δ(t− t′) . (4.44)

We solved (4.44) in example 42 using Fourier transforms and contour integration, and found:

GF (t− t′) = −
∫

F

dω
2π

e−iω(t−t′)

ω2 − ω2
0

=
i

2ω0

{
e−iω0(t−t′) θ(t− t′) + eiω0(t−t′) θ(t′ − t)

}
, (4.45)

in agreement with Eq. (4.41). So from Eq. (4.38), we find that the m = 2 term in the expansion of the
probability amplitude is given by::

1
2

(
i

~

)2 ∫ +∞

−∞
dt1

∫ ∞

−∞
dt2 τ

(2)
0,0 (t1, t2)F (t1)F (t2)

=
i

2~m

∫ +∞

−∞
dt1

∫ ∞

−∞
dt2 GF (t1 − t2)F (t1)F (t2)

= − i

2~m

∫ +∞

−∞
dt1

∫ ∞

−∞
dt2

∫

F

dω
2π

e−iω(t1−t2)

ω2 − ω2
0

F (t1)F (t2)

= − i

2~m

∫

F

dω
2π

| F̃ (ω) |2
(ω − ω0)(ω + ω0)

= −1
2
| a |2 , where | a |2 =

|F̃ (ω0)|2
2~ω0m

. (4.46)

Here we have assumed that | F̃ (ω) |2 → 0 as ω → ±i∞ so that we can close the contour in either the UHP
or the LHP.

The next term in the expansion (4.38) is the m = 4 term. This requires that we calculate the ground
state to ground state time-ordered product τ (4)

0,0 (t1, t2, t3, t4) given by:

τ
(4)
0,0 (t1, t2, t3, t4) = 〈 0 | T {Q′(t1)Q′(t2)Q′(t3)Q′(t4) } | 0 〉 . (4.47)

There is a theorem we can use in this case, called Wick’s theorem. In order to state Wick’s theorem, we
need the following definition of the normal ordered product.

Definition 10 (Normal ordered product). The normal ordered product, denoted by:

N{Q(t1)Q(t2) · · ·Q(tm) } , (4.48)

is defined to be the product of all operators such that all creation operators stand to the left and all
annihilation operators stand on the right. For example for two operators, we have:

N{Q(t1)Q(t2) } =
~

2ω0m

{
AAe−iω0(t1+t2) +A†Aeiω0(t1−t2) +A†Aeiω0(t2−t1) +A†A† eiω0(t1+t2)

}
.

(4.49)
By construction, we have that:

〈 0 |N{Q(t1)Q(t2) · · ·Q(tm) }| 0 〉 = 0 . (4.50)

Theorem 8 (Wick’s theorem). The time-ordered product of m operators can be expanded by the expression:

T {Q(t1)Q(t2) · · ·Q(tm) } = N{Q(t1)Q(t2) · · ·Q(tm) }
+
∑

perm

〈 0 |T {Q(t1)Q(t2) }| 0 〉N{Q(t3) · · ·Q(tm) }

+
∑

perm

〈 0 |T {Q(t1)Q(t2) }| 0 〉 〈 0 |T {Q(t2)Q(t3) }| 0 〉N{Q(t4) · · ·Q(tm) }

+ · · ·+
∑

perm

〈 0 |T {Q(t1)Q(t2) }| 0 〉 〈 0 |T {Q(t2)Q(t3) }| 0 〉 · · · 〈 0 |T {Q(tm−1)Q(tm) }| 0 〉 , (4.51)
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for m even. For m odd, the last line is replaced by:
∑

perm

〈 0 |T {Q(t1)Q(t2) }| 0 〉 〈 0 |T {Q(t2)Q(t3) }| 0 〉 · · · 〈 0 |T {Q(tm−2)Q(tm−1) }| 0 〉Q(tm) . (4.52)

Here N{ · } denotes the normal ordered product of operators, defined above.

Proof. The theorem is proved by induction in several books (see, for example, Drell [1]), and will not be
reproduced here. One can see that to move from a time-ordered product to a normal ordered product, one
must commute creation and annihilation operators which give c-numbers. These c-numbers can then be
factored out and thus reducing the number of quantities to normal order by two. One continues in this way
until all terms are commuted into normal ordered operators.

So for our case, application of Wick’s theorem to the case of m = 4 gives:

τ
(4)
0,0 (t1, t2, t3, t4) = 〈 0 | T {Q′(t1)Q′(t2)Q′(t3)Q′(t4) } | 0 〉

= τ
(2)
0,0 (t1, t2) τ (2)

0,0 (t3, t4) + τ
(2)
0,0 (t1, t3) τ (2)

0,0 (t2, t4) + τ
(2)
0,0 (t1, t4) τ (2)

0,0 (t2, t3) .
(4.53)

So from (4.38), the m = 4 term contributes a factor:

1
4!

(
i

~

)4 ∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

∫ +∞

−∞
dt3

∫ +∞

−∞
dt4 τ

(m)
0,0 (t1, t2, t3, t4)F (t1)F (t2)F (t3)F (t4) =

3
4!
|a|4 . (4.54)

So from Eq. (4.38), we find to 4th order:

〈 0 |U(+∞,−∞) | 0 〉 = 1− | a |
2

2
+

1
2!

( | a |2
2

)2

+ · · · ≈ e−|a|2/2 , (4.55)

so that from (4.37):

P0,0 = | out〈 0 |U(+∞,−∞) | 0 〉in |2 = 1− |a|2 +
1
2!
|a|4 · · · ≈ e−|a|2 (4.56)

in agreement with the exact result found in Chapter 16, Eq. (16.129) on page 191 to second order in |a|2.
In this section, we only computed ground state to ground state probabilities. In order to compute ground
state (n′ = 0) to excited state (n) probabilities requires similar calculations, except now the only terms that
contribute are those that have n factors of Q′(t) left over from the normal ordered product. With the help
of Wick’s theorem, the first order term can be easily calculated. The next order, however, is hard to do this
way, and we will learn other methods in the chapter on path integrals.

Exercise 7. Use Wick’s theorem to find the first-order contribution to the probability P4,0 for the forced
harmonic oscillator. Show your answer agrees with the exact result.
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Chapter 5

Density matrix formalism

5.1 Classical theory

In classical systems, we often want to solve a problem where we are given a distribution ρ0(q0, p0) of values
of q and p at t = 0, and we want to find the distribution ρ(q, p, t) at time t later, where the values of q(t)
and p(t) have evolved according to the classical equations of motion,

q̇ = { q,H(q, p) } =
∂H(q, p)

∂p
, ṗ = { p,H(q, p) } = −∂H(q, p)

∂q
, (5.1)

with initial conditions, q(0) = q0 and p(0) = p0. In this section, we consider only Hamiltonians which do not
depend explicitly on time. If we don’t loose any trajectories of q(t) and p(t) in phase space from the initial
distribution, the equation of motion for ρ(q, p, t) is given by

dρ(q, p, t)
dt

=
∂ρ(q, p, t)

∂t
+ q̇

∂ρ(q, p, t)
∂q

+ ṗ
∂ρ(q, p, t)

∂p
=
∂ρ(q, p, t)

∂t
+ { ρ(q, p, t), H(q, p) } = 0 , (5.2)

with initial conditions ρ(q, p, 0) = ρ0(q, p). For Hamiltonians of the form H(q, p, t) = p2/2m+V (q), Eq. (5.2)
can be written as

∂ρ(q, p, t)
∂t

+
p

m

∂ρ(q, p, t)
∂q

+ F (q)
∂ρ(q, p, t)

∂p
= 0 , (5.3)

where F (q) = −∂V (q)/∂q, which is called Boltzmann’s equation. The time evolution of the coordinates in
terms of the initial coordinates are given by equations of the form, q(q0, p0, t) and p(q0, p0, t). Both the set
(q, p) at time t and the set (q0, p0) at time t = 0 are canonical coordinates and can be used to find Poisson
equations of motion. In particular, the Hamiltonian is a constant, independent of time,

dH(q, p)
dt

=
∂H(q, p)

∂t
= 0 , (5.4)

so H[ q(t), p(t) ] = H(q0, p0). We turn next to iterative solutions of these equations.

5.1.1 Classical time development operator

In this section, we consider only Hamiltonians which do not depend explicitly on time. Then We first note
that we can find iterative solutions to the Poisson bracket equations of motion by writing them as integral
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equations. Integrating (5.1) over t from t = 0 to t and iterating over and over again gives

q(t) = q0 +
∫ t

0

dt′ { q(t′), H(q, p) }

= q0 +
∫ t

0

dt′ { q0, H(q0, p0) }+
∫ t

0

dt′
∫ t′

0

dt′′ { { q0, H(q0, p0) }, H(q0, p0) }+ · · · ,

= q0 + t { q0, H(q0, p0) }+
t2

2!
{ { q0, H(q0, p0) }, H(q0, p0) }+ · · · ,

(5.5)

with a similar expression for p(t). Here it is simplest to compute the Poisson brackets with respect to the
set (q0, p0). The equation of motion (5.2) for the distributions function ρ(q, p, t) can be written as

∂ρ(q, p, t)
∂t

= −{ ρ(q, p, t), H(q, p, t) } , (5.6)

which has an opposite sign from the equations of motion in Eqs. (5.1), so the iterated solution for ρ(q, p, t)
becomes

ρ(q, p, t) = ρ0(q, p)− t { ρ0(q, p), H(q, p) }+
t2

2!
{ { ρ0(q, p), H(q, p) }, H(q, p) }+ · · · . (5.7)

Here we compute the Poisson brackets with respect to the final set (q, p). From expressions (5.5) and
(5.7), we see that we can define an operator for the time-evoution of the system. Let us define a classical
time-development operator by

Definition 11 (classical time-development operator). The time-development operator Uop(t) is a right-
action operator, defined by:

Uop(t) = etHop , where Hop := { , H} =
∂H(q0, p0)

∂p0

∂

∂q0
− ∂H(q0, p0)

∂q0

∂

∂p0
, (5.8)

where the slot in the expression { , H} is the position where we put the quantity which is to be operated
on. We can just as well compute the Poisson brackets with respect to the set (q, p) at time t (see below).
Note that tHop is dimensionless.

So with this definition, we find

q(t) = Uop(t) q0 , p(t) = Uop(t) p0 , (5.9)

and in general
A(q(t), p(t)) = Uop(t)A(q0, p0) . (5.10)

Also, since
HopA(q0, p0) = {A(q0, p0), H(q0, p0) } ,

we find that

H2
opA(q0, p0) = Hop {A(q0, p0), H(q0, p0) } = { {A(q0, p0), H(q0, p0) }, H(q0, p0) } .

We will need the following theorem.

Theorem 9.
Uop(t1)Uop(t2) = Uop(t1 + t2) . (5.11)
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Proof. We have:

Uop(t1)Uop(t2)A(q0, p0) = et1Hop
[
et2Hop A(q0, p0)

]

=
∞∑

n=0

∞∑

m=1

tn1 t
m
2

n!m!
Hn

op [Hm
opA(q0, p0) ] =

∞∑

n=0

∞∑

m=0

tn1 t
m
2

n!m!
[Hm+n

op A(q0, p0) ]

=
∞∑

k=0

[Hk
opA(q0, p0) ]

∞∑

n=0

∞∑

m=0

δk,n+m
tn1 t

m
2

n!m!
=
∞∑

k=0

(t1 + t2)k

k!
[Hk

opA(q0, p0) ]

= e(t1+t2)Hop A(q0, p0) = Uop(t1 + t2)A(q0, p0) ,

where we have used the binomial theorem.

Using this theorem, we see that since Uop(0) = 1, we have Uop(t)Uop(−t) = 1 so that the inverse
operator is given by U−1

op (t) = Uop(−t). This means that the operator, Uop(t)A(q0, p0)Uop(−t) has no effect
when operating on any function B(q0, p0). We state this in the form of another curious theorem as follows:

Theorem 10.
Uop(t)A(q0, p0)U−1

op (t)B(q0, p0) = A[ q(t), p(t) ]B(q0, p0) . (5.12)

Proof. We find

Uop(t)A(q0, p0)U−1
op (t)B(q0, p0) = Uop(t)A(q0, p0) [Uop(−t)B(q0, p0) ]

= Uop(t) [A(q0, p0)B[ q(−t), p(−t) ] ] = A[ q(t), p(t) ]B(q0, p0) .

So the operator
Aop[ q(t), p(t) ] = Uop(t)A(q0, p0)U−1

op (t) , (5.13)

changes only A(q0, p0), and does nothing to any function B(q0, p0) to the right of this operator. In particular,
we can write the operator relations

qop(t) = Uop(t) q0 U
−1
op (t) ,

pop(t) = Uop(t) p0 U
−1
op (t) , (5.14)

which have the value q(t) and p(t) when operating on any function f(q0, p0),

qop(t) f(q0, p0) = q(t) f(q0, p0) ,
pop(t) f(q0, p0) = p(t) f(q0, p0) . (5.15)

For the density function ρ(q, p, t), we can use the same time evolution operator if we compute the Poisson
brackets with respect to the final set of coordinates (q, p) and with an opposite sign. That is Eq. (5.7) can
be written as

ρ(q, p, t) = U−1
op (t) ρ0(q, p) . (5.16)

Here we regard (q, p) as dummy variables. Again, we can define a density operator ρop(q, p, t) by the
expression

ρop(q, p, t) = U−1
op (t) ρ0(q, p)Uop(t) , (5.17)

which has the value ρ(q, p, t) when operating on any function f(q, p),

ρop(q, p, t) f(q, p) = ρ(q, p, t) f(q, p) . (5.18)
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5.1.2 Classical averages

We interpret ρ(q, p, t) as the probability of finding the system at a point (q, p) in phase space at time t. The
next theorem expresses conservation of this probability, a result known as Liouville’s theorem.

Theorem 11. The distribution function ρ(q, p, t) is normalized according to

N (t) =
∫∫ +∞

−∞
ρ(q, p, t)

dq dp
2π~

= 1 , (5.19)

for all t.

Proof. Differentiating (5.19) with respect to t and using (5.6) gives

dN (t)
dt

= −
∫∫ +∞

−∞

dq dp
2π~

{
∂ρ(q, p, t)

∂q

∂H(q, p, t)
∂p

− ∂ρ(q, p, t)
∂p

∂H(q, p, t)
∂q

}

=
∫∫ +∞

−∞

dq dp
2π~

ρ(q, p, t)
{
∂2H(q, p, t)

∂q ∂p
− ∂2H(q, p, t)

∂p ∂q

}
= 0 .

(5.20)

Here we have integrated by parts and assumed that ρ(q, p, t)→ 0 as either q or p go to ±∞.

So we conclude that
∫∫ +∞

−∞
ρ(q, p, t)

dq dp
2π~

=
∫∫ +∞

−∞
ρ0(q0, p0)

dq0 dp0

2π~
= 1 . (5.21)

The average value of q or p at any time t can be computed in two ways: we can either solve Eq. (5.6) for
ρ(q, p, t) with initial value ρ0(q, p), and average over q and p, or solve Eq. (5.1) for q(t) and p(t) with initial
values of q0 and p0, and average over the initial values ρ0(q0, p0). We state this in the form of a theorem.

Theorem 12.

〈 q(t) 〉 =
∫∫

dq dp
2π~

q ρ(q, p, t) =
∫∫

dq0 dp0

2π~
q( q0, p0, t ) ρ0(q0, p0) , (5.22a)

〈 p(t) 〉 =
∫∫

dq dp
2π~

p ρ(q, p, t) =
∫∫

dq0 dp0

2π~
p( q0, p0, t ) ρ0(q0, p0) . (5.22b)

Remark 12. This first method of averaging corresponds in quantum mechanics to computing averages in the
Schrödinger representation, whereas the second method corresponds to computing averages in the Heisenberg
representation.

Example 24. We show directly that time time derivative of the average field is the same using both method
of averaging. Using the first method of averaging, we find

∂〈 q(t) 〉
∂t

=
∫∫

dq dp
2π~

∂ρ(q, p, t)
∂t

q = −
∫∫

dq dp
2π~

{ ρ(q, p, t), H } q (5.23)

= −
∫∫

dq dp
2π~

{ ∂ρ(q, p, t)
∂q

∂H

∂p
− ∂ρ(q, p, t)

∂p

∂H

∂q

}
q

=
∫∫

dq dp
2π~

ρ(q, p, t)
{ ∂

∂q

[
q
∂H

∂p

]
− ∂

∂p

[
q
∂H

∂q

]}

=
∫∫

dq dp
2π~

ρ(q, p, t) { q,H } =
∫∫

dq dp
2π~

ρ(q, p, t) q̇ .

Since q and p are dummy integration variables, this agrees with computing the time derivative using the
second method.

c© 2009 John F. Dawson, all rights reserved. 66



CHAPTER 5. DENSITY MATRIX FORMALISM 5.1. CLASSICAL THEORY

5.1.3 Classical correlation and Green functions

We start by introducing a number of definitions of classical correlation and Green functions, which will be
useful later.

Definition 12 (correlation coefficient). The correlation coefficient F (t, t′) is defined by

F (t, t′) = 〈 q(t) q(t′) 〉 =
∫∫

dq dp
2π~

ρ(q, p) q(t) q(t′) . (5.24)

Definition 13 (spectral function). The spectral function σ(t, t′) is defined as the expectation value of the
Poisson bracket of q(t) and q(t′) by

σ(t, t′) = 〈 { q(t), q(t′) } 〉 =
∫∫

dq dp
2π~

ρ(q, p) { q(t), q(t′) } . (5.25)

Definition 14 (Green functions). Advanced and retarded Green functions are defined by

GA(t, t′) = +σ(t, t′) Θ(t′ − t) , (5.26a)
GR(t, t′) = −σ(t, t′) Θ(t− t′) . (5.26b)

It will be useful to introduce a matrix of correlation and Green functions as follows. We first define the
matrix G(t, t′) of Green functions by

G(t, t′) =
(

2i F (t, t′) GA(t, t′)
GR(t, t′) 0

)
. (5.27)

We will find it useful later to define new Green functions by a change of basis of this matrix with the following
definition. We define G(t, t′) by

G(t, t′) = U G(t, t′) U−1 =
(
G++(t, t′) G+−(t, t′)
G−+(t, t′) G−−(t, t′)

)
,

= H(t, t′)G>(t, t′) + HT (t′, t)G<(t, t′) ,
(5.28)

where

U =
1√
2

(
1 1
1 −1

)
, U−1 = UT = U† = U =

1√
2

(
1 1
1 −1

)
. (5.29)

Multiplying this out, we find:

G++(t, t′) = Θ(t− t′)G>(t, t′) + Θ(t′ − t)G<(t, t′) ,
G−+(t, t′) = G>(t, t′)
G+−(t, t′) = G<(t, t′)
G−−(t, t′) = Θ(t′ − t)G>(t, t′) + Θ(t− t′)G<(t, t′) ,

(5.30)

where
G>
<

(t, t′)/i = F (t, t′)± iσ(t, t′)/2 = Tr
[

[q(t)q(t′)± i{ q(t), q(t′) }/2]
]
. (5.31)

In (5.28), we have defined the matrices H(t, t′) and its transpose HT (t, t′) by:

H(t, t′) =
(

Θ(t− t′) 0
1 Θ(t′ − t)

)
, HT (t′, t) =

(
Θ(t′ − t) 1

0 Θ(t− t′)

)
. (5.32)

We are now in a position to define a classical closed time path Green function.
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Definition 15 (Closed time path Green function). Rather than use the matrix notation for the Green
functions, as in Eq. (5.28), we can use the closed time path formalism we developed in Section 3.5 for path
integrals in quantum mechanics. The closed time path is the same as shown in Fig. 3.1. In this formulation,
the Green function matrix is represented by the location of t and t′ on the closed time path contour. The
closed time path step function was defined in Eq. (3.37) and explicity given on the contour in Eq. (3.38).
On the CTP contour, the complete Green function is given by

G(t, t′) = ΘC(t, t′)G>(t, t′) + ΘC(t′, t)G<(t, t′) . (5.33)

Remark 13. At t = t′,
G(t, t) = F (t, t) . (5.34)

Example 25. Let us work out the closed time path Green function for a harmonic oscillator. The Lagrangian
is

L(q, q̇) =
1
2
m
[
q̇2 − ω2

0 q
2
]
. (5.35)

Equations of motion are given by
d2〈 q(t) 〉

dt2
+ ω2 〈 q(t) 〉 = 0 , (5.36)

which have solutions given by
q(t) = q cos(ωt) + (p/m) sin(ωt) . (5.37)

So then the correlation function is

F (t, t′) = 〈 q(t) q(t′) 〉 = 〈 q2 〉 cos(ωt) cos(ωt′) + 〈 p2 〉 sin(ωt) sin(ωt′)/m2 + 〈 qp 〉 sin[ω(t+ t′) ]/m , (5.38)

where

〈 q2 〉 =
∫∫

dq dp
2π~

ρ(q, p) q2 , 〈 qp 〉 =
∫∫

dq dp
2π~

ρ(q, p) q p , 〈 p2 〉 =
∫∫

dq dp
2π~

ρ(q, p) p2 . (5.39)

The spectral function is given by

σ(t, t′) = 〈 { q(t), q(t′) } 〉 = 〈 { q, q } 〉 cos(ωt) cos(ωt′) + 〈 { q, p } 〉 cos(ωt) sin(ωt′)/m

+ 〈 { p, q } 〉 sin(ωt) cos(ωt′)/m+ 〈 { p, p } 〉 sin(ωt) sin(ωt′)/m2

= − sin[ω(t− t′) ]/m .

(5.40)

From these two expressions, we can find all the Green functions. We get

5.1.4 Classical generating functional

In this section, we derive the classical generating functional for closed-time-path Green functions.

5.2 Quantum theory

In quantum mechanics, the density operator ρ(t) is defined in the Schrödinger picture by the outer product
of the Schrödinger state vector |ψ(t) 〉

ρ(t) = |ψ(t) 〉〈ψ(t) | = U(t) |ψ0 〉〈ψ0 |U†(t) = U(t) ρ0 U
†(t) , (5.41)

where ρ0 = |ψ0 〉〈ψ0 | is the Heisenberg density operator at t = 0. U(t) and U†(t) are the time-development
operators, given by Eqs. (4.18) and (4.19). The density operator satisfies an equation of motion

∂ρ(t)
∂t

=
∂|ψ(t) 〉
∂t

〈ψ(t) |+ |ψ(t) 〉 ∂〈ψ(t) |
∂t

= −[ ρ(t), H ]/(i~) , (5.42)
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or
∂ρ(t)
∂t

+ [ ρ(t), H ]/(i~) = 0 . (5.43)

where we have used Schrödinger’s equation. Eq. (5.43) is the quantum statement of the classical Liouville
theorem, Eq. (5.2).

In a basis | ei 〉 of the system, the density matrix ρij(t) is given by

ρij(t) = 〈 ei |ψ(t) 〉〈ψ(t) | ej 〉 . (5.44)

The density matrix is normalized and idempotent at all times

Tr[ ρ(t) ] =
∑

i

ρii(t) =
∑

i

| 〈 ei |ψ(t) 〉 |2 = Tr[ ρ0 ] = 1 , ρ2(t) = ρ(t) , (5.45)

which expresses the conservation of probability.
Let us examine some of the properties of the Heisenberg density matrix at t = 0. First of all, ρ = |ψ 〉〈ψ |

is Hermitian, and therefore has an eigenvalue problem which we write as

ρ | ρn 〉 = ρn | ρn 〉 , with 〈 ρn | ρn′ 〉 = δn,n′ ,
∑

n

| ρn 〉〈 ρn | = 1 . (5.46)

But since the density matrix is idempotent, the eigenvalues must obey the equation: ρn(ρn − 1) = 0, so
eigenvalues must be either zero or one: ρn = 0, 1, for all n. However in addition, the trace of ρ is one, so that
the sum of all eigenvalues must also be one:

∑
n ρn = 1. This means that there can only be one eigenvalue

with value one, all the others must be zero. Given a vector |ψ 〉, we can always construct a density operator
ρ = |ψ 〉〈ψ | which contains all the information in the ray |ψ 〉, without the arbitrary phase factor associated
with the vector |ψ 〉.

As in the classical case, when we want to find average values of operators of the form,

〈F (Q(t), P (t)) 〉 = 〈ψ0 |F (Q(t), P (t)) |ψ0 〉 = 〈ψ(t) |F (Q,P ) |ψ(t) 〉
= Tr[ ρ(t)F (Q,P ) ] = Tr[ ρ0 F (Q(t), P (t)) ] ,

(5.47)

we have our choice of either solving the equations of motion for the operators or the equation of motion
(5.43) for the density matrix. They both give the same answer. In many cases in non-relativistic quantum
mechanics, the simplest method may be to just solve Schrödinger’s equation and then find ρ(t). However if
the system has a large number of canonical variables (for example, more than three!), Schrödinger’s equation
can be very difficult, if not impossible, to solve, and one is forced to look at solutions of the equations of
motion in the Heisenberg representation. This is the case for quantum field theory where an infinite and
continuous number of canonical variables are needed to describe the physics. So we consider here in this
chapter methods that can be used in the Heisenberg representation.

Let us first examine representations of the density matrix. In a coordinate or momentum representation,
there are four different density matrices we can define. They are given by the following:

〈 q | ρ(t) | q′ 〉 , 〈 q | ρ(t) | p 〉 , 〈 p | ρ(t) | q 〉 , 〈 p | ρ(t) | p′ 〉 . (5.48)

But these are all related to each other by Fourier transforms, so if we find one of them we can find them
all. Here we will study the density matrix in a coordinate representation given by the first matrix element
of the above list, and define

ρ(q, q′, t) = 〈 q | ρ(t) | q′ 〉 = 〈 q |ψ(t) 〉 〈ψ(t) | q′ 〉 = 〈 q, t |ψ0 〉 〈ψ0 | q′, t 〉 = 〈 q, t | ρ0 | q′, t 〉

=
∫∫

dq′′ dq′′′ 〈 q, t | q′′, 0 〉 ρ0(q′′, q′′′) 〈 q′′′, 0 | q′, t 〉 ,
(5.49)
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where ρ0(q′′, q′′′) = 〈 q | ρ0 | q′ 〉 = 〈 q |ψ0 〉〈ψ0 | q′ 〉. From the result in (5.49), we see that in order to find the
full density matrix in the coordinate representation at time t, we will need to find the propagator,

〈 q′′′, 0 | q′, t 〉 〈 q, t | q′′, 0 〉 . (5.50)

Here 〈 q, t | q′′, 0 〉 propagates the system forward in time from a point q′′ at t = 0 to a point q at time t
and then 〈 q′′′, 0 | q′, t 〉 propagates the system backward in time from a point q′ at time t to a point q at
time t = 0. So both propagation forward in time and then backward in time are necessary in order to find
ρ(q, q′, t).

Normalization of the density matrix in the coordinate representation is given by an integral over the
diagonal elements, ∫ +∞

−∞
dq ρ(q, q, t) = 〈ψ(t) |ψ(t) 〉 = 1 , (5.51)

for all t. The average value of the Heisenberg position operator Q(t) is given by a trace over the density
matrix

〈Q(t) 〉 = 〈ψ(t) |Q |ψ(t) 〉 =
∫ +∞

−∞
dq ρ(q, q, t) q

=
∫∫∫

dq dq′ dq′′ρ0(q′, q′′) q 〈 q′′, 0 | q, t 〉 〈 q, t | q′, 0 〉 .
(5.52)

So in order to calculate this quantity, we will need to find the propagator

〈 q′′, 0 | q, t 〉 〈 q, t | q′, 0 〉 , (5.53)

where we must find the propagator from a point q′ at time t = 0 to a point q at time t and then from
this point back to a point q′′ at t = 0. We show how to find this propagator in terms of a path integral
in Chapter 3. Finding this propagator is the key to obtaining the correlation and Green functions for the
system.
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Chapter 6

Thermal densities

In this chapter, we discuss systems in thermal equilibrium. We study methods to calculate properties of such
systems using methods we have developed for quantum mechanics, and employing some of the same ideas.

We start in Section 6.1 by deriving the canonical ensemble for a physical system in quantum mechanics.
Then in Section 6.2, we discuss thermodynamic averages of quantum operators. In Section 6.3, we discuss
the imaginary time, or Matsubara formalism, and proceed to find Green functions and path integrals for this
formalism. In Section 6.6, we discuss the thermovariables method.

6.1 The canonical ensemble

The thermal density matrix ρ for a canonical ensemble is defined to be the normalized operator which
minimizes the entropy such that the average energy is constrained to be a fixed number. The definition for
the entropy (S) in terms of the thermal density matrix is given by Boltzmann’s famous formula,

S = −kB Tr[ ρ ln[ ρ ] ] , (6.1)

where kB is Boltzmann’s constant. Think of the entropy as measuring the degree of uncertainty of the
system. The energy (E) and normalization is given by

E = Tr[ ρH ] , 1 = Tr[ ρ ] . (6.2)

Minimization of S with these constraints gives the canonical density matrix,

ρ =
1
Z
e−βH , (6.3)

where Z and β are Lagrange multipliers. Z is fixed in terms of β by the normalization requirement,

Z(β) = e−βΩ(β) = Tr[ e−βH ] , (6.4)

which defines the grand potential Ω(β). The entropy is then given by

S/kB = −Tr[ ρ ln[ ρ ] ] = β E + ln[Z(β) ] = β [E − Ω(β) ] . (6.5)

The system we are describing may or may not involve something like a gas of particles contained in a fixed
volume. If it does, however, we have available the combined first and second laws of thermodynamics, which
states that

T dS(E, V ) = dE + p dV , (6.6)
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and which defines the temperature (T ) and pressure (p). The partition function Z(β, V ) then depends on
V as well as β. From (6.5) and (6.6) we find the partial differential relations,

[
∂S(E, V )

∂E

]

V

=
1
T

= kB β ,

[
∂S(E, V )

∂V

]

E

=
p

T
= −kB β

[
∂Ω(β, V )
∂V

]

β

. (6.7)

So we find that

β = 1/(kBT ) , and p = −
[
∂Ω(β, V )
∂V

]

β

. (6.8)

Even if we cannot define a volume for the system, we can still use the relation T dS = dE to define what we
call the “temperature” of the system.

The ensemble average is connected to time-averages by the ergodic hypothesis, which states that

ergodic hypothesis here!

6.2 Ensemble averages

In 1932, Felix Block [1] proposed that the ensemble average of any quantum mechanical operator A in the
Schrödinger representation is given by

〈A 〉β = Tr[ ρ(β)A ] , where ρ(β) =
1

Z(β)
e−βH . (6.9)

This prescription is the same that we used in Chapter 5 for average values, except that here ρ(β) is an
ensemble density matrix rather than the density matrix of the quantum state of the system. Let us be clear
that it is impossible to write the canonical ensemble density operator as the outer product of some vector in
a Hilbert space, so that ρ(β) is not a density operator describing a state of the system! Rather we should
think of it as describing an average state of the system which minimizes the entropy, or degree of uncertainty.
We state this in the form of a theorem in the following

Theorem 13. There is no vector |ψ(β) 〉 such that

|ψ(β) 〉〈ψ(β) | = ρ(β) =
1

Z(β)
e−βH (6.10)

except for a possible trivial case.

Proof. The proof is easy and left as an exercise.

6.3 Imaginary time formalism

The factor exp[−βH ] in the density matrix for the canonical ensemble is very suggestive of the time de-
velopment operator U(t) = exp[−iHt/~ ] in quantum mechanics for negative complex time. In fact, if we
put

t/~ 7→ −iτ , (6.11)

we find
T (τ) = U(−i~ τ) = e−τH . (6.12)

Here T (τ) is an invertable Hermitian operator, not a unitary transformation for τ real and positive. So
lengths and angles are not preserved by this transformation. However we can still use (6.12) to define
“thermal Schrödinger” and “thermal Heisenberg” pictures. Let us put

|ψ(τ) 〉 = T (τ) |ψ 〉 , and Q(τ) = T−1(τ)QT (τ) , P (τ) = T−1(τ)P T (τ) , (6.13)
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for any vector |ψ 〉 and operators Q and P in the Schrödinger picture. For any function of Q and P , we have

F (Q(τ), P (τ) ) = T−1(τ)F (Q,P )T (τ) . (6.14)

In particular, if F (Q,P ) = H(Q,P ), we have

H(Q(τ), P (τ) )T = T−1(τ)H(Q,P )T (τ) = H(Q,P ) , (6.15)

since [T (τ), H ] = 0. The thermal vector |ψ(τ) 〉 satisfies a “thermal Schrödinger” equation,

d|ψ(τ) 〉
dτ

= −H |ψ(τ) 〉 . (6.16)

Here we constrain the imaginary time variable τ to be in the range 0 ≤ τ ≤ β, so that a formal solution of
the thermal Schrödinger equation (6.16) is given by

|ψ(β) 〉 = exp
{
−
∫ β

0

H dτ
}
|ψ 〉 = T (β) |ψ 〉 , (6.17)

for τ -independent thermal Hamiltonians. Eq. (6.17) maps all state vectors |ψ 〉 in Hilbert space to thermal
vectors |ψ(β) 〉, along a path governed by the thermal Schrödinger equation. Q(τ) and P (τ) satisfy “thermal
Heisenberg” equations of motion,

dQ(τ)
dτ

= −[Q(τ), H ] ,
dP (τ)

dτ
= −[P (τ), H ] , (6.18)

and obey the equal τ commutation relations,

[Q(τ), P (τ) ] = T−1(τ) [Q,P ]T (τ) = i~ . (6.19)

For Hamiltonians of the form H = P 2/(2m) + V (Q), the thermal Heisenberg equations of motion are

dQ(τ)
dτ

= −[Q(τ), P 2(τ)/(2m) ] = −i~P (τ)/m , (6.20a)

dP (τ)
dτ

= −[P (τ), V (Q(τ) ) ] . (6.20b)

So from (6.20a), we have

P (τ) =
i

~
mQ′(τ) . (6.21)

Here we use a prime to indicate differentiation with respect to τ .
We now come to an important result. According to the Block prescription (6.9) for finding thermal

averages, the thermal averages of the operators Q(τ) and P (τ) are periodic with period β. We state this in
a general form in the following theorem:

Theorem 14. The thermal average of any function F (Q(τ), P (τ) ) is periodic in τ with period β,

〈F (Q(τ + β), P (τ + β) ) 〉β = 〈F (Q(τ), P (τ) ) 〉β . (6.22)

Proof. We find

〈F (Q(τ + β), P (τ + β) ) 〉β =
1

Z(β)
Tr[ e−βH F (Q(τ + β), P (τ + β) ) ] (6.23)

=
1

Z(β)
Tr[ e−βH e(τ+β)H F (Q,P ) e−(τ+β)H ]

=
1

Z(β)
Tr[ eτH F (Q,P ) e−(τ+β)H ] =

1
Z(β)

Tr[ e−βH eτH F (Q,P ) e−τH ]

=
1

Z(β)
Tr[ e−βH F (Q(τ), P (τ) ) ] = 〈F (Q(τ), P (τ) ) 〉β ,

which is what we were trying to prove.
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In particular, we have

〈Q(τ + β) 〉β = 〈Q(τ) 〉β , 〈P (τ + β) 〉β = 〈P (τ) 〉β . (6.24)

This means that we can expand 〈Q(τ) 〉β and 〈P (τ) 〉β in a fourier series with period β,

〈Q(τ) 〉β =
1
β

+∞∑

n=−∞
Qn e

−i2ωnτ , and 〈P (τ) 〉β =
1
β

+∞∑

n=−∞
Pn e

−i2ωnτ . (6.25)

where the frequencies ωn are given by
2ωn = 2π n/β . (6.26)

(The factor of two in these definitions are explained below.) For Hamiltonians of the form, H = P 2/(2m) +
V (Q), we have

Pn =
mωn

~
Qn . (6.27)

Theorem 14 states that the thermal averages of thermal Heisenberg operators are periodic. However, we
cannot conclude that the thermal operators themselves are periodic. In fact the operators depend on τ , not
β.

We define τ -ordered products exactly like the time-ordered ones. We put

Tτ{Q(τ), Q(τ ′) } = Q(τ)Q(τ ′) Θ(τ − τ ′) +Q(τ ′)Q(τ) Θ(τ ′ − τ) , (6.28)

and define a thermal two-point Green function by

G(τ, τ ′) = i 〈 Tτ{Q(τ), Q(τ ′) } 〉β/~ = G>(τ, τ ′) Θ(τ − τ ′) +G<(τ, τ ′) Θ(τ ′ − τ) , (6.29)

where

G>(τ, τ ′) = i 〈Q(τ)Q(τ ′) 〉β/~ , (6.30a)
G<(τ, τ ′) = i 〈Q(τ ′)Q(τ) 〉β/~ . (6.30b)

Let us first note that G>(τ, τ ′) and G<(τ, τ ′) are functions of τ − τ ′, since, for example, we can write

〈Q(τ)Q(τ ′) 〉β =
1

Z(β)
Tr[ e−βH Q(τ)Q(τ ′) ] (6.31)

=
1

Z(β)
Tr[ e−βH eτHQe−(τ−τ ′)H Qe−τ

′H ]

=
1

Z(β)
Tr[ e−βH e(τ−τ ′)HQe−(τ−τ ′)H Q ] ,

which is a function of τ − τ ′. So let us put τ ′ = 0, and write

G(τ) = G>(τ) Θ(τ) +G<(τ) Θ(−τ) , (6.32)

where now

G>(τ) = i 〈Q(τ)Q(0) 〉β/~ , (6.33a)
G<(τ) = i 〈Q(0)Q(τ) 〉β/~ . (6.33b)

Note that G<(τ) = G>(−τ) so that G(−τ) = G(τ), and is an even function of τ . The next theorem, due to
Kubo[2], and Martin and Schwinger[3], is similar to Theorem 14 above and relates G>(τ + β) to G<(τ).

Theorem 15 (KMS theorem). The theorem states that

G>(τ + β) = G<(τ) . (6.34)
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Proof. We find that

〈Q(τ + β)Q(0) 〉β =
1

Z(β)
Tr[ e−βH Q(τ + β)Q(0) ] (6.35)

=
1

Z(β)
Tr[ eτH Qe−(τ+β)HQ ]

=
1

Z(β)
Tr[ e−βH QeτH Qe−τH ] = 〈Q(0)Q(τ) 〉β .

The result now follows from the definitions (6.33).

The KMS theorem is only one of a number of similar theorems. Using the KMS theorem, we find that

G(β) = G>(β) = G>(0) = G<(0) = G<(−β) = G(−β) . (6.36)

In other words the argument of G(τ) is in the range −β ≤ τ ≤ +β, and is even, with boundary conditions
such that G(−β) = G(+β). This means that we can expand G(τ) in a fourier series given by

G(τ) =
1
β

+∞∑

n=−∞
Gn e

−iωnτ , (6.37a)

Gn =
1
2

∫ +β

−β
dτ G(τ) e+iωnτ =

∫ +β

0

dτ G(τ) e+iωnτ , (6.37b)

where the Matsubara frequencies ωn are given by[4]

ωn = πn/β . (6.38)

Notice that these frequencies are one-half the frequencies found for the expansions of 〈Q(τ) 〉β and 〈P (τ) 〉β
in Eq. (6.26).

6.4 Thermal Green functions

General imaginary time Green functions are defined in a way analogous to the real time case. We put

τ{Q(τ1), Q(τ2), . . . , Q(τn) }β = 〈 Tτ{Q(τ1), Q(τ2), . . . , Q(τn) } 〉β . (6.39)

6.5 Path integral representation

From our discussion of path integrals in Chapter 3, we found that the propagator 〈 q, t | q, 0 〉 could be written
as a path integral given by

〈 q |U(t) | q′ 〉 = N
∫ q(t)=q

q(0)=q′
Dq exp

{
i

~

∫ t

0

dt′
[ 1

2
m q̇2 + V (q)

]}
(6.40)

Translating this expression to imaginary time according to Eq. (6.11), t/~ 7→ −iβ, we find

〈 q | e−βH | q′ 〉 = N
∫ q(β)=q

q(0)=q′
Dq exp[−SE[ q ] ] , (6.41)

where SE[ q ] is the Euclidean action

SE[ q ] =
∫ β

0

dβ′
[ 1

2
mq′2 − V (q)

]
. (6.42)
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Here we have mapped

q(t) 7→ q(β) , and q̇(t) 7→ i q′ = i
dq
dβ

. (6.43)

where LE[φ] is the Euclidean Lagrangian. Eq. (??) then becomes:

〈φ(x) | e−βH |φ(x′) 〉 = N̄

∫ φ(x,β)

φ(x′,0)

Dφ e−SE[φ] (6.44)

6.6 Thermovariable methods

Now let us consider the possibility of a density matrix at t = 0 of the canonical form:

ρ(β,Q, P ) = e−βH(Q,P )/Z(β) , (6.45)

where H(Q,P ) is the Hamiltonian for the particle. Z(β) is chosen to normalize the trace of ρ to one:

Tr[ ρ(β,Q, P ) ] = 1 , ⇒ Z(β) = Tr[ e−βH(Q,P ) ] , (6.46)

We see immediately that ρ(β,Q, P ) is Hermitian and has unit trace, but it is not idempotent: ρ2(β,Q, P ) 6=
ρ(β,Q, P ), so it is impossible to find a vector |ψ 〉 such that ρ(β,Q, P ) = |ψ 〉〈ψ |. We can see this in another
way. Since the Hamiltonian obeys an eigenvalue problem,

H(Q,P ) |En 〉 = En |En 〉 , (6.47)

we see that
〈En | ρ |En′ 〉 = e−βEn δn,n′/Z(β) = 〈En |ψ 〉 〈ψ |En′ 〉 = ψEn

ψ∗En′
. (6.48)

However ψEn
is just a complex number, so there is no way to satisfy Eq. (6.48), since in general H(Q,P )

has more than one eigenvalue. So it appears impossible to choose ρ to be a statistical state. However, we
notice that Eq. (6.48) looks like an orthogonal requirement for state vectors, but ψEn

are not state vectors.
The way out of this is to double the Hilbert space and introduce a second eigenvector. This method is called
“Thermofield Dynamics,” and was invented by Kubo and by Martin and Schwinger in the late ’50’s. So
we put our Hilbert space as consisting of the direct sum: H(Q,P ) = H(Q,P ) ⊕ H(Q,P ) and the vectors
as direct products: |n,m 〉 = |En 〉 ⊗ |Em 〉. So any operator, including the density matrix, is also a direct
product. The first system does not act on the second, so that, for example:

〈n,m |A(Q,P )⊗ 1 |n′,m′ 〉 = 〈n |A(Q,P ) |n′ 〉 δm,m′ ,
〈n,m | 1⊗A(Q,P ) |n′,m′ 〉 = 〈m |A(Q,P ) |m′ 〉 δn,n′ .

(6.49)

This kind of behavior is just what we need to satisfy Eq. (6.48). We can define a state |ψ(β) 〉 as follows:

|ψ(β) 〉 =
∑

n

ψEn
|n, n 〉 . (6.50)
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Chapter 7

Green functions

Here we define quantum mechanical Green functions.
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Chapter 8

Identical particles

In this chapter, we discuss the quantum mechanics of identical particles. By identical, we mean that the
Hamiltonian describing them is invariant under interchange of any two particles. That is, there is no physical
property by which we can distinguish them. If we let ri, i = 1, 2, . . . , N be the coordinates of a particle,
then we require the probability density to be the same under interchange of any two particles. That is:

|ψ(r1, . . . , ri, . . . , rj , . . . , rN , t) |2 = |ψ(r1, . . . , rj , . . . , ri, . . . , rN , t) |2 , (8.1)

for all time t. There are only two known solutions for the wave functions, namely:

ψ(±)(r1, . . . , ri, . . . , rj , . . . , rN , t) = ±ψ(±)(r1, . . . , rj , . . . , ri, . . . , rN , t) . (8.2)

Even wave functions describe what we call particles with Bose statistics, and odd wave functions describe
what we call Fermi statistics. There is a connection between the spin of the particles and the type of
statistics for that particle, which involves special relativity and is beyond the scope of this book. For non-
relativistic particles, theoretically either statistics could apply, but experimentally we observe that particles
with integer spin, S = 0, 2, . . . obey Bose statistics and particles with half-integer spin, S = 1/2, 3/2, . . .
obey Fermi statistics.

8.1 Coordinate representation

We assume that we can describe particles by N independent Cartesian coordinates, r1, r2, . . . , rN , and canon-
ical momenta, p1,p2, . . . ,pN . In quantum mechanics, these quantities become operators R1,R2, . . . ,RN

and P1,P2, . . . ,PN , with the following commutation properties:

[Ri,a, Pj,b ] = i~ δi,jδa,b , [Ri,a, Rj,b ] = [Pi,a, Pj,b ] = 0 . (8.3)

Here the middle alphabet Roman letters i, j, . . . refer to the particle and the beginning alphabet Roman
letters a, b, . . . refer to the Cartesian x, y, z coordinates. Eigenvalue equations for Ri and Pi are:

Ri | ri 〉 = ri | ri 〉 , and Pi |pi 〉 = pi |pi 〉 . (8.4)

Eigenvectors for all the coordinates are then constructed by a direct product:

| r1, r2, . . . , rN 〉 = | r1 〉 ⊗ | r2 〉 ⊗ · · · ⊗ | rN 〉 , (8.5)

with a similar relation for the momentum eigenvector. Fully symmetric (Bose) and antisymmetric (Fermi)
eigenvectors are constructed by similar direct products. For example, for two particles, we construct sym-
metric and antisymmetric direct products of the base vectors:

| r1, r2 〉(±) =
1√
2

{
| r1 〉 ⊗ | r2 〉 ± | r2 〉 ⊗ | r1 〉

}
. (8.6)
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These symmetric or antisymmetric basis states are normalized such that:

(±)〈 r1, r2 | r′1, r′2 〉(±) = δ(r1 − r′1) δ(r2 − r′2)± δ(r1 − r′2) δ(r2 − r′1) . (8.7)

An operator T (R1,R2) = T (R2,R1) which is invariant with respect to interchange of the particles has the
value T (r1, r2) when operating on a fully symmetric or antisymmetric base vectors. That is,

T (R1,R2) | r1, r2 〉(±) =
1√
2

{
T (R1,R2) | r1 〉 ⊗ | r2 〉 ± T (R1,R2) | r2 〉 ⊗ | r1 〉

}

=
1√
2

{
T (r1, r2) | r1 〉 ⊗ | r2 〉 ± T (r2, r1) | r2 〉 ⊗ | r1 〉

}

= T (r1, r2) | r1, r2 〉(±) .

(8.8)

In general, the fully symmetric or antisymmetric direct product can be constructed from a perminate or
determinate defined as follows:

| r1, r2, . . . , rN 〉(±) =
1√
N !

N∑

P
(±)P P

{
| ri1 〉 ⊗ | ri2 〉 ⊗ · · · ⊗ | riN 〉

}
, (8.9)

where the sum is over all permutations P of the set {i1, i2, · · · , iN} from the standard set {1, 2, . . . , N} of
indices, with a sign assigned to even or odd permutations for the case of Fermi statistics. These symmetric
or antisymmetric vectors obey the normalization:

(±)〈 r1, r2, . . . , rN | r′1, r′2, . . . , r′N 〉(±) =
N∑

P
(±)P δ(r1 − r′1) δ(r2 − r′2) · · · δ(rN − r′N ) , (8.10)

where the sum is over all permutations of the primed (or unprimed) indices.
The Hamiltonian for N identical particles of mass m interacting with two-particle forces that depend on

the distance between them is given by:

H =
N∑

i=1

P2
i

2m
+

1
2

N∑

i,j=1
i6=j

V (Ri −Rj) . (8.11)

Each term in this Hamiltonian is invariant under exchange of any two particles. Schrödinger’s equation is
given by:

H |ψ(t) 〉 = i~
∂

∂t
|ψ(t) 〉 , or |ψ(t) 〉 = e−iHt/~ |ψ 〉 . (8.12)

So the multiple particle state vector in the coordinate representation in the Schrödinger or Heisenberg picture
can be written as:

ψ(±)(r1, r2, . . . , rN , t) = (±)〈 r1, r2, . . . , rN |ψ(t) 〉 = (±)〈 r1, t; r2, t; . . . ; rN , t |ψ 〉 . (8.13)

Notice that there is only one time variable in the Heisenberg picture which describe the positions of all the
particles at the same time.

8.2 Occupation number representation

In the last section, we used a coordinate basis to describe the particles, however we are free to use any
complete basis to describe particles. Let us suppose that |α 〉 is such a basis and obeys:

〈α |β 〉 = δ(α− β) , and
∑

α

|α 〉〈α | = 1 , (8.14)
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and let us define φα(r) = 〈 r |α 〉 as the overlap between the coordinate representation and the |α 〉 repre-
sentation. Then we can write:

| r 〉 =
∑

α

|α 〉φ∗α(r) , (8.15)

for each particle. Now let us invent an occupation number vector |nα 〉 for each of the vectors |α 〉 which is
an eigenstate of number operators A(±) †

α A
(±)
α such that:

A(±) †
α A(±)

α |nα 〉 = nα |nα 〉 , (8.16)

with A
(+)
α obeying the harmonic oscillator commutator algebra and A

(−)
α obeying the Fermi oscillator anti-

commutator algebra:

[A(+)
α , A

(+) †
β ] = δα,β , [A(+)

α , A
(+)
β ] = [A(+) †

α , A
(+) †
β ] = 0 , (8.17)

{A(−)
α , A

(−) †
β } = δα,β , {A(−)

α , A
(−)
β } = {A(−) †

α , A
(−) †
β } = 0 , (8.18)

so that nα = 0, 1, 2, . . . for Bose statistics and nα = 0, 1 for Fermi statistics. We now put:

|α 〉 = | 1α 〉 = A(±) †
α | 0 〉 . (8.19)

Then from Eq. (8.15), we find:

| r 〉 =
∑

α

|α 〉φ∗α(r) =
∑

α

φ∗α(r)A(±) †
α | 0 〉 ≡ Φ(±) †(r) | 0 〉 , (8.20)

where we have defined the field operator Φ(r) by:

Φ(±)(r) =
∑

α

A(±)
α φα(r) , and Φ(±) †(r) =

∑

α

A(±) †
α φ∗α(r) , (8.21)

which operates in the occupation number space. So from Eq. (8.9), we find:

| r1, r2, . . . , rN 〉(±) =
1√
N !

N∑

P
(±)P P

{
| ri1 〉 ⊗ | ri2 〉 ⊗ · · · ⊗ | riN 〉

}
,

=
1√
N !

Φ(±) †(r1) Φ(±) †(r2) · · · Φ(±) †(rN ) | 0 〉 .
(8.22)

This last expression includes all permutations of the set of coordinates.

8.3 Particle fields

ψ(±)(r1, r2, . . . , rN , t) =
1√
N !
〈 0 |Φ(±)(r1) Φ(±)(r2) · · · Φ(±)(rN ) |ψ(t) 〉 ,

=
1√
N !
〈 0 |Φ(±)(r1, t) Φ(±)(r2, t) · · · Φ(±)(rN , t) |ψ 〉 ,

(8.23)

8.3.1 Hamiltonian

The second quantized Hamiltonian for a system of identical particles is of the form:

H = −
∫

d3rΦ†(r)
(~2∇2

2m
Φ(r)

)
+

1
2

∫∫
d3r d3r′ Φ†(r) Φ†(r′)V (r− r′) Φ(r′) Φ(r′) . (8.24)

References

c© 2009 John F. Dawson, all rights reserved. 81



REFERENCES REFERENCES

c© 2009 John F. Dawson, all rights reserved. 82



Chapter 9

Space-time symmetry transformations

In the last chapter, we set up a vector space which we will use to describe the state of a system of physical
particles. In this chapter, we investigate the requirements of space-time symmetries that must be satisfied
by a theory of matter. For particle velocities small compared to the velocity of light, the classical laws of
nature, governing the dynamics and interactions of these particles, are invariant under the Galilean group
of space-time transformations. It is natural to assume that quantum dynamics, describing the motion of
non-relativistic particles, also should be invariant under Galilean transformations.

Galilean transformation are those that relate events in two coordinate systems which are spatially rotated,
translated, and time-displaced with respect to each other. The invariance of physical laws under Galilean
transformations insure that no physical device can be constructed which can distinguish the difference be-
tween these two coordinate systems. So we need to assure that this symmetry is built into a non-relativistic
quantum theory of particles: we must be unable, by any measurement, to distinguish between these coor-
dinate systems. More generally, a symmetry transformation is a change in state that does not change the
results of possible experiments. We formulate this statment in the form of a relativity principle:

Definition 16 (Relativity principle). If |ψ(Σ) 〉 represents the state of the system which refers to coordinate
system Σ, and if a(Σ) is the value of a possible observable operator A(Σ) with eigenvector | a(Σ) 〉, also
referring to system Σ, then the probability Pa of observing this measurement in coordinate system Σ must
be the same as the probability P ′a of observing this measurement in system Σ′, where Σ′ is related to Σ by
a Galilean transformation. That is, the relativity principle requires that:

P ′a = |〈 a(Σ′) |ψ(Σ′) 〉|2 = Pa = |〈 a(Σ) |ψ(Σ) 〉|2 . (9.1)

In quantum theory, transformations between coordinate systems are written in as operators acting on
vectors in V. So let

|ψ(Σ′) 〉 = U(G) |ψ(Σ) 〉 , and | a(Σ′) 〉 = U(G) | a(Σ) 〉 , (9.2)

where U(G) is the operator representing a Galilean transformation between Σ′ and Σ. Then a theorem by
Wigner[1] states that:

Theorem 16 (Wigner). Transformations between two rays in Hilbert space which preserve the same proba-
bilities for experiments are either unitary and linear or anti-unitary and anti-linear.

Proof. We can easily see that if U(G) is either unitary or anti-unitary, the statement is true. The reverse
proof that this is the only solution is lengthy, and we refer to Weinberg [?][see Weinberg, Appendix A, p.
91] for a careful proof.

The group of rotations and space and time translations which can be evolved from unity are linear unitary
transformations. Space and time reversals are examples of anti-linear and anti-unitary transformations. We
will deal with the anti-linear symmetries later on in this chapter.
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Figure 9.1: The Galilean transformation for Eq. (9.1).

We start this chapter by learning how to describe Galilean transformations in quantum mechanics, and
how to classify vectors in Hilbert space according to the way they transform under Galilean transformations.
In the process, we will obtain a description of matter, based on the irreducible representations of the Galilean
group, and use this information to build models of interacting systems of particles and fields.

The methods of finding unitary representations for the Galilean group in non-relativistic mechanics is
similar to the same problem for the Poincaré group in relativistic mechanics. The results for the Poincaré
group are, perhaps, better known to physicists and well described in Weinberg[?, Chapter 2], for example.
It turns out, however, that the group structure of the Galilean group is not not as simple as that of the
Poincaré group. The landmark paper by Bargmann[2] on unitary projective representations of continuous
groups contains theorems and results which we use here. Ray representations of the Galilean group are also
discusses by Hamermesh[?][p. 484]. We also use results from several papers by Levy-Leblond[3, 4, 5, 6] on
the Galilei group. In the next section, we show that Galilean transformation form a group.

9.1 Galilean transformations

A Galilean transformation includes time and space translation, space rotations, and velocity boosts of the
coordinate system. An “event” in a coordinate frame Σ is given by the coordinates (x, t). The same event is
described by the coordinates (x′, t′) in another frame Σ′, which is rotated an amount R, displaced a distance
a, moving at a velocity v, and using a clock running at a time t′ = t+ τ , with respect to frame Σ, as shown
in Fig. 9.1. The relation between the events in Σ and Σ′ is given by the proper Galilean transformation:

x′ = R(x) + vt+ a , t′ = t+ τ , (9.3)

with R a proper real three-dimensional orthogonal matrix such that detR = +1. We regard the transfor-
mation (9.3) as a relationship between an event as viewed from two different coordinate frames. The basic
premise of non-relativistic quantum mechanics of point particles is that it is impossible to distinguish be-
tween these two coordinate systems and so this space-time symmetry must be a property of the vector space
which describes the physical system. We discuss improper transformations in Section 9.7.
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9.1.1 The Galilean group

We need to show that elements of a Galilean transformation form a group. We write the transformation
as: Σ′ = G(Σ), where Σ refers to the coordinate system and G = (R,v,a, τ) to the elements describing the
transformation. A group of elements is defined by the following four requirements:

Definition 17 (group). A group G is a set of objects, the elements of the group, which we call G, and
a multiplication, or combination, rule for combining any two of them to form a product, subject to the
following four conditions:

1. The product G1G2 of any two group elements must be another group element G3.
2. Group multiplication is associative: (G1G2)G3 = G1(G2G3).
3. There is a unique group element I, called the identity, such that I G = G for all G in the group.
4. For any G there is an inverse, written G−1 such that GG−1 = G−1G = I.

We first show that one Galilean transformation followed by a second Galilean transformation is also a
Galilean transformation. This statement is contained in the following theorem:

Theorem 17 (Composition rule). The multiplication law for the Galilean group is

G′′ = G′G = (R′,v′,a′, τ ′) (R,v,a, τ) ,
= (R′R,v′ +R′v,a′ +R′a + v′τ, τ ′ + τ) .

(9.4)

Proof. We find:

x′ = Rx + vt+ a , t′ = t+ τ ,

x′′ = R′x′ + v′t′ + a′ = R′Rx + (R′v + v′)t+R′a + v′τ + a′

≡ R′′x + v′′t+ a′′

t′′ = t′ + τ ′ = t+ τ + τ ′ ≡ t+ τ ′′

where

R′′ = R′R , v′′ = R′v + v′

a′′ = R′a + v′τ + a′ τ ′′ = τ ′ + τ .

That is, R′′ is also an orthogonal matrix with unit determinant, and v′′ and a′′ are vectors.

Thus the Galilean group G is the set of all elements G = (R,v,a, τ), consisting of ten real parameters,
three for the rotation matrix R, three each for boosts v and for space translations a, and one for time
translations τ .

Definition 18. The identity element is 1 = (1, 0, 0, 0), and the inverse element of G is:

G−1 = (R−1,−R−1v,−R−1(a− vτ),−τ) , (9.5)

as can be easily checked.

Thus the elements of Galilean transformations form a group.

Example 26 (Matrix representation). It is easy to show that the following 5 × 5 matrix representation of
the Galilean group elements:

G =



R v a
0 1 τ
0 0 1


 , (9.6)

forms a group, where group multiplication is defined to be matrix multiplication: G′′ = G′G. Here R is
understood to be a 3× 3 matrix and v and a are 3× 1 column vectors.
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Remark 14. An infinitesimal Galilean transformation of the coordinate system is given in vector notation
by:

∆x = ∆θ x× n̂ + ∆v t+ ∆a ,

∆t = ∆τ .
(9.7)

The elements of the transformation are given by 1 + ∆G, where ∆G = ( ∆θ,∆v,∆a,∆τ ).

Example 27. We can find differential representations of the generators of the transformation in classical
physics. We start by considering complex functions ψ(x, t) which transform “like scalars” under Galilean
transformations, that is:

ψ′(x′, t′) = ψ(x, t) . (9.8)

For infinitesimal transformations, this reads:

ψ′(x′, t′) = ψ(x′ −∆x, t′ − δt) = ψ(x′, t′)−∆x ·∇′ ψ(x′, t′)−∆t ∂t′ ψ(x′, t′) + · · · , (9.9)

and, to first order, the change in functional form of ψ(x, t) is given by:

∆ψ(x, t) = −
{

∆x ·∇ + ∆t ∂t
}
ψ(x, t) , (9.10)

Here we have put x′ → x and t′ → t. Substituting (9.7) into the above gives:

∆ψ(x, t) = −
{
−∆θ n̂ · x×∇ + t∆v ·∇ + ∆a ·∇ + ∆τ ∂t

}
ψ(x, t) . (9.11)

We define the ten differential generator operators (J,K,P, H) of Galilean transformations by

∆ψ(x, t) =
i

~
{

∆θ n̂ · J + ∆v ·K−∆a ·P + ∆τ H
}
ψ(x, t) , (9.12)

Here we have introduced a constant ~ so as to make the units of J, K, P, and H to be the classical units of
angular momentum, impulse, linear momentum, and energy, respectively.1 Comparing (9.11) to (9.12), we
find classical differential representations of the generators:

J =
~
i

x×∇ , K = −~t
i

∇ , P =
~
i

∇ , H = i~
∂

∂t
. (9.13)

When acting on complex functions ψ(x, t), these ten generators produce the corresponding changes in the
functional form of the functions.

Example 28. Using the differential representation (9.13), it is easy to show that the generators obey the
algebra:

[Ji, Jj ] = i~ εijkJk ,
[Ji,Kj ] = i~ εijkKk ,

[Ji, Pj ] = i~ εijkPk ,

[Ki,Kj ] = 0 ,
[Pi, Pj ] = 0 ,
[Ki, Pj ] = 0 ,

[Ji, H] = 0 ,
[Pi, H] = 0 ,
[Ki, H] = i~ Pi .

(9.14)

9.1.2 Group structure

If the generators of a group all commute, then the group is called Abelian. An invariant Abelian subgroup
consists of a subset of generators that commute with each other and whose commutators with any other
member of the group also belong to the subgroup. For the Galilean group, the largest Abelian subgroup is
the six-parameter group U = [L,P] generating boosts and translations. The largest abelian subgroup of the
factor group, G/U , is the group D = [H], generating time translations. This leaves the semi-simple group

1The size of ~ is fixed by the physics.
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R = [J], generating rotations. A semi-simple group is one which transform among themselves and cannot be
reduced further by removal of an Abelian subgroup. So the Galilean group can be written as the semidirect
product of a six parameter abelian group U with the semidirect product of a one parameter abelian group
D by a three parameter simple group R,

G = (R×D)× U . (9.15)

In contrast, the Poincaré group is the simidirect product of a simple group L generating Lorentz transfor-
mations by an abelian group C generating space and time translations,

P = L × C . (9.16)

9.2 Galilean transformations in quantum mechanics

Now let |ψ(Σ) 〉 be a vector in V which refers to a specific coordinate system Σ and let |ψ(Σ′) 〉 be a vector
which refers to the coordinate system Σ′ = GΣ. Then we know by Wigner’s theorem that:

|ψ(Σ′) 〉 = U(G) |ψ(Σ) 〉 , (9.17)

where U(G) is unitary.2 In non-relativistic quantum mechanics, we want to find unitary transformations
U(G) for the Galilean group. We do this by applying the classical group multiplication properties to unitary
transformations. That is, if (9.17) represents a transformation from Σ to Σ′ by G, and a similar relation
holds for a transformation from Σ′ to Σ′′ by G′, then the combined transformation is given by:

|ψ(Σ′′) 〉 = U(G′) |ψ(Σ′) 〉 = U(G′)U(G) |ψ(Σ) 〉 . (9.18)

However the direct transformation from Σ to Σ′′ is given classically by G′′ = G′G, and quantum mechanically
by:

|ψ(Σ′′) 〉′ = U(G′′) |ψ(Σ) 〉 = U(G′G) |ψ(Σ) 〉 . (9.19)

Now |ψ(Σ′′) 〉 and |ψ(Σ′′) 〉′ must belong to the same ray, and therefore can only differ by a phase. Thus we
can deduce that:

U(G′)U(G) = eiφ(G′,G)/~ U(G′G) , (9.20)

where φ(G′, G) is real and depends only on the group elementsG andG′. Unitary representations of operators
which obey Eq. (9.20) with non-zero phases are called projective representations. If the phase φ(G′, G) = 0,
they are called faithful representations. The Galilean group generally is projective, not faithful.3 The group
composition rule, Eq. (9.20), will be used to find the unitary transformation U(G).

Now we can take the unit element to be: U(1) = 1. So using the group composition rule (9.20), unitarity
requires that:

U†(G)U(G) = U−1(G)U(G) = U(G−1)U(G) = eiφ(G−1,G)/~ U(1, 0) = 1 . (9.21)

so that φ(G−1, G) = 0. We will use this unitarity requirement in section 9.2.1 below.
Infinitesimal transformations are generated from the unity element by the set ∆G = (∆ω,∆v,∆a,∆τ),

where ∆ωij = εijknk∆θ = −∆ωji is an antisymmetric matrix. We write the unitary transformation for this
infinitesimal transformation as:

U(1 + ∆G) = 1 +
i

~

{
∆ωij Jij/2 + ∆viKi −∆ai Pi + ∆τ H

}
+ · · ·

= 1 +
i

~

{
∆θ n̂ · J + ∆v ·K−∆a ·P + ∆τ H

}
+ · · · ,

(9.22)

2We will consider anti-unitary symmetry transformations later.
3In contrast, the Poincaré group is faithful.
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where Ji, Ki, Pi and H are operators on V which generater rotations, boosts, and space and time translations,
respectively. Here ∆ωij = εijk nk ∆θ is an antisymmetric matrix representing an infinitesimal rotation about
an axis defined by the unit vector nk by an angle ∆θ. In a similar way, we write the antisymmetric matrix
of operators Jij as Jij = εijkJk, where Jk is a set of three operators.

Remark 15. Again, we have introduced a constant ~ so that the units of the operators J, K, P, and H are
given by units of angular momentum, impulse, linear momentum, and energy, respectively. The value of ~
must be fixed by experiment.4

Remark 16. The sign of the operators Pi and H, relative to Jk in (9.22) is arbitrary — the one we have
chosen is conventional.

In the next section, we find the phase factor φ(G′;G) in Eq. (9.20) for unitary representations of the
Galilean group.

9.2.1 Phase factors for the Galilean group.

The phases φ(G′, G) must obey basic properties required by the transformation rules. Since U−1(G)U(G) =
U(G−1)U(G) = 1, we find from the unitarity requirement (9.21),

φ(G−1, G) = 0 . (9.23)

Also, the associative law for group transformations,

U(G′′) (U(G′)U(G)) = (U(G′′)U(G′))U(G) ,

requires that
φ(G′′, G′G) + φ(G′, G) = φ(G′′, G′) + φ(G′′G′, G) . (9.24)

From (9.23) and (9.24), we easily obtain φ(1, 1) = φ(1, G) = φ(G, 1) = 0. Eqs. (9.23) and (9.24) are the
defining equations for the phase factor φ(G′, G), and will be used in Bargmann’s theorem (18) to find the
phase factor below.

Note that (9.23) and (9.24) can be satisfied by any φ(G′, G) of the form

φ(G′, G) = χ(G′G)− χ(G′)− χ(G) . (9.25)

Then the phase can be eliminated by a trivial change of phase of the unitary transformation, Ū(G) =
eiχ(G)U(G). Thus two phases φ(G′, G) and φ′(G′, G) which differ from each other by functions of the
form (9.25) are equivalent. For Galilean transformations, unlike the case for the Poincaré group, the phase
φ(G′, G) cannot be eliminated by a simple redefinition of the unitary operators. This phase makes the stude
of unitary representations of the Galilean group much harder than the Poincaré group in relativistic quantum
mechanics.

It turns out that the phase factors for the Galilean group are not easy to find. The result is stated in a
theorem due to Bargmann[2]:

Theorem 18 (Bargmann). The phase factor for the Galilean group is given by:

φ(G′, G) =
M

2
{v′ ·R′(a)− v′ ·R′(v) τ − a′ ·R′(v) } , (9.26)

with M any real number.

4Plank introduced ~ in order to make the classical partition function dimensionless. The value of ~ was fixed by the
experimental black-body radiation law.
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Proof. A proper Galilean transformation is given by Eq. (9.3). The group multiplication rules are given in
Eq. (9.4):

R′′ = R′R ,

v′′ = v′ +R′(v) ,
a′′ = a′ + v′τ +R′(a) ,
τ ′′ = τ ′ + τ .

(9.27)

We first note that v and a transform linearly. Therefore, it is useful to introduce a six-component column
matrix ξ and a 6× 6 matrix Θ(τ), which we write as:

ξ =
(

v
a

)
, Θ(τ) =

(
1 0
τ 1

)
, (9.28)

so that we can write the group multiplication rules for these parameters as:

ξ′′ = Θ(τ) ξ′ +R′ ξ , (9.29)

which is linear in the ξ variables. We label the rest of the parameters by g = (R, τ), which obey the group
multiplication rules:

R′′ = R′R , τ ′′ = τ ′ + τ . (9.30)

We note here that the unit element of g is g = (1, 0). We also note that the matrices Θ(τ) are a faithful
representation of the subgroup of τ transformations. That is, we find:

Θ(τ ′′) = Θ(τ ′) Θ(τ) . (9.31)

We seek now the form of φ(G′, G) by solving the defining equation (9.24):

φ(G′′, G′G) + φ(G′, G) = φ(G′′, G′) + φ(G′′G′, G) . (9.32)

The only way this can be satisfied is if φ(G′, G) is bilinear in ξ, because the transformation of these variables
is linear. Thus we make the Ansatz:

φ(G′, G) = ξ′T Φ(g′, g) ξ , (9.33)

where Φ(g′, g) is a 6× 6 matrix, but depends only on the elements g and g′. We now work out all four terms
in Eq. (9.32). We find:

φ(G′′, G′G) = ξ′′T Φ(g′′, g′g)
[

Θ(τ) ξ′ +R′ ξ
]

= ξ′′T Φ(g′′, g′g) Θ(τ) ξ′ + ξ′′T Φ(g′′, gg)R′ ξ ,

φ(G′, G) = ξ′T Φ(g′, g) ξ ,

φ(G′′, G′) = ξ′′T Φ(g′′, g′) ξ′ ,

φ(G′′G′, G) =
[
ξ′TR′′T + ξ′′TΘT (τ ′)

]
Φ(g′′g′, g) ξ

= ξ′TR′′T Φ(g′′g′, g) ξ + ξ′′TΘT (τ ′) Φ(g′′g′, g) ξ .

(9.34)

Substituting these results into (9.32), and equating coefficients for the three bilinear forms, we find for the
three pairs: (ξ′; ξ), (ξ′′; ξ′), and (ξ′′; ξ):

Φ(g′, g) = R′′T Φ(g′′g′, g) , (9.35)
Φ(g′′, g′g) Θ(τ) = Φ(g′′, g′) (9.36)

Φ(g′′, g′g)R′ = ΘT (τ ′) Φ(g′′g′, g) . (9.37)
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These relations provide functional equations for the matrix elements. We start by using the orthogonality
of R and writing (9.35) in the form:

Φ(g′′g′, g) = R′′Φ(g′, g) (9.38)

Since g′ is arbitrary, we can set it equal the unit element: g′ = (1, 0). Then g′′g′ = g′′, and we find:

Φ(g′′, g) = R′′ Φ(1, g) . (9.39)

When this result is substituted into (9.36) and (9.37), we find:

R′′Φ(1, g′g) Θ(τ) = R′′Φ(1, g′) (9.40)

R′′Φ(1, g′g)R′ = ΘT (τ ′)R′′R′ Φ(1, g) . (9.41)

and from (9.40), we find:
Φ(1, g′g) Θ(τ) = Φ(1, g′) . (9.42)

Here g′ is arbitrary, so that we can it to the unit element: g′ = 1, and find:

Φ(1, g) Θ(τ) = Φ(1, 1) . (9.43)

Now in (9.41), R′′ and R′ act only on vectors and commute with the matrices Θ and Φ, so we can write this
as:

Φ(1, g′g) = ΘT (τ ′) Φ(1, g) . (9.44)

Again in (9.44), we can set g = 1, from which we find:

Φ(1, g′) = ΘT (τ ′) Φ(1, 1) . (9.45)

So combining (9.43) and (9.45), we find that Φ(1, 1) must satisfy the equation:

Φ(1, 1) = ΘT (τ) Φ(1, 1) Θ(τ) , (9.46)

for all values of τ . Which means that Φ(1, 1) must be a constant 6 × 6 matrix, independent of τ . In order
to solve (9.46), we write out Φ(1, 1) in component form:

Φ(1, 1) =
(

Φ11 Φ12

Φ21 Φ22

)
, (9.47)

so that (9.46) requires:

Φ11 = Φ11 + τ (Φ12 + Φ21) + τ2 Φ22 , (9.48)
Φ12 = Φ12 + τ Φ22 , (9.49)
Φ21 = Φ21 + τ Φ22 , (9.50)
Φ22 = Φ22 , (9.51)

which must hold for all values of τ . This is possible only if Φ22 = 0, and that Φ21 = −Φ12. Φ11 is then
arbitrary. So let us put Φ12 = M/2 and Φ11 = M ′/2. So the general solution for the phase matrix contains
two constants. We write the result as:

Φ(1, 1) =
M

2
Z +

M ′

2
Z ′ , where Z =

(
0 1
−1 0

)
, Z ′ =

(
1 0
0 0

)
, (9.52)

From Eqs. (9.33), (9.39), and (9.45), we find:

φ(G′, G) = ξ′T Φ(g′, g) ξ , Φ(g′, g) = ΘT (τ) Φ(1, 1)R′ . (9.53)
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Recall that R′ commutes with Θ(τ) and Φ(1, 1). It turns out that the term involving M ′Z ′ is a trivial phase.
For this term, we find:

φZ′(G′, G) =
M ′

2
ξ′T ΘT (τ)Z ′R′(ξ)

=
M ′

2
v′ ·R′(v) =

M ′

4
{
v′′ 2 − v2 − v′ 2

}
,

(9.54)

So (9.54) is a trivial phase and can be absorbed into the definition of U(g). So then from Eq. (9.52), the
phase is given by:

φ(G′, G) = +
M

2
ξ′T ΘT (τ)Z R′(ξ) = −M

2
[R′(ξ) ]T Z Θ(τ) ξ′ .

=
M

2
{v′ ·R′(a)− v′ ·R′(v) τ − a′ ·R′(v) } ,

(9.55)

which is what we quoted in the theorem. In the first line, we have used the fact that Z is antisymmetric:
ZT = −Z. This phase is non-trival! For example, we might try to do the same tricks we used for the trival
phase in Eq. (9.54), and write:

ξ′′T Z ξ′′ =
{

[R′(ξ) ]T + ξ′TΘT (τ)
}
Z
{

Θ(τ) ξ′ +R′(ξ)
}

= ξ′T Z ξ′ + ξT Z ξ + ξ′T ΘT (τ)Z R′(ξ) + [R′(ξ) ]T Z Θ(τ) ξ′ .
(9.56)

But the last two terms cancel rather than add because of the antisymmetry of Z. So we cannot turn (9.55)
into a trival phase the way we did for (9.54). This completes the proof.

Remark 17. Bargmann gave this phase in his classic paper on continuous groups[2], and indicated how
he found it in a footnote to that paper. Notice that M appears here as an undetermined multiplicative
parameter. Since we have introduced a constant ~ with the dimensions of action in the definition of the
phase, M has units of mass.

We can write the phase as:

φ(G′, G) = 1
2M R′ij{v′iaj − a′ivj − v′ivjτ ] (9.57)

Notice that φ(G−1, G) = 0.
The phase for infinitesimal transformations are given by:

φ(G, 1 + ∆G) = 1
2M Rij [vi∆aj − ai∆vj ] + · · · , (9.58)

φ(1 + ∆G,G) = 1
2M [∆vi(ai − viτ)−∆aivi] + · · · ,

Next, we find the transformation properties of the generators.

9.2.2 Unitary transformations of the generators

In this section, we find the unitary transformation U(G) for the generators of the Galilean group. We start
by finding the transformation rules for all the generators. This is stated in the following theorem:

Theorem 19. The generators transform according to the rules:

U†(G) JU(G) = R{J + K× v̄ + ā× (P +M v̄)} , (9.59)

U†(G) KU(G) = R{K− (P +M v̄) τ +M ā} , (9.60)

U†(G) PU(G) = R{P +M v̄} , (9.61)

U†(G)H U(G) = H + v̄ ·P + 1
2Mv2 . (9.62)

where v̄ = R−1(v) and ā = R−1(a).
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Proof. We start by considering the transformations:

U†(G)U(1 + ∆G)U(G) , (9.63)

where G and 1 + ∆G are two different transformations. On one hand, using the definition (9.22) for
infinitesimal transformations in terms of the generators, (9.63) is given by:

1 +
i

2~
∆ωij U†(G) Jij U(G) +

i

~
∆vi U†(G)Ki U(G) (9.64)

− i

~
∆ai U†(G)Pi U(G) +

i

~
∆τ U†(G)H U(G) + · · ·

On the other, using the composition rule (9.20), Eq. (9.63) can be written as:

ei[φ(G−1,(1+∆G)G)+φ((1+∆G),G)]/~ U(G−1(1 + ∆G)G) (9.65)

= eiχ(G,∆G)/~ U(1 + ∆G′) .

where ∆G′ = G−1 ∆GG. Working out this transformation, we find the result:

∆ω′ij = RkiRlj ∆ωkl ,

∆v′i = Rji (∆ωjk vk + ∆vj) ,
∆a′i = Rji (∆ωjk ak + ∆vjτ + ∆aj − vj∆τ)
∆τ ′ = ∆τ ,

and the phase χ(G,∆G) is defined by:

χ(G,∆G) = φ(G−1, (1 + ∆G)G) + φ(1 + ∆G,G) . (9.66)

We can simplify the calculation of the phase using an identity derived from (9.24):

φ(G,G−1(1 + ∆G)G) + φ(G−1, (1 + ∆G)G)

= φ(G,G−1) + φ(GG−1, (1 + ∆G)G) = φ(1, (1 + ∆G)G) = 0 ,

and therefore, since G−1(1 + ∆G)G = 1 + ∆G′, we have:

φ(G−1, (1 + ∆G)G) = −φ(G, 1 + ∆G′) .

So the phase χ(G,∆G) is given by:

χ(G,∆G) = φ(1 + ∆G,G)− φ(G, 1 + ∆G′) . (9.67)

Now using (9.58), we find to first order:

φ(1 + ∆G,G) = 1
2M [∆vi(ai − viτ)−∆aivi] + · · · ,

φ(G, 1 + ∆G′) = 1
2M Rij [vi∆a′j − ai∆v′j ] + · · · ,

= 1
2M {vi(∆ωijaj + ∆viτ + ∆ai − v2∆τ)− ai(∆vi + ∆ωijvj)}

+ · · · ,

from which we find,

χ(G,∆G) = 1
2∆ωijM(aivj − ajvi) + ∆viM(ai − viτ)−∆aiMvi (9.68)

+ ∆τ 1
2Mv2 + · · · .
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For the unitary operator U(1 + ∆G′), we find:

U(1 + ∆G′) = 1 +
i

2~
∆ω′ij Jij +

i

~
∆v′iKi −

i

~
∆a′i Pi +

i

~
∆τ ′H + · · · ,

= 1 +
i

2~
∆ωij [RikRjlJkl + 2Ril(vjKl − ajPl)]

+
i

~
∆viRij(Kj − τPj)−

i

~
∆aiRijPj

+
i

~
∆τ (H +RijviPj) + · · · , (9.69)

Combining relations (9.68) and (9.69), we find, to first order, the expansion:

eiχ(G,∆G)/~ U(1 + ∆G′)

= 1 +
i

2~
∆ωij [RikRjlJkl + 2Ril(vjKl − ajPl) +M(aivj − ajvi)]

+
i

~
∆vi [Rij(Kj − τPj) +M(ai − viτ)]

− i

~
∆ai [RijPj +Mvi]

+
i

~
∆τ [H +RijviPj + 1

2Mv2] + · · · , (9.70)

Comparing coefficients of ∆ωij , ∆vi, ∆ai, and ∆τ in (9.64) and (9.70), we get:

U†(G) Jij U(G) = RikRjlJkl + 2Ril(vjKl − ajPl) +M(aivj − ajvi)
= RikRjlJkl + (K ′ivj −K ′jvi)− (P ′iaj − P ′jai) +M(aivj − ajvi)

U†(G)Ki U(G) = Rij(Kj − τPj) +M(ai − viτ)

U†(G)Pi U(G) = RijPj +Mvi

U†(G)H U(G) = H + viP
′
i + 1

2Mv2

where, K ′i = RijKj and P ′i = RijPj . In the second line, we have used the antisymmetry of Jij . These
equations simplify if we rewrite them in terms of the components of the angular momentum vector Jk rather
than the antisymmetric tensor Jij . We have the definitions:

Jij = εijkJk ,

K ′ivj −K ′jvi = εijk[K′ × v]k ,

P ′iaj − P ′jai = εijk[P′ × a]k ,

viaj − vjai = εijk[v × a]k .

The identity,
RikRjl εklm = det[R ] εijnRnm , (9.71)

is obtained from the definition of the determinant of R and the orthogonality relations for R. For proper
transformations, which is what we consider here, det[R ] = 1. So the above equations become, in vector
notation,

U†(G) JU(G) = R{J + K× v̄ + ā× (P +M v̄)} ,
U†(G) KU(G) = R{K− (P +M v̄) τ +M ā} ,
U†(G) PU(G) = R{P +M v̄} ,
U†(G)H U(G) = H + v̄ ·P + 1

2Mv2 .

where v̄ = R−1(v) and ā = R−1(a). This completes the proof of the theorem, as stated.
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Exercise 8. Using the indentity (9.71) with det[R ] = +1, show that R(A×B) = R(A)×R(B).

We next turn to a discussion of the commutation relations for the generators.

9.2.3 Commutation relations of the generators

In this section, we prove a theorem which gives the commutation relations for the generators of the Galilean
group. The set of commutation relations for the group can be thought of as rules for “multiplying” any two
operators, and are called a Lie algebra.

Theorem 20. The ten generators of the Galilean transformation satisfy the commutation relations:

[Ji, Jj ] = i~ εijkJk ,
[Ji,Kj ] = i~ εijkKk ,

[Ji, Pj ] = i~ εijkPk ,

[Ki,Kj ] = 0 ,
[Pi, Pj ] = 0 ,
[Ki, Pj ] = i~Mδij ,

[Ji, H] = 0 ,
[Pi, H] = 0 ,
[Ki, H] = i~Pi .

(9.72)

Proof. The proof starts by taking each of the transformations U(G) in theorem 19 to be infinitesimal.
These infinitesimal transformations have nothing to do with the infinitesimal transformations in the previous
theorem — they are different transformations. We start with Eq. (9.59) where we find, to first order:

{
1− i

~
Jk∆θk −

i

~
Kk∆vk +

i

~
Pk∆ak −

i

~
H∆τ + · · ·

}

× Ji

{
1 +

i

~
Jk∆θk +

i

~
Kk∆vk −

i

~
Pk∆ak +

i

~
H∆τ + · · ·

}

= Ji + εijkJj∆θk + εijkKj∆vk + εkji∆akPj + · · · .

Comparing coefficients of ∆θk, ∆vk, ∆ak, and ∆τ , we find the commutators of Ji with all the other gener-
ators:

[Ji, Jj ] = i~ εijkJk ,
[Ji,Kj ] = i~ εijkKk ,

[Ji, Pj ] = i~ εijkPk ,
[Ji, H] = 0 .

From (9.60), we find, to first order:
{

1− i

~
Jk∆θk −

i

~
Kk∆vk +

i

~
Pk∆ak −

i

~
H∆τ + · · ·

}

× Ki

{
1 +

i

~
Jk∆θk +

i

~
Kk∆vk −

i

~
Pk∆ak +

i

~
H∆τ + · · ·

}

= Ki + εijkKj∆θk +M∆ai − Pi∆τ + · · · ,

from which we find the commutators of Ki will all the generators. In addition to the ones found above, we
get:

[Ki,Kj ] = 0 , [Ki, Pj ] = i~Mδij , [Ki, H] = i~Pi .

The commutators of Pi with the generators are found from (9.61). We find, to first order:
{

1− i

~
Jk∆θk −

i

~
Kk∆vk +

i

~
Pk∆ak −

i

~
H∆τ + · · ·

}

× Pi

{
1 +

i

~
Jk∆θk +

i

~
Kk∆vk −

i

~
Pk∆ak +

i

~
H∆τ + · · ·

}

= Pi + εijkPj∆θk +M∆vi + · · · ,
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from which we find the commutators of Ki with all the generators. In addition to the ones found above, we
get:

[Pi, Pj ] = 0 , [Pi, H] = 0 .

The last commmutation relations of H with the generators confirm the previous results. This completes the
proof.

The phase parameter M is called a central charge of the Galilean algebra.

9.2.4 Center of mass operator

For M 6= 0, it is useful to define operators which describes the location and velocity of the center of mass:

Definition 19. The center of mass operator X is defined at t = 0 by X = K/M . We also define the velocity
of the center of mass as V = P/M .

If no external forces act on the system, the center of mass changes in time according to:

X(t) = X + V t . (9.73)

There can still be internal forces acting on various parts of the system: we only assume here that the center
of mass of the system as a whole moves force free. Using the transformation rules from Theorem 19, X(t)
transforms according to:

U†(G) X(t′)U(G) = U†(G) {K + P (t+ τ) }U(G)/M
= R{K− (P +M v̄) τ +M ā + P (t+ τ) +M v̄ (t+ τ)}/M
= R{K + P t}/M + v t+ a

= RX(t) + v t+ a , where t′ = t+ τ .

(9.74)

Differentiating (9.74) with respect to t′, we find:

U†(G) Ẋ(t′)U(G) = RẊ(t) + v ,

U†(G) Ẍ(t′)U(G) = RẌ(t) ,

so the acceleration of the center of mass is an invariant.
We can rewrite the transformation rules and commutation relations of the generators of the Galilean

group using X = K/M and V = P/M rather than K and P. From Eqs. (9.59–9.62), we find:

U†(G) JU(G) = R{J +MX× v̄ +M ā× (V + v̄)}
= R{J +M (X + ā)× v̄ +M ā×V} ,

U†(G) XU(G) = R{X− (V + v̄) τ + ā} ,
U†(G) VU(G) = R{V + v̄} ,
U†(G)H U(G) = H +M v̄ ·V + 1

2Mv2 .

(9.75)

where v̄ = R−1(v) and ā = R−1(a). Eqs. (9.72) become:

[Ji, Jj ] = i~ εijkJk ,
[Ji, Xj ] = i~ εijkXk ,

[Ji, Pj ] = i~ εijkPk ,

[Xi, Xj ] = 0 ,
[Pi, Pj ] = 0 ,
[Xi, Pj ] = i~ δij ,

[Ji, H] = 0 ,
[Pi, H] = 0 ,
[Xi, H] = i~Vi .

(9.76)
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Remark 18. For a single particle, the center of mass operator is the operator which describes the location of
the particle. The existence of such an operator means that we can localize a particle with a measurement of
X. The commutation relations between X and the other generators are as we might expect from the canonical
quantization postulates which we study in the next chapter. Here, we have obtained these quantization rules
directly from the generators of the Galilean group, and from our point of view, they are consequences of
requiring Galilean symmetry for the particle system, and are not additional postulates of quantum theory.
We shall see in a subsequent chapter how to construct quantum mechanics from classical actions.

Remark 19. Since in the Cartesian system of coordinates, X and P are Hermitian operators, we can always
write an eigenvalue equation for them:

X |x 〉 = x |x 〉 , (9.77)
P |p 〉 = p |p 〉 , (9.78)

where xi and pi are real continuous numbers in the range −∞ < xi <∞ and −∞ < pi <∞. In Section 9.4
below, we will find a relationship between these two different basis sets.

9.2.5 Casimir invariants

Casimir operators are operators that are invariant under the transformation group and commute with all
the generators of the group. The Galilean transformation is rank two, so we know from a general theorem
in group theory that there are just two Casimir operators. These will turn out to be what we will call the
internal energy W and the magnitude of the spin S, or internal angular momentum. We start with the
internal energy operator.

Definition 20 (Internal energy). For M 6= 0, we define the internal energy operator W by:

W = H − P 2

2M
. (9.79)

Theorem 21. The internal energy, defined Eq. (9.79), is invariant under Galilean transformations:

Proof. Using Theorem 19, we have:

U†(G)W U(G) = H + v̄ ·P + 1
2Mv2 − [R{P +M v̄}]2

2M

= H − P 2

2M
= W ,

as required.

The internal energy operator W is Hermitian and commutes with all the group generators, its eigenvalues
w can be any real number. So we can write:

H = W +
P 2

2M
. (9.80)

The orbital and spin angular momentum operators are defined by:

Definition 21 (Orbital angular momentum). For M 6= 0, we define the orbital angular momentum by:

L = X×P = (K×P)/M . (9.81)

The orbital angular momentum of the system is independent of time:

L(t) = X(t)×P(t) = {X + Pt/M} ×P = X×P = L . (9.82)
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Definition 22 (Spin). For M 6= 0, we define the spin, or internal angular momentum by:

S = J− L , (9.83)

where L is defined in Eq. (9.81).

The spin is what is left over after subracting the orbital angular momentum from the total angular
momentum. Since the orbital angular momentum is not defined for M = 0, the same is true for the spin
operator. However for M 6= 0, we can write:

J = L + S . (9.84)

The following theorem describes the transformation properties of the orbital and spin operators.

Theorem 22. The orbital and spin operators transform under Galilean transformations according to the
rule:

U†(G) LU(G) = R{L + X× (M v̄ ) + ( ā− ( V + v̄ ) τ )×P } , (9.85)

U†(G) SU(G) = R{S } , (9.86)

and obeys the commutation relations:

[Li, Lj ] = i~ εijkLk , [Si, Sj ] = i~ εijkSk , [Li, Sj ] = 0 . (9.87)

Proof. The orbital results are easy to prove using results from Eqs. (9.75). For the spin, using theorem 19,
we find:

U†(G) SU(G) = R{J + K× v̄ + ā× (P +M v̄) }
−R{K− (P +M v̄) τ +M ā } ×R{P +M v̄}/M

= R{J + K× v̄ + ā× (P +M v̄)
− [ K− (P +M v̄) τ +M ā ]× [ P +M v̄ ]/M }

= R{J− (K×P)/M } = R{S } ,
as required. The commutator [Li, Jj ] = 0 is easy to establish. For [Li, Lj ], we note that:

[Li, Lj ] = εinmεjn′m′ [XnPm, Xn′Pm′ ]

= εinmεjn′m′
{
Xn′ [Xn, Pm′ ]Pm +Xn [Pm, Xn′ ]Pm′

}

= i~ εinmεjn′m′
{
δn,m′ Xn′ Pm − δn′,mXn Pm′

}

= i~
{
εinmεjn′nXn′ Pm − εinmεjmm′ Xn Pm′

}

= i~
{

( δmjδin′ − δmn′δij )Xn′ Pm − ( δim′δnj − δijδnm′ )Xn Pm′
}

= i~
{
Xi Pj − δij (Xm Pm )−Xj Pi + δij (Xn Pn )

}

= i~
{
Xi Pj −Xj Pi

}
= i~ εijk Lk ,

(9.88)

as required. The last commutator [Si, Sj ] follows directly from the commutator results for Ji and Li.

Remark 20. Additionally, we note that [Si, Xj ] = [Si, Pj ] = [Si, H ] = 0.
Remark 21. So this theorem showns that even under boosts and translations, in addition to rotations, the
spin operator is sensitive only to the rotation of the coordinate system, which is not true for either the
orbital angular momentum or the total angular momentum operators. However the square of the spin vector
operator S2, is invariant under general Galilean transformations,

U−1(G)S2 U(G) = S2 , (9.89)

and is the second Casimir invariant. In Section ??, we will find that the possible eigenvalues of S2 are given
by: s = 0, 1/2, 1, 3/2, 2, . . ..
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Remark 22. To summerize this section, we have found two hermitian Casimir operators, W and S2, which
are invariant under the group G. We can therefore label the irreducible representations of G by the set of
quantities: [M |w, s], where w and s label the eigenvalues of these operators, and M the central charge.

So we can find common eigenvectors of W , S2, and either X or P. We write these as:

| [M |w, s]; x, σ 〉 , and | [M |w, s]; p, σ 〉 . (9.90)

Here σ labels the component of spin. The latter eigenvector is also an eigenvector of H, with eigenvalue:

H | [M |w, s]; p, σ 〉 = Ew,p | [M |w, s]; p, σ 〉 , Ew,p = w +
p2

2M
. (9.91)

We discuss the massless case in Section 9.2.8.

9.2.6 Extension of the Galilean group

If we wish, we may extend the Galilean group by considering M to be a generator of the group. This is
because the phase factor φ(G′, G) is linear in M and M commutes with all elements of the group. Thus we
can invent a new group element η and write:

G̃ = (G, η) = (R,v,a, τ, η) , (9.92)

and which transforms according to the rule:

G̃′G̃ = (G′G, η′ + η + ξ(G′, G)) , (9.93)

where ξ(G′, G) is the coefficient of M in (9.26)

ξ(G′, G) = −1
2
{v′ ·R′ v τ + a′ ·R′ v − v′ ·R′ a} . (9.94)

The infinitesimal unitary operators in Hilbert space become:

Ũ(1 + ∆G̃) = 1 +
i

~
{J · n̂ θ + K · v −P · a +Hτ +Mη }+ · · · , (9.95)

and since M is now regarded as a generator and η as a group element, the extended eleven parameter Galilean
group can now be represented as a true unitary representation rather than a projective representation: the
phase factor has been redefined as a transformation property of the extended group element η, and the phase
M redefined as a operator.

For the extended Galilean group G̃ with M 6= 0, the largest abelian invariant subgroup is now the five
dimensional subgroup C̃ = [P, H,M ] generating space and time translations plus η. The abelian invariant
subgroup of the factor group G̃/C̃ is then the three parameter subgroup V = [K] generating boosts, leaving
the semi-simple three-dimensional group of rotations R = [R]. So the extended Galilean group has the
product structure:

G̃ = (R× V)× C̃ . (9.96)

Here the subgroup R× V = [J,K] generates the six dimensional group of rotations and boosts.

9.2.7 Finite dimensional representations

We examine in this section finite dimensional representations of the subgroup R × V = [J,K] of rotations
and boosts. These generators obey the subalgebra:

[ Ji, Jj ] = i~ εijkJk , [ Ji,Kj ] = i~ εijkKk , [Ki,Kj ] = 0 . (9.97)
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In order to emphasize that what we are doing here is completely classical, let us define:

Ji =
~
2

Σi , Ki =
~
2

Γi , (9.98)

in which case Σi and Γi satisfy the algebra:

[ Σi,Σj ] = 2 i εijkΣk , [ Σi,Γj ] = 2 i εijkΓk , [ Γi,Γj ] = 0 . (9.99)

which eliminates ~. It is simple to find a 4 × 4 matrix representation of Σi and Γi. We find two such
complimentary representations:

Σi =
(
σi 0
0 σi

)
, Γ(+)

i =
(

0 0
σi 0

)
, Γ(−)

i =
(

0 σi
0 0

)
, (9.100)

both of which satisfy the set (9.99):

[ Σi,Γ
(±)
j ] = 2 i εijkΓ(±)

k , Γ(±)
i Γ(±)

j = 0 . (9.101)

We also find:
[ Γ(+)

i ,Γ(−)
j ] = δij I + i εijk Σk . (9.102)

In addition, [ Γ(−)
i ]† = Γ(+)

i so Γ(±)
i is not Hermitian. Nevertheless, we can define finite transformations by

exponentiation. Let us define a rotation operator U(R) by:

U(R) = ein̂·Σ θ/2 = I cos θ/2 + i(n̂ ·Σ) sin θ/2 , (9.103)

and boost operators V (±)(v) by:

V (+)(v) = ev·Γ
(+)/2 = I + v · Γ(+)/2 =

(
1 0

σ · v/2 1

)
, (9.104)

and

V (−)(v) = ev·Γ
(−)/2 = I + v · Γ(−)/2 =

(
1 σ · v/2
0 1

)
. (9.105)

These last two equations follow from the fact that Γ(±)
i Γ(±)

j = 0. For this same reason,

V (±)(v′)V (±)(v) = V (±)(v′ + v) . (9.106)

We can easily construct the inverses of V (±)(v). We find:

[V (±)(v) ]−1 = V (±)(−v) = e−v·Γ(±)/2 = I − v · Γ(±) . (9.107)

So the inverses of V (±)(v) are not the adjoints. This means that the V (±)(v) operators are not unitary.
We now define combined rotation and boost operators by:

Λ(±)(R,v) = V (±)(v)U(R) , [ Λ(±)(R,v) ]−1 = U†(R) [V (±)(v) ]−1 = U†(R)V (∓)(v) . (9.108)

We find the results:

U†(R) Σi U(R) = Rij Σj ,

U†(R) Γ(±)
i U(R) = Rij Γ(±)

j ,

[V (±)(v) ]−1 Σi V (±)(v) = Σi − 2i εijk Γ(±)
j vk ,

[V (±)(v) ]−1 Γ(±)
i V (±)(v) = Γ(±)

i ,

U†(R)V (±)(v)U(R) = V (±)(R−1(v)) .

(9.109)
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So for the combined transformation,

[ Λ(±)(R,v) ]−1 Σ Λ(±)(R,v) = R( Σ )− 2i R( Γ(±) )× v ,

[ Λ(±)(R,v) ]−1 Γ(±) Λ(±)(R,v) = R( Γ(±) ) .
(9.110)

Comparing (9.110) with the transformations of J and K in Theorem 19, we see that Λ(±)(R,v) are adjoint
representations of the subgroup rotations and boosts, although not unitary ones. The replacement v→ −iv
is a reflection of the fact that V (±)(v) is not unitary. The Λ(±)(R,v) matrices are faithful representations
of the (R,v) subgroup of the Galilean group:

Λ(±)(R′,v′) Λ(±)(R,v) = V (±)(v′)U(R′)V (±)(v)U(R)

= V (±)(v′)
{
U(R′)V (±)(v)U†(R′)

}
U(R′)U(R)

= V (±)(v′)V (±)(R′(v))U(R′R) = V (±)(v′ +R′(v))U(R′R)

= Λ(±)(R′R,v′ +R′(v)) .

(9.111)

We can, in fact, display an explicit Galilean transformation for the subgroup consisting of the (R,v) elements.
Let us define two 4× 4 matrices X(±)(x, t) by:

Definition 23.

X(+)(x, t) =
(

t 0
x · σ −t

)
, X(−)(x, t) =

(
−t x · σ
0 t

)
. (9.112)

Then we can prove the following theorem:

Theorem 23. The matrices X(±)(x, t) transform under the subgroup of rotations and boosts according to:

Λ(±)(R,v)X(±)(x, t) [ Λ(±)(R,v) ]−1 = X(±)(x′, t′) , (9.113)

where x′ = R(x) + vt and t′ = t.

Proof. This remarkable result is an alternative way of writing Galilean transformations for the subgroup of
rotations and boosts in terms of transformations of 4× 4 matrices in the “adjoint” representation. With the
above definitions, the proof is straightforward and is left for the reader.

Exercise 9. Prove Theorem 23.

In this section, we have found two 4×4 dimensional matrix representations of the Galilean group. These
representations turned out not to be unitary. Finite dimensional representations of the Lorentz group in
relativistic theories are also not unitary. Nevertheless, finite representations of the Galilean group will be
useful when discussing wave equations.

9.2.8 The massless case

When M = 0, the phase for unitary representations of the Galilean group vanish, and the representation
becomes a faithful one, which is simpler. For this case, the generators transform according to the equations:

U†(G) JU(G) = R{J + K× v̄ + ā×P} ,
U†(G) KU(G) = R{K−P τ} ,
U†(G) PU(G) = R{P} ,
U†(G)H U(G) = H + v̄ ·P .

(9.114)
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where v̄ = R−1(v) and ā = R−1(a). The generators obey the algebra:

[Ji, Jj ] = i~ εijkJk ,
[Ji,Kj ] = i~ εijkKk ,

[Ji, Pj ] = i~ εijkPk ,

[Ki,Kj ] = 0 ,
[Pi, Pj ] = 0 ,
[Ki, Pj ] = 0 ,

[Ji, H] = 0 ,
[Pi, H] = 0 ,
[Ki, H] = i~Pi .

(9.115)

We first note that P simply rotates like a vector under the full group, so P 2 is the first Casimir invariant.
We also note that if we define W = K×P, then

U†(G) WU(G) = R{K−P τ} ×R{P} = R{K×P} = R{W} . (9.116)

So W is a second vector which simply rotates like a vector under the full group, so W 2 is also an invariant.
We also note that W is perpendicular to both P and K: W ·P = W ·K = 0. Note that W does not satisfy
angular momentum commutator relations.

9.3 Time translations

We have only constructed the unitary operator U(1 + ∆G) for infinitesimal Galilean transformations. Since
the generators do not commute, we cannot construct the unitary operator U(G) for a finite Galilean transfor-
mation by application of a series of infinitesimal ones. However we can easily construct the unitary operator
U(G) for restricted Galilean transformations, like time, space, and boost transformations alone. We do this
in the next two sections.

The unitary operator for pure time translations is given by:

UH(τ) = lim
N→∞

[
1 +

i

~
H τ

N

]N
= eiH τ/~ . (9.117)

It time-translates the operator X(t) by an amount τ :

U†H(τ) X(t′)UH(τ) = X(t) , t′ = t+ τ , (9.118)

and leaves P unchanged:
U†H(τ) PUH(τ) = P . (9.119)

Invariance of the laws of nature under time translation is a statement of the fact that an experiment with
particles done today will give the same results as an experiment done yesterday — there is no way of
measuring absolute time.

We first consider transformations to a frame where we have set the clocks to zero. That is, we put t′ = 0
so that τ = −t. Then (9.118) becomes:

X(t) = UH(t) XU†H(t) = X + V t . (9.120)

where X = K/M and V = P/M . From Eq. (9.120), we find:

X(t) {UH(t) |x 〉} = UH(t) X |x 〉 = x {UH(t) |x 〉} . (9.121)

So if we define the ket |x, t 〉 by:
|x, t 〉 = UH(t) |x 〉 = eiHt/~ |x 〉 , (9.122)

then (9.121) becomes an eigenvalue equation for the operator X(t) at time t:

X(t) |x, t 〉 = x |x, t 〉 , x ∈ R3 . (9.123)

Note that the eigenvalue x of this equation is not a function of t. It is just a real vector.
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From Eq. (9.122), we see that the base vector |x, t 〉 satisfies a first order differential equation:

− i~ d
dt
|x, t 〉 = H |x, t 〉 , (9.124)

and from (9.120), we obtain Heisenberg’s differential equation of motion for X(t):

d
dt

X(t) = [X(t), H]/i~ = P/M . (9.125)

The general transformation of the base vectors |x, t 〉 between two frames, which differ by clock time τ only,
is given by:

|x, t′ 〉 = UH(t′) |x 〉 = UH(t′)U†H(t) |x, t 〉 = UH(τ) |x, t 〉 , (9.126)

where τ = t′ − t.
The inner product of |x, t 〉 with an arbitrary vector |ψ 〉 is given by:

ψ(x, t) = 〈x, t |ψ 〉 = 〈x |U†H(t)|ψ 〉 = 〈x |ψ(t) 〉 , (9.127)

where the time-dependent “state vector” |ψ(t) 〉 is defined by:

|ψ(t) 〉 = U†H(t) |ψ 〉 = e−iHt/~ |ψ 〉 . (9.128)

This state vector satisfies a differential equation given by:

i~
d
dt
|ψ(t) 〉 = H |ψ(t) 〉 , (9.129)

which is called Schrödinger’s equation. This equation gives the trajectory of the state vector in Hilbert
space. Thus, we can consider two pictures: base vectors moving (the Heisenberg picture) or state vector
moving (the Schrödinger picture). They are different views of the same physics. From our point of view,
and remarkably, Schrödinger’s equation is a result of requiring Galilean symmetry, and is not a fundamental
postulate of the theory.

The state vector in the primed frame is related to that in the unprimed frame by:

|ψ(t′) 〉 = U†H(t′) |ψ 〉 = U†H(t′)UH(t) |ψ(t) 〉 = U†H(τ) |ψ(t) 〉 , (9.130)

We next turn to space translations and boosts.

9.4 Space translations and boosts

The unitary operators for pure space translations and pure boosts are built up of infinitesimal transformations
along any path:

UP(a) = lim
N→∞

[
1− i

~
P · a
N

]N
= e−iP·a/~ , (9.131)

UX(v) = lim
N→∞

[
1 +

i

~
K · v
N

]N
= eiK·v/~ = eiMv·X/~ , (9.132)

The space translation operator UP(a) is diagonal in momentum eigenvectors, and the boost operator UX(v)
is diagonal in position eigenvectors. From the transformation rules, we have:

U†P(a) XUP(a) = X + a , (9.133)

U†X(v) PUX(v) = P +Mv . (9.134)
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Thus UP(a) translates the position operator and UX(v) translates the momentum operator. For the eigen-
vectors, this means that, for the case of no degeneracies,

|x′ 〉 = |x + a 〉 = UP(a) |x 〉 , (9.135)

|p′ 〉 = |p +Mv 〉 = UX(v) |p 〉 , (9.136)

In this section, we omit the explicit reference to w. We can find any ket from “standard” kets |x0 〉 and |p0 〉
by translation and boost operators, as we did for time translations. Thus in Eq. (9.135), we set x = x0 ≡ 0,
and then put a→ x, and in Eq. (9.136), we set p = p0 ≡ 0, and put v→ p/M . This gives the relations:

|x 〉 = UP(x) |x0 〉 , (9.137)

|p 〉 = UX(p/M) |p0 〉 . (9.138)

We can use (9.137) or (9.138) to find a relation between the |x 〉 and |p 〉 representations. We have:

〈x |p 〉 = 〈x |UX(p/M) |p0 〉 = 〈x0 |U†P(x) |p 〉 = N eip·x/~ ,

where N = 〈x0 |p 〉 = 〈x |p0 〉.
In this book, we normalize these states according to the rule:

∑

x

→
∫

d3x , (9.139)

∑

p

→
∫

d3p

(2π~)3
, (9.140)

Then we have the normalizations:

〈x |x′ 〉 =
∑

p

〈x |p 〉〈p |x′ 〉 = δ(x− x′) , (9.141)

〈p |p′ 〉 =
∑

x

〈p |x 〉〈x |p′ 〉 = (2π~)3 δ(p− p′) . (9.142)

This means that we should take the normalization N = 1, so that the Fourier transform pair is given by:

ψ(x) = 〈x |ψ 〉 =
∑

p

〈x |p 〉〈p |ψ 〉 =
∫

d3p

(2π~)3
eip·x/~ ψ̃(p) , (9.143)

ψ̃(p) = 〈p |ψ 〉 =
∑

x

〈p |x 〉〈x |ψ 〉 =
∫

d3x e−ip·x/~ ψ(x) (9.144)

For pure space translations, x′ = x + a, wave functions in coordinate space transform according to the
rule:

ψ′(x′) = 〈x′ |ψ′ 〉 = 〈x |U†P(a)UP(a) |ψ 〉 = 〈x |ψ 〉 = ψ(x) . (9.145)

For infinitesimal displacements, x′ = x + ∆a, we have, using Taylor’s expansion,

ψ(x + ∆a) = 〈x |U†P(∆a) |ψ 〉 = 1 +
i

~
∆a · 〈x |P|ψ 〉+ · · ·

=
{

1 + ∆a ·∇x + · · ·
}
ψ(x) .

So the coordinate representation of the momentum operator is:

〈x |P |ψ 〉 =
~
i

∇x ψ(x) . (9.146)
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In a similar way, for pure boosts, p′ = p+Mv, wave functions in momentum space transforms according
to:

ψ̃′(p′) = 〈p′ |ψ′ 〉 = 〈p |U†X(v)UX(v) |ψ 〉 = 〈p |ψ 〉 = ψ̃(p) , (9.147)

and we find:

〈 p |X |ψ 〉 = −~
i

∇p ψ̃(x) . (9.148)

For the combined unitary operator for space translations and boosts, we note that the combined trans-
formations give: (1,v, 0, 0)(1, 0,a, 0) = (1,v,a, 0). So, using Bargmann’s theorem, Eq. (9.26), for the phase,
and Eq. (B.16) in Appendix ??, we find the results:

UX,P(v,a) = ei(Mv·X−P·a)/~ = e+i 12Mv·a/~ UP(a)UX(v) , (9.149)

= e−i
1
2Mv·a/~ UX(v)UP(a) ,

So for combined space translations and boosts we find:

UX,P(v,a) |x 〉 = e+i 12Mv·a/~ UP(a)UX(v) |x 〉
= e+i(Mv·x+ 1

2Mv·a)/~ UP(a) |x 〉
= e+i(Mv·x+ 1

2Mv·a)/~ |x + a 〉
UX,P(v,a) |p 〉 = e−i

1
2Mv·a/~ UX(v)UP(a) |p 〉

= e−i(p·a+ 1
2Mv·a)/~ UX(v) |p 〉

= e−i(p·a+ 1
2Mv·a)/~ |p +Mv 〉 .

Writing x′ = x + a and p′ = p +Mv, and inverting these expressions, we find

|x′ 〉 = e−i(Mv·x+ 1
2Mv·a)/~ UX,P(v,a) |x 〉 , (9.150)

|p′ 〉 = e+i(p·a+ 1
2Mv·a)/~ UX,P(v,a) |p 〉 . (9.151)

For combined transformations, wave functions in coordinate and momentum space transform according to
the rule:

ψ′(x′) = 〈x′ |ψ′ 〉 = 〈x′ |UX,P(v,a) |ψ 〉 = e+i(Mv·x+ 1
2Mv·a)/~ ψ(x) , (9.152)

ψ̃′(p′) = 〈p′ |ψ′ 〉 = 〈p′ |UX,P(v,a) |ψ 〉 = e−i(p·a+ 1
2Mv·a)/~ ψ̃(p) . (9.153)

These functions transform like scalars, but with an essential coordinate or momenutm dependent phase,
characteristic of Gailiean transformations.

Example 29. It is easy to show that Eq. (9.152), is the Fourier transform of (9.153),

ψ′(x′) =
∫

d3p′

(2π~)3
eip
′·x′/~ ψ̃′(p′)

= e+i(Mv·x+ 1
2Mv·a)/~

∫
d3p

(2π~)3
eip·x/~ ψ̃(p) = e+i(Mv·x+ 1

2Mv·a)/~ ψ(x) .

as required by Eq. (9.143).

We discuss the case of combined space and time translations with boosts, but without rotations, in
Appendix ??. We turn next to rotations.
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9.5 Rotations

In this section, we discuss pure rotations. Because of the importance of rotations and angular momentum
in quantum mechanics, this topic is discussed in great detail in Chapter ??. We will therefore restrict our
discussion here to general properties of pure rotations and angular momentum algebra.

9.5.1 The rotation operator

The total angular momentum is the sum of orbital plus spin: J = L + S, with [Li, Sj ] = 0. Common
eigenvectors of these two operators are then the direct product of these two states:

| `,m`; s,ms 〉 = | `,m` 〉 | s,ms 〉 . (9.154)

The rotation operator is given by the combined rotation of orbital and spin operators:

UJ(R) = ein̂·J θ/~ = ein̂·L θ/~ ein̂·S θ/~ = UL(R)US(R) . (9.155)

The orbital rotation operator acts only on eigenstates of the position operator X, or momentum operator P,
For pure rotations, the rotation operator can be found by N sequential infinitesimal transformations

∆θ = θ/N about a fixed axis n̂:

UJ(n̂, θ) = lim
N→∞

[
1 +

i

~
n · J θ
N

]N
= ein̂·J θ/~ . (9.156)

For pure rotations, the Galilean phase factor is zero so that we have:

UJ(R′)UJ(R) = UJ(R′R) . (9.157)

From Theorem 19 and Eq. (9.59), for pure rotations, we have:

U†J(n̂, θ) Ji UJ(n̂, θ) = Rij(n̂, θ) Jj ≡ Ji(n̂, θ) . (9.158)

We discuss parameterizations of the rotation matrices R(n̂, θ) in Appendix ??. Here Ji(n̂, θ) is the ith

component of the operator J evaluated in the rotated system. Setting i = z, we find for the z-component:

Jz(n̂, θ)U
†
J(n̂, θ) = U†J(n̂, θ) Jz (9.159)

We also know that J2 = J2
x + J2

y + J2
z is an invariant:

U†J(n̂, θ) J2 UJ(n̂, θ) = J2 . (9.160)

So from Eq. (9.159), we find that:

Jz(n̂, θ)
{
U†J(n̂, θ) | j,m 〉

}
= ~m

{
U†J(n̂, θ) | j,m 〉

}
, (9.161)

from which we conclude that the quantity in brackets is an eigenvector of Jz(n̂, θ) with eigenvalue ~m. That
is, we can write:

| j,m(n̂, θ) 〉 = U†J(n̂, θ) | j,m 〉 . (9.162)

It is also an eigenvector of J2 with eigenvalue ~2 j(j+ 1). It is useful to define a rotation matrix D(j)
m′,m(n̂, θ)

by:
D

(j)
m,m′(n̂, θ) = 〈 jm |UJ(n̂, θ) | jm′ 〉 . (9.163)
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Matrix elements of the rotation operator are diagonal in j. The rotation matrices have the properties:

j∑

m′=−j
D

(j)
m,m′(R)D(j) ∗

m′′,m′(R) = δm,m′′ , (9.164)

D
(j) ∗
m,m′(R) = D

(j)
m′,m(R−1) = (−)m

′−mD(j)
−m,−m′(R) . (9.165)

We can express | n̂, θ; j,m 〉 in terms of the rotation matrices. We write:

| j,m(n̂, θ) 〉 =
j∑

m′=−j
D

(j) ∗
m,m′(n̂, θ) | j,m′ 〉 . (9.166)

In the coordinate representation of orbital angular momenta, spherical harmonics are defined by: Y`,m(Ω) =
〈Ω | `,m 〉. Using Eq. (9.166), we find:

Y`,m(Ω′) = 〈Ω′ | `,m 〉 = 〈Ω |U†J(n̂, θ) | `,m 〉

=
∑̀

m′=−`
D

(`) ∗
m,m′(n̂, θ) 〈Ω | `,m′ 〉 =

∑̀

m′=−`
D

(`) ∗
m,m′(n̂, θ)Y`,m′(Ω) ,

(9.167)

where Ω and Ω′ are spherical angles of the same point measured in two different coordinate systems, rotated
relative to each other.

9.5.2 Rotations of the basis sets

Now L and therefore J does not commute with either X or P. Therefore they cannot have common
eigenvectors. However S does commute with with both X or P. Supressing the dependence on w and M ,
the common eigenvectors are:

|x, sm 〉 , and |p, sm 〉 . (9.168)

A general rotation of the ket |x, sm 〉 can be obtained by first translating to the state where x = 0, then rotat-
ing, and then translating back to a rotated state x′ = R(x). That is, (R, 0, 0, 0) = (1,x′, 0, 0)(R, 0, 0, 0)(1,−x, 0, 0).
The trick is that the orbital angular momentum operator L acting on a state with x = 0 gives zero, so on
this state J = S. The phases all work out to be zero in this case, so we find:

UJ(R) |x, sm 〉 = UP(x′)UJ(R)UP(−x) |x, sm 〉
= UP(x′)UJ(R) |0, sm 〉
= UP(x′)US(R) |0, sm 〉
=
∑

m′

UP(x′) |0, sm′ 〉D(s)
m′,m(R)

=
∑

m′

|x′, sm′ 〉D(s)
m′,m(R) . (9.169)

Inverting this expression, we find:

U†J(R) |x′, sm′ 〉 =
∑

m

D
(s)∗
m′,m(R) |x, sm 〉 , (9.170)

which gives:
ψ′sm′(x

′) =
∑

m

D
(s)
m′,m(R)ψsm(x) , (9.171)

where 〈x, sm |ψ 〉 = ψsm(x) with |ψ′ 〉 = U(R) |ψ 〉.
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9.6 General Galilean transformations

The general Galilean transformation for space and time translations and rotations is given by:

x′ = R(x) + vt+ a ,

t′ = t+ τ . (9.172)

Starting from the state | sm; x, t 〉, we generate a full Galilean transformation G = (R,v,a, τ) by first doing
a time translation back to t = 0, a space translation back to the origin x = 0, then a rotation (which now
can be done with the spin operator alone), then a space translation to the new value x′, then a boost to the
v frame, and finally a time translation forward to t′. This is given by the set:

G = (1, 0, 0, t′)(1,v, 0, 0)(1, 0,x′, 0)(R, 0, 0, 0)(1, 0,−x, 0)(1, 0, 0,−t) ,
= (1, 0, 0, t′)(1,v, 0, 0)(1, 0,x′, 0)(R, 0, 0, 0)(1, 0,−x,−t) ,
= (1, 0, 0, t′)(1,v, 0, 0)(1, 0,x′, 0)(R, 0,−R(x),−t) ,
= (1, 0, 0, t′)(1,v, 0, 0)(R, 0,x′ −R(x),−t) ,
= (1, 0, 0, t′)(R,v,x′ −R(x)− vt,−t) ,
= (R,v,a, τ) , (9.173)

as required. The combined unitary transformation for the full Galilean group is then given by:

UH(t′)UX(v)UP(x′)UJ(R)UP(−x)UH(−t) = eig(x,t)/~ U(G) . (9.174)

The only contribution to the phase comes from between step four and step five in the above. Using
Bargmann’s theorem, we find:

g(x, t) =
1
2
M v · (x′ −R(x)) =

1
2
Mv2 t+

1
2
M v · a . (9.175)

So

U(G) |x, t; sm 〉 = e−ig(x,t)/~ UH(t′)UX(v)UP(x′)UJ(R)UP(−x)UH(−t) |x, t; sm 〉
= e−ig(x,t)/~ UH(t′)UX(v)UP(x′)UJ(R)UP(−x) |x, 0; sm 〉
= e−ig(x,t)/~ UH(t′)UX(v)UP(x′)UJ(R) |0, 0; sm 〉
= e−ig(x,t)/~ UH(t′)UX(v)UP(x′)US(R) |0, 0; sm 〉
= e−ig(x,t)/~ UH(t′)UX(v)UP(x′)

∑

m′

|0, 0; sm′ 〉D(s)
m′,m(R)

= e−ig(x,t)/~ UH(t′)UX(v)
∑

m′

|x′, 0; sm′ 〉D(s)
m′,m(R)

= e−ig(x,t)/~ UH(t′)
∑

m′

eiMv·x′ |x′, 0; sm′ 〉D(s)
m′,m(R)

= eif(x,t)/~
∑

m′

|x′, t′; sm′ 〉D(s)
m′,m(R) (9.176)

Where we have defined the phase factor φ(G) by:

f(x, t) = Mv · x′ − χ(G) = Mv · x′ − 1
2
Mv2 t− 1

2
M v · a

= Mv ·R(x) +
1
2
Mv2 t+

1
2
M v · a .

(9.177)
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Inverting Eq. (9.176), we find:

U†(G) |x′, t′; sm′ 〉 = e−if(x,t)/~
∑

m

|x, t; sm 〉D(s) ∗
m′,m(R) . (9.178)

So that:
ψ′sm′(x

′, t′) = eif(x,t)/~
∑

m

D
(s)
m′,m(R)ψsm(x, t) . (9.179)

where ψsm(x, t) = 〈x, t; sm |ψ 〉, and we have put: |ψ′ 〉 = U(G) |ψ 〉. It is important to note here that the
phase factor f(x, t) depends on x and t, as well as the parameters of the Galilean transformation.

Exercise 10. Find the general Galilean transformation of momentum eigenvectors: |p, sm 〉. Show that the
transformed functions ψ̃sm(p) give the same result as as the Fourier transform of Eq. (9.179).

9.7 Improper transformations

In this section we follow Weinberg[?, p. 77]. We first extend the kinds of Galilean transformations we consider
to include parity, time reversal, and charge conjugation. The full Galilean transformations are now described
by:

x′ = rR(x) + vt+ a , t′ = κt+ τ . (9.180)

Here r = det[R ] and κ can have values of ±1. We still require that lengths are preserved so that R is
still orthogonal, and that the rate of passage of time does not dilate or shrink, only the direction of time
can be reversed. So the full group, including improper transformations, is now represented by the twelve
parameters:

G = (R,v,a, τ, r, κ ) . (9.181)

The full group properties are now stated in the next theorem.

Theorem 24. The composition rule for the full Galilean group is given by:

G′′ = G′G = (R′,v′,a′, τ ′, r′, κ′ ) (R,v,a, τ, r, κ )
= (R′R, κv′ + r′R′(v),a′ + v′τ + r′R(a), κτ ′ + τ, r′r, κ′κ, )

(9.182)

Proof. The proof follows directly from the complete transformation equations (9.180) and left as an exercise.

9.7.1 Parity

In this section we consider parity transformations (space reversals) of the coordinate system. This is repre-
sented by the group elements:

GP = (1, 0, 0, 0,−1,+1) . (9.183)

We note that G−1
P = GP . So using the rules given in Theorem 24, we find for the combined transformation:

G′ = G−1
P GGP = (1, 0, 0, 0,−1,+1) (R,v,a, τ, r, κ ) (1, 0, 0, 0,−1,+1)

= (R,−v,−a, τ, r, κ ) .
(9.184)

The phase factors are zero in this case. So we have:

P−1 U(G)P = U(G−1
P GGP ) = U(G′) . (9.185)
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Now if we take r = 1 and κ = 1, both G and G′ are proper. This means that we can take G = 1 + ∆G,
where ∆G = ( ∆ω,∆v,∆a,∆τ, 1, 1 ). Then G′ = 1 + ∆G′, where ∆G′ = ( ∆ω,−∆v,−∆a,∆τ, 1, 1 ). So
then U(1 + ∆G) can be represented by:5

U(1 + ∆G) = 1 +
i

~

{
∆θ n̂ · J + ∆v ·K−∆a ·P + ∆τ H

}
+ · · · . (9.186)

Using this in Eq. (9.185), we find:

P−1 JP = J ,

P−1 KP = −K ,

P−1 PP = −P ,

P−1H P = H .

(9.187)

We note that P is linear and unitary, with eigenvalues of unit magnitude. We also have: P−1 = P† = P.
We assume that the Casimir invariants M and W remain unchanged by a parity transformation.

Exercise 11. Show that under parity,

P−1 X(t)P = −X(t) , (9.188)

where X(t) = X + V t, where X = K/M and V = P/M .

We discuss the action of parity on eigenvectors of angular momentum in Section 21.1.4.

9.7.2 Time reversal

Time reversal is represented by the group elements:

GT = (1, 0, 0, 0,+1,−1) , (9.189)

with G−1
T = GT . So again using the rules given in Theorem 24, we find for the combined transformation:

G′ = G−1
T GGT = (1, 0, 0, 0,+1,−1) (R,v,a, τ, r, κ ) (1, 0, 0, 0,+1,−1)

= (R,−v,a,−τ, r, κ ) .
(9.190)

So we have:
T −1 U(G) T = U(G−1

T GGT ) = U(G′) . (9.191)

Again, we take r = +1 and κ = +1, so that G = 1 + ∆G and G′ = 1 + ∆G′, where

∆G =
(

∆ω,∆v,∆a,∆τ, 1, 1
)
,

∆G′ =
(

∆ω,−∆v,∆a,−∆τ, 1, 1
)
,

(9.192)

Both of these transformations are proper. So we can take U(G) and G(G′) to be represented by the infinites-
imal form of Eq. (9.186). Since we will require T to be anti-linear and anti-unitary, T −1i T = −i, and, using
(9.191), we find:

T −1 J T = −J ,

T −1 K T = K ,

T −1 P T = −P ,

T −1H T = H .

(9.193)

We also assume that M and W are unchanged by a time-reversal transformation. The eigenvalues of T are
also of unit magnitude. We also have: T −1 = T † = T . We discuss time reversal of angular momentum
eigenvectors in Section 21.1.4.

5We do not use the extended group in this discussion.
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Exercise 12. Show that under time reversal,

T −1 X(t) T = X(−t) , (9.194)

where X(t) = X + V t, where X = K/M and V = P/M .

For combined parity and time-reversal transformations, we find:

(PT )−1 J (PT ) = −J ,

(PT )−1 K (PT ) = −K ,

(PT )−1 P (PT ) = P ,

(PT )−1H (PT ) = H .

(9.195)

9.7.3 Charge conjugation

The charge conjugation operator C changes particles into antiparticles. This is not a space-time symmetry,
but one that reverses the sign of the mass and spin. That is, we assume that:

C−1M C = −M , C−1 S C = −S . (9.196)

In addition, we take C to be linear and unitary, and:

C−1 J C = −J ,

C−1 K C = −K ,

C−1 P C = P ,

C−1H C = H .

(9.197)

The eigenvalues of C are again of unit magnitude. If we define X = K/M , and V = P/M , then this means
that

C−1 X C = X ,

C−1 V C = −V ,
(9.198)

So we have the following theorem:

Theorem 25 (PT C). From Eqs. (9.195) and (9.197), the combined (PT C) operation when acting on the
generators of the Galilean transformation, leaves the generators unchanged:

(PT C)−1 J (PT C) = J ,

(PT C)−1 K (PT C) = K ,

(PT C)−1 P (PT C) = P ,

(PT C)−1H (PT C) = H .

(9.199)

That is, the generators are invariant under (PT C).

Exercise 13. Show that under charge conjugation,

C−1 X(t) C = X(−t) , (9.200)

where X(t) = X + V t, with X = K/M and V = P/M . So when acting on the equation of motion of
X(t), charge conjugation has the same effect as time reversal. We can interpret this as meaning that in
non-relativistic physics, we can think of an antiparticle as a negative mass particle moving backwards in
time.
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Let us be precise. If |ψ 〉 represents a single particle state, then |ψc 〉 = C |ψ 〉 is the charge conjugate state.
Ignoring spin for the moment, if |m0, w0, E0; x, t 〉 are eigenstates of X(t) and M with positive eigenvalues
m = m0 > 0, w = w0 > 0 and E = E0 > 0, then

C |m0, w0, E0; x, t 〉 = | −m0,−w0,−E0; x, t 〉 , (9.201)

is an eigenvector X(t), M , W , and H with negative eigenvalues m = −m0 < 0, w = −m0 < 0, and
E = −E0 < 0. So the charge conjugate wave function with m, w, and E all positive:

ψc(m0, w0, E0; x, t) = 〈m0, w0, E0; x, t |ψc 〉 = 〈m0, w0, E0; x, t | C |ψ 〉
= 〈−m0,−w0,−E0; x, t |ψ 〉 = ψ(−m0,−w0,−E0; x, t) , (9.202)

is the same as the wave function with m0, w0, and E0 negative. We will study single particle wave functions
in the next chapter. Charge conjugate symmetry says that, in priciple, we cannot tell the difference between
a world consisting of particles or a world consisting of antiparticles.

9.8 Scale and conformal transformations

Scale transformations are changes in the measures of length and time. An interesting question is if there are
ways to determine a length or time scale in absolute terms, or are these just arbitrary measures. If there are
no physical systems that can set these scales, we say that the fundamental forces in Nature must be scale
invariant. Conformal invariance is a combined space-time expansion of the measures of length and time, and
generalizes scale changes. We discuss these additional space-time symmetries in the next two sections.

9.8.1 Scale transformations

Scale transformations are of the form:

x′i = αxi , t′ = β t . (9.203)

We require, in particular, that if ψ(x, t) satisfies Schrödinger’s equation with w = 0 for a spinless free particle
in Σ, then ψ′(x′, t′) satisfies Schrödinger’s equation in Σ′. Probability must remain the same, so we require
that

|ψ′(x′, t′) |2 d3x′ = |ψ(x, t) |2 d3x . (9.204)

With this observation, it is easy to prove the following theorem.

Theorem 26. Under scale transformations x′ = αx and t′ = βt, spinless scalar solutions of Schrödinger’s
equation transform according to:

ψ′(x′, t′) = α−3/2 eig(x,t)/~ ψ(x, t) . (9.205)

with β = α2 and g(x, t) = C, a constant phase.

Exercise 14. Prove Theorem 26.

We put α = es and then β = e2s, so that infinitesimal scale transformations become:

∆x = ∆sx , ∆t = 2 ∆s t . (9.206)

We now follow our work in example 27 to find a differential representation of the scale generator D. Using
Eq. (9.205), infinitesimal scale changes of scalar functions are given by:

ψ′(x′, t′) = e−3∆s/2 ψ(x′ −∆x, t′ −∆t)

=
{

1− 3∆s/2 + · · ·
}{

1−∆sx ·∇−∆s 2 t ∂t + · · ·
}
ψ(x′, t′)

=
{

1−∆s
{

3/2 + x ·∇ + 2 t ∂t
}

+ · · ·
}
ψ(x′, t′)

(9.207)
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The dilation generator D is defined by:

∆ψ(x, t) = ψ′(x, t)− ψ(x, t) = −i∆sDψ(x, t) , (9.208)

from which we find:
D = −3

2
i+

1
i

x ·∇− 2i t ∂t = −3
2
i+ x ·P− 2 tH . (9.209)

We can drop the factor of −3i/2 since this produces only a constant phase. Using the differential represen-
tations in Eqs. (9.13), we find the commutation relations for D:

[D,Pi ] = iPi , [D,H ] = 2iH , [D,Ki ] = −iKi , (9.210)

and commutes with Ji. D also commutes with M , but we note that the first Casimir operator W = H =
P 2/2M does not commute with D. In fact, we find:

[D,W ] = 2iW . (9.211)

So the internal energy W breaks scale symmetry.

9.8.2 Conformal transformations

Conformal transformations are of the form:

x′i =
xi

1− ct , t′ =
t

1− ct , (9.212)

where c has units of reciprocal time (not velocity!) and can be positive or negative. Note that 1/t′ = 1/t− c.
For a scalar spin zero free particle satisfying Schrödinger’s equation, probability is again conserved ac-

cording to (9.204), and we find the following result for conformal transformations:

Theorem 27. Under scale transformations x′ = αx and t′ = βt, spinless scalar solutions of Schrödinger’s
equation transform according to:

ψ′(x′, t′) = (1− ct)3/2 eig(x,t)/~ ψ(x, t) . (9.213)

where

g(x, t) =
1
2
mcx2

1− ct . (9.214)

Exercise 15. Prove Theorem 27. For this, it is useful to note that:

∇′ = (1− ct) ∇ , ∂′t = (1− ct)2 ∂t − c(1− ct) x ·∇ . (9.215)

and that:
~
i
∇
[
eig(x,t)/~ ψ(x, t)

]
= eig(x,t)/~

[ ~
i
∇ + (∇g(x, t))

]
ψ(x, t) . (9.216)

Infinitesimal conformal transformations are given by:

∆x = ∆c tx , ∆t = ∆c t2 . (9.217)

So from Eq. (9.213), infinitesimal conformal transformations of scalar functions are given by:

ψ′(x′, t′) = (1− t∆c)3/2 ei∆g(x
′,t′)/~ ψ(x′ −∆x, t′ −∆t) , (9.218)

where
∆g(x′, t′) =

1
2
mx2 ∆c . (9.219)
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So

ψ′(x′, t′) =
{

1− 3
2
t∆c+ · · ·

}{
1 +

~
2i
mx2 ∆c+ · · ·

}

×
{

1−∆c tx ·∇−∆c t2 ∂t + · · ·
}
ψ(x′, t′)

=
{

1 + ∆c
{
−3

2
t+

~
2i
mx2 − tx ·∇− t2 ∂t

}
+ · · ·

}
ψ(x′, t′) ,

(9.220)

The conformal generator C is defined by:

∆ψ(x, t) = ψ′(x, t)− ψ(x, t) = i∆cC ψ(x, t) , (9.221)

from which we find:

C =
3i
2
t− ~

2
mx2 +

t

i
x ·∇− i t2 ∂t

=
3i
2
t− ~

2
mx2 + tx ·P− t2H

=
3i
2
t− ~

2
mx2 + tD + t2H .

(9.222)

We find the following commutation relations for C:

[C,H ] = −iD , [C,D ] = −2i C , (9.223)

and commutes with all other operators. Note that scale and conformal transformations do not commute. So
if we put:

G1 =
1
2

(H + C) , G2 =
1
2

(H − C) , G3 =
1
2
D , (9.224)

we find that G satisfies a O(2, 1) algebra:

[G1, G2 ] = −iG3 , [G1, G3 ] = iG2 , [G2, G3 ] = iG1 . (9.225)

Since [Gi, Jj ] = 0, the group structure of the extended group has O(3)×O(2, 1) symmetry.

9.9 The Schrödinger group

The extension of the Galilean group to include scale and conformal transformations is called the Schrödinger
or non-relativistic conformal group, which we write as S. We consider combined scale and conformal trans-
formations of the following form:

x′ =
R(x) + vt+ a

γt+ δ
, t′ =

αt+ β

γt+ δ
, αδ − βγ = 1 . (9.226)

Here α, β, γ, and δ are real parameters, only three of which are independent. This transformation contains
both scale and conformal transformations as special interrelated cases. The group elements now consist
of twelve independent parameters, but it is useful to write them in terms of thirteen parameters with one
constraint: S = (R,v,a, α, β, γ, δ). The extended transformation is a group. The group multiplication
properties are contained in the next theorem:

Theorem 28. The multiplication law for the Schrödinger group is given by:

S′′ = S′S = (R′,v′,a′, α′, β′, γ′, δ′) (R,v,a, α, β, γ, δ)
= (R′R,R′(v) + αv′ + γa′, R′(a) + βv′ + δa′,

α′α+ β′γ, α′β + β′δ, γ′α+ δ′γ, γ′β + δ′δ ) .
(9.227)
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A faithful five-dimensional matrix representation is given by:

S =



R v a
0 α β
0 γ δ


 , S′′ = S′S , (9.228)

which preserves the determinant relation: det[S ] = αδ − βγ = 1. The unit element is 1 = (1, 0, 0, 1, 0, 0, 1)
and the inverse element is:

S−1 = (R−1,−δR−1(v) + γR−1(a),−αR−1(a) + βR−1(v), δ,−β,−γ, α ) . (9.229)

For infinitesimal transformations, it is useful to write:

α = 1 + ∆s+ · · · ,
β = ∆τ + · · · ,
γ = −∆c+ · · · ,
δ = 1−∆s+ · · · ,

(9.230)

so that

αδ − βγ = ( 1 + ∆s+ · · · ) ( 1−∆s+ · · · )− ( ∆τ + · · · ) (−∆c+ · · · ) = 1 +O(∆2) , (9.231)

as required. ∆τ , ∆s, and ∆c are now independent variations. So the unitary transformation transformation
for infinitesimal transformations is now written as:

U(1 + ∆S) = 1 +
i

~

{
∆θ n̂ · J + ∆v ·K−∆a ·P + ∆τ H + ∆sD −∆cC

}
+ · · · , (9.232)

in terms of the twelve generators J, K, P, H, D, and C.
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Chapter 10

Wave equations

In this chapter, we discuss wave equations for single free particles. We first discuss wave equations for a
single free particle of mass M 6= 0 and for a fixed value of w = 0. We find wave equations for scalar (s = 0),
spinor (s = 1/2), and vector (s = 1) particles.

10.1 Scalars

For scalar particles with s = 0, let us define time dependent wave single particle (+) and antiparticle (−)
wave funtions for m = ±m0 and w = ±w0 by:

ψ(±)(x, t) = 〈±m0,±w0; x, t |ψ 〉 , (10.1)

where m0 > 0. From the first Casimir invariant, Eq. (9.80), where

H = W +
P 2

2M
, (10.2)

and from the time-displacement operator Eq. (9.129), and the coordinate representation of the momentum
operator, Eq. (9.146), we find Schrödinger’s wave equation for a spinless particle:

i~
∂

∂t
ψ(±)(x, t) =

{
∓ ~2

2m0
∇2 ± w0

}
ψ(±)(x, t) . (10.3)

This equation obeys a probability conservation equation, given by:

∂ρ(±)(x, t)
∂t

+ ∇ · j(±)(x, t) = 0 , (10.4)

where

ρ(±)(x, t) = |ψ(±)(x, t)|2 ,

j(±)(x, t) = ± ~
2m0 i

[
ψ(±) ∗(x, t) ( ∇ψ(±)(x, t) )− ( ∇ψ(±) ∗(x, t) )ψ(±)(x, t)

]
.

(10.5)

We interpret |ψ(±)(x, t)|2 as the probability of finding the particle at point x at time t.
Now the particle and antiparticle solutions are related by:

ψ(±)(x, t) = K[ψ(∓)(x, t) ] = ψ(∓) ∗(x, t) , (10.6)

where K is a complex conjugation operator.
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Exercise 16. Show that K is an anti-linear anti-unitary operator with eigenvalues of unit magnitude.

General solutions for particles and antiparticles of (10.3) can be given as Fourier transforms:

ψ(+)(x, t) =
∫

d3k

(2π)3
a

(+)
k e+i(k·x−Ekt) ,

ψ(−)(x, t) =
∫

d3k

(2π)3
a

(−)
k e+i(k·x+Ekt) =

∫
d3k

(2π)3
a

(−)
−k e

−i(k·x−Ekt) ,

(10.7)

where Ek = ~k2/(2m0) + w0 in all integrals. In the integral in the last line, we have put k→ −k. We first
note that ψ(−)(−m0,−w0; x, t) = ψ(+)(+m0,+w0; x, t), as required.

Under a Galilean transformation of space-time, a scalar wave function transforms like:

ψ(±) ′(x′, t′) = e±if(x,t)/~ ψ(±)(x, t) , (10.8)

where
f(x, t) = m0v ·R(x) +

1
2
m0v

2 t+
1
2
m0 v · a . (10.9)

We see from this that particle wave functions transform differently than antiparticle wave functions. This
difference in transformation properties is called Bargmann’s superselection rule and means that we cannot
add particle wave functions to antiparticle wave functions and maintain Galilean invariance of the result.
The best we can do is construct a two-component wave function Ψ(x, t) by the definition:

Ψ(x, t) =
(
ψ(+)(x, t)
ψ(−)(x, t)

)
, (10.10)

which transforms according to:

Ψ′(x′, t′) = S(x, t) Ψ(x, t) , where S(x, t) =
(
e+if(x,t)/~ 0

0 e−if(x,t)/~

)
. (10.11)

Exercise 17. Show directly by differentiation that if ψ(+)(x, t) satisfies Schrödinger’s equation in frame Σ:

i~
∂

∂t
ψ(+)(x, t) =

{
− ~2

2m0
∇2 + w0

}
ψ(+)(x, t) . (10.12)

then ψ(+) ′(x′, t′), given by Eq. (10.8), satisfies Schrödinger’s equation in frame Σ′:

i~
∂

∂t′
ψ(+) ′(x′, t′) =

{
− ~2

2m0
∇′ 2 + w0

}
ψ(+) ′(x′, t′) . (10.13)

10.2 Spinors

In this section, we derive wave equations for spin 1/2 particles and antiparticles.

10.2.1 Spinor particles

For spin 1/2 particles, the time dependent wave functions can be written as two-component column matrices
(called spinors). However, it is useful to introduce four -component column spinors ψ(+)(x, t), which we
will call Pauli spinors,1 consisting of a pair of two-component spinors φ(+)(x, t) and χ(+)(x, t), for reasons

1As opposed to Dirac spinors in the relativistic case.
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that will be come apparent later. These are defined by the matrices:

ψ(+)(x, t) =
(
φ(+)(x, t)
χ(+)(x, t)

)
,

φ(+)(x, t) =

(
φ

(+)
+1/2(x, t)

φ
(+)
−1/2(x, t)

)
, φ

(+)
sm (x, t) = 〈x, t; s,m |φ 〉 ,

χ(+)(x, t) =

(
χ

(+)
+1/2(x, t)

χ
(+)
−1/2(x, t)

)
, χ

(+)
sm (x, t) = 〈x, t; s,m |χ 〉 ,

with s = 1/2 and m = ±1/2. The (+) sign indicates that m = m0 > 0. The wave equation can be written
as a second order differential equation, independent of spin, exactly as Eq. (10.3). However, we shall see
that there is some advantage of writing this equation as two coupled first order differential equations. We
start by writing a 4× 4 matrix equation:

(
i~ ∂/∂t −~σ ·∇/i
−~σ ·∇/i 2m0

)(
φ(+)(x, t)
χ(+)(x, t)

)
= 0 , (10.14)

which couples the two-component Pauli spinors φ(+)(x, t) and χ(+)(x, t). The solution of Eq. (10.14) is
simple. It is given by:

χ(+)(x, t) =
1

2m0

~
i
σ ·∇φ(+)(x, t) , i~

∂

∂t
φ(+)(x, t) =

~
i
σ ·∇χ(+)(x, t) , (10.15)

which leads to the usual second order Schrödinger wave equation for the spinor φ(x, t):

− ~2

2m0
(σ ·∇ )2 φ(+)(x, t) = − ~2

2m0
I∇2 φ(+)(x, t) = i~

∂

∂t
φ(+)(x, t) . (10.16)

where we have used Eq. (15.4) in Appendix ??. Eq. (10.14) is called the Pauli equation, and we will use it
to describe spin 1/2 particles.

From the Pauli equation and its adjoint, we find that the probability density obeys a conservation equation
given by:

∂ρ(+)(x, t)
∂t

+ ∇ · j(+)(x, t) = 0 , (10.17)

where

ρ(+)(x, t) = φ(+) †(x, t)φ(+)(x, t) = ψ(+) †(x, t)P (+) ψ(+)(x, t) , (10.18)

j(+)(x, t) = φ(+) †(x, t)σ χ(+)(x, t) + χ(+) †(x, t)σ φ(+)(x, t)

=
~

2m0 i

[
φ(+) †(x, t) ( ∇φ(+)(x, t) )− ( ∇φ(+) †(x, t) )φ(+)(x, t)

]
+ ∇× s(+)(x, t) ,

where

P (+) =
(

1 0
0 0

)
, s(+)(x, t) =

~
2m0

[
φ(+) †(x, t)σ φ(+)(x, t)

]
, (10.19)

is the spin probability density. We will see later that we can interpret µ(x, t) = q s(x, t), where q is the
electronic charge, as the magnetic moment of the particle.

Exercise 18. Establish Eqs. (10.17) and (10.18) by using the Pauli equation and the algebra of the Pauli
matrices given in Appendix ??.

Definition 24. Now let us introduce some notation. We put Ẽ = i~ ∂/∂t and p̃ = ~ ∇/i, and let us define
the differential operator D(+)(x, t) by:

D(+)(x, t) =
(

Ẽ −σ · p̃
−σ · p̃ 2m0

)
. (10.20)

Then Eq. (10.14) becomes: D(+)(x, t)ψ(+)(x, t) = 0.
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Next we prove the following theorem, which establishes the properties of the Pauli equation and Pauli
spinors under general Galilean transformations.

Theorem 29. We show here that:

[ Λ(+)(R,v) ]† e−if(x,t)/~D(+)(x′, t′) eif(x,t)/~ Λ(+)(R,v) = D(+)(x, t) , (10.21)

where x′ = R(x) + vt+ a and t′ = t+ τ , and from Eq. (10.9),

f(x, t) = m0v ·R(x) + 1
2 m0v

2 t+ 1
2 m0 v · a . (10.22)

The Λ(±)(R,v) matrices are defined in Eq. (9.108).

Proof. From (9.3), we find:

∂

∂xi
=
∂x′j
∂xi

∂

∂x′j
= Rji

∂

∂x′j
, or ∇′ = R(∇) ,

∂

∂t
=
∂t′

∂t
=

∂

∂t′
+ vi

∂

∂x′j
, or

∂

∂t′
=

∂

∂t
− v ·R(∇) .

In terms of our notation for the differential operators Ẽ and p̃, we have:

Ẽ′ = Ẽ + v ·R(p̃) , p̃′ = R(p̃) , (10.23)

So we find:
e−if(x,t)/~ p̃′ eif(x,t)/~ = e−if(x,t)/~ R(p̃) eif(x,t)/~ = R(p̃) +m0v ,

and

e−if(x,t)/~ Ẽ′ eif(x,t)/~ = e−if(x,t)/~ ( Ẽ + v ·R(p̃) eif(x,t)/~

= Ẽ − 1
2m0v

2 + v ·R(p̃) +m0 v
2 = Ẽ + 1

2m0v
2 + v ·R(p̃) .

So we find:

e−if(x,t)/~D(+)(x′, t′) eif(x,t)/~ =
(
Ẽ + 1

2m0v
2 + v ·R(p̃) , −σ · [R(p̃) +m0v]

−σ · [R(p̃) +m0v)] , 2m0

)
.

From (9.108),
Λ(+)(R,v) = V (+)(v)U(R) ,

and from Eqs. (9.104) and (9.105), we find:

[ Λ(+)(R,v) ]† e−if(x,t)/~D(+)(x′, t′) eif(x,t)/~ Λ(+)(R,v)

= U†(R)
(

1 σ · v/2
0 1

)(
Ẽ + 1

2m0v
2 + v ·R(p̃) , −σ · [R(p̃) +m0v]

−σ · [R(p̃) +m0v)] , 2m0

)(
1 0

σ · v/2 1

)
U(R)

= U†(R)
(

1 σ · v/2
0 1

)(
Ẽ + v ·R(p̃)− 1

2 (σ ·R(p̃)) (σ · v)) , −σ ·R(p̃)
−σ ·R(p̃) , 2m0

)
U(R)

= U†(R)
(

Ẽ −σ ·R(p̃)
−σ ·R(p̃) 2m0

)
U(R) =

(
Ẽ −σ · p̃

−σ · p̃ 2m0

)
= D(+)(x, t) ,

which is what we were trying to prove.

This means that the particle Pauli spinors transform according to:

ψ(+) ′(x′, t′) = eif(x,t)/~ Λ(+)(R,v)ψ(+)(x, t) , (10.24)

and satisfy Pauli’s equation in the transformed frame.
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10.2.2 Spinor antiparticles

In non-relativistic theory, antiparticles are described as particles with negative values of the Galilean central
charge m = −m0 < 0. This negative value of m, however, is not to be interpreted as negative mass. Rather,
we will have to put off the question of interpretation until later. For now, we consider it as a parameter in
our theory. For s = 1/2, the Pauli equation for these negative m particles becomes:

(
−2m0 −~σ ·∇/i

−~σ ·∇/i i~ ∂/∂t

)(
χ(−)(x, t)
φ(−)(x, t)

)
= 0 , (10.25)

where φ(−)(x, t) and χ(−)(x, t) are again two-component spinors. The (−) superscript indicates that the
phase m is negative. The solution of Eq. (10.25) is given by:

χ(−)(x, t) = − 1
2m0

~
i
σ ·∇φ(−)(x, t) , i~

∂

∂t
φ(−)(x, t) =

~
i
σ ·∇χ(−)(x, t) , (10.26)

which leads to the second order Schrödinger wave equation with m < 0 for the spinor φ(−)(x, t):

~2

2m0
(σ ·∇ )2 φ(−)(x, t) =

~2

2m0
I∇2 φ(−)(x, t) = i~

∂

∂t
φ(−)(x, t) . (10.27)

Solutions of the antiparticle wave equation also satisfy a conservation equation, given by:

∂ρ(−)(x, t)
∂t

+ ∇ · j(−)(x, t) = 0 , (10.28)

with

ρ(−)(x, t) = φ(−) †(x, t)φ(−)(x, t) = ψ(−) †(x, t)P (−) ψ(−)(x, t) , (10.29)

j(−)(x, t) = φ(−) †(x, t)σ χ(−)(x, t) + χ(−) †(x, t)σ φ(−)(x, t)

= − ~
2m0 i

[
φ(−) †(x, t) ( ∇φ(−)(x, t) )− ( ∇φ(−) †(x, t) )φ(−)(x, t)

]
+ ∇× s(−)(x, t)

where

P (−) =
(

0 0
0 1

)
, s(−)(x, t) = − ~

2m0

[
φ(−) †(x, t)σ φ(−)(x, t)

]
, (10.30)

is the spin probability density. These equations are consistent with identifying a negative charge to the
electric current conservation equation.

Exercise 19. Establish Eqs. (10.28) and (10.29) from the Pauli equation for antiparticles.

Definition 25. Let us now define a matrix differential operator for the antiparticle equation. We write:

D(−)(x, t) =
(−2m0 −σ · p̃
−σ · p̃ Ẽ

)
, ψ(−)(x, t) =

(
χ(−)(x, t)
φ(−)(x, t)

)
, (10.31)

where again Ẽ = i~ ∂/∂t and p̃ = ~ ∇/i. Then Eq. (10.25) becomes:

D(−)(x, t)ψ(−)(x, t) = 0 . (10.32)

For spinors, we define a charge conjugation matrix operator CK where K is the charge conjugate operator
on functions and C is the matrix defined by:

C = C† = CT = C∗ = C−1 =
(

0 iσ2

−iσ2 0

)
. (10.33)
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This operator has the property of transforming the complex conjugate of the antiparticle Pauli equation into
the particle Pauli equation:

C KD(−)(x, t)K−1 C−1 = −D(+)(x, t) . (10.34)

Therefore:
C KD(−)(x, t)K−1 C−1 C Kψ(−)(x, t) = −D(+)(x, t)C Kψ(−)(x, t) = 0 , (10.35)

so that
ψ(+)(x, t) = C Kψ(−)(x, t) = C ψ(−) ∗(x, t) . (10.36)

In component form, this means that complex conjugate solutions to the antiparticle Pauli equation, with
negative values of m, can be interpreted as solutions of the particle Pauli equation with positive m and the
upper and lower components reversed, that is:

φ(+)(x, t) = iσ2 φ
(−) ∗(x, t) ,

χ(+)(x, t) = −iσ2 χ
(−) ∗(x, t) .

(10.37)

Exercise 20. Using the solutions for χ(+)(x, t) and χ(−)(x, t) given in Eqs. (10.15) and (10.26), show that
the last equation in (10.37) is consistent with the first equation.

Galilean transformation of solutions of the Pauli equation for negative m can be obtained by results for
positive m. We first note that:

C KΛ(±)(R,v)K−1 C−1 = Λ(∓)(R,v) . (10.38)

Then from Theorem 29, it is easy to show that:

[ Λ(−)(R,v) ]† eif(x,t)/~D(−)(x′, t′) e−if(x,t)/~ Λ(−)(R,v) = D(−)(x, t) , (10.39)

where f(x, t) is given as before in Eq. (10.9).

Exercise 21. Prove Eq. (10.39).

So the antiparticle Pauli spinors transform according to:

ψ(−) ′(x′, t′) = e−if(x,t)/~ Λ(−)(R,v)ψ(−)(x, t) , (10.40)

and satisfy the antiparticle Pauli’s equation in the transformed frame.
Since solutions to the particle and antiparticle equations transform differently, the best we can do is

to define an eight component spinor with each component the four component particle and antiparticle
solutions, as we did for scalars:

Ψ(x, t) =
(
ψ(+)(x, t)
ψ(−)(x, t)

)
, (10.41)

which transform under Galilean transformations as:

Ψ′(x′, t′) = T (x, t) Ψ(x, t) , (10.42)

where

T (x, t) =
(
e+if(x,t)/~ Λ(+)(R,v) 0

0 e−if(x,t)/~ Λ(−)(R,v)

)
. (10.43)
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10.3 Vectors

We construct wave equations for particles of spin one by the method suggested by Dirac and developed by
Bargmann and Wigner for relativisitc particles of any spin. We discuss that method for the Poincaré group
in Appendix ??. Here, we need to assure that the equation will be invaraint under Galiliean transformations
rather than Lorentz transformation. Following Dirac’s method, we propose a matrix-spinor non-relativistic
wave function Ψα1,α2(x) for positive mass particles which satisfies the equation:

Dα1,α′1
(x, t) Ψα′1,α2(x) = 0 ,

Dα2,α′2
(x, t) Ψα1,α′2

(x) = 0 .
(10.44)

where Dα,α′(x, t) is given in Eq. (10.20). Here we have dropped the (+) designation for positive mass
solutions.

We will work this out the same way we did for the Proca equation in Appendix ??.

10.4 Massless wave equations

10.4.1 Massless scalers

This must be an equation of the form:
∇2φ(x) = 0 , (10.45)

which has the solution:
φ(x) =

1
r
. (10.46)

A candidate for the realization of this must be a scalar graviton. This must be Newton’s theory of gravity,
with an instantaneous interaction?

10.4.2 Massless vectors

Well, surely this is electrodynamics with an infinite velocity of light. It is possible to work this out from the
massive vector field of Section 10.3.

Quite a bit to do here yet!

References
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Chapter 11

Supersymmetry

We have seen examples of specific non-observable qualities of Nature. The essential two-valuedness of the
non-relativistic electron, described by spin, is one such example. In fact, any two-level quantum system
can be described by essentially non-observable variables. We have learned to describe these systems by
Grassmann variables. In some systems, a symmetry can exist between the Grassmannian variables and the
ordinary variables. We discuss in this chapter Grassmann variables and supersymmetry transformations.

11.1 Grassmann variables

Grassmann variables are classical variables which obey an anti-commuting algebra. In this respect they
share things in common with Fermi anti-commuting operators, but are considered to be the classical variable
which is mapped to a quantum operator in much the same way that the classical coordinate q is mapped to
a quantum operator Q. Grassmann variables have unusual properties, some of which are discussed here.

Definition 26 (Grassmann variables). A set of N quantities θi, i = 1, 2, . . . , N are Grassmann variables if
they obey the anti-commutation relations:

{ θi, θj } = 0 . (11.1)

Grassmann variables commute with all other classical variables.

This definition implies that θ2
i = 0 for all i. Functions of Grassmann variables are defined by their power

series expansions. For example, any function f(θ) of a single Grassmann variable which has a Taylor series
expansion about the origin can be written as:

f(θ) = f(0) + f ′(0) θ , (11.2)

since θ2 = 0. Functions of two or more Grassmann variables get more complicated. For example for two
Grassmann variables, f(θ1, θ2) is of the form:

f(θ1, θ2) = f(0, 0) + f1(0, 0) θ1 + f2(0, 0) θ2 + f1,2(0, 0) θ1θ2 . (11.3)

We also define derivatives of Grassmann variables in the following definition.

Definition 27 (differentiation). Derivatives of Grassmann variables are taken to be left-acting and anti-
commute.

{ ∂i, θj } = δij , { ∂i, ∂j } = 0 , ∂i ≡
∂

∂θi
. (11.4)

This means, for example, that:
∂i( θjθk ) = δij θk − δik θj . (11.5)

Integration of Grassmann variables has some unusual properties, which are given in the next two definitions.
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Definition 28 (integration). The differential obeys the following rules:

{ dθi, θj } = 0 , {dθi,dθj } = 0 , {dθi, ∂j } = δij . (11.6)

Integrals are defined by: ∫
dθ = 0 ,

∫
dθ θ = 1 . (11.7)

The integration rules mean that a Grassmann Dirac δ-function can be defined by:

δ(θ) = θ . (11.8)

Up until now, we have been considering real Grassmann variables. If θ1 and θ2 are two real Grassmann
variables, complex Grassmann variables can be defined as follows:1

θ = ( θ1 + iθ2 )/
√

2 , θ1 = ( θ + θ∗ )/
√

2 , (11.9)

θ∗ = ( θ1 − iθ2 )/
√

2 , θ1 = ( θ − θ∗ )/i
√

2 . (11.10)

For the derivatives, we have:

∂θ = ( ∂1 − i∂2 )/
√

2 , ∂1 = ( ∂θ + ∂∗θ )/
√

2 , (11.11)

∂∗θ = ( ∂1 + i∂2 )/
√

2 , ∂2 = i( ∂θ + ∂∗θ )/
√

2 . (11.12)

The complex variables satisfy the algebra:

{ θ, θ } = { θ∗, θ∗ } = { θ, θ∗ } = 0 . (11.13)

Integrals over complex Grassmann variables are given by:
∫

dθ =
∫

dθ∗ = 1 ,
∫

dθ θ =
∫

dθ∗ θ∗ = 0 , (11.14)

and
d2θ = dθ dθ∗ = i dθ1 dθ2 . (11.15)

The complex conjugate of two Grassmann variables is defined by:

[ θ1θ2 ]∗ = θ∗2 θ
∗
1 , (11.16)

which is similar to the Hermitian adjoint operation for matrices.

11.2 Superspace and the 1D-N supersymmetry group

In this section, we discuss supersymmetry in one dimension with N real Grassmann variables. Super-space
consists of

s = ( t, θr ) , (11.17)

with r = 1, . . . , N . Here t is a real variable and θr are real Grassmann variables which anticommute:
{ θr, θr′ } = δrr′ . A supersymmetry transformation is given by:

t′ = t+ τ + i χrθr ,

θ′r = θr + χr .
(11.18)

1We use a factor of 1/
√

2 for convience here.
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This represents a displacement (χr) in Grassmannian space combined with a shift in clocks (τ) and an
additional shift in clocks porportional to the product of the Grassmann shift and the position in Grassman
space.

We demand that no experiment can be performed on the system which can detect the difference between
these two coordinate systems. That is, this is a symmetry of Nature.

We start by proving that the elements g = ( τ, χr ) form a group. In order to do this, we need to find the
group multiplication rule: g′′ = g′g, and find the identity and inverse element. We first establish the group
composition rule:

Theorem 30 (Composition rule). The composition rule for 1D-N supersymmetry is:

τ ′′ = τ ′ + τ + i χ′rχr ,

χ′′r = χ′r + χr .
(11.19)

Proof. We first note that
θ′′r = θ′r + χ′r = θr + χr + χ′r ≡ θr + χ′′r ,

where χ′′r = χ′r + χr, which establishes the χr composition rule. Next, we find:

t′′ = t′ + τ ′ + i χ′rθ
′
r

= t+ τ + i χrθr + τ ′ + i χ′r( θr + χr )
= t+ τ ′ + τ + i χ′rχr + i χ′′rθr
≡ t+ τ ′′ + i χ′′rθr ,

where τ ′′ = τ ′ + τ + i χ′rχr. This completes the proof.

We further note that the unit element 1 = (0, 0) does nothing to the transformation, and that g−1 =
(−τ,−χr), because of the Grassmann nature of the χr variables. So the elements g = (τ, χr) of the 1D-N
supersymmetry transformation form a group.

11.3 1D-N supersymmetry transformations in quantum mechan-
ics

Recall that the state of a quantum system is described by a ray in Hilbert space. Two vectors |Ψ 〉 and |Ψ′ 〉
in Hilbert space belong to the same ray if they differ by a phase, |Ψ′ 〉 = eiφ|Ψ 〉. Symmetry transformations
are represented in quantum mechanics by unitary or anti-unitary operators acting on rays. So in this section,
we want to find unitary transformations that represent supersymmetry transformations in ordinary space.
In technical terms, we want to find representations for the unitary covering group for the supersymmetry
group.

Let U(g) be the unitary transformation which takes a vector |Ψ 〉 in the ray R to a vector |Ψ(g) 〉 in the
ray R(g) as:

|Ψ(g) 〉 = U(g) |Ψ 〉 , (11.20)

Any vector in the same ray R(g) describes the same physical system in the transformed system g. There
is one special state, called the “vacuum” state or ground state of the system, which is invariant under
supersymmetry transformations. This means that:

U(g) | 0 〉 = | 0 〉 . (11.21)

We will use this fact later.
The product of two supersymmetry transformations, R → R(g) → R(g′g) gives a vector in the ray

R(g′g),
|Ψ(g′g) 〉 = U(g′) |Ψ(g) 〉 = U(g′)U(g) |Ψ 〉 .
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However the direct transformation from the ray R → R(g′g) gives:

|Ψ′(g′g) 〉 = U(g′g) |Ψ 〉 .

But |Ψ(g′g) 〉 and |Ψ′(g′g) 〉 have to be in the same ray since they describe the same physical system, so
|Ψ(g′g) 〉 = eiφ(g′,g)|Ψ′(g′g) 〉. Therefore the group multiplication rule for unitary operators representing
supersymmetry transformations in Hilbert space is given by:

U(g′)U(g) = eiφ(g′,g) U(g′g) . (11.22)

Representations of operators which obey (11.22) are called projective representations. The supersymmetry
group is a continuous projective group of infinite dimension.

The unit element is U(1) = 1. So using the group composition rule (11.22), unitarity requires that:

U†(g)U(g) = U−1(g)U(g) = U(g−1)U(g) = eiφ(g−1,g) U(1, 0) = 1 . (11.23)

provided that φ(g−1, g) = 0. The associative law for group transformations,

U(g′′) (U(g′)U(g)) = (U(g′′)U(g′))U(g) ,

requires that the phases satisfy:

φ(g′′, g′g) + φ(g′, g) = φ(g′′, g′) + φ(g′′g′, g) , (11.24)

with φ(1, 1) = φ(1, g) = φ(g, 1) = φ(g−1, g) = 0. Note that the phase rule (11.24) can be satisfied by any
φ(g′, g) of the form

φ(g′, g) = α(g′g)− α(g′)− α(g) . (11.25)

Then the phase can be eliminated by a trivial change of phase of the unitary transformation, Ū(g) =
eiα(g)U(g). Thus two phases φ(g′, g) and φ′(g′, g) which differ from each other by functions of the form
(11.25) are equivalent. Finding nontrival phases means that there are central charges in the algebra of the
group.

For the 1D-N supersymmetry group, the phase is given by the following theorem:

Theorem 31 (1D-N supersymmetry phase). The phase is given by:

φ(g′, g) = i χ′rMrr′ χr′ , (11.26)

where Mrr′ is a real traceless N ×N symmetric matrix.

Proof. Following a method due to Bargmann[1], we first note that the transformation rule is linear in χr.
So it is obvious that φ(g′g) must be bilinear in χr and χ′r′ . So we make the ansatz:

φ(g′, g) = i χ′rMrr′ χr′ , (11.27)

where Mrr′ is a general N ×N matrix. So we find:

φ(g′′, g′g) = i χ′′r Mrr′ (χ′r′ + χr′ ) ,
φ(g′, g) = i χ′rMrr′ χr′ ,

φ(g′′, g′) = i χ′′r Mrr′ χ
′
r′ ,

φ(g′′g′, g) = i (χ′′r + χ′r )Mrr′ χr′ ,

from which we see that the phase rule, Eq. (11.24), is satisfied. We also note that due to the properties of
Grassmann varibles,

φ∗(g′, g) = i χ′rM
∗
rr′ χr′ , (11.28)
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so in order for the phase φ(g′, g) to be real, M∗rr′ = Mrr′ must be real. Next, we write Mrr′ as a sum of
symmetric and antisymmetric matrices:

Mrr′ =
1
2

[Mrr′ +Mr′r ]− 1
N
δr,r′ Tr[M ] +

1
2

[Mrr′ −Mr′r ] +
1
N
δr,r′ Tr[M ]

= MST
rr′ +MA

rr′ +
1
N
δr,r′ Tr[M ] .

where MST
rr′ is the traceless symmetric part of M and MA

rr′ is the antisymmetric part of M . Now the
antisymmetric part is a trival phase, because if we set

α1(g) =
i

2
χrMrr′ χr′ , (11.29)

Then using the composition rule,

α1(g′′) =
i

2
χ′′r Mrr′ χ

′′
r′

=
i

2
(χ′r + χr)Mrr′ (χ′r′ + χr′)

= α1(g′) + α1(g) +
i

2
χ′rMrr′ χr′ +

i

2
χrMrr′ χ

′
r′

= α1(g′) + α1(g) +
i

2
χ′r [Mrr′ −Mr′r ]χr′

(11.30)

So
i χ′rM

A
rr′ χr′ = α1(g′′)− α1(g′)− α1(g) , (11.31)

and is thus a trivial phase and can be removed. For the trace part, we set:

α2(g) =
Tr[M ]
N

τ . (11.32)

Then from the composition rule for τ in Eq. (11.19), we find:

i
Tr[M ]
N

χ′rχr = α2(g′′)− α2(g′)− α2(g) . (11.33)

So the trace part is also a trival phase and can be removed. This leaves only the symmetric traceless part,

φ(g′, g) = i χ′rM
ST
rr′ χr′ ,

which is what we were trying to prove. From now on, we drop the “ST” labeling on Mrr′ , and just keep in
mind that Mrr′ is an N × N traceless symmetric matrix with N(N + 1)/2 − 1 independent real numbers
which commute with all generators of the group.

Remark 23. We note that:
φ(1, g) = φ(g, 1) = 0 , (11.34)

and, using the fact that Mrr′ is traceless and symmetric, we find:

φ(g−1, g) = −i χrMrr′ χr′ = +i χr′Mrr′ χr = +i χr′Mr′r χr = −φ(g−1, g) , (11.35)

so that φ(g−1, g) = φ(g, g−1) = 0. We will use these relations below.
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11.4 Supersymmetric generators

For infinitesimal transformations, the generators H and Qr of supersymmetry transformations are defined
by:

U(1 + ∆g) = 1 + i∆τ H + ∆χr Qr + · · · (11.36)

Here the generator of time displacements H is called the hamiltonian and the generators of Grassmann
coordinate displacements Qr are called supercharges. The supercharges Qr anticommute with the Grass-
mann displacements χr′ ,

{Qr, χr′ } = 0 , (11.37)

but not necessarily with themselves. Since, from Eq. (11.21), the vacuum state is invariant under supersym-
metry transformations, we must have:

H | 0 〉 = 0 , Qr | 0 〉 = 0 , for all r = 1, . . . , N . (11.38)

Next, we work out the transformation properties of the group generators. We do this in the following
theorem:

Theorem 32 (Group transformations). The group generators transform according to the rules:

U−1(g)H U(g) = H ,

U−1(g)Qr U(g) = Qr − 2 (H δrr′ +Mrr′ )χr′ .
(11.39)

Proof. We start by considering the transformation:

U(g−1)U(1 + ∆g′)U(g) = eiβ(g,∆g′) U(1 + ∆g′′) , (11.40)

where ∆g′′ = g−1 ∆g′ g, and where the phase β(g,∆g′) is given by:

β(g,∆g′) = φ( g−1, (1 + ∆g′) g ) + φ( 1 + ∆g′, g ) (11.41)

We can simplify this expression using the phase rule Eq. (11.24), with the substitutions:

g′′ 7→ g

g′ 7→ g−1

g 7→ ( 1 + ∆g′ ) g ,

(11.42)

so that:
φ( g, g−1(1 + ∆g′)g ) + φ( g−1, (1 + ∆g′)g ) = φ( g, g−1 ) + φ( gg−1, (1 + ∆g′)g ) , (11.43)

But using the results in remark 23, we find:

φ( g, g−1 ) = φ( 1, (1 + ∆g′)g ) = 0 . (11.44)

Then (11.43) becomes:

φ( g−1, (1 + ∆g′)g ) = −φ( g, g−1(1 + ∆g′)g ) = −φ( g, 1 + ∆g′′ ) . (11.45)

So the phase β(g,∆g′) in Eq. (11.41) can be written as:

β(g,∆g′) = φ( 1 + ∆g′, g )− φ( g, 1 + ∆g′′ ) . (11.46)

Now we need to work out the transformation ∆g′′ = g−1 ∆g′ g := ( ∆τ ′′,∆χ′′r ). 1For our case,

g = (τ, χr)
δg = (∆τ,∆χr)

g−1 = (−τ,−χr) ,
(11.47)
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So after some work, we find:

∆τ ′′ = ∆τ ′ + 2i∆χ′rχr ,
∆χ′′r = ∆χ′r .

(11.48)

So for the phase, we find:

φ( 1 + ∆g′, g ) = i∆χ′rMrr′ χr′ ,

φ( g, 1 + ∆g′′ ) = i χrMrr′ ∆χ′′r
= i χrMrr′ ∆χ′r = −i∆χ′rMrr′ χr′ ,

(11.49)

since Mrr′ is symmetric. So the phase β(g,∆g′) becomes:

β(g,∆g′) = 2i∆χ′rMrr′ χr′ . (11.50)

Now using (11.36), we find:

U(1 + ∆g′) = 1 + i∆τ ′H + ∆χ′r Qr + · · ·
U(1 + ∆g′′) = 1 + i∆τ ′′H + ∆χ′′r Qr + · · · (11.51)

Putting all this into Eq. (11.40), and expanding the phase out to first order gives:

1 + i∆τ ′ U−1(g)H U(g) + ∆χ′r U
−1(g)Qr U(g) + · · ·

= 1 + i∆τ ′′H + ∆χ′′r Qr − 2 ∆χ′rMrr′ χr′ + · · ·
= 1 + i∆τ ′H + ∆χ′r

[
Qr − 2 (H δrr′ +Mrr′ )χr′

]
+ · · · (11.52)

comparing coefficients of ∆τ ′ and ∆χ′r gives:

U−1(g)H U(g) = H ,

U−1(g)Qr U(g) = Qr − 2 (H δrr′ +Mrr′ )χr′ ,
(11.53)

which is the result we were trying to prove.

We can now find the algebra obeyed by the generators from the results of Theorem 32. This algebra is
stated in the following theorem:

Theorem 33 (Group algebra). The group generators transform according to the rules:

[H,Qr ] = 0 ,
{Qr, Qr′ } = 2 (H δrr′ +Mrr′ ) .

(11.54)

The N(N + 1)/2 − 1 values of the traceless symmetric matrix Mrr′ are called the central charges of the
algebra.

Proof. We set g = 1 + ∆g in Eq. (11.39), and compare both sides of the equations. For the first equation,
we find: (

1− i∆τ H −∆χr′ Qr′ + · · ·
)
H
(

1 + i∆τ H + ∆χr′ Qr′ + · · ·
)

= H ,

So this means that [H,Qr ] = 0. In the second equation, we find:

(
1− i∆τ H −∆χr′ Qr′ + · · ·

)
Qr
(

1 + i∆τ H + ∆χr′ Qr′ + · · ·
)

= Qr − 2 (H δrr′ +Mrr′ ) ∆χr′ ,
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So in addition to the first result, we find here that:

−
[
Qr′ Qr +Qr Qr′

]
∆χr′ = −2 (H δrr′ +Mrr′ ) ∆χr′ .

which gives the anticommutator:
{Qr, Qr′ } = 2 (H δrr′ +Mrr′ ) ,

which completes the proof.

Remark 24. Note that from the second of Eq. (11.54), we find {Qr, Qr′ } = 2Mrr′ for r 6= r′, and Q2
r =

H +Mrr for r = r′.

Example 30 (N=1). For N = 1, there are no central charges and only one supercharge Q, obeying the
algebra:

{Q,Q } = 2H , (11.55)

which means that H can be factored by the (real) supercharge operator: H = Q2. We will see some specific
illustrations of N = 1 supersymmetry models later on.

Example 31 (N=2). For N = 2, we set the central charge matrix to:

M =
(
a b
b −a

)
, (11.56)

where a and b are real. Now it is useful to define complex supercharges by:

Q̃1 = Q̃ =
1√
2

(Q1 + iQ2 ) ,

Q̃2 = Q̃∗=
1√
2

(Q1 − iQ2 ) , (11.57)

so that we can write:
Q̃s = Usr Qr , Q̃∗s′ = U∗s′r′ Qr′ = Qr′ [U†]r′s′ . (11.58)

where the unitary matrix U is defined by:

U =
1√
2

(
1 i
1 −i

)
, U† =

1√
2

(
1 1
−i i

)
. (11.59)

So we find:

{ Q̃s, Q̃∗s′ } = Usr {Qr, Qr′ }Ur′s′ = 2Usr (H δrr′ +Mrr′ ) [U†]r′s′ ,

= 2
(
H z
z∗ H

)
,

(11.60)

where z = a+ ib. In this form, we have the striking result:

H =
1
2

( Q̃∗ Q̃+ Q̃ Q̃∗ ) , Q̃2 = z , Q̃∗ 2 = z∗ . (11.61)

Of course, we also have:
[H, Q̃ ] = [H, Q̃∗ ] = 0 , (11.62)

and the central charges z and z∗ commute with everything. In this form, we see that z is the (complex)
normalization of the supercharge operator Q̃, and the hamiltonian has been factored by the supercharge and
its complex conjugate so that it’s eigenvalues must be non-negative. That is, if we write:

H |E 〉 = E |E 〉 , (11.63)
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s = (t, θ)
g=(τ,χ)−−−−−→ s′ = (t′, θ′)

R

y RT

x

s̃ = (t, θ̃)
g̃=(τ,χ̃′)−−−−−→ s̃′ = (t′, θ̃′)

Figure 11.1: R-symmetry.

we see that:
E = 〈E |H |E 〉 =

1
2
[
||Q |E 〉 ||2 + ||Q∗ |E 〉 ||2

]
≥ 0 . (11.64)

For the vacuum state, we find
H | 0 〉 = Q | 0 〉 = Q∗ | 0 〉 = 0 . (11.65)

So for this state, E = 0. Moreover we note that since [Q,H ] = [Q∗, H ] = 0, the states |E 〉, Q |E 〉, and
Q∗ |E 〉 all have the same energy E, and we say that they belong to the same multiplet.

11.5 R-symmetry

For N > 1, we see from the supersymmetry transformation given in Eq. (11.18) that the combination:
i χrθr can be considered to be an inner product of two real N -dimensional vectors composed of Grassmann
variables. This inner product is invariant under simultaneous orthogonal transformations (rotations) of the
coordinate system and the transformation parameters. This invariance is called R-symmetry. We explain
this symmetry here. Let θ̃r, r = 1, . . . , N be a Grassmann coordinate system obtained from the original one
by an orthogonal transformation:

θ̃r = Rrr′ θr′ , (11.66)

where R is real orthogonal matrix, RRT = 1. Then a supersymmetry transfomation from a coordinate set
s = (t, θr) to the coordinate set s′ = (t′, θ′r), as described by the group parameters g = (τ, χr), is the same
as the transformation from a set s̃ = (t, θ̃r) to the set s̃′ = (t′, θ̃′r) as described by the group parameters
g̃ = (τ, χ̃r), where:

χ̃r = Rrr′ χr′ . (11.67)

R-symmetry is illustrated in Fig. 11.1. Now since the central charge matrix Mrr′ is real and symmetric, it
can be diagonalized by an orthogonal matrix. So given a set of central charges Mrr′ we can always bring it
to diagonal form by an R transformation. That is, let R be such that

χrMrr′ χr′ = χ̃sRrsMrr′ Rr′,s′ χ̃s′ = Ms χ̃s χ̃s , (11.68)

where Ms are the eigenvalues of the central charge matrix,

RrsMrr′ Rr′,s′ = Ms δs,s′ . (11.69)

Since the trace is invariant under orthogonal transformations, the sum of the eigenvalues is zero:
∑
sMs = 0.

Defining
Q̃s = Rsr Qr . (11.70)

In fact, for N = 2, we find that Ms = ±
√
a2 + b2 = ±|z|. In the basis set defined by Q̃r and χ̃r gives the

group transformations:

U−1(g)H U(g) = H ,

U−1(g) Q̃s U(g) = Q̃s − 2 (H +Ms ) χ̃s .
(11.71)
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and the algebra:

[H, Q̃s ] = 0 ,

{ Q̃s, Q̃s′ } = 2 (H +Ms ) δss′ .
(11.72)

In this system, the phase is diagonal:

φ(g′, g) = i χrMrr′ χr′ = iMs χ̃s χ̃s . (11.73)

So, in addition to the N(N − 1)/2 components of an R-transformation which leave supersymmetry transfor-
mations invariant, the central charge matrix can always be brought to diagonal form with N −1 eigenvalues.

11.6 Extension of the supersymmetry group

In this section, we assume that we are working in a system of Grassmann coordinates in which the central
charge matrix Mrr′ is diagonal. Then the phase factor (11.73) is linear in Ms, we can extend the group
by promoting these quantities to be additional generators of the group and operators in Hilbert space. We
introduce new (real) group parameters µs, with s = 1, . . . , N , which transform according to the rule:

µ′′s = µ′s + µs + i χ̃s χ̃s , (no sum over s.) (11.74)

Then we note that:
Ms µ

′′
s −Ms µ

′
s −Ms µs = iMsχ̃

′
s χ̃s = φ(g′, g) . (11.75)

(Here there is an implied sum over s.) So that the phase relation can be acheved by redefinition of the
unitary transformation to be:

Uext(g̃) = U(g) eiMs µs (11.76)

where the extended group, SUSYext now consists of the 1+2N elements: g̃ = ( τ, χ̃s, µs ), with the composition
rule:

τ ′′ = τ ′ + τ + i χ̃′s χ̃s ,

µ′′s = µ′s + µs + i χ̃′s χ̃s , (no sum over s) ,
χ̃′′s = χ̃′s + χ̃s .

(11.77)

which gives the group transformation rule given in Eq. (11.74). We now can extend superspace to include
an additional real parameter xr, which transform according to the rule:

t′ = t+ τ + iχ̃s θ̃s ,

x′s = xs + µs + i χ̃s θ̃s , (no sum over s) ,

θ̃′s = θ̃s + χ̃s .

(11.78)

Superspace is now described by 1 + 2N coordinates: s̃ = ( t, θ̃s, xs ). This redefinition of the coordinates
reproduces the supersymmetry transformation with the central charges included as group operators. The
1 + 2N generators of the group are now defined by the infinitesimal unitary transformation:

Uext(1 + ∆g̃) = 1 + i∆τ H + ∆χ̃s Q̃s + ∆µsMs + · · · , (11.79)

which now incorporates the projective phase factor in the extended unitary transformation. The group
transformation rule now reads:

Uext(g̃
′)Uext(g̃) = Uext(g̃

′g̃) , (11.80)

with no phase factor. The extended group algebra is the same as that given in Theorem 32 with U(g)
replaced by Uext(g̃).

In order to define transformations of Hilbert space operators, other than the generators of the supersym-
metry transformation, it is necessary to extend the group; otherwise we have no idea how to incorporate the
important phase factor (central charges) for transformations of superfunctions of the superspace variables.
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11.7 Differential forms

In this section, we find the transformations of differential forms under the extended SUSYext transformations,
the differential forms ( dt,dθ̃s,dxs ) transform according to:

dt′ = dt+ τ + i χ̃s dθ̃s ,

dx′s = dxs + µs + i χ̃s dθ̃s , (no sum over s) ,

dθ̃′s = dθ̃s + χ̃s .

(11.81)

Derivatives transform in the opposite way. The inverse of Eq. (11.78) is given by:

t = t′ − τ − iχ̃s θ̃s ,
xs = x′s − µs − i χ̃s θ̃s , (no sum over s) ,

θ̃s = θ̃′s − χ̃s .
(11.82)

So we find:
∂

∂t′
=

∂

∂t
,

∂

∂x′s
=

∂

∂xs
,

∂

∂θ̃′s
=

∂

∂θ̃′s
+ i χ̃s

[
∂

∂t
+

∂

∂xs

]
. (11.83)

In the last equation, there is no sum over s. In a short-hand notation, we write these equations as:

∂′t = ∂t , ∂′xs
= ∂xs , ∂′

θ̃s
= ∂θ̃s

+ i χ̃s [ ∂t + ∂xs ] . (11.84)

An invariant superderivative is now defined by:

Ds = ∂θ̃s
− i θ̃s [ ∂t + ∂xs

] , (11.85)

where, again, there is no sum over s in the last term. Ds is constructed to be invariant:

D′s = ∂′
θ̃s
− i θ̃′s [ ∂′t + ∂′xs

]

= ∂θ̃s
− i χ̃s [ ∂t + ∂xs

] + i [ θ̃s + χ̃s ] [ ∂t + ∂xs
]

= ∂θ̃s
− i θ̃s [ ∂t + ∂xs

] = Ds ,

(11.86)

as desired.
We also find:

{Ds, Ds′ } = −2i δss′ [ ∂t + ∂xs ] . (11.87)
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Chapter 12

Finite quantum systems

In this chapter, we discuss quantum systems that can be described by finite matrices. As an example of such
systems, we study electrons that are confined to be located on a finite number of fixed atomic sites, such
as molecules. We study diatomic molecules, periodic and liner chains. Electrons on a lattice are discussed
further in Chapter 17.

12.1 Diatomic molecules

In this section, we discuss some toy molecular systems consisting of a finite number of “atoms,” with electrons
free to move between the atomic cites.

The general approach for studying molecules is one that was developed by Born and Oppenheimer, and
goes by that name. Since the atoms are much heavier than the electrons, the electron motion is first solved
assuming that the atoms are at rest. The attractive potential created by the electrons and the repulsive
potential between the atomic centers, then provide an overall potential which can bind the atoms. The
atoms then execute small vibrations about the equilibrium seperation distance.

We start by considering diatomic molecules, consisting of two identical atomic sites, labeled | 1 〉 and | 2 〉,
and an electron which can jump from one site to the other. The state of the electron at any time t is then
written as:

| q(t) 〉 = q1(t) | 1 〉+ q2(t) | 2 〉 , (12.1)

where q1(t) and q2(t) are the amplitudes of finding the electron at sites 1 and 2 respectively at time t. The
wave function of the electron is given approximately by:1

ψ(x, t) = q1(t)ψ1(x) + q2(t)ψ2(x) , ψ1(x) = ψ0(x− a/2) , ψ2(x) = ψ0(x+ a/2) , (12.2)

where ψ1,2(x) are the ground state wave functions for the electron for the isolated atoms, which we take to be
the same, with energy ε0. The potential energy as seen by an electron is illustrated in Fig. 12.1. Considered
as a two-state system, the Hamiltonian for the electron is given in matrix form by:

H =
(
ε0 −Γ0

−Γ0 ε0

)
, (12.3)

where Γ0/~ is the transition rate for the electron to move between sites. Referring to Fig. 12.1, Γ0 is given
by the overlap integral:

Γ0 = −
∫ +∞

−∞
ψ∗1(x)

[
V1(x) + V2(x)

]
ψ2(x) dx > 0 , (12.4)

V1(x) = V0(x− a/2) , V2(x) = V0(x+ a/2) ,
1We discuss the diatomic molecule in much greater detail and more accuracy in Appendix ZZ.

137



12.1. DIATOMIC MOLECULES CHAPTER 12. FINITE QUANTUM SYSTEMS

-8

-6

-4

-2

 0

 2

 4

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
x

V(x)
!1(x)
!2(x)
!+(x)
!-(x)

E

Figure 12.1: We plot the potential energy for an electron in two atomic sites. We also sketch wave functions
ψ1,2(x) for an electron in the isolated atomic sites and the symmetric and antisymmetric combinations ψ±(x).

since the potential energy in the overlap region is negative. The wave functions are real, so Γ0 is also real.
The eigenvalue problem for the energy,

H |En 〉 = En |En 〉 , (12.5)

has the solutions:

|E+ 〉 =
1√
2

( | 1 〉+ | 2 〉 ) , E+ = ε0 − Γ0 ,

|E− 〉 =
1√
2

( | 1 〉 − | 2 〉 ) , E− = ε0 + Γ0 .

The state of an electron at any time t is given by:

| q(t) 〉 = q+ e
−iE+t/~ |E+ 〉+ q− e

−iE−t/~ |E− 〉
= q1(t) | 1 〉+ q2(t) | 2 〉 ,

(12.6)

where

q1(t) =
e−iε0t/~
√

2

(
q+ e

+iΓ0t/~ + q− e
−iΓ0t/~ ) = e−iε0t/~ ( q1 cos(Γ0t/~) + q2 sin(Γ0t/~)

)
,

q2(t) =
e−iε0t/~
√

2

(
q+ e

+iΓ0t/~ − q− e−iΓ0t/~ ) = e−iε0t/~ ( q1 sin(Γ0t/~) + q2 cos(Γ0t/~)
)
,

(12.7)

and where q± = ( q1 ∓ i q2 )/
√

2 are fixed by the initial conditions.
So the ground state of the electron |E+ 〉 is the even parity or symmetric combination. In this state the

electron is found with higher probability between the two atomic centers. The excited state |E− 〉 is an odd
parity or antisymmetric state, with the electron found with higher probability outside of the two atomic
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centers. We sketch the wave functions ψ±(x) for the eigenstates in Fig. 12.1. The transition rate Γ0/~
increases with decreasing separation of the atoms, whereas the repulsive force between the atomic centers
increases with decreasing separation. The balancing of these two forces provides a potential which can bind
the molecule. Since two electrons can be put in one orbital state with paired spins, molecules with paired
electrons should have stronger binding. In Appendix ZZ, we give a variational calculation of the potential
energy between the atoms in the Hydrogen molecule. A plot of the potential function is given in Fig. XX.
The binding energy and bond length are given by E = 0.0 and a = 0.744 Å for H2.

Exercise 22. Suppose the electron in a diatomic molecule can be in the first excited state ε1 with odd parity
wave functions ψ1(x± a/2) of the atoms at sites | 1 〉 or | 2 〉.

1. Sketch the wave functions for these two sites and find an integral for the transition rate Γ1/~ for the
electron to jump between the two sites so that it remains in the excited states. Is Γ1 positive or
negative?

2. Write down the Hamiltonian for this problem, assuming no mixing transitions between the ground
and excited states. Find the eigenvalues and eigenvectors of the Hamiltonian operator, and list the
eigenvalues in increasing order.

3. Suppose the electron can jump between the two levels with a rate Γ01/~ and Γ10/~. What are the
signs and relative magnetudes of Γ01/~ and Γ10/~? Write down the Hamiltonian for this case, but do
not solve.

Exercise 23. Consider the “molecule” consisting of four sites, as shown in Fig. 12.2 below. The energy of
the electron at each site is given by ε0 and the transition rates between sites connected by a solid line are
all equal to Γ0/~. Using a basis set | 1 〉, | 2 〉, | 3 〉, | 4 〉 for each site, the Hamiltonian is given by the matrix:

1

2

3

4

Figure 12.2: A molecule containing four atoms.

H =




ε0 −Γ0 0 0
−Γ0 ε0 −Γ0 −Γ0

0 −Γ0 ε0 0
0 −Γ0 0 ε0


 (12.8)

1. Show that the eigenvalues and eigenvectors are given by:

|E1 〉 =
1√
6




2
0
−1
−1


 , E1 = ε0 , |E3 〉 =

1√
6




1√
3

1
1


 , E3 = ε0 −

√
3 Γ0 ,

|E2 〉 =
1√
2




0
0
1
−1


 , E2 = ε0 , |E4 〉 =

1√
6




1
−
√

3
1
1


 , E1 = ε0 +

√
3 Γ0 .
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2. If at t = 0 the electron is located at site | 2 〉, find the ket | q(t) 〉 for all time and show that the
probability of finding the electron on site | 1 〉 as a function of time is given by:

P1(t) = | 〈 1 | q(t) 〉 |2 =
1
3

sin2(
√

3Γ0t/~ ) . (12.9)

12.2 Periodic chains

The dynamics of an electron jumping between circular or periodic chains of N atomic sites, such as the ben-
zine molecule (C6H6), can be treated in much the same way as in the last section. Consider the arrangement,
for example, of N = 6 atoms as shown in Fig. 12.3. We describe the electron again by the ket:

0

2

3

4

5 1

Figure 12.3: A molecule containing six atomic sites, arranged in a circular chain.

| q(t) 〉 =
N−1∑

n=0

qn(t) |n 〉 . (12.10)

The periodic requirement means that | 0 〉 = |N 〉. Because of this periodic requirement, it will be useful to
change basis sets to a new basis by using a finite Fourier transform. Let us define this new basis |̃ k 〉 by the
set of equations:

|n 〉 =
1√
N

N−1∑

k=0

e+2πi kn/N |̃ k 〉 ,

|̃ k 〉 =
1√
N

N−1∑

n=0

e−2πi kn/N |n 〉 .
(12.11)

Then | 0 〉 = |N 〉, as required, and

〈n |n′ 〉 = δn,n′ , 〈̃ k | k̃′ 〉 = δk,k′ . (12.12)

The Hamiltonian in the |n 〉 basis is given by:

H =
N−1∑

n=0

{
ε0 |n 〉〈n | − Γ0

[
|n 〉〈n+ 1 |+ |n+ 1 〉〈n |

] }
. (12.13)
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Figure 12.4: Construction for finding the six eigenvalues for an electron on the six periodic sites of Fig. 12.3,
for values of k = 0, . . . , 5. Note the degeneracies for values of k = 1, 5 and k = 2, 4.

Now we have:

N−1∑

n=0

|n 〉〈n | =
N−1∑

k=0

|̃ k 〉〈̃ k | ,

N−1∑

n=0

[
|n 〉〈n+ 1 |+ |n+ 1 〉〈n |

]
=
N−1∑

k=0

[
e+2πi k/N + e−2πi k/N

]
|̃ k 〉〈̃ k | ,

=
N−1∑

k=0

2 cos( 2πk/N) |̃ k 〉〈̃ k | ,

(12.14)

So in the Fourier transform basis, the Hamiltonian becomes

H =
N−1∑

k=0

εk |̃ k 〉〈̃ k | , εk = ε0 − 2Γ0 cos( 2πk/N) , (12.15)

and is diagonal. Solutions to the eigenvalue problem,

H |Ek 〉 = Ek |Ek 〉 ,

are easy in this basis. We find Ek = εk and |Ek 〉 = |̃ k 〉, for k = 0, . . . , N − 1. A construction for finding
the eigenvalues is shown for the case when N = 6 in Fig. 12.4. Note the degeneracies for k = 1, 5 and
k = 2, 6. For this reason, it is useful to map k = 5 to k = −1 and k = 4 to k = −2. Then the range of k is
−2 ≤ k ≤ +3, with the states degenerate for ±k and the eigenvalues functions of |k| only.
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12.3 Linear chains

For linear chains, we can apply methods similar to that used for periodic sites, with different boundary
conditions. Consider, for example, the case of N = 6 atoms arranged in a linear chain, as shown in Fig. 12.5.
Here we label each site by the kets: |n 〉, n = 1, . . . , N so that the state of an electron at time t is given by:

1 2 3 4 5 6

Figure 12.5: A molecule containing six atomic sites, arranged in a linear chain.

| q(t) 〉 =
N∑

n=1

qn(t) |n 〉 . (12.16)

If we extend the sites to include n = 0 and n = N + 1 and require that | 0 〉 = |N + 1 〉 = 0, then we can
expand in a finite Fourier sine transform:

|n 〉 =
1√
N + 1

N∑

k=1

sin(πnk/(N + 1)) |̃ k 〉 ,

|̃ k 〉 =
1√
N + 1

N∑

n=1

sin(πnk/(N + 1)) |n 〉 ,
(12.17)

which satisfies the required boundary conditions. Note that |̃ 0 〉 = ˜|N + 1 〉 = 0 also. The Hamiltonian is
again given by:

H =
N∑

n=1

{
ε0 |n 〉〈n | − Γ0

[
|n 〉〈n+ 1 |+ |n+ 1 〉〈n |

] }
. (12.18)

which differs from (12.13) only by the range of n. Again, we find:
N∑

n=1

|n 〉〈n | =
N∑

k=1

|̃ k 〉〈̃ k | ,

N∑

n=1

[
|n 〉〈n+ 1 |+ |n+ 1 〉〈n |

]
=

N∑

k=1

2 cos(πk/(N + 1)) |̃ k 〉〈̃ k | ,
(12.19)

So in the Fourier sine transform basis, the Hamiltonian becomes

H =
N∑

k=1

εk |̃ k 〉〈̃ k | , εk = ε0 − 2Γ0 cos(πk/(N + 1)) , (12.20)

and is diagonal, as we found in the periodic case. Solutions to the eigenvalue problem,

H |Ek 〉 = Ek |Ek 〉 ,

are again simple in this basis. We find Ek = εk and |Ek 〉 = |̃ k 〉, for k = 1, . . . , N . A construction for finding
the eigenvalues for a linear chain is shown for the case when N = 6 in Fig. 12.6. There are no degeneracies
in this case. Eigenvectors for the linear chain are standing waves for the electron on the lattice rather than
the travelling waves for the periodic lattice. Since standing waves can be constructed from the superposition
of two travelling waves, which on the periodic lattice are degenerate, the eigenvalues for an electron on a
linear chain of atoms are similar to the eigenvalues for a periodic chain of atoms. Because of the boundary
conditions, the k = 0 and k = N + 1 mode is missing, and the angular spacing of the eigenvalues in the
construction is half that of a periodic chain with N + 1 atoms.
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Figure 12.6: Six eigenvalues for the six linear sites of Fig. 12.5, for values of k = 1, . . . , 6.

12.4 Impurities

Consider a long chain of N atoms with an impurity atom located at site n = 0, as shown in Fig. 12.7. Again

1 2 3!1!2!3 0

Figure 12.7: A long chain with an impurity atom at site 0.

assuming nearest neighbor interactions only, we can write the Hamiltonian for this system as:

H =
N−1∑

n=1

{
ε0
[
|n 〉〈n |+ | − n 〉〈−n |

]

− Γ0

[
|n 〉〈n+ 1 |+ |n+ 1 〉〈n |+ | − n− 1 〉〈−n |+ | − n 〉〈−n− 1 |

] }

s
+ ε1 | 0 〉〈 0 | − Γ1

[
| 0 〉〈 1 |+ | 1 〉〈 0 |+ | − 1 〉〈 0 |+ | 0 〉〈−1 |

]
. (12.21)

12.4.1 Bound state

Under certain conditions, the electron can become trapped at the n = 0 site. We study the bound states in
this section. The eigenvalue equation for bound states is:

H |ψE 〉 = E |ψE 〉 . (12.22)
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We expanding the eigenvector in the form:

|ψE 〉 =
+∞∑

n=−∞
qn |n 〉 . (12.23)

Substitution into Eq. (12.22) and using (12.21) gives the three equations for the coefficients qn for n = 0,±1:

−Γ1 q1 + ε1 q0 − Γ1 q−1 = E q0 ,

−Γ0 q2 + ε0 q1 − Γ1 q0 = E q1 ,

−Γ1 q0 + ε0 q−1 − Γ0 q−2 = E q−1 ,

(12.24)

and for n > 1 and n < −1, we find:

− Γ0 qn+1 + ε0 qn − Γ0 qn−1 = E qn . (12.25)

Assuming a solution of the form:

qn =

{
q+ e

−nθ , for n > 0,
q− e+nθ , for n < 0.

(12.26)

Our task is to find q0, q±, θ, and E. Eq. (12.25) is satisfied for n > 1 and n < −1 if:

ε0 − E = 2Γ0 cosh(θ) = Γ0

[
e+θ + e−θ

]
. (12.27)

Eqs. (12.24) are satisfied if:

( ε1 − E ) q0 = Γ1 ( q+ + q− ) e−θ ,

( ε0 − E − Γ0 e
−θ ) q+ = Γ1 q0 e

θ ,

( ε0 − E − Γ0 e
−θ ) q− = Γ1 q0 e

θ .

(12.28)

Solving for q+ and q−, we find:

q+ = q− =
Γ1 e

θ

ε0 − E − Γ0 e−θ
q0 =

Γ1

Γ0
q0 . (12.29)

so that q+ = q−. Then the first of Eqs. (12.28) gives:

ε1 − E = 2
Γ2

1

Γ0
e−θ . (12.30)

Combining Eqs. (12.27) and (12.30) gives a transcendental equation for θ:

(ε0 − ε1)/Γ0 = eθ +
[

1− 2
(
Γ1/Γ0

)2 ]
e−θ . (12.31)

In Fig. XX, we show a plot of the right and left sides of this equation for the case when (ε0− ε1)/Γ0 = 0.2667
and Γ1/Γ0 = 0.8. For this case, we find θ = Y Y , from which we can find the energy eigenvalue E. There is
only one bound state.

The eigenvector for the bound state is given by:

|ψE 〉 = q0

{ ∞∑

n=1

Γ1

Γ0

[
e−θ n |n 〉+ e+θ n | − n 〉

]
+ | 0 〉

}
, (12.32)

where q0 is a normalization factor.
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Figure 12.8: Transmission and reflection coefficients for electron scattering from an impurity for the case
when (ε0 − ε1)/Γ0 = 0.2667 and Γ1/Γ0 = 0.8.

12.4.2 Scattering

An electron can also scatter off the impurity site at n = 0. In order to study the transmission and reflection
from the impurity, let us find electron solutions for a fixed value of energy Ek to the left and right of the
impurity. This vector is given by:

|ψk 〉 =
N−1∑

n=1

{ [
Ak e

−iθk n +Bk e
+iθk n

]
| − n 〉+

[
Ck e

+iθk n +Dk e
−iθk n

]
|n 〉

}
+ q0 | 0 〉 . (12.33)

Here H |ψk 〉 = Ek |ψk 〉, where

Ek = ε0 − 2Γ0 cos(θk) , with θk =
2πk
N

, (12.34)

and the Hamiltonian H is given by Eq. (12.21). Our task is to find the relation of the “out” states Bk, Ck
to the “in” states, Ak, Dk, and to find q0. Computing the overlaps:

〈n |H |ψk 〉 = Ek 〈n |ψk 〉 , (12.35)

we see that this equation is identically satisfied for n > 1 and n < −1. For n = 0,±1, we find the equations:

( ε1 − Ek ) q0 = Γ1

[
Ake

−iθk +Bke
+iθk + Cke

+iθk +Dke
−iθk

]
(12.36)

[
ε0 − Ek − Γ0 e

−iθk
]
Ak e

−iθk +
[
ε0 − Ek − Γ0 e

+iθk
]
Bk e

+iθk = Γ1 q0 (12.37)
[
ε0 − Ek − Γ0 e

+iθk
]
Ck e

+iθk +
[
ε0 − Ek − Γ0 e

−iθk
]
Dk e

−iθk = Γ1 q0 (12.38)

Now from (12.34), we find:
ε0 − Ek − Γ0 e

±iθk = Γ0 e
∓iθk , (12.39)

so (12.37) and (12.38) become:

Ak +Bk = ( Γ1/Γ0 ) q0 ,

Ck +Dk = ( Γ1/Γ0 ) q0 ,
(12.40)

whereas (12.36) becomes:
[

( ε1 − ε0 )/Γ0 − 2 cos(θk)
]
q0 = ( Γ1/Γ0 )

[
(Ak +Dk ) e−iθk + (Bk + Ck ) e+iθk

]
(12.41)
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So from (12.40) and (12.41), we find the equations:

Ak +Bk = −βk
[

(Ak +Dk ) e−iθk + (Bk + Ck ) e+iθk
]
,

Ck +Dk = −βk
[

(Ak +Dk ) e−iθk + (Bk + Ck ) e+iθk
]
,

(12.42)

where
βk =

[ Γ1

Γ0

]2 1
( ε0 − ε1 )/Γ0 + 2 cos(θk)

. (12.43)

Eqs. (12.42) can be written as:
[

1 + βk e
−iθk

]
Ak +

[
1 + βk e

+iθk
]
Bk + βk e

+iθk Ck + βk e
−iθk Dk = 0 ,

βk e
−iθk Ak + βk e

+iθk Bk +
[

1 + βk e
+iθk

]
Ck +

[
1 + βk e

−iθk
]
Dk = 0 ,

(12.44)

from which we can find solutions of the out states (Bk, Ck) in terms of the in states (Ak, Dk):
(
Bk
Ck

)
=
(
S11 S12

S21 S22

)(
Ak
Dk

)
, (12.45)

with

S11 = S22 = −1 + 2βk cos(θk)
1 + 2βk e+iθk

, S12 = S21 = − 2iβk sin(θk)
1 + 2βk e+iθk

. (12.46)

Unitarity of the S matrix requires that

S†S =
(
S∗11 S∗21

S∗12 S∗22

)(
S11 S12

S21 S22

)
=
(
|S11|2 + |S12|2 S∗12S11 + S∗22S21

S∗11S12 + S∗21S22 |S21|2 + |S22|2
)

= 1 . (12.47)

It is easy to check that the solutions (12.46) satisfy the unitary relations (12.47). Transmission (T ) and
reflection (R) coefficients are given by:

T = |S12|2 = |S21|2 , R = |S11|2 = |S22|2 , (12.48)

and are plotted in Fig. 12.8 for the case when (ε0 − ε1)/Γ0 = 0.2667 and Γ1/Γ0 = 0.8, as a function of k/N .

Exercise 24. Find the transmission and reflection coefficents for scattering of an electron from two long
lines of atoms connected at site n = 0, as shown in Fig 12.9. The electron energies and jumping rates for
atoms for n < 0 are given by ε0 and Γ0/~, whereas for n ≥ 0, the energies and jumping rates are given by
ε1 and Γ1/~. Take the jumping rate between the n = −1 and n = 0 sites as Γ10.

0 1 2!1!2!3

Figure 12.9: Two long connected chains.
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Chapter 13

One and two dimensional wave
mechanics

13.1 Introduction

Quantum wires are systems with one continuous coordinate dimension x. Conducting thin-films are exam-
ples of quantum systems in two space dimensions. These low-dimension systems can frequently be solved
exactly, using Schrödinger’s equation, and are useful for understanding systems in higher dimension, where
computation can be more difficult. But one and two dimensional systems are interesting in their own right.
We discuss first quantum mechanics in one dimension.

13.2 Schrödinger’s equation in one dimension

Schrödinger’s equation in one dimension is:
{
− ~2

2m
∂2

∂x2
+ V (x)

}
ψ(x, t) = i~

∂ψ(x, t)
∂t

. (13.1)

Probability conservation: This equation obeys a conservation equation:

∂ρ(x, t)
∂t

+
∂j(x, t)
∂x

= 0 , (13.2)

where

ρ(x, t) = |ψ(x, t)|2 , j(x, t) =
~

2mi

{
ψ∗(x, t)

∂ψ(x, t)
∂x

− ∂ψ∗(x, t)
∂x

ψ(x, t)
}
. (13.3)

Time reversal: Schrödinger’s equation is also invariant under time-reversal. Reversing the time variable
in Eq. (13.1) gives: {

− ~2

2m
∂2

∂x2
+ V (x)

}
ψ(x,−t) = −i~ ∂ψ(x,−t)

∂t
. (13.4)

Now take the complex conjugate. Since V (x) is real, we have:

{
− ~2

2m
∂2

∂x2
+ V (x)

}
ψ∗(x,−t) = i~

∂ψ∗(x,−t)
∂t

, (13.5)
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which is the same equation we started with. So if ψ(x, t) is a solution of Schrödinger’s equation, then
ψ∗(x,−t) is a solution also. If we separate variables according to:

ψ(x, t) =
∫

dk
2π

ψk(x) e−iEkt/~ , Ek =
~2 k2

2m
, (13.6)

then time-reversal invariance means that if ψk(x) is a solution of the time-independent Schrödinger equation,
then ψ∗k(x) is also.

Parity: Parity is reversal of the x coordinate. If V (−x) = V (x), then if ψ(x, t) is a solution of Schrödinger’s
equation, then ψ(−x, t) is also a solution. We will use these conservation and symmetry relations in this
chapter.

13.2.1 Transmission of a barrier

In this section, we discuss transmission of particles by a barrier of general shape, as shown in Fig. XX.
Schrödinger’s time-independent equation for this problem is given by:

{
− ~2

2m
d2

dx2
+ V (x)

}
ψk(x) =

~2k2

2m
ψk(x) . (13.7)

We require that V (x)→ 0 as x→ ±∞. So the wave function in the asymptotic regions is given by:

ψk(x) =

{
Aeikx +B e−ikx , as x→ −∞,
C eikx +De−ikx , as x→ +∞.

(13.8)

We define in and out coefficients by:

Ψin =
(
A
D

)
, Ψout =

(
C
B

)
. (13.9)

The S-matrix is the connection between the in and out coefficients. That is, we define a 2× 2 matrix S such
that:

Ψout = SΨin , S =
(
S11 S12

S21 S22

)
. (13.10)

With our conventions, S = 1 when the potential vanishes. For particles incident from the left (negative x),
D = 0 and the left-transmission and reflection coefficients are given by:

TL = |S11|2 , and RL = |S21|2 . (13.11)

For particles incident from the right (positive x), A = 0 and the right-transmission and reflection coefficients
are given by:

TR = |S22|2 , and RR = |S12|2 . (13.12)

We can only find the S-matrix by a complete solution of Schrödinger’s equation (13.7) for the particular
potential V (x). This is, in general, a difficult job. However, if the potential obeys certain properties, conser-
vation laws and symmetry relations severely constrain the form of the S-matrix. We use these conservation
laws and symmetry relations next to find a general form of S.

1. Conservation of probability. This means that current is conserved. The in and out currents are given
by:

jin =
~k
m

{
|A|2 + |D|2

}
, and jout =

~k
m

{
|C|2 + |B|2

}
. (13.13)
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So since jin = jout, we have:
|A|2 + |D|2 = |C|2 + |B|2 , (13.14)

which we can write as:
Ψ†in Ψin = Ψ†out Ψout = Ψ†in S

†SΨin . (13.15)

But this must be true for any in state, so S must be unitary:

S†S = SS† = 1 . (13.16)

If S is given by:

S =
(
S11 S12

S21 S22

)
, (13.17)

probability conservation means that:
(
S11 S12

S21 S22

)(
S∗11 S∗21

S∗12 S∗22

)
=
(
|S11|2 + |S12|2 S11S

∗
21 + S12S

∗
22

S21S
∗
11 + S22S

∗
12 |S21|2 + |S22|2

)
=
(

1 0
0 1

)
(13.18)

2. Time reversal. As discussed in Section 13.3, time reversal invariance is a property of real potentials. It
means that if ψk(x) is a solution of Schrödinger’s equation, then so is ψ∗k(x). We have explicitly used
complex wave functions to describe waves moving in the left and right directions here, so we need to
preserve this reality requirement with our asymptotic solutions. The complex conjugate of Eq. (13.19)
is:

ψ∗k(x) =

{
B∗ eikx +A∗ e−ikx , as x→ −∞,
D∗ eikx + C∗ e−ikx , as x→ +∞.

(13.19)

So now we find that

Ψ′in =
(
B∗

C∗

)
=
(

0 1
1 0

)(
C∗

B∗

)
= Z Ψ∗out , where Z = Z−1 =

(
0 1
1 0

)
,

Ψ′out =
(
D∗

A∗

)
=
(

0 1
1 0

)(
A∗

D∗

)
= Z Ψ∗in .

(13.20)

Now since
Ψ′out = SΨ′in , (13.21)

we find that
Z Ψ∗in = S Z Ψ∗out , or Ψ∗out = Z S† Z Ψ∗in , (13.22)

which gives:
Ψout = Z ST Z Ψin = SΨin , (13.23)

so that S = RST R. If S is given by (13.17), this means that:
(
S11 S12

S21 S22

)
=
(
S22 S12

S21 S11

)
, (13.24)

so that under time-reversal, S11 = S22. This is the case for all real potentials.

3. Parity. Very often the potential is invariant under reversal of x. That is V (−x) = V (x). Under parity,
the wave function becomes:

ψk(x) =

{
Deikx + C e−ikx , as x→ −∞,
B eikx +Ae−ikx , as x→ +∞.

(13.25)
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So for this case,

Ψ′′in =
(
D
A

)
=
(

0 1
1 0

)(
A
D

)
= Z Ψin ,

Ψ′′out =
(
B
C

)
=
(

0 1
1 0

)(
C
B

)
= Z Ψout ,

(13.26)

So since
Ψ′′out = SΨ′′in , (13.27)

we find that:
Ψout = Z S Z Ψin = SΨin , which means that S = Z S Z . (13.28)

If S is given by (13.17), this means that:
(
S11 S12

S21 S22

)
=
(

0 1
1 0

)(
S11 S12

S21 S22

)(
0 1
1 0

)
=
(
S22 S21

S12 S11

)
. (13.29)

So parity conservation requires that S11 = S22 and S12 = S21, which then means that TL = TR and RL = RR,
as expected from reflection invariance.

The S-matrix is a complex 2 × 2 matrix and so has a total of 8 real elements. Unitarity provides 4
independent equations, so this leaves 4 real elements. Time reversal provides only one additonal independent
real equation, which then leave three independent elements for S. Parity then provides one more independent
equation, which then leaves only two independent real elements to describe the S-matrix. After applying all
these restrictions, we find the general form:

S = eiφ
(

cos θ i sin θ
i sin θ cos θ

)
. (13.30)

Exercise 25. Show that Eq. (13.30) satisfies unitarity, time reversal, and parity.

Any unitary matrix can be diagonalized by a unitary transformation. For our case, the eigenvalues of S
are ei(φ±θ), and S is diagonalized by the matrix U , where

SD = U† S U =
(
ei(φ+θ) 0

0 ei(φ−θ)

)
, where U =

1√
2

(
1 −1
1 1

)
. (13.31)

The transmission of waves is simply described by SD. If we put:

Φin = U Ψin =
1√
2

(
A−D
A+D

)
≡
(
a
d

)
, and Φout = U†Ψout =

1√
2

(
C +B
C −B

)
≡
(
c
b

)
, (13.32)

then
Φout = SD Φin , or c = ei(φ+θ) a , b = ei(φ−θ) d . (13.33)

From the S matrix, we can find the transfer matrix M , which connects the coefficients on the left-hand
side to coefficients on the right-hand side of the barrier. Let us define left L, right R vectors, and a transfer
matrix M by:

L =
(
A
B

)
, and R =

(
C
D

)
, with R = M L . (13.34)

Then, after some algebra, we find for symmetric potentials:

M =
(
e−iφ sec θ −i tan θ
+i tan θ e+iφ sec θ

)
. (13.35)

Note that det[M ] = 1, as required by current conservation.
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Exercise 26. Find the S matrix for a square potential barrier V (x) of the form:

V (x) =

{
0 , for x < −a/2 and x > +a/2,
V0 , for −a/2 < x < +a/2,

(13.36)

for Ek > V0 > 0. Show that your results agree with the general form of S given in Eq. (13.30). [See
Merzbacher [?][p.93], but note that here we want to find S, not M .]

Exercise 27. Find the S matrix for the potential step V (x), defined by

V (x) =

{
0 , for x < 0,
V0 , for x > 0.

, put V0 =
~2γ2

2m
, (13.37)

which defines γ. Consider the case when the kinetic energy of the particle for x < 0 is given by:

E =
~2k2

2m
, (13.38)

and E > V0. Put

ψ(x) =

{
Ae+ikx +B e−ikx , for x < 0,
C e+ik′x +D e−ik

′x , for x > 0.
. (13.39)

Find the relation between k and k′. If we define “in” and “out” states by:

Ψin =
(
A
D

)
, Ψout =

(
C
B

)
, (13.40)

and, by applying the boundary conditions on the solutions at x = 0, find the 2× 2 matrix S, defined by:

Ψout = SΨin . (13.41)

Show also that S obeys the probability conservation requirement:

S†K ′ S = K , (13.42)

where K and K ′ are defined by:

K =
(
k 0
0 k′

)
, K ′ =

(
k′ 0
0 k

)
. (13.43)

Exercise 28. Suppose we want to use real functions on the left and right rather than complex ones. That
is:

ψk(x) =

{
a cos(kx) + b sin(kx) , as x→ −∞,
c cos(kx) + d sin(kx) , as x→ +∞.

(13.44)

Using the results for the M matrix in (13.35), find the connection between c and d and a and b.

Exercise 29. Choose a gaussian barrier of the form:

V (x) = V0 e
−x2/L2

, (13.45)

with E > V0 > 0, and, using the results of Exercise 28, and a numerical integrator (such as 4th order
Runge-Kutta), and find values for θ and φ. Choose convenient values for m, V0, L, and E.
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A

A3

A1

A2

B2

B1

B3

Figure 13.1: A junction with three legs.

Exercise 30. Consider a junction consisting of three one-dimensional legs, as shown in Fig. 13.1. Coefficients
for the in and out wave functions for each leg are labeled as Ai and Bi for i = 1, 2, 3. We define in and out
states as:

Ψin =



A1

A2

A3


 , Ψout =



B1

B2

B3


 , (13.46)

and are connected by the S matrix: Ψout = SΨin, where S is the 3× 3 complex matrix:

S =



S11 S12 S13

S21 S22 S23

S31 S32 S33


 , (13.47)

and consists of 18 real elements.

1. Conservation of probability requires that S is unitary: S†S = 1. This requirement consists of 9
independent equations and reduces the number of independent elements in S to 9.

2. We also assume that the junction is symmetric with respect to each leg, so if we define a rotation
matrix R by:

R =




0 1 0
0 0 1
1 0 0


 , (13.48)

then

RΨin =




0 1 0
0 0 1
1 0 0





A1

A2

A3


 =



A2

A3

A1


 = Ψ′in , (13.49)

with a similar relation for the out states:

RΨout = Ψ′out . (13.50)

Then since Ψ′out = SΨ′in, we find:

RΨout = S RΨin , or Ψout = R−1 S RΨin = SΨin . (13.51)

So invariance under the first rotation requires that

S = R−1SR . (13.52)
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Similarly for a second rotation, we find that

S = (RR)−1 S RR . (13.53)

With these results, find the restrictions placed on the S-matrix by Eqs. (13.52) and (13.53). How many
independent elements of S are left?
Solution: We first get R−1. We find:

R =




0 1 0
0 0 1
1 0 0


 , and R−1 =




0 0 1
1 0 0
0 1 0


 . (13.54)

Then

R−1 S R =




0 0 1
1 0 0
0 1 0





S11 S12 S13

S21 S22 S23

S31 S32 S33






0 1 0
0 0 1
1 0 0


 =



S33 S31 S32

S13 S11 S12

S23 S21 S22


 . (13.55)

So we conclude that:

S11 = S22 = S33 ≡ α , (13.56)
S31 = S12 = S23 ≡ β , (13.57)
S32 = S13 = S21 ≡ γ . (13.58)

A second rotation by R produces the same result, of course. So we conclude that S is of the form:

S =



α β γ
γ α β
β γ α


 , (13.59)

with α, β, and γ complex. Unitarity now requires:

S†S =



α∗ γ∗ β∗

β∗ α∗ γ∗

γ∗ β∗ α∗





α β γ
γ α β
β γ α




=



|α|2 + |β|2 + |γ|2 α∗β + γ∗α+ β∗γ α∗γ + γ∗β + β∗α
β∗α+ α∗γ + γ∗β |α|2 + |β|2 + |γ|2 β∗γ + α∗β + γ∗α
γ∗α+ β∗γ + α∗β γ∗β + β∗α+ α∗γ |α|2 + |β|2 + |γ|2


 =




1 0 0
0 1 0
0 0 1




(13.60)

There are only two independent equations here, which are:

|α|2 + |β|2 + |γ|2 = 1 , (13.61)
αβ∗ + βγ∗ + γα∗ = 0 . (13.62)

So we have left here a total of three complex numbers or six real numbers in the parameterization of
S. So let us put:

α = r1 e
iφ1 , β = r2 e

iφ2 , γ = r3 e
iφ3 . (13.63)

with r1, r2, and r3 all real and non-negative. Then Eq. (13.61) requires that r1, r2, and r3 are on the
unit circle:

r2
1 + r2

2 + r2
3 = 1 . (13.64)

Eq. (13.62) then gives:

r1r2 e
i(φ1−φ2) + r2r3 e

i(φ2−φ3) + r3r1 e
i(φ3−φ1) = 0 . (13.65)

Eq. (13.64) means that there are only two independent values of r, which reduces the number of
parameters to five. However Eq. (13.65) is an additional complex equation, or two real equations,
which would seem to reduce the number of independent parameters to three. It is not clear exactly
how to pick them, however.
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13.2.2 Wave packet propagation

In this section we look at wave packet propagation in one-dimension. The solution of Schrödinger’s wave
equation for a free particle is given by:

ψ(x, t) =
∫ +∞

−∞
dk Ak eiΦk(x,t) , where Φk(x, t) = kx− ωkt , with ωk =

~ k2

2m
. (13.66)

For a wave packet moving in the positive x-direction, we assume that Ak is centered about a value of k = k0.
So let us put k′ = k − k0, and expand the phase Φk(x, t) in a power series about k0:

Φk(x, t) = Φk0(x, t) +
∂Φk(x, t)

∂k

∣∣∣∣
k0

k′ + · · · ,

= k0x− ω0t+ (x− v0t ) k′ + · · · ,
(13.67)

where v0 = ~k0/m is the velocity of the center of the wave packet. So then keeping only the first two terms
in the expansion (13.67) gives:

ψ(x, t) ≈ ei(k0x−ω0t)

∫ +∞

−∞
dk′ Ak0+k′ e

ik′(x−v0t) . (13.68)

At t = 0, we assume that the center of the wave packet is located at a position x = x0, so that:

ψ(x, 0) = eik0x
∫ +∞

−∞
dk′ Ak0+k′ e

ik′x . (13.69)

Then Eq. (13.68) can be written as:

ψ(x, t) ≈ e−iω0t ψ(x− v0t, 0) . (13.70)

That is, the probability of finding the particle at a point x at time t is given by:

P (x, t) = |ψ(x, t) |2 ≈ |ψ(x− v0t, 0) |2 = P (x− v0t, 0) . (13.71)

So since the center of the packet at t = 0 is located at x = x0, the center of the packet moves according to
the classical equation:

x = x0 + v0t . (13.72)

Our approximate result in Eq. (13.71) represents motion of the packet without change of shape. In reality,
spreading of the wave packet takes place. In order to account for this spreading, we would have to include
the second order term in the expansion of the phase in Eq. (13.67), which we ignore here.

13.2.3 Time delays for reflection by a potential step

In this section, we compute the time-delay for scattering from an potential step. Schrödinger’s equation for
this problem is:

{
− ~2

2m
∂2

∂x2
+ V (x)

}
ψ(x, t) = i~

∂ψ(x, t)
∂t

, where V (x) =

{
0 , for x < 0,
V0 , for x > 0.

(13.73)

We put

ψ(x, t) =
∫ kmax

0

dk ψk(x) exp[−iωk t ] , where ωk =
~ k2

2m
, (13.74)
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where ψk(x) satisfies: {
− ~2

2m
d2

dx2
+ V (x)

}
ψk(x) =

~2 k2

2m
ψk(x) . (13.75)

So we put

ψk(x) =

{
Ak e

ikx +Bk e
−ikx , for x < 0,

Ck e
−κx , for x > 0,

(13.76)

where

κ2 = γ2 − k2 , and we have put: V0 =
~2 γ2

2m
. (13.77)

So we take kmax = γ. The boundary conditions at x = 0 require that:

Ak +Bk = Ck , ik (Ak −Bk ) = −κCk , (13.78)

from which we find:
Bk =

k − iκ
k + iκ

Ak , Ck =
2k

k + iκ
Ak . (13.79)

So let us put

k + iκ = ρ eiφk , ρ =
√
k2 + κ2 = γ , tanφk =

κ

k
=

√
γ2

k2
− 1 , (13.80)

with 0 < k < γ. Putting these results into (13.79) gives

Bk = e−2iφk Ak , Ck = 2 e−iφk cos(φk)Ak . (13.81)

So Eq. (13.76) becomes:

ψk(x) = Ak

{{
eikx + e−i[kx+2φk]

}
Θ(−x) + 2 cos(φk) e−κx−iφk Θ(x)

}
. (13.82)

Substitution into Eq. (13.74) gives:

ψ(x, t) =
∫ γ

0

dk Ak
{{

eiΦ
(1)
k (x,t) + eiΦ

(2)
k (x,t)

}
Θ(−x) + 2 cos(φk) eΦ

(3)
k (x,t) Θ(x)

}
, (13.83)

where the phases are given by:

Φ(1)
k (x, t) = kx− ωkt ,

Φ(2)
k (x, t) = −kx− ωkt− 2φk ,

Φ(3)
k (x, t) = −κx− iωkt− iφk .

(13.84)

The initial conditions are such that at t = 0, the center of the wave packet is located at a position x = −L
and moving towards positive x with an average velocity v0 = ~k0/m. That is Ak is centered about a positive
value k0, so let us put k′ = k − k0, and expand the phases about k = k0. This gives:

Φ(1)
k = k0x− ω0t+ (x− v0t) k′ + · · ·

Φ(2)
k = −k0x− ω0t− 2φ0 −

(
x+ v0t+ 2

dφk
dk

)
k′ + · · ·

= −k0x− ω0t− 2φ0 −
(
x+ v0(t− τ)

)
k′ + · · · ,

(13.85)

where we have defined τ by:

τ = − 2
v0

dφk
dk

> 0 . (13.86)
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13.3. SCHRÖDINGER’S EQUATION IN TWO DIMENSIONSCHAPTER 13. ONE AND TWO DIMENSIONAL WAVE MECHANICS

Substituting these results into (13.83) gives, for x < 0:

ψ(x, t) ≈
∫ ∞

−∞
dk′ Ak0+k′

{
ei(k0x−ω0t)+ik

′(x−v0t) + ei(−k0x−ω0t−2φ0)−ik′(x+v0(t−τ))
}

= ei(k0x−ω0t)

∫ ∞

−∞
dk′ Ak0+k′ e

ik′(x−v0t) + ei(−k0x−ω0t−2φ0)

∫ ∞

−∞
dk′ Ak0+k′ e

ik′(−x−v0(t−τ)) .

(13.87)

At t = 0, the wave packet is represented by the first term in (13.87):

ψ(x, 0) = eik0x
∫ ∞

−∞
dk′ Ak0+k′ e

ik′x . (13.88)

So (13.87) becomes:

ψ(x, t) ≈ e−iω0tψ(x− v0t, 0) + ei(−2k0x−ω0t−2φ0)ψ(−x− v0(t− τ), 0) . (13.89)

The first term is a right-moving packet centered about x = −L+ v0t, and is the incident wave packet. For
this term, x is negative for value of t between 0 < t < L/v0. The second term is a left-moving wave packet
located at x = L− v0(t− τ). For this term, x is negative for values of t > τ + L/v0. So we can interpret τ
as the time that the particle spends inside the potential barrier.

13.3 Schrödinger’s equation in two dimensions

Get this stuff from Tim Londergan’s papers!

Exercise 31. Find the resonate energies for an electron confined to a two-dimensional circular ring bounded
by r = a and r = b > a.
Solution:In polar coordinates, the equation for the wave function ψ(r, θ) is:

− ~2

2m

[
1
r

∂

∂r
r

(
∂

∂r

)
+

1
r2

∂2

∂θ2

]
ψ(r, θ) = E ψ(r, θ) . (13.90)

We want to find the eigenvalues of this equation such that ψ(a, θ) = ψ(b, θ) = 0, a < b. We first put
E = ~2k2/(2m), and find the equation:

[
1
r

∂

∂r
r

(
∂

∂r

)
+

1
r2

∂2

∂θ2
+ k2

]
ψ(r, θ) = 0 . (13.91)

We separate variables by setting
ψ(r, θ) = ψm(r) eimθ , (13.92)

with m and integer, −∞ ≤ m ≤ +∞, and get:
[

1
r

∂

∂r
r

(
∂

∂r

)
− m2

r2
+ k2

]
ψm(r) = 0 . (13.93)

This is Bessel’s equation, with the general solutions:

ψm(r) = Am Jm(kr) +BmNm(kr) , (13.94)

for m ≥ 0, and which must vanish at r = a and r = b. The first can be satisfied by taking Am = Nm(ka)
and Bm = −Jm(ka). Then we have:

ψm(r) = Nm(ka) Jm(kr)− Jm(ka)Nm(kr) . (13.95)
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This will vanish only if k is chosen to be one of the zeros of the equation:

Nm(km,na) Jm(km,nb)− Jm(km,na)Nm(km,nb) = 0 , (13.96)

where km,n is the nth zero of the mth of Eq. (13.96). One needs to plot this function for typical values of a
and b to see that there are, in fact, an infinite number of zeros of this function.

So eigenfunctions are given by:

ψn,m(r, θ) = {Nm(kn,ma) Jm(kn,mr)− Jm(kn,ma)Nm(kn,mr) }
×
{
Nn,m e+imθ +Nn,−m e−imθ

}
, (13.97)

for m = 0, 1, 2, . . . ,+∞ and n = 1, 2, 3, . . . ,+∞, and where Nn,m are arbitrary constants.
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Chapter 14

The WKB approximation

14.1 Introduction

Sometimes the phase of the wave function in quantum mechanics is slowly varying. Under such circumstances,
we might seek to find a non-perturbative expansion of the phase. The WKB approximation provides a
systematic method of this expansion, and since it does not depend on the strength of the potential, it
provides a useful way to understand the dynamics of the system. It can be applied to one dimensional wave
mechanics only. We study this method in this chapter, and apply it to bound states and scattering problems.
The key to applying this method is to find solutions to match the WKB-approximate solutions at the turning
points of the potential. These are called the ”connection formulas,” and are discussed in Section 14.3 below.

14.2 Theory

We start with Schrödinger’s equation in one-dimension:
{
− ~2

2m
d2

dx2
+ V (x)

}
ψ(x) = E ψ(x) . (14.1)

The WKB approximation is generated by considering a solution of the form:

ψ(x) = eiS(x)/~ . (14.2)

Then Schrödinger’s equation becomes:

(S′(x) )2 = p2(x) + i~S′′(x) , (14.3)

where
p2(x) = 2m (E − V (x)) . (14.4)

If we ignore the second derivative term on the right-hand side of Eq. (14.3), we have approximately:

S′(x) = p(x) =
√

2m (E − V (x)) , (14.5)

or
S(x) =

∫ x

p(x) dx . (14.6)

Putting this solution back into the right-hand side of Eq. (14.3) gives the next order:

(S′(x) )2 = p2(x) + i~ p′(x) , (14.7)
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or

S′(x) =
√
p2(x) + i~ p′(x) = p(x)

√
1 + i~ p′(x)/p2(x) = p(x) + i~

p′(x)
2p(x)

+ · · · , (14.8)

or
dS(x)

dx
= p(x) + i~

d ln
[√

p(x)
]

dx
+ · · · , (14.9)

so
S(x) = i~ ln

[√
p(x)

]
+
∫ x

p(x) dx . (14.10)

To this order then, the WKB wave function is given by:

ψ(x) =
1√
p(x)

exp
{
i

∫ x

p(x) dx/~
}
, for E > V (x). (14.11)

In regions wher E < V (x), we put p(x) = ip̃(x), where p̃(x) =
√

2m(V (x)− E), and solutions are given by:

ψ(x) =
1√
p̃(x)

exp
{∫ x

p̃(x) dx/~
}
, for E < V (x). (14.12)

The WKB approximation is generally carried out only to second order. The end points are fixed by boundary
conditions, which will be explained in the next section.

14.3 Connection formulas

At the classical turning points where p(x) = 0, the WKB solutions blow up. So we will need to find exact
solutions near turning points and match them with the WKB solutions we found in the last section.

V(x) V(x)

x x

E

xo xo

(a) (b)

Figure 14.1: Two turning point situations.

14.3.1 Positive slope

We first examine the situation where the derivative of the potential at the turning point is positive, as shown
in Fig. 14.1(a). The WKB solutions are given by:

ψ(x) =





A√
p(x)

exp[ +i
∫ x0

x

p(x)dx/~ ] +
B√
p(x)

exp[−i
∫ x0

x

p(x)dx/~ ] , x < x0,

C√
p̃(x)

exp[ +
∫ x

x0

p̃(x)dx/~ ] +
D√
p̃(x)

exp[−
∫ x

x0

p̃(x)dx/~ ] , x > x0.

(14.13)
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We wish to find relations between the constants A, B, C, and D across the turning point region. We will
do this by using an exact solution in the overlap region, assuming a linear potential in this region:

V (x) = V (x0) + V ′(x0) (x− x0) + · · · , (14.14)

with E = V (x0) and V ′(x0) > 0. Then the exact solution to Schrödinger’s equation, to linear order, is given
by: {

− ~2

2m
d2

dx2
+ V (x0) + V ′(x0) (x− x0)

}
ψ(x) = E ψ(x) , (14.15)

or {
d2

dx2
− α3 (x− x0)

}
ψ(x) = 0 . (14.16)

where α3 = 2mV ′(x0)/~2. Setting z = α(x− x0), we find the equation:
{

d2

dz2
− z

}
ψ(z) = 0 , (14.17)

which has Airy functions as solutions. Airy functions are related to Bessel functions of order 1/3, and are
throughly discussed by Abramowitz and Stegun[1, p. 446]. Two linearly independent Airy functions are
written as Ai(z) and Bi(z). The asymptotic forms of these Airy functions are given by:

Ai(z) ∼





1
2
√
πz1/4

e−2z3/2/3 , for z → +∞,

1√
π(−z)1/4

sin
[

2(−z)3/2/3 + π/4
]

for z → −∞,

(14.18)

and

Bi(z) ∼





1√
πz1/4

e+2z3/2/3 , for z → +∞,

1√
π(−z)1/4

cos
[

2(−z)3/2/3 + π/4
]

for z → −∞.

(14.19)

A general solution of ψ(x) in the vicinity of x = x0 is given by the linear combination of the Airy functions:

ψp(x) = aAi[α(x− x0)] + bBi[α(x− x0)] , (14.20)

with a and b constants to be fixed by matching with the WKB solutions. We call this wave function the
patching wave function. The asymptotic forms for the patching wave function are given by:

ψp(x) ∼





1√
πz1/4

{
b e+2z3/2/3 +

a

2
e−2z3/2/3

}
, x < x0,

1
2i
√
π(−z)1/4

{
(a+ ib) e+i[2(−z)3/2/3+π/4] − (a− ib) e−i[2(−z)3/2/3+π/4]

}
, x > x0.

(14.21)

Here z = α(x− x0). For the WKB solutions, in the patching region we have:

p̃(x) =
√

2m[V (x0) + V ′(x0)(x− x0) + · · · − E] = ~α [α(x− x0)]1/2 ,

1
~

∫ x0

x

p̃(x) dx = α3/2

∫ x

x0

(x− x0)1/2 dx = 2 [α(x− x0)]3/2/3 ,

(14.22)
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for x� x0 and

p(x) =
√

2m[E − V (x0)− V ′(x0)(x− x0) + · · · ] = ~α [−α(x− x0)]1/2 ,

1
~

∫ x0

x

p(x) dx = α3/2

∫ x0

x

(x0 − x)1/2 dx = 2 [−α(x− x0)]3/2/3 .

(14.23)

for x� x0. So in the patching region, the WKB solutions are given by:

ψ(x) ∼





1√
~αz1/4

{
C e+2z3/2/3 +D e−2z3/2/3

}
, for x� x0,

1√
~α(−z)1/4

{
Ae+i2(−z)3/2/3 +B e−i2(−z)3/2/3

}
, for x� x0,

(14.24)

where z = α(x− x0). Comparing Eqs. (14.21) with (14.24), we find that

a =

√
4π
~α

D , b =
√

π

~α
C , (14.25)

and

(a+ ib) e+iπ/4 = +i

√
4π
~α

A , (a− ib) e−iπ/4 = −i
√

4π
~α

B , (14.26)

from which we find the relations:

a = i

√
π

~α
(Ae−iπ/4 −B e+iπ/4) = 2

√
π

~α
D , (14.27)

and

b =
√

π

~α
(Ae−iπ/4 +B e+iπ/4) =

√
π

~α
C . (14.28)

Eliminating now the patching wave function constants a and b, we find the relations we seek between the
WKB constants to the right and left of the turning point:

C

2
=

1
2

[
Ae−iπ/4 +B e+iπ/4

]
,

D =
i

2

[
Ae−iπ/4 −B e+iπ/4

]
,

(14.29)

or

A = (C/2− iD ) e+iπ/4 ,

B = (C/2 + iD ) e−iπ/4 .
(14.30)

14.3.2 Negative slope

We now turn to the case when the derivative of the potential at the turning point is negative, as shown in
Fig. 14.1(b). Here, we write the WKB solutions in the form:

ψ(x) =





A√
p(x)

exp[ +i
∫ x

x0

p(x)dx/~ ] +
B√
p(x)

exp[−i
∫ x

x0

p(x)dx/~ ] , x > x0,

C√
p̃(x)

exp[ +
∫ x0

x

p̃(x)dx/~ ] +
D√
p̃(x)

exp[−
∫ x0

x

p̃(x)dx/~ ] , x < x0.

(14.31)
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For this case,
V (x) = V (x0) + V ′(x0) (x− x0) + · · · , (14.32)

with E = V (x0) and V ′(x0) < 0. The exact solutions are again Airy functions, but with negative arguement:

ψp(x) = aAi[−α(x− x0)] + bBi[−α(x− x0)] , (14.33)

where α is now defined by: α = [−2mV ′(x0)/~2 ]1/3 > 0. The asymptotic forms for the patching wave
function are now given by:

ψp(x) ∼





1
2i
√
πz1/4

{
(a+ ib) e+i[2z3/2/3+π/4] − (a− ib) e−i[2z3/2/3+π/4]

}
, x� x0,

1√
π(−z)1/4

{
b e+2(−z)3/2/3 +

a

2
e−2(−z)3/2/3

}
, x� x0,

(14.34)

Here z = α(x− x0).
For the WKB solutions, in the patching region we have:

p(x) =
√

2m[E − V (x0)− V ′(x0)(x− x0) + · · · ] = ~α [α(x− x0)]1/2 ,

1
~

∫ x

x0

p(x) dx = α3/2

∫ x

x0

(x− x0)1/2 dx = 2 [α(x− x0)]3/2/3 ,

(14.35)

for x� x0 and

p̃(x) =
√

2m[V (x0) + V ′(x0)(x− x0) + · · · − E] = ~α [−α(x− x0)]1/2 ,

1
~

∫ x0

x

p̃(x) dx = α3/2

∫ x0

x

(x0 − x)1/2 dx = 2 [−α(x− x0)]3/2/3 ,

(14.36)

for x� x0. So in the patching region, the WKB solutions are given by:

ψ(x) ∼





1√
~αz1/4

{
Ae+i2z3/2/3 +B e−i2z

3/2/3
}
, x� x0,

{
C e+2(−z)3/2/3 +De−2(−z)3/2/3

}
, x� x0,

(14.37)

where z = α(x− x0). Comparing Eqs. (14.34) with (14.37), we find that

(a+ ib) e+iπ/4 = +i

√
4π
~α

A , (a− ib) e−iπ/4 = −i
√

4π
~α

B , (14.38)

and

a =

√
4π
~α

D , b =
√

π

~α
C , (14.39)

which are the same relations as Eqs. (14.25) and (14.26). So we find the same answers here as before:

a = i

√
π

~α
(Ae−iπ/4 −B e+iπ/4) = 2

√
π

~α
D , (14.40)

and

b =
√

π

~α
(Ae−iπ/4 +B e+iπ/4) =

√
π

~α
C , (14.41)
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and eliminating the patching wave function constants a and b, we find the relations we seek between the
WKB constants to the right and left of the turning point:

C

2
=

1
2

[
Ae−iπ/4 +B e+iπ/4

]
,

D =
i

2

[
Ae−iπ/4 −B e+iπ/4

]
,

(14.42)

or

A = (C/2− iD ) e+iπ/4 ,

B = (C/2 + iD ) e−iπ/4 .
(14.43)

14.4 Examples

We apply our results for turning points to the two examples below.

14.4.1 Bound states

For a bound state situation, we consider a simple potential well shown in Fig. 14.2. Here we take the WKB

V(x)

x
x

E

1 x2

Figure 14.2: Potential well.

solutions to be of the form:

ψ(x) =





A√
p̃(x)

exp[−
∫ x1

x

p̃(x)dx/~ ] , x < x1,

B√
p(x)

exp[ +i
∫ x

x1

p(x)dx/~ ] +
C√
p(x)

exp[−i
∫ x

x1

p(x)dx/~ ] , x1 < x < x2,

D√
p̃(x)

exp[−
∫ x

x2

p̃(x)dx/~ ] , x2 < x.

(14.44)

Applying Eq. (14.43) for the turning point at x = x1, we find:

B = −iA e+iπ/4 , C = +iA e−iπ/4 . (14.45)
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In order to apply Eq. (14.30) for the turning point at x = x2 we set:
∫ x

x1

p(x)dx/~ = Θ−
∫ x2

x

p(x)dx/~ , where Θ =
∫ x2

x1

p(x)dx/~ . (14.46)

Then

ψ(x) =
C e−iΘ√
p(x)

exp[ +i
∫ x2

x

p(x)dx/~ ] +
B e+iΘ

√
p(x)

exp[−i
∫ x2

x

p(x)dx/~ ] , (14.47)

for x1 < x < x2. This is now of the form required to apply Eq. (14.30) for the turning point at x = x2. We
find:

C e−iΘ = −iD e+iπ/4 , B e+iΘ = +iD e−iπ/4 . (14.48)

So from Eqs. (14.45) and (14.48), we find:

D = −e+i(Θ+π/2)A = −e−i(Θ+π/2)A , (14.49)

which requires that
sin(Θ + π/2) = 0 , (14.50)

so that:

Θ =
∫ x2

x1

p(x)dx/~ = (n+ 1/2)π > 0 , (14.51)

where n = 0, 1, 2, . . . . Note here that the values of n must be chosen so that Θ is non-negative. The WKB
wave function is given by:

ψn(x) = A





1√
p̃(x)

exp[−
∫ x1

x

p̃(x)dx/~ ] , x < x1,

2√
p(x)

sin
{∫ x

x1

p(x)dx/~ + π/4
}
, x1 < x < x2,

(−)n√
p̃(x)

exp[−
∫ x

x2

p̃(x)dx/~ ] , x2 < x.

(14.52)

14.4.2 Tunneling

For a tunneling situation, we consider the simple potential barrier shown in Fig. 14.3. Here we take the
WKB solutions to be of the form:

ψ(x) =





A√
p(x)

exp[−i
∫ x1

x

p(x)dx/~ ] +
B√
p(x)

exp[ +i
∫ x1

x

p(x)dx/~ ] , x < x1,

C√
p̃(x)

exp[ +
∫ x

x1

p̃(x)dx/~ ] +
D√
p̃(x)

exp[−
∫ x

x1

p̃(x)dx/~ ] , x1 < x < x2,

F√
p(x)

exp[ +i
∫ x

x2

p(x)dx/~ ] +
G√
p(x)

exp[−i
∫ x

x2

p(x)dx/~ ] , x2 < x.

(14.53)

Here we must be careful to identify incoming and outgoing flux for the WKB solutions far from the scattering
region. We first note that as x→ ±∞, p(x) ∼ p0 =

√
2mE, a constant. The probability flux is given by:

j(x) =
~

2mi

{
ψ∗(x)

∂ψ(x)
∂x

+
∂ψ∗(x)
∂x

ψ(x)
}
. (14.54)

So as x→ +∞, we find:

jF (x) ∼ +
|F |2
m

, jG(x) ∼ −|G|
2

m
, (14.55)
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V(x)

xxx

E

1 2

Figure 14.3: Potential barrier.

so F is the amplitude of the outgoing wave and G the amplitude for the incoming wave. For x→ −∞, the
situation is just reversed. Here, as x→ −∞,

jA(x) ∼ +
|A|2
m

, jB(x) ∼ −|B|
2

m
, (14.56)

so that A is the amplitude of the outgoing wave and B the amplitude for the incoming wave.
Applying now the connection formulas, Eqs. (14.30), for a turning point with positive slope at x = x1,

we find:

A = (C/2 + iD ) e−iπ/4 ,

B = (C/2− iD ) e+iπ/4 .
(14.57)

This time in order to apply the connection forumulas Eqs. (14.42), for negative slope at x = x2, we set:
∫ x

x1

p̃(x)dx/~ = Θ̃−
∫ x2

x

p̃(x)dx/~ , where Θ̃ =
∫ x2

x1

p̃(x) dx /~ . (14.58)

Then, the WKB solution for x1 < x < x2 becomes:

ψ(x) =
De−Θ̃

√
p̃(x)

exp[ +
∫ x2

x

p̃(x)dx/~ ] +
C e+Θ̃

√
p̃(x)

exp[−
∫ x2

x

p̃(x)dx/~ ] , (14.59)

So now using Eq. (14.42), we find:

D

2
=

1
2

[
F e−iπ/4 +Ge+iπ/4

]
e+Θ̃

C =
i

2

[
F e−iπ/4 −Ge+iπ/4

]
e−Θ̃ .

(14.60)

Combinining Eqs. (14.57) and (14.60), we find:
(
A
B

)
=
(

cosh γ i sinh γ
−i sinh γ cosh γ

)(
F
G

)
, (14.61)

c© 2009 John F. Dawson, all rights reserved. 166



REFERENCES REFERENCES

where
γ = ln[ 2 eΘ̃ ] = Θ̃ + ln 2 , (14.62)

so that
sinh γ =

1
2

[
2 eΘ̃ − 1

2 eΘ̃

]
, and cosh γ =

1
2

[
2 eΘ̃ +

1
2 eΘ̃

]
. (14.63)

Eq. (14.61) agrees with Liboff [2, p. 269] and Merzbacher [3][p. 126, Eq. (7.30)]. In and out coefficients and
the S-matrix are defined by:

Φin =
(
A
G

)
, Φout =

(
F
B

)
, Φout = S Φin . (14.64)

Rearranging Eq. (14.61), we find:

S =
(

sechγ −i tanhγ
−i tanhγ sechγ

)
, (14.65)

in agreement with Eq. (13.30) if we put sechγ = cos θ and then tanhγ = − sin θ. So in the WKB approxi-
mation, the S-matrix is unitary. It also satisfies time reversal. However it also satisfies parity, even though
we did not require that in our derivation of Eq. (14.65).

The right and left transmission and reflection coefficients are equal and are given by:

TR = TL = sech2γ , RR = RL = tanh2γ , (14.66)

and add to one.
So the WKB approximation conserves probability.
In the limit Θ̃→∞, we have:

sinh γ = eΘ̃
{

1− 1
4
e−Θ̃

}
, cosh γ = eΘ̃

{
1 +

1
4
e−Θ̃

}
, (14.67)

so that

T ∼ e−2Θ̃ , R ∼
[

1− e−Θ̃/4
1 + e−Θ̃/4

]2

∼ 1− e−2Θ̃ . (14.68)
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Chapter 15

Spin systems

Spin-1/2 systems are particularly important. Electrons, protons, and neutrons all have spin 1/2. The behav-
ior of these particles in various physical situations is important to understand because of the applications of
these properties to useful devices, such as atomic clocks, electron and proton spin resonance, and microwave
devices. These are all quantum devices that work according to quantum mechanics. Spin-1/2 systems also
provide a means of analyzing any two-level system, and provide quantum solutions to such systems. For
example, optical pumping of two-level systems can by analyzed by spinors.

15.1 Magnetic moments

The magnetic moment of a spin-1/2 particle is given by:

µ =
qλ

mc
S =

qλ ~
2mc

σ , with S =
~
2
σ , (15.1)

where σi are the Pauli matrices, defined below. For electrons, q = −e, λ = 1, and m = me is the electron
mass. For protons, q = +e, λ = 1.397, and m = Mp. For the neutron, q = −e, λ = 0.957, with m = Mp.

15.2 Pauli matrices

The Pauli matrices are defined by:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
.

The σ-matrices are all Hermitian and traceless. They obey the algebra,

[σi, σj ] = σiσj − σjσi = 2i εijkσk ,
{σi, σj } = σiσj + σjσi = 2 δijI ,

(15.2)

from which we find:
σiσj = δijI + iεijkσk . (15.3)

We also note that σ2 σi σ2 = −σ∗i . If a and b are vectors, then multiplying Eq. (15.3) by ai and bj gives:

(a · σ) (b · σ) = (a · b) I + i(a× b) · σ . (15.4)

Next, we establish trace formulas. From Eq. (15.3), we find that:

Tr[σiσj ] = 2 δij , (15.5)
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from which we find:

Tr[ a · σ ] = 0 ,
Tr[ (a · σ) (b · σ) ] = 2 (a · b) ,

Tr[ (a · σ) (b · σ) (c · σ) ] = 2ia · ( b× c ) , etc.
(15.6)

Any 2× 2 matrix A can be written as:

A =
1
2
[
a0 + a · σ

]
, (15.7)

where, from Eq. (15.6), we find:
a0 = Tr[A ] , a = Tr[σA ] . (15.8)

If A is Hermitian, then a0 and a must be real.

15.2.1 The eigenvalue problem

In the next theorem, we solve the eigenvalue problem for the operator r̂ · σ.

Theorem 34. The eigenvalue problem for the operator r̂ · σ:

( r̂ · σ )χλ(r̂) = λχλ(r̂) , (15.9)

where r̂ is a unit vector given by:

r̂ = x êx + y êy + z êz , with x2 + y2 + z2 = 1 ,
= sin θ cosφ êx + sin θ sinφ êy + cos θ êz ,

(15.10)

has solutions with eigenvalues λ = ±1, and eigenvectors χ±(r̂), given by:

χ+(r̂) =
(
e−iφ/2 cos(θ/2)
e+iφ/2 sin(θ/2)

)
=

e−iφ/2

2 cos(θ/2)

(
1 + x3

x1 + ix2

)
=

e−iφ/2

2 sin(θ/2)

(
x1 − ix2

1− x3

)
,

χ−(r̂) =
(
−e−iφ/2 sin(θ/2)
e+iφ/2 cos(θ/2)

)
=

e+iφ/2

2 cos(θ/2)

(
−x1 + ix2

1 + x3

)
=

e−iφ/2

2 sin(θ/2)

(
x3 − 1
x1 + ix2

)
.

(15.11)

Proof. We note that:

r̂ · σ =
(

z x− iy
x+ iy −z

)
=
(

cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
, (15.12)

from which we can easily find eigenvalues and eigenvectors. The rest of the proof is straightforward, and we
leave it for an exercise for the reader.

Exercise 32. Find the eigenvalues and eigenvectors given in Theorem 34.

The unitary transformation which brings the matrix (x̂ ·σ) to diagonal form is then given by row’s made
up of the complex conjugate of the two eigenvalues:

D(r̂) =
(
e+iφ/2 cos(θ/2) e−iφ/2 sin(θ/2)
−e+iφ/2 sin(θ/2) e−iφ/2 cos(θ/2)

)
. (15.13)

Then:

D(r̂) (r̂ · σ)D†(r̂) =
(

1 0
0 −1

)
= êz · σ . (15.14)
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Exercise 33. Show that

D(θ, φ) = ein̂(φ)·σ θ/2 , where n̂(φ) = − cosφ êx + sinφ êy . (15.15)

Prove also Eq. (15.14) by direct multiplication of the matrices. Draw a picture of a coordinate system for
the eigenvalue problem, showing the vectors r̂ and n̂, and the angles θ and φ.

Exercise 34. Show also that the D(θ, φ), given in Eq. (15.13) above, is related to the D(1/2) matrix defined
by the Eular angles in Eq. (21.158), by the equation:

D(θ, φ) = D(1/2)(0, θ, φ) . (15.16)

Show in a diagram how these two coordinates are related to the Eular angles.

Definition 29. Projection operators are defined by:

P+(θ, φ) = χ+(θ, φ)χ†+(θ, φ) =
1
2

( 1 + r̂ · σ ) =
(

cos2(θ/2) e−iφ sin(θ)/2
eiφ sin(θ)/2 sin2(θ/2)

)
,

P−(θ, φ) = χ−(θ, φ)χ†−(θ, φ) =
1
2

( 1− r̂ · σ ) =
(

sin2(θ/2) −e−iφ sin(θ)/2
−eiφ sin(θ)/2 cos2(θ/2)

)
.

(15.17)

We note that P+(θ, φ) + P−(θ, φ) = 1.

Remark 25. We can think of χ+(θ, φ) as representing the eigenstate of spin up in the r̂ direction, and P+(θ, φ)
as the density matrix which describes a particle with spin up in the r̂ direction. Any eigenvector can be
written as a linear combination of spin up and spin down eigenvectors with respect to any axis.

Exercise 35. Show that P±(θ, φ) project from any arbitrary spinor χ an eigenstate of r̂ ·σ with eigenvalue
±1.

Exercise 36. Show that: Tr[P (θ, φ) ] = 1 and Tr[σP (θ, φ) ] = r̂.

15.3 Spin precession in a magnetic field

We consider a particle with magnetic moment µ and spin-1/2 in a constant magnetic field of magnitude B0.
The Hamiltonian is given by:

H = −µ ·B0 = − qλ ~
2mc

σ ·B0 =
~
2
σ · ω0 , where ω0 = γB0 , with γ = − qλ

mc
. (15.18)

The commutation relations for spin at time t are:

[Si(t), Sj(t) ] = i~ εijk Sk(t) , or [σi(t), σj(t) ] = 2i εijk σk(t) . (15.19)

(i) In the Heisenberg picture, we have

σ̇i(t) =
1
i~

[σi(t), H(t) ] =
1
2i

[σi(t), σj(t)ω0 j ] = εijk ω0 j σk(t) , (15.20)

which we can write in a vector notation as:

dσ(t)
dt

= ω0 × σ(t) . (15.21)

This equation represents precession of the operator σ(t) about the direction ω̂0 = ω0/ω0. The solution
is:

σ(t) = (σ(0) · ω̂0 ) ω̂0 + ( ω̂0 × σ(0) )× ω̂0 cos(ω0t) + ( ω̂0 × σ(0) ) sin(ω0t) . (15.22)
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Let us set p̂(t) = 〈σ(t) 〉 so that the average value of the spin is 〈S(t) 〉 = ~ p(t)/2. Then we find:

p̂(t) = ( p̂(0) · ω̂0 ) ω̂0 + ( ω̂0 × p̂(0) )× ω̂0 cos(ω0t) + ( ω̂0 × p̂(0) ) sin(ω0t) . (15.23)

Now for a spin-1/2 system, there are no higher moments since 〈σ2
i (t) 〉 = 1, and since the correlation

coefficients, given by 〈σi(t)σj(t) 〉 = iεijk 〈σk(t) 〉 = iεijk pk(t), are related to average values of the spin,
it turns out that the average value of the spin, p̂(t) completely describes the state of the system. We
can understand this result by considering the general form of the density matrix. In the Schrödinger
representation, the density matrix is defined by:

ρ(t) := |ψ(t) 〉〈ψ(t) | = 1
2

( 1 + p̂(t) · σ ) . (15.24)

The density matrix satisfies:

Tr[ ρ(t) ] = 〈ψ(t) |ψ(t) 〉 = 〈ψ(0) |ψ(0) 〉 = 1 ,
Tr[σ ρ(t) ] = 〈ψ(t) |σ |ψ(t) 〉 = 〈σ(t) 〉 = p̂(t) .

(15.25)

We also note that the density matrix is idempotent: ρ(t)ρ(t) = ρ(t). So

1
2

( 1 + p̂(t) · σ )
1
2

( 1 + p̂(t) · σ ) =
1
4

( 1 + p̂(t) · p̂(t) + 2 p̂(t) · σ ) ≡ 1
2

( 1 + p̂(t) · σ ) , (15.26)

so p̂(t) · p̂(t) = 1. That is p̂(t) is a unit vector for all t. p̂(t) is called the polarization vector for the
spin-1/2 system.

(ii) In the Schrödinger picture, we want to solve Schrödinger’s equation:

H |ψ(t) 〉 =
~
2
σ · ω0 |ψ(t) 〉 = i~

∂|ψ(t) 〉
∂t

. (15.27)

We solve this problem by putting

|ψ(t) 〉 =
∑

i

ci e
−iEit/~ |ψi 〉 , (15.28)

where |ψi 〉 and Ei are eigenvectors and eigenvalues of the equation:

~
2
σ · ω0 |ψi 〉 = Ei |ψi 〉 . (15.29)

Putting Ei = ~ωi/2, the eigenvalue equation becomes:

σ · ω0 |ψi 〉 = ωi |ψi 〉 . (15.30)

Solutions exist if:
∣∣∣∣
ω0 z − ω ω0 x − iω0 y

ω0 x + iω0 y −ω0 z − ω

∣∣∣∣ = ω2 − (ω2
0 x + ω2

0 y + ω2
0 z) = (ω − ω0)(ω + ω0) = 0 . (15.31)

So ω = ±ω0. From Theorem 34, the eigenvectors are given by:

|ω0,+ 〉 =
(
e−iα/2 cos(β/2)
e+iα/2 sin(β/2)

)
, and |ω0,−〉 =

(
−e−iα/2 sin(β/2)
e+iα/2 cos(β/2)

)
, (15.32)

where (α, β) are the azimuthal and polar angles of the vector ω0 in an arbitrary coordinate system.
However the eigenvectors are much simpler if we choose this arbitrary coordinate system so that ω0 is
in the z-direction. Then α = β = 0, and the eigenvectors become:

|ω0,+ 〉 =
(

1
0

)
, and |ω0,−〉 =

(
0
1

)
. (15.33)
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Then the general solution of Schrödinger’s equation is:

|ψ(t) 〉 = c+ e
−iω0t/2 |ω0,+ 〉+ c− e

+iω0t/2 |ω0,−〉 =
(
c+ e

−iω0t/2

c− e+iω0t/2

)
(15.34)

At t = 0, the spin state is an eigenvector with eigenvalue +~/2 pointing in a direction specified by the
polar angles (φ, θ), which is given by:

|ψ(0) 〉 =
(
e−iφ/2 cos(θ/2)
e+iφ/2 sin(θ/2)

)
=
(
c+
c−

)
. (15.35)

So the solution to Schrödinger’s equation is:

|ψ(t) 〉 =
(
e−i(φ+ω0t )/2 cos(θ/2)
e+i(φ+ω0t )/2 sin(θ/2)

)
. (15.36)

The density matrix is then given by:

ρ(t) = |ψ(t) 〉〈ψ(t) | =
(
e−i(φ+ω0t )/2 cos(θ/2)
e+i(φ+ω0t )/2 sin(θ/2)

)(
e+i(φ+ω0t )/2 cos(θ/2) , e−i(φ+ω0t )/2 sin(θ/2)

)

=
(

sin2(θ/2) e+i(φ+ω0t ) sin(θ/2) cos(θ/2)
e−i(φ+ω0t ) sin(θ/2) cos(θ/2) cos2(θ/2)

)

=
1
2

(
1 + cos(θ) e+i(φ+ω0t ) sin(θ)

e−i(φ+ω0t ) sin(θ) 1− cos(θ)

)
=

1
2

( 1 + p̂(t) · σ ) ,

(15.37)

where p̂(t) is a unit vector given by:

p̂(t) = sin(θ) cos(φ+ ω0t) êx + sin(θ) sin(φ+ ω0t) êy + cos(θ) êz , (15.38)

which represents precession of the polarization vector p̂(t) about the z-axis by an amount ω0, and in
agreement with the Heisenberg result, Eq. (15.23), for our special coordinate system.

In this section, we discuss the dynamics of a free spin-1/2 proton in a magnetic field B(t). The Hamil-
tonian for this system is given by:

H(t) = −µ ·B(t) , where µ =
~λ
2m

σ , (15.39)

where λ = +1.123 and m is the mass of the proton. Schrödinger’s equation is given by:

H χ(t) = i~
dχ(t)

dt
. (15.40)

15.4 Driven spin system

In this example, we add a time-dependent external magnetic field B1(t), perpendicular to B0, to the spin-1/2
system of example ??. The Hamiltonian then takes the form:

H = − qλ ~
2mc

σ · ( B0 + B1(t) ) =
~
2
σ · (ω0 + ω1(t) ) , (15.41)

where
ω0 = γB0 , and ω1(t) = γB1(t) . (15.42)
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So we put:

H0 =
~
2
σ · ω0 , and H1(t) =

~
2
σ · ω1(t) . (15.43)

So we find:
H ′1(t) =

~
2
e+iσ·ω0t/2 σ · ω1(t) e−iσ·ω0t/2 (15.44)

Let us fix the coordinate system so that ω0 = ω0êz. Let us also consider the case when ω1(t) rotates
uniformly about the z-axis:

ω1(t) = ω1

[
sin(β) cos(γt) êx + sin(β) sin(γt) êy + cos(β) êz

]
. (15.45)

From the appendix, we find that:

e+iσzω0t/2 σx e
−iσzω0t/2 = σx cos(ω0t)− σy sin(ω0t) ,

e+iσzω0t/2 σy e
−iσzω0t/2 = σx sin(ω0t) + σy cos(ω0t) ,

e+iσzω0t/2 σz e
−iσzω0t/2 = σz .

(15.46)

So H ′1(t) becomes:

H ′1(t) =
~
2
{ [

σx cos(ω0t)− σy sin(ω0t)
]
ω1 x(t) +

[
σx sin(ω0t) + σy cos(ω0t)

]
ω1 y(t) + σz ω1 z(t)

}

=
~
2
{
σx
[
ω1 x(t) cos(ω0t) + ω1 y(t) sin(ω0t)

]

+ σy
[
ω1 y(t) cos(ω0t)− ω1 x(t) sin(ω0t)

]
+ σz ω1 z(t)

}

=
~ω1

2
{
σx sin(β)

[
cos(γt) cos(ω0t) + sin(γt) sin(ω0t)

]

+ σy sin(β)
[

sin(γt) cos(ω0t)− cos(γt) sin(ω0t)
]

+ σz cos(β)
}

=
~ω1

2
{
σx sin(β) cos(ωt) + σy sin(β) sin(ωt) + σz cos(β)

}
,

(15.47)

where ω = γ − ω0. It is now useful to transform to a coordinate system rotating about the z-axis by an
amount ω. So let

ωx = ω′x cos(ωt)− ω′y sin(ωt) ,

ωy = ω′x sin(ωt) + ω′y cos(ωt) ,

ωz = ω′z .

(15.48)

Then (15.47) becomes:

H ′(t) =
~ω1

2
{

sin(β)σ′x + cosβ σ′z
}

=
~
2

B′ · σ′ , (15.49)

where
B′ = ω1

(
sin(β) ê′x + cos(β) ê′z

)
= ω1 n̂′ , (15.50)

where
n̂′ = sin(β) ê′x + cos(β) ê′z , and |B′ | = ω1 . (15.51)

In this coordinate system, B′ is independent explicitly of time. So this is now the same problem as what
we solved in Example ?? for a constant magnetic field only now, the magnetic field is pointed in the n̂′

direction in the rotating system and has magnitude ω1. This is illustrated in Fig. 15.1. So the solution in
the rotating coordinate system is precession about n̂′ by an amount ω1. So the polarization vector in this
rotating coordinate system is given by Eq. (15.23), evaluated in the rotating system:

p̂′(t) = ( p̂′(0) · n̂′ ) n̂′ + ( n̂′ × p̂′(0) )× n̂′ cos(ω1t) + ( n̂′ × p̂′(0) ) sin(ω1t) . (15.52)
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x
′

y
′

z
′

B0

B1(t)

n̂
′

Figure 15.1: Spin precession in the rotating coordinate system.

Recall that β is the angle between B0 and B1(t). If β = π/2 so that n̂′ = ê′x and if at t = 0 the polarization
points in the negative z′-direction p̂′(0) = −ê′z, as shown in Fig. 15.1, the polarization vector traces a circle
in the x′z′-plane of the rotating coordinate system, with the magnitude of the polarization going the full
range from −1 ≤ p(t) ≤ +1. The x′y′x′ coordinate system rotates with respect to the laboratory fixed
system with a frequency ω = γ − ω0, so if the system is tuned so that ω = 0, the x′y′z′-system is also fixed
in the laboratory. This results in a resonance state where the spin system absorbs electromagnetic energy
and reradiates this energy from the B1(t) field. If ω is some other value, the plane of the polarization vector
rotates, either clockwise or counter clockwise depending on the sign of ω. If β 6= π/2, the polarization vector
never completely flips over.

15.5 Spin decay: T1 and T2

Here we discuss decay of spin systems caused by interactions with magnetic fields produced by other atoms.

15.6 The Ising model

Here we discuss the Ising model.
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15.7 Heisenberg models

Here we discuss the Heisenberg xx and xy spin models.

References
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Chapter 16

The harmonic oscillator

Harmonic oscillation occurs in many branches of quantum physics and is an important motion to study in
detail. In this chapter we discuss quantization of the classical system, the eigenvalue problem, coherent and
squeezed states, and the forced oscillator.

We also discuss the fermi oscilator and its relation to supersymmetry.

16.1 The Lagrangian

The classical Lagrangian for a particle subject to a harmonic restoring force in one-dimension is given by:

L(q, q̇) =
1
2
m ( q̇2 − ω2

0 q
2 ) . (16.1)

It is useful to first remove the units from this problem. Let us define the oscillator length parameter b by:

b =
√

~
mω0

, (16.2)

and put q̄ = q/b. If we set τ = ω0t and put

q̇ ≡ dq
dt

= b ω0
dq̄
dτ
≡ b ω0 q̄

′ , (16.3)

then q̄′ has no units. The Lagrangian then becomes:

L(q, q̇) =
~ω0

2
( q̄′ 2 − q̄2 ) ≡ ~ω0 L̄(q̄, q̄′) , (16.4)

so that L̄(q̄, q̄′) has no units. So let us just revert back to using the unbarred coordinate system and dots
instead of primes and assume throughout this section that we have scaled the units as above. We then have
the Lagrangian:

L(q, q̇) =
1
2

( q̇2 − q2 ) , p =
∂L(q, q̇)
∂q̇

= q̇ . (16.5)

The Hamiltonian is:
H(q, p) =

1
2

( p2 + q2 ) , and { q, p } = 1 . (16.6)

Our scaling is equivalent to setting:
m = ω0 = ~ = 1 . (16.7)
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To recover ordinary units, one can perform the following replacements:

q 7→ q/b , p 7→ b p/~ , t 7→ ω0t , H 7→ ~ωH . (16.8)

Here we have introduced a scale, ~, into the classical system in anticipation of canonical quantization. So
we now map q 7→ Q and p 7→ P to Hermitian operators in Hilbert space, with the result:

H(Q,P ) =
1
2

(P 2 +Q2 ) , and [Q,P ] = i . (16.9)

The time development operator is
U(t) = e−iHt . (16.10)

The Heisenberg equations of motion are:

Q̇ = [Q,H ]/i = P ,

Ṗ = [P,H ]/i = −Q ,
(16.11)

so that:
Q̈+Q = 0 , P̈ + P = 0 . (16.12)

These equations have solutions:

Q(t) = U†(t)QU(t) = Q cos t+ P sin t , (16.13)

P (t) = U†(t)P U(t) = P cos t−Q sin t .

Here Q and P are time-independent Hermitian operators. We can put:1

Q(t) =
1√
2

(
A(t) +A†(t)

)
, A(t) =

1√
2

(
Q(t) + iP (t)

)
, (16.15)

P (t) =
1
i
√

2

(
A(t)−A†(t)

)
, A†(t) =

1√
2

(
Q(t)− iP (t)

)
,

so that [A,A† ] = 1. The equations of motion for A(t) and A†(t) are:

Ȧ = [A,H ]/i = −i A , Ȧ† = [A†, H ]/i = +i A† , (16.16)

which have the solutions:

A(t) = U†(t)AU(t) = Ae−it , A†(t) = U†(t)A† U(t) = A† e+it . (16.17)

We will use these results in this chapter.

16.2 Energy eigenvalue and eigenvectors

It is useful to obtain solutions to the energy eigenvalue problem. This is defined by the equation:

H |n 〉 = En |n 〉 , H =
1
2

(P 2 +Q2 ) , (16.18)

1In ordinary units,

Q(t) =
b√
2

`
A(t) +A†(t)

´
, A(t) =

1√
2

`
Q(t)/b+ ib P (t)/~

´
, (16.14)

P (t) =
~

i
√

2b

`
A(t)−A†(t)

´
, A†(t) =

1√
2

`
Q(t)/b− ib P (t)/~

´
,

A(t) and A†(t) have no units.
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where the operators Q and P are at t = 0. The eigenvalue problem is easily solved by putting at t = 0,

Q =
(
A+A†

)
/
√

2 , P =
(
A−A†

)
/i
√

2 , (16.19)

so that [A,A† ] = 1, and

H =
1
2
(
A†A+AA†

)
= N + 1/2 , N = A†A . (16.20)

The eigenvalue problem for H then reduces to that for N , where we can use the results of the next theorem:

Theorem 35 (The number operator). The eigenvalues and eigenvectors of the number operator N :

N |n 〉 = n |n 〉 , N = A†A , [A,A† ] = 1 , (16.21)

is given by n = 0, 1, 2, . . . , with

A |n 〉 =
√
n |n− 1 〉 , A† |n 〉 =

√
n+ 1 |n+ 1 〉 , (16.22)

and

|n 〉 =
[A† ]n√
n!
| 0 〉 . (16.23)

Proof. We start by noting that N is a positive definite operator and therefore has a lower bound:

〈n |N |n 〉 = 〈n |A†A|n 〉 = 〈An |An 〉 = n 〈n |n 〉 , (16.24)

so

n =
|A|n 〉|2
| |n 〉 |2 ≥ 0 . (16.25)

We also note that:
[A,N ] = A , [A†, N ] = −A† , (16.26)

So

N
{
A |n 〉

}
=
{
AN − [A,N ]

}
|n 〉 = (n− 1)

{
A |n 〉

}
,

N
{
A† |n 〉

}
=
{
A†N − [A†, N ]

}
|n 〉 = (n+ 1)

{
A† |n 〉

}
.

from which we find:
A |n 〉 = cn |n− 1 〉 , A† |n 〉 = dn |n+ 1 〉 ,

and so if the states |n 〉 are normalized to one for all n, we find:

n = 〈n |A†A |n 〉 = | cn |2 〈n− 1 |n− 1 〉 = | cn |2
n+ 1 = 〈n |AA† |n 〉 = | dn |2 〈n+ 1 |n+ 1 〉 = | dn |2 ,

choosing the phases to be one, we find cn =
√
n and dn =

√
n+ 1. This gives the results:

A |n 〉 =
√
n |n− 1 〉 , A† |n 〉 =

√
n+ 1 |n+ 1 〉 .

This means that there is a lowest state, call it |n0 〉 such that

A |n0 〉 = 0 .

But this means that N |n0 〉 = A†A |n0 〉 = n0|n0 〉 = 0, so that n0 = 0. Therefore the eigenvalues are:
n = 0, 1, 2, . . . . The eigenvectors |n 〉 are then obtained by successive application of A† on the ground state
| 0 〉. The result of this, by induction, is:

|n 〉 =
[A† ]n√
n!
| 0 〉 .

This completes the proof.
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To find the wave functions in the coordinate representation, we start by noting that A | 0 〉 = 0 defined
the ground state. Now since A = (Q+ iP )/

√
2,

〈 q |A | 0 〉 =
1√
2
〈 q |( iP +Q ) | 0 〉 =

1√
2

{ d
dq

+ q
}
ψ0(q) = 0 ,

where ψ0(q) = 〈 q | 0 〉. The normalized solution is given by:

ψ0(q) =
1

π1/4
e−

1
2 q

2
,

∫ ∞

−∞
|ψ0(q)|2 dq = 1 . (16.27)

Recall that q is written in units of the oscillator length b. For the states φn(q) with n > 0, we apply the A†

operator in coordinate space on ψ0(q) n times. This gives:

ψn(q) = 〈 q |n 〉 =
1√
n!
〈 q |

[
A†
]n | 0 〉 =

1√
2n!
〈 q |
[
−iP +Q

]n| 0 〉

=
(−1)n

2n/2
√
n!

[
d
dq
− q

]n
ψ0(x) =

(−1)n

π1/4 2n/2
√
n!

[
d
dq
− q

]n
e−

1
2 q

2

=
1

π1/4 2n/2
√
n!
Hn(q) e−

1
2 q

2
,

where we have used the definition of Hermite polynomials:

Hn(q) = (−1)n e
1
2 q

2
[

d
dq
− q

]n
e−

1
2 q

2
= (−1)n

[
eq

2 dn

dqn
e−q

2
]
.

All wave functions are normalized with respect to x:
∫ ∞

−∞
|ψn(q)|2 dq = 1 .

In the momentum representation,

〈 p |A | 0 〉 =
1√
2
〈 p |( iP +Q ) | 0 〉 =

i√
2

{ d
dp

+ p
}
ψ̃0(p) = 0 ,

the normalized solution of which is given by:

ψ̃0(p) =
√

2π
π1/4

e−
1
2p

2
,

∫ ∞

−∞
|ψ̃0(p)|2 dp

2π
= 1 .

Exercise 37. Show that the harmonic oscillator wave functions in the momentum representation is given
by:

ψ̃n(p) =
√

2π
π1/4 2n/2

√
n!
Hn(p) e−

1
2p

2
. (16.28)

16.3 Other forms of the Lagrangian

Starting with the Lagrangian given in Eq. (16.5), let us define x = q and y = q̇, so that in terms of these
variables, we can write the Lagrangian, which we here call L1, in a number of different ways:

L1(x, y; ẋ, ẏ) =
1
2

( y2 − x2 )

= yẋ− 1
2

(x2 + y2 )

=
1
2
(
yẋ− xẏ − x2 − y2

)
+

1
2

d(xy)
dt

,

(16.29)
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But since a total derivative cannot change variation of the action, the Lagrangian

L2(x, y; ẋ, ẏ) =
1
2
(
yẋ− xẏ − x2 − y2

)
(16.30)

must lead to the same equations of motion that we started with. Indeed, using Lagrangian (16.30) we find:

px =
∂L2

∂ẋ
= +

y

2
,

∂L2

∂x
= − ẏ

2
− x ,

py =
∂L2

∂ẏ
= −x

2
,

∂L2

∂y
= +

ẋ

2
− y .

(16.31)

The Hamiltonian is now:

H(x, y) = ẋpx + ẏpy − L2(x, y; ẋ, ẏ) =
1
2

(x2 + y2 ) , (16.32)

and is a function only of x and y. The equations of motion are: ẋ = y and ẏ = −x, from which we can write
Hamilton’s equations in sympletic form as:

d
dt

(
x
y

)
=
(
y
−x

)
=
(
{x,H(x, y) }
{x,H(x, y) }

)
=
(

0 1
−1 0

)(
∂xH(x, y)
∂yH(x, y)

)
. (16.33)

So we must take x and y as independent sympletic variables. That is from Eq. (16.31), we see that the
canonical momentum variables px and py are not independent variables. So we must define Poisson brackets
in this case by:

{A(x, y), B(x, y) } =
(
∂xA(x, y), ∂yA(x, y)

)( 0 1
−1 0

)(
∂xB(x, y)
∂yB(x, y)

)
,

= ∂xA(x, y) ∂yB(x, y)− ∂xB(x, y) ∂yA(x, y) .
(16.34)

In particular, if A(x, y) = x and B(x, y) = y, we have:

{x, y } = 1 . (16.35)

Notice that this means that
{x, px } =

1
2
{x, y } =

1
2
, (16.36)

not one, as would be expected using the canonical momentum px as an independent coordinate. So the
quantization rule is that x 7→ X and y 7→ Y , with the Hamiltonian:

H(X,Y ) =
1
2
(
X2 + Y 2

)
, [X,Y ] = i , (16.37)

which is the same Hamiltonian as before with the same variables and commutation rules. The lesson to be
learned here is that one must be careful to identify the independent sympletic variables using Hamilton’s
classical equations of motion. The Heisenberg equations of motion are:

Ẋ = Y , Ẏ = −X . (16.38)

The Hamiltonian (16.37) is invariant under rotations in the xy-plane, which means that the “angular
momentum”, defined by:

Lz = Y Ẋ −X Ẏ (16.39)
is a constant of the motion. Indeed, from (16.38), we find:

Lz = X2 + Y 2 = 2H = 2N + 1 , (16.40)

so that |n 〉 are eigenvectors of Lz with eigenvalues:

Lz |n 〉 = ( 2n+ 1 ) |n 〉 , n = 0, 1, 2, . . . . (16.41)

That is, we can write: H = Lz/2, with the eigenvalues of Lz being 2n + 1 = 1, 3, 5, . . . . This suggests
a connection between the harmonic oscillator problem and angular momentum theory. In fact, Schwinger
exploted this relation between SU(2) and O(3) to compute angular momentum coefficients.
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16.4 Coherent states

Another way to view the harmonic oscillator is one that minimizes both ∆q and ∆p. This construction is
most closely related to the classical picture of the harmonic oscillator and was originated by Schrödinger in
an early article [1]. As we found in Section 1.6.1, the minimization of Heisenberg’s uncertainty relation for
the harmonic oscillator leads to an eigenvalue equation for the non-Hermitian creation operator A. These
are called coherent states. Some important papers in the subject are those of Dirac [2], Bargmann [3],
Klauder [4], and Klauder and Sudarshan [5].

In our units, the mimimum state is given by:

∆q = ∆p =
1√
2
, with ∆q∆p =

1
2
. (16.42)

From our discussion of the uncertainty principle in Section 1.6.1 on page 25, the minimum |ψ 〉 is the solution
of Eq. (1.132), which in our case becomes:

{∆pQ+ i∆q P } |ψ 〉 = {∆p q̄ + i∆q p̄ } |ψ 〉 , (16.43)

where q̄ and p̄ are the average values of Q and P . Using (16.42), this becomes:

1√
2

(Q+ iP ) |ψ 〉 =
1√
2

( q̄ + ip̄ ) |ψ 〉 . (16.44)

But A = (Q + iP )/
√

2, and if we put a = ( q̄ + ip̄ )/
√

2, we want to find the ket | a 〉 ≡ |ψ 〉 which is the
solution of the eigenvalue problem:

A | a 〉 = a | a 〉 , (16.45)

where a is a complex number. Here the operator A is not Hermitian, the eigenvalues a are complex, and
the eigenvectors | a 〉 are not orthogonal. We will sometimes label the vectors | a 〉 as | q̄, p̄ 〉, and sometimes
by | a, a∗ 〉, depending on what is needed to describe the state. Let us first find a relation between the
eigenvectors | a 〉 and the eigenvectors of the number operator |n 〉. We find:

〈n |A | a 〉 = a 〈n | a 〉 . (16.46)

Using (16.22), we find: √
n+ 1 〈n+ 1 | a 〉 = a 〈n | a 〉 , (16.47)

from which we find by induction:

〈n | a 〉 = N (a)
an√
n!
, where N (a) = 〈 0 | a 〉 . (16.48)

Using (16.23), this gives:

| a 〉 =
∞∑

n=0

|n 〉 〈n | a 〉 = N (a)
∞∑

n=0

[ aA† ]n

n!
| 0 〉 = N (a) exp

{
aA†

}
| 0 〉 , (16.49)

where | 0 〉 is the n = 0 eigenstate of the number operator N . The normalization is arbitrary, but here we
choose it such that:

〈 a | a 〉 =
∣∣N (a)

∣∣2 〈 0 | ea∗A eaA† | 0 〉 =
∣∣N (a)

∣∣2 e| a |2 〈 0 | eaA† ea∗A | 0 〉
=
∣∣N (a)

∣∣2 e| a |2 = 1 , so N (a) = e−| a |
2/2

(16.50)

where we have used Eq. (B.16) in Appendix B twice. So then

| a 〉 = exp
{
−| a |2/2 + aA†

}
| 0 〉 = D(a) | 0 〉 , (16.51)

D(a) = exp
{
aA† − a∗A

}
= exp i

{
p̄ Q− q̄ P

}
= D(q̄, p̄) , (16.52)

c© 2009 John F. Dawson, all rights reserved. 182



CHAPTER 16. THE HARMONIC OSCILLATOR 16.4. COHERENT STATES

where a = ( q̄ + ip̄ )/
√

2 and a∗ = ( q̄ − ip̄ )/
√

2. It is easy to show that D(a) is a displacement operator:

D†(a)AD(a) = A+ a , D†(a)A†D(a) = A† + a∗ , (16.53)

D†(q̄, p̄)QD(q̄, p̄) = Q+ q̄ , D†(q̄, p̄)P D(q̄, p̄) = P + q̄ ,

The normalization choice of Eq. (16.50) is not the best one to use for some applications. Let us instead take
the normalization N (a) = 1, and write the coherent state for this normalization, | a ). Then we have:

〈n | a ) =
an√
n!
, (16.54)

so that Eq. (16.49) becomes:

| a ) :=
∞∑

n=0

|n 〉 〈n | a ) =
∞∑

n=0

[ aA† ]n

n!
| 0 〉 = exp

{
aA†

}
| 0 〉 , (16.55)

so that
∂n| a )
∂an

∣∣∣∣
a=0

=
[
A†
]n | 0 〉 =

√
n! |n 〉 . (16.56)

So | a ) is a generating function for the harmonic oscillator eigenvectors |n 〉. For this normalization, we find:

A† | a ) =
∂ | a )
∂a

. (16.57)

This exercise shows that a different normalization provides a simple differential representation of A†. Note
that | a ) = e| a |

2/2 | a 〉.
Exercise 38. Show that with the normalization choice given in (16.50),

〈 a′ | a 〉 = exp
{
−| a′ − a |2

}
. (16.58)

Exercise 39. Show that the average value of the number operator N in a coherent state is:

n̄ = 〈 a |N | a 〉 = | a |2 , (16.59)

that the average value of the Hamiltonian for a system in a coherent state is:

〈H 〉 = n̄+ 1/2 , (16.60)

and that for a system in a coherent state, the probability of finding it in an eigenstate of N is given by:

Pn(a) = | 〈n | a 〉 |2 =
n̄n

n!
e−n̄ , (16.61)

which is a Poisson distribution.

The average values of position and momentum are easily worked out using the same techniques. We find:

q̄ = 〈Q 〉 =
1√
2
〈 a |A+A† | a 〉 =

1√
2

(a+ a∗) ,

p̄ = 〈P 〉 =
1
i
√

2
〈 a |A−A† | a 〉 =

1
i
√

2
(a− a∗) ,

q2 = 〈Q2 〉 =
1
2
〈 a | (A+A†)2 | a 〉 =

1
2
〈 a | [A† ]2 + 2A†A+ 1 + [A ]2 | a 〉 ,

=
1
2

(a+ a∗)2 +
1
2

= q̄2 +
1
2
,

p2 = 〈P 2 〉 = −1
2
〈 a | (A−A†)2 | a 〉 = −1

2
〈 a | [A† ]2 − 2A†A− 1 + [A ]2 | a 〉 ,

= −1
2

(a− a∗)2 +
1
2

= p̄2 +
1
2
,

(16.62)
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so that:

∆q =
√
q2 − q̄2 = 1/

√
2 , ∆p =

√
p2 − p̄2 = 1/

√
2 , (16.63)

which is what we assumed to start with.
We can also find a coordinate and momentum representation of a coherent state. First, let us note that

by using Eq. (B.16) in Appendix B, we can write D(q̄, p̄) as:

D†(q̄, p̄) = exp i
{
q̄ P − p̄ Q

}
= exp{ip̄ q̄/2} exp{iq̄ P} exp{−ip̄ Q} . (16.64)

Then

ψa(q) = 〈 a | q 〉 = 〈 0 |D†(q̄, p̄) | q 〉
= exp

{
−i( p̄ Q− p̄ q̄/2 )

}
〈 q | exp{iq̄ P} | 0 〉

= exp
{
i( p̄ q̄ − p̄ q̄/2 )

}
〈 0 | q − q̄ 〉

= exp
{
−[ q − q̄ ]2/2− i p̄ [ q − q̄/2 ]

}
/π1/4 .

(16.65)

where we have used the normalized ground state solution of Eq. (16.27). So the coherent state is a Gaussian
in the coordinate representation of width 1/

√
2, centered at q = q̄ and with a momentum centered at p = p̄,

as expected.
In the Heisenberg representation, the displacement operator changes in time according to:

U†(t)D(a)U(t) = U†(t) exp
{
aA† − a∗A

}
U(t) = exp

{
aA†(t)− a∗A(t)

}

= exp
{
aA† e+it − a∗Ae−it

}
= exp

{
a(t)A† − a∗(t)A

}

= D( a(t) ) , where a(t) = a eit .

(16.66)

Similarly,

U†(t)D(q̄, p̄)U(t) = D(q̄(t), p̄(t)) , (16.67)

where

q̄(t) = q̄ cos t+ p̄ sin t ,
p̄(t) = p̄ cos t− q̄ sin t .

(16.68)

So the coherent state eigenvectors change in time according to:

| a, t 〉 = U†(t) | a 〉 = U†(t)D(a)U(t)U†(t) | 0 〉
= eitD( a(t) )| 0 〉
= eit | a(t) 〉 = eit | q̄(t), p̄(t) 〉 ,

(16.69)

So the time-dependent coordinate representation of a coherent state is given by:

ψa(q, t) = 〈 a, t | q 〉 = 〈 a(t) | q 〉 e−it = 〈 q̄(t), p̄(t) | q 〉 e−it

= exp
{
−[ q − q̄(t) ]2/2− i p̄(t) [ q − q̄(t)/2 ]

}
/π1/4 .

(16.70)

We have shown here that if the system is in a coherent state, the wave function in coordinate representation
is a Gaussian with minimum width centered about the classically oscillating position q = q̄(t), with no
change in width in either coordinate or momentum representations. That is it moves like a solitary wave,
called a soliton.
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16.4.1 Completeness relations

Coherent states are not orthogonal; however, we can establish a completeness identity for these states. Let
us first note that we can write:

a =
1√
2

(
q/b+ ib p/~

)
, a∗ =

1√
2

(
q/b− ib p/~

)
, (16.71)

where q and p are in ordinary units. We can also put a = ρeiφ. So we find:

dada∗

2πi
=

dq dp
2π~

=
ρdρdφ
π

. (16.72)

So we find the completeness relation:
∫∫ +∞

−∞

da da∗

2πi
| a 〉〈 a | =

∫ ∞

0

∫ 2π

0

ρ dρ dφ

π
| a 〉〈 a | ,

=
∫ ∞

0

∫ 2π

0

ρ dρ dφ

π

∞∑

n,n′=0

|n 〉 ρ
n+n′e−ρ

2
ei(n−n

′)φ

√
n!n′!

〈n′ | ,

=
∞∑

n=0

|n 〉〈n |
n!

2
∫ ∞

0

e−ρ
2
ρ2n+1dρ =

∞∑

n=0

|n 〉〈n | = 1 .

(16.73)

where the integration goes over the entire complex plane. For example a vector |ψ 〉 can be expanded in
coherent states | a 〉 using (16.73). We find:

|ψ 〉 =
∫∫ +∞

−∞

da da∗

2πi
| a 〉ψ(a) , ψ(a) = 〈 a |ψ 〉 . (16.74)

We can also find a trace using coherent states. It is easy to show that:

Tr[M ] =
∞∑

n=0

〈n |M |n 〉 =
∫∫ +∞

−∞

da da∗

2πi
〈 a |M | a 〉 =

∫∫ +∞

−∞

dq dp
2π~

〈 q, p |M | q, p 〉 . (16.75)

where M is any operator.

16.4.2 Generating function

One of the uses of coherent vectors are as generating functions for matrix elements of operators. As an
example, we will compute matrix elements of the operator [A† ]k. So let us consider:

eλA
† | a, a∗ 〉 = eλA

†
eaA

†−a∗ A | 0 〉 = eλ a
∗/2 e(a+λ)A†−a∗ A | 0 〉 = eλ a

∗/2 | a+ λ, a∗ 〉 . (16.76)

Operating on the left by 〈n |, and inserting a complete set of states, we find:

∞∑

n′=0

〈n | eλA† |n′ 〉 〈n′ | a, a∗ 〉 = eλ a
∗/2 〈n | a+ λ, a∗ 〉 . (16.77)

From Eq. (16.48), we have:

〈n | a, a∗ 〉 = e−a a
∗/2 an√

n!
, (16.78)

so (16.77) becomes:

e−a a
∗/2

∞∑

n′=0

〈n | eλA† |n′ 〉 a
n′

√
n′!

= e[−(a+λ) a∗+λ a∗ ]/2 ( a+ λ )n√
n!

. (16.79)
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The exponential normalization factors cancel here, as they must. Expanding the left and right sides of this
equation in powers of λ using the binomial theorem gives:

∞∑

n′=0

∞∑

k=0

〈n | [A† ]k |n′ 〉 λ
k an

′

k!
√
n′!

=
n∑

n′=0

√
n! an

′
λn−n

′

(n− n′)!n′! , (16.80)

and comparing coefficients of powers of λ give:

〈n | [A† ]k |n′ 〉 = δk,n−n′

√
n!
n′!

. (16.81)

So coherent states can be used as generating functions for matrix elements of operators.

16.5 Squeezed states

Squeezed states are coherent states with arbitrary values of either ∆q or ∆p, but with minimum value of
the product of the two. They can be generated from the coherent states we found in the last section by a
unitary transformation to new operators B and B†. We put:

A = λB + ν B† ,

A† = λ∗A† + ν∗A ,
(16.82)

and require that the commutation relations are preserved:

[A,A† ] = ( |λ |2 − | ν |2 ) [B,B† ] = |λ |2 − | ν |2 = 1 . (16.83)

This change of basis is called a Bogoliubov transformation, after the fellow who first discovered it. We
put:2

λ = cosh(r) , ν = eiφ sinh(r) ,

with r and φ real. Then Eq. (16.82) can be written as:

A = cosh(r)B + e+iφ sinh(r)B† = V †(r, φ)B V (r, φ) ,

A† = cosh(r)B† + e−iφ sinh(r)B = V †(r, φ)B† V (r, φ) .
(16.84)

Using the identities in Appendix B, we easily find:

V (z) = V (r, φ) = exp
{

(z A† 2 − z∗A2 )/2
}

= exp
{

(z B† 2 − z∗B2 )/2
}
, (16.85)

where we have put:
z = r eiφ . (16.86)

The operator V (z) is called the squeeze operator, with squeeze parameter z.

Exercise 40. Show that V (z)V †(z) = 1, and that:

z∗A2 − z A† 2 = z∗B2 − z B† 2 , (16.87)

Exercise 41. Show that the inverse relation of (16.84) is given by:

B = cosh(r)A− e+iφ sinh(r)A† = V (r, φ)AV †(r, φ) ,

B† = cosh(r)A† − e−iφ sinh(r)A = V (r, φ)A† V †(r, φ) .
(16.88)

2The overall phase of the transformation is not physically significant.
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The Hamiltonian is now given by:

H =
1
2
{
A†A+AA†

}
=

1
2
{
B†B +BB† + sinh(2r) ( e+iφB† 2 + e−iφB2 )

}
, (16.89)

So Heisenberg’s equations of motion for A(t) gives:

A(t) = U†(t)AU(t) = Ae−it =
{

cosh(r)B + e+iφ sinh(r)B†
}
e−it ,

A†(t) = U†(t)A† U(t) = A† e+it =
{

cosh(r)B† + e−iφ sinh(r)B
}
e+it ,

(16.90)

whereas for B(t), using Eq. (16.88), we find:

B(t) = U†(t)B U(t) = cosh(r)A(t)− e+iφ sinh(r)A†(t)

= cosh(r)Ae−it − e+iφ sinh(r)A† e+it ,

B†(t) = U†(t)B† U(t) = cosh(r)A†(t)− e−iφ sinh(r)A(t)

= cosh(r)A† e+it − e−iφ sinh(r)Ae−it .

(16.91)

Now let | a 〉b be a coherent eigenvector of B with complex eigenvalue a satisfying:

B | a 〉b = a | a 〉b . (16.92)

Multiplying on the left by V †(z) and using (16.84), we find:

V †(z)B V (z)V †(z) | a 〉b = AV †(z) | a 〉b = a V †(z) | a 〉b , (16.93)

so that V †(z) | a 〉b is an eigenvector A with eigenvalue a. Solving for | a 〉b, we find:

| a 〉b = V (z) | a 〉a . (16.94)

For the system in a squeezed state | a 〉b, the average values of Q and P are given by:

q̄b(t) = b〈 a |Q(t) | a 〉b =
1
i
√

2
b〈 a |(A(t) +A†(t) )| a 〉b

=
1
i
√

2
b〈 a |

{{
cosh(r)B + e+iφ sinh(r)B†

}
e−it +

{
cosh(r)B† + e−iφ sinh(r)B

}
e+it

}
| a 〉b

= cosh(r)
(
q̄a cos(t) + p̄a sin(t)

)
+ sinh(r)

(
q̄a cos(t− φ)− p̄a sin(t− φ)

)
,

= q0 cos(t) + p0 sin(t) ,
(16.95)

and

p̄b(t) = b〈 a |P (t) | a 〉b =
1
i
√

2
b〈 a |(A(t)−A†(t) )| a 〉b

=
1√
2
b〈 a |

{{
cosh(r)B + e+iφ sinh(r)B†

}
e−it −

{
cosh(r)B† + e−iφ sinh(r)B

}
e+it

}
| a 〉b

= cosh(r)
(
p̄a cos(t)− q̄a sin(t)

)
− sinh(r)

(
p̄a cos(t− φ) + q̄a sin(t− φ)

)

= p0 cos(t)− q0 sin t ,
(16.96)

where

q0 = q̄a cosh(r) + sinh(r) ( q̄a cosφ+ p̄a sinφ ) ,
p0 = p̄a cosh(r) + sinh(r) ( p̄a cosφ− q̄a sinφ ) ,

q̄a = (a+ a∗)/
√

2 , p̄a = (a− a∗)/i
√

2 .
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Note that q̄b(t) and p̄b(t) oscillate with the classical frequency, and that ˙̄qb(t) = p̄b(t) and ˙̄pb(t) = −q̄b(t), as
required for the classical solution. For the width functions, we find:

q2
b(t) = b〈 a |Q2(t) | a 〉b =

1
2 b〈 a |(A(t) +A†(t) )2| a 〉b

= q̄2
b (t) +

1
2
{

cosh(2r) + sinh(2r) cos(2t− φ)
}
,

p2
b(t) = b〈 a |P 2(t) | a 〉b = −1

2 b〈 a |(A(t)−A†(t) )2| a 〉b

= p̄2
b(t) +

1
2
{

cosh(2r)− sinh(2r) cos(2t− φ)
}
,

(16.97)

so the width functions are given by:

[ ∆qb(t) ]2 =
{

cosh(2r) + sinh(2r) cos(2t− φ)
}
/2 ,

[ ∆pb(t) ]2 =
{

cosh(2r)− sinh(2r) cos(2t− φ)
}
/2 .

(16.98)

The uncertainty product is:

[ ∆qb(t) ]2 [ ∆pb(t) ]2 =
{

1 + sinh2(2r) sin2(2t− φ)
}
/4 . (16.99)

So if r is very large, ∆qb and ∆pb oscillate between very large values and very small values with a frequency
of twice the natural frequency of the oscillator.

The time dependent coordinate representation for the squeezed state is more difficult to find. The time
dependence of the squeeze operator is given by:

U†(t)V (z)U(t) = exp
{

(z A† 2(t)− z∗A2(t) )/2
}

= exp
{

(z A† 2 e+2it − z∗A2 e−2it )/2
}

= exp
{

(z(t)A† 2 − z∗(t)A2 )/2
}

= exp
{

(z(t)B† 2 − z∗(t)B2 )/2
}

= V ( z(t) ) ,

(16.100)

where
z(t) = r eiφ(t) , φ(t) = φ+ 2t . (16.101)

Thus only φ(t) depends linearly on t. The Heisenberg time dependent squeezed state is given by:

| a, t 〉b = U†(t) | a 〉b = U†(t)V (z)U(t)U†(t) | a 〉a = V (z(t)) | a, t 〉a . (16.102)

But since A = (Q+ iP )/
√

2 and A† = (Q− iP )/
√

2, we have:

V †(z(t)) = exp
{

( z∗(t)A2 − z(t)A† 2 )/2
}

= exp
{
−ir

{
sin(φ(t)) (Q2 + P 2 ) + cos(φ(t)) (QP + PQ )

}}
.

(16.103)

So we will need to find:

ψa(q, t) = 〈 a, t | q 〉 = 〈 a, t |V †(z(t)) | q 〉 = 〈 0 |D(a(t))V †(z(t)) | q 〉 . (16.104)

Squeezed states have been extensively studied in the literature [6]. In fact, Nieto points out in his review
that the squeezed state wave function was first found by Schrödinger in 1926 [1]in his attempts to construct
a wave theory of quantum mechanics, and by Kennard in 1927 [7]. These exact solutions of Schrödinger’s
equation for the harmonic oscillator were interesting at the time because they tracked the classical motion
as closely as possible. The interest in squeezed states was revived in the 1980’s when optical squeezed-state
lasers were constructed.
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16.6 The forced oscillator

The Hamiltonian for a harmonic oscillator driven by an external force f(t) is given by:

H(Q,P ) =
P 2

2m
+

1
2
mω2

0 Q
2 −Qf(t) , where [Q,P ] = i~ , (16.105)

and where f(t) commutes with all quantum operators. Heisenberg’s equations of motion for this system are
given by:

Q̇ = [Q,H ]/i~ = P/m ,

Ṗ = [P,H ]/i~ = −mω2
0 Q+ f(t) ,

(16.106)

from which we find:
Q̈+ ω2

0 Q = j(t) , (16.107)

where j(t) = f(t)/m. Let us first study a problem where |j(t)| → 0 as t→ ±∞. Then in both these limits,
Q(t) satisfies a homogenious equation. We call the solutions for t→ −∞ the “in” operators and the solutions
for t→ +∞ the “out” operators. They both satisfy a homogenious equation:

{
d2

dt2
+ ω2

0

} (
Qin (t)
Qout(t)

)
= 0 , (16.108)

with equal time commutation relations:

[Qin (t), Pin (t) ] = i~ , [Qout(t), Pout(t) ] = i~ . (16.109)

Solutions of (16.108) are given by:

(
Qin (t)
Qout(t)

)
=
√

~
2mω0

{(
Ain

Aout

)
e−iω0t +

(
A†in
A†out

)
eiω0t

}
. (16.110)

The momentum operators are given by:

(
Pin (t)
Pout(t)

)
=

1
i

√
~mω0

2

{(
Ain

Aout

)
e−iω0t −

(
A†in
A†out

)
eiω0t

}
. (16.111)

With our choice of normalization constants, the commutation relations (16.109) require that:

[Ain , A
†
in ] = 1 , [Aout, A

†
out ] = 1 . (16.112)

The operators Ain and Aout are different operators in Hilbert space but they have the same commutation
relations. The in and out Hamiltonians have the same form:

Hin = H(−∞) = ~ω0

{
A†in Ain +

1
2

}
,

Hout = H(+∞) = ~ω0

{
A†outAout +

1
2

}
,

(16.113)

and have the same eigenvalue spectrum. The eigenvalue equations for the in and out Hamiltonians are
written as:

Hin |n 〉in = En|n 〉in ,

Hout|n 〉out = En|n 〉out ,
(16.114)
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ω-plane

ω = −ω0

ω = +ω0 Re ω

Im ω

t > t′

t < t′

Retarded

Advanced

Figure 16.1: Retarded and advanced contours for the Green function of Eq. (16.117).

Where En = ~ω(n + 1/2). Both of these states are complete sets of states for the physical system, and so
they must be related by a unitary transformation, which we call S. That is, we can write:

Aout = S†Ain S , and A†out = S†A†in S , (16.115)

and
|n 〉out = S† |n 〉in , and out〈n |n 〉in = out〈n |S |n 〉in .

If all we care about is the relation between in- and out-states, our problem is to find S. We do this by
finding solutions to Eq. (16.107) which reduce to in and out states when t → ∓∞. This means we need to
find retarded and advanced solutions to the Green function equation:

{
d2

dt2
+ ω2

0

}
G(t, t′) = δ(t− t′) . (16.116)

We put:

G(t, t′) =
∫

C

dω
2π

G̃(ω) e−iω(t−t′) , (16.117)

where C is a contour, to be specified, which runs from ω = −∞ to ω = +∞ along the real axis. Then
Eq. (16.116) is satisfied if

G̃(ω) =
1

ω2
0 − ω2

. (16.118)

So G̃(ω) is analytic everywhere, except for simple poles at ω = ±ω0. Contours for retarded and advanced
solutions are shown in Fig. 16.1, and we find:

GR(t, t′) =
i

2ω0

{
e−iω0(t−t′) − eiω0(t−t′)

}
Θ(t− t′) ,

GA(t, t′) =
−i
2ω0

{
e−iω0(t−t′) − eiω0(t−t′)

}
Θ(t′ − t) .

(16.119)

We also find that:
GR(t, t′)−GA(t, t′) =

i

2ω0

{
e−iω0(t−t′) − eiω0(t−t′)

}
. (16.120)
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So solutions which reduce to in and out states at t→ ∓∞ are given by:

Q(t) = Qin (t) +
∫ +∞

−∞
GR(t, t′) j(t′) dt′ = Qout(t) +

∫ +∞

−∞
GA(t, t′) j(t′) dt′ , (16.121)

from which we find:

Qout(t) = Qin (t) +
∫ +∞

−∞
{GR(t, t′)−GA(t, t′) } j(t′) dt′ , (16.122)

= Qin (t) +
i

2ω0

{
j̃(ω0) e−iω0t − j̃∗(ω0) eiω0t

}
, (16.123)

where j̃(ω0) is the Fourier transform of the current, evaluated at the oscillator resonant frequency,

j̃(ω0) =
∫ ∞

−∞
j(t) eiω0t dt . (16.124)

Using (16.110), we find:

Aout = Ain + a = S†Ain S ,

A†out = A†in + a∗ = S†A†in S ,
(16.125)

where a is a c-number, given by:

a = i

√
m

2~ω0
j̃(ω0) . (16.126)

Note that a depends only on the Fourier transform of the driving force evaluated at the resonate frequency:
ω = ω0. The unitary operator S, which generates (16.125) is given by a displacement operator:

S(a) = exp
{
aA†in − a∗Ain

}
≡ D(a) , (16.127)

where D(a) is the operator given in Eq. (16.52) discussed in Section 16.4 on coherent states.
Now suppose that the system is in the ground state | 0 〉in of Hin at t → −∞. Then the final state is

given by the coherent state:
| a 〉out = S†(a) | 0 〉in = D(−a) | 0 〉in , (16.128)

and the probability of finding the system in the state |n 〉 is given by the coherent state Poisson probability
amplitude:

Pn(a) = | out〈n | 0 〉in |2 =
n̄n e−n̄

n!
, n̄ = | a |2 =

m

2~ω0

∣∣ j̃(ω0)
∣∣2 . (16.129)

That is, if we start with the sytem in the ground state at t→ −∞, then at t→ +∞, the system will be in a
coherent state with the average value of 〈N 〉 = n̄, distributed with a Poisson distribution about this average
value. The system started out in a pure state of the oscillator, the ground state, with energy Ein = ~ω0/2.
The average energy in the final state at t → +∞ is Eout = ~ω0 ( n̄ + 1/2 ). Thus energy has been pumped
into the system by the applied force: energy is not conserved. On the average, the total work done on the
system by the applied force is given by:

W = Eout − Ein = ~ω0 n̄ =
m

2
|j̃(ω0)|2 =

|f̃(ω0)|2
2m

, (16.130)

where f̃(ω0) is the Fourier transform of the external force. The work done W is independent of ~, and so
must agree with the classical result for the energy transfer. (See Exercise 44 below.)

We can also use Green functions which have boundary conditions at both t = +∞ and t = −∞. These are
called the Feynman and anti-Feynman Green functions and are defined by the contours shown in Fig. 16.2.
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XX
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t > t
′

t < t
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F F
∗

Figure 16.2: Feynman (F ) (red) and anti-Feynman (F ∗) (green) contours.

Exercise 42. Show that:

GF (t− t′) = −
∫

F

dω
2π

e−iω(t−t′)

ω2 − ω2
0

=
i

2ω0

{
e−iω0(t−t′) θ(t− t′) + eiω0(t−t′) θ(t′ − t)

}
,

GF∗(t− t′) = −
∫

F∗

dω
2π

e−iω(t−t′)

ω2 − ω2
0

=
−i
2ω0

{
eiω0(t−t′) θ(t− t′) + e−iω0(t−t′) θ(t′ − t)

}
,

(16.131)

and that {
d2

dt2
+ ω2

0

}
GF,F∗(t, t′) = δ(t− t′) . (16.132)

Exercise 43. Show that for the Feynman and anti-Feynman Green functions, the solution for Q(t) and
Q†(t) can be written as:

Q(t) = Q0(t) +
∫ +∞

−∞
GF (t− t′) j(t′) dt′ ,

and Q†(t) = Q†0(t) +
∫ +∞

−∞
GF∗(t− t′) j(t′) dt′ ,

(16.133)

where

Q0(t) =
√

~
2ω0m

{
Ain e

−iω0t +A†out e
−iω0t

}
. (16.134)

(Note j(t) is real.) Using the fact that

lim
t→+∞

Q(t) = Qout(t) , and lim
t→−∞

Q(t) = Qin(t) , (16.135)

show that using these Green functions, we again find that:

Aout = Ain + a , and A†out = A†in + a∗ , (16.136)

where a is given by Eq. (16.126), so that (16.136) is in agreement with Eq. (16.125).
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Exercise 44. The work done by a force f(t) on a classical harmonic oscillator is given by:

W =
∫ +∞

−∞
f(t) q̇(t) dt = m

∫ +∞

−∞
j(t) q̇(t) dt , (16.137)

where j(t) = f(t)/m. Calculate the total work done if the oscillator starts at rest at t → −∞, and show
that it agrees with Eq. (16.130). [Hint: use the retarded Green function.]

Solution: The equation of motion for the driven oscillator is:
{

d2

dt2
+ ω2

0

}
q(t) = j(t) , (16.138)

with q(t)→ 0 and q̇(t)→ 0 as t→ −∞. So it will be useful to use a retarded Green function here, and write
the solution as:

q(t) = q0(t) +
∫ +∞

−∞
GR(t− t′) j(t′) dt′ , (16.139)

with q0(t) = 0 and where the retarded Green function is given by:

GR(t− t′) =
i

2ω0

{
e−iω0(t−t′) − e+iω0(t−t′)

}
Θ(t− t′) . (16.140)

So

q̇(t) =
∫ +∞

−∞

dGR(t− t′)
dt

j(t′) dt′

=
1
2

∫ t

−∞

{
e−iω0(t−t′) + e+iω0(t−t′)

}
j(t′) dt′ .

(16.141)

Substitution into (16.137) gives:

W = m

∫ +∞

−∞
j(t) q̇(t) dt

=
m

2

∫ +∞

−∞
dt j(t)

∫ t

−∞
dt′

{
e−iω0(t−t′) + e+iω0(t−t′)

}
j(t′)

=
m

2

{∫ +∞

−∞
dt j(t) e−iω0t

∫ t

−∞
dt′ j(t′) e+iω0t

′
+
∫ +∞

−∞
dt j(t) e+iω0t

∫ t

−∞
dt′ j(t′) e−iω0t

′
}
.

(16.142)

In the second term, first interchange t and t′. Then change the order of integration, keeping in mind the
region of integration. This gives:

∫ +∞

−∞
dt j(t) e+iω0t

∫ t

−∞
dt′ j(t′) e−iω0t

′
=
∫ +∞

−∞
dt′ j(t′) e+iω0t

′
∫ t′

−∞
dt j(t) e−iω0t

=
∫ +∞

−∞
dt j(t) e−iω0t

∫ +∞

t

dt′ j(t′) e+iω0t
′
.

(16.143)

Substituting this into (16.142) gives:

W =
m

2

{∫ +∞

−∞
dt j(t) e−iω0t

∫ t

−∞
dt′ j(t′) e+iω0t

′
+
∫ +∞

−∞
dt j(t) e−iω0t

∫ +∞

t

dt′ j(t′) e+iω0t
′
}

=
m

2

∫ +∞

−∞
dt j(t) e−iω0t

∫ +∞

−∞
dt′ j(t′) e+iω0t

′
=
m

2
| j(ω0) |2 ,

(16.144)

which is what we were trying to show.
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16.7 The three-dimensional oscillator

For a particle subject to a spherically symmetric three-dimensional harmonic restoring force, the Hamiltonian,
in our units, is given by:

H =
1
2
(
P 2
i +Q2

i

)
= N +

3
2
, where N = A†iAi . (16.145)

Here the sum over i goes from 1 to 3. We note that [Ai, N ] = Ai and [A†i , N ] = −A†i . The angular
momentum operator is given by:

Lk = εijkQi Pj = −i εijk A†i Aj ,
εijk Lk = Qi Pj −Qj Pi = −i (A†i Aj −A†j Ai ) .

(16.146)

The angular momentum Lk commutes with N : [Lk, N ] = 0 and so can be simultaniously digonalize with N .
However, we generally use eigenvalues of the number operator N given by the direct product of eigenvalues
of the three Cartesian number operators:

N |nx, ny, nz 〉 = n |nx, ny, nz 〉 , n = nx + ny + nz (16.147)

where the ni = 0, 1, 2, . . . are non-negative integers. Here we have defined n so that n starts with zero:
n = 0, 1, 2, · · · . These eigenvectors are also eigenkets of the Hamiltonian, which have eigenvalues given by:
En = n+ 3/2. The degeneracy is given by: (n+ 1)(n+ 2)/2.

Exercise 45. Show that for a given n the possible values of the total angular momentum quantum number
are ` = n, n− 2, . . . down to 0 or 1, and that each ` occurs just once.

The degeneracy of the three-dimensional harmonic oscillator indicates that something other than the
angular momentum is a constant of the motion, and that there is a larger symmetry of the Hamiltonian
other than O(3). It is easily seen that this covering symmetry is SU(3), the special group of unitary
transformations in three dimensions. In fact if we consider unitary transformations of the form:

U†(u)Ai U(u) = uij Aj , U†(u)A†i U(u) = u∗ij A
†
j , (16.148)

where uij is a 3 × 3 unitary matrix, u∗ijuik = δjk. Then the number operator, and consequently the
Hamiltonian, is invariant under this transformation:

U†(u)N U(u) = U†(u)A†iAi U(u) = u∗ij uik A
†
j Ak = A†j Aj = N . (16.149)

Next we find the generators of this transformation, so we put uij = δij + i∆hij + · · · , where ∆h∗ij = ∆hji is
a 3× 3 Hermitian matrix. We also write, to first order in ∆hij ,

U(1 + ∆h) = 1 + i∆hij Gij + · · · (16.150)

where G†ij = Gji are generators of the infinitesimal transformation. So we find:

(
1− i∆h∗ij G†ij + · · ·

)
Ak
(

1 + i∆hij Gij + · · ·
)

=
(
δkl + i∆hkl + · · ·

)
Al ,

or
Ak + i∆hij [Ak, Gij ] + · · · = Ak + i∆hij δkiAj + · · · ,

from which we find:
[Ak, Gij ] = δkiAj , (16.151)

the solution of which is
Gij = A†i Aj . (16.152)
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However, the trace of Gij is just the operator N , and can be removed from the transformations by writing:

Gij = Qij + iεijk Lk +
1
3
N δij , (16.153)

where the symmetric and traceless quadrupole tensor operator Qij is defined by:

Qij =
1
2

(A†i Aj +A†j Ai )− 1
3
N δij , (16.154)

and Lk is the angular momentum operator given in Eq. (16.146). Requiring the determinant of uij to be
one means that we must also require the trace ∆hii = 0, which eliminates the N generator. Then the five
components of Qij and three components of Lk are eight generators of SU(3), which is the largest symmetry
group in the three-dimensional harmonic oscillator. All components of the quadrupole tensor commute with
N : [Qij , N ] = 0, as does the full generators [Gij , N ] = 0. The generators Gij transform as second rank
Cartesian tensors under SU(3):

U†(u)Gij U(u) = u∗ii′ ujj′ Gi′j′ . (16.155)

The angular momentum Lk transform as a pseuto-vector, or as antisymmetric components of a second rank
tensor under SU(3). The quadrupole tensor Qij transform as symmetric traceless components of a second
rank Cartesian tensor under SU(3). From Eq. (16.155), we see that the square of the generator operator
G2
ij is one of the Casimir invariants:

U†(u)G2
ij U(u) = G2

ij = Q2
ij − 2L2

k +N2/3 . (16.156)

The quantum mechanical degeneracy of the three-dimensional harmonic oscillator is related to the elliptical
closed orbits of the classical motion.3

16.8 The Fermi oscillator

In our study of identical particles, we noted that there were two types of particles found in nature, those
obeying Bose statistics and those obeying Fermi statistics. Bose particles are described by operators which
obey commutation relations, whereas Fermi particles obey anti -commutation relations. In our system of
units, a Bose oscillator is described by the Hamiltonian:

HB = (B†B +BB† )/2 , [B,B† ] = 1 , [B,B ] = [B†, B† ] = 0 . (16.157)

We define a Fermi oscillator by a similar Hamiltonian, but with operators which obey anti-commutation
relations:

HF = (F †F − F F † )/2 , {F, F † } = 1 , {F, F } = {F †, F † } = 0 . (16.158)

The Fermi oscillator has no classical representation. The unusual anti-commutation relations for F require
that:

F 2 = [F † ]2 = 0 . (16.159)

The Fermi number operator NF = F †F is Hermitian, and has a particularly simple eigenvalue spectrum,
which is stated in the following theorem:

Theorem 36. The eigenvalues and eigenvectors of the Fermi number operator are given by:

NF |nF 〉 = nF |nF 〉 , NF = F †F , (16.160)

with nF = 0, 1 and F and F † having the following action on the the two eigenvectors:

F | 0 〉 = 0 , F | 1 〉 = | 0 〉 , F † | 0 〉 = | 1 〉 , F † | 1 〉 = 0 . (16.161)
3For more details and references, see Schiff [?][pp. 234–242].
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Proof. We first note that:

N2
F |nF 〉 = F †F F †F |nF 〉 = F † (1− F † F )F |nF 〉 = F † F |nF 〉 = NF |nF 〉 , (16.162)

So nF (nF − 1) = 0, which has two solutions: nF = 0, 1. The rest of the proof is left to the reader.

The energy of the Fermi oscillator is then given by:

HF |nF 〉 = EnF
|nF 〉 , EnF

= nF − 1/2 . (16.163)

So the two energy eigenvalues of the Fermi oscillator are ±1/2. The time dependence of the Fermi operators
are given by Heisenberg’s equations of motion:

Ḟ (t) = [F (t), H ]/i = −i F (t) , F (t) = F e−it , (16.164)

Ḟ †(t) = [F †(t), H ]/i = +i F †(t) , F †(t) = F † e+it .

We now ask if we can find a Lagrangian for the Fermi Hamiltonian. Surprisingly we can, if we introduce
Grassmann variables and a Grassmann calculus, discussed in the next section.

16.8.1 Action for a Fermi oscillator

With this introduction to Grassmann algebra, we can now write down a Lagrangian and an action for the
Grassmann Fermi oscillator.4 Let f(t) and f∗(t) be two complex Grassmann functions of t. Then consider
the action:

S(f, f∗) =
∫

dt L(f, f∗; ḟ , ḟ∗) , (16.165)

L(f, f∗; ḟ , ḟ∗) =
i

2
( f∗ ḟ − ḟ∗ f )− 1

2
( f∗f − ff∗ ) ,

Canonical momenta and derivatives of the Lagrangian are given by:

pf =
∂L

∂ḟ
= − i

2
f∗ ,

∂L

∂f
= +

i

2
ḟ∗ + f∗ ,

pf∗ =
∂L

∂ḟ∗
= − i

2
f ,

∂L

∂f∗
= +

i

2
ḟ − f ,

(16.166)

where we have used a left derivative convention. Lagrange’s equations of motion are then:

ḟ = −if , ḟ = +if . (16.167)

The Hamiltonian is given by:

H = ḟ pf + ḟ∗pf∗ − L

= − i
2
ḟ f∗ − i

2
ḟ∗ f − i

2
( f∗ ḟ − ḟ∗ f ) +

1
2

( f∗f − ff∗ )

=
1
2

( f∗f − ff∗ ) .

(16.168)

Now all four quantities, f , f∗, pf , and pf∗ are not independent variables. Choosing f and f∗ as independent
variables, Hamilton’s equations become:

d
dt

(
f
f∗

)
=
(
−if
if∗

)
=

1
i

(
0 1
1 0

)(
∂fH(f, f∗)
∂f∗H(f, f∗)

)
. (16.169)

4In this section, we follow Das.
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Now let A and B be any functions of the Grassmann variables (f, f∗). Then Poisson brackets for Grassmann
variables are defined by:

{A,B } =
1
i

(
∂fA , ∂f∗B

)(0 1
1 0

)(
∂fA
∂f∗B

)
=

1
i

{
∂fA∂f∗B + ∂f∗A∂fB

}
. (16.170)

Note the plus sign and factor of 1/i in the definitions of the Poisson bracket for Grassmann variables. Then,
for example, the classical equations of motion are given by:

ḟ = { f,H } , ḟ∗ = { f∗, H } , { f, f̄ } = 1/i . (16.171)

Quantization of the classical Grassman system is carried out with the usual rules:

• Grassmann variables are mapped to Fermi operators in Hilbert space:

f 7→ F , f∗ 7→ F † . (16.172)

• Grassmann Poisson brackets are mapped to anti-commutators of the corresponding quantum operators,
with a factor of ~:

{A,B } 7→ {A,B }/i~ . (16.173)

In particular,
{F, F † } = i~ { f, f∗ } = ~ . (16.174)

Since we have already used units with ~ = 1, the classical Hamiltonian (16.168) becomes in quantum
mechanics:

H =
1
2

(F †F − F F † ) , {F, F † } = 1 , (16.175)

which is the Fermi oscillator Hamiltonian introduced in Eq. (16.158). Thus Grassmann variables has enabled
us to introduce an action and a Lagrangian as in the Bose oscillator case.
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Chapter 17

Electrons and phonons

In this chapter we develop a model for electrons and phonons on a one-dimensional lattice. We assume that
the electrons experience an electrostatic potential created by the atoms making up the lattice, and that the
lattice is held in place by harmonic binding forces. We consider first an approximation in which the electrons
can occupy a single state at each site and can jump between neighboring sites. First order interactions
between electrons and the lattice are found assuming a simple potential model.

17.1 Electron-phonon action

We describe the electrons by a non-relativistic Fermi field Ψ(x, t) and the position of the nth atom as a
function of time by Φn(t). The displacment of the atoms from the equilibrium position φn(t) is defined by:
Φn(t) = na+ φn(t). So our model of the classical action is given by:

S[Ψ,Ψ∗,Φ] =
∫

dt L[Ψ,Ψ∗,Φ; Ψ̇, Ψ̇∗, Φ̇] ,

L[Ψ,Ψ∗,Φ; Ψ̇, Ψ̇∗, Φ̇] = Le[Ψ,Ψ∗; Ψ̇, Ψ̇∗] + Lp(Φ, Φ̇) + Lep[Ψ,Ψ∗,Φ] ,
(17.1)

where

Le[Ψ,Ψ∗; Ψ̇, Ψ̇∗] =
∫ L

0

dx
{
i

2
[

Ψ†(x, t) Ψ̇(x, t)− Ψ̇†(x, t) Ψ(x, t)
]
− |∇Ψ(x, t)|2

2m

}
,

Lp[Φ, Φ̇] =
N−1∑

n=0

{M
2

Φ̇2
n − U(|Φn+1(t)− Φn(t)|)

}
,

Lep[Ψ,Ψ∗,Φ] = −
∫ L

0

dx
∑

n

V (|x− Φn(t)|) |Ψ(x, t)|2 ,

(17.2)

where U(Φn+1(t) − Φn(t)) is the potential energy between atoms in the lattice and V (x − Φn(t)) is the
potential energy between the electrons and the atoms. Here m is the mass of the electrons and M the mass
of the atoms.

We now write this Lagrangian to first order in the atomic displacements φn(t). Expanding the interatomic
potential to first order, we find:

U(|Φn+1(t)− Φn(t)|) = U0 +
1
2
M ω2

0 [φn+1(t)− φn(t) ]2 + · · · (17.3)

where M ω2
0 = [ ∂2U(x)/∂x2 ]x=a. So the Lagrangian for the atomic motion is given immediately by:

Lp(φ, φ̇) =
M

2

N−1∑

n=0

{
φ̇2
n(t)− ω2

0 [φn+1(t)− φn(t) ]2
}
. (17.4)
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Figure 17.1: Plot of V (x) for the first 10 sites.

For the electron-atom potential, we find to first order:

V (|x− Φn(t)|) = Vn(x) +
∂Vn(x)
∂x

φn(t) + · · · , Vn(x) = V (|x− na|) . (17.5)

Here V (x) =
∑
n Vn(x) is the potential seen by the electron for the atoms located at their equilibrium

positions, as shown in Fig. 17.1. So for the electron part, we introduce a set of eigenfunctions χn(x) =
ψ0(x− na) for the ground state of an electron located at the site n, and which satisfy:

hn(x)χn(x) = ε0 χn(x) , hn(x) = −∇
2

2m
+ Vn(x) , h0(x)ψ0(x) = ε0 ψ0(x) , (17.6)

and we expand the field Ψ(x, t) in these basis functions:

Ψ(x, t) ≈
N−1∑

n=0

ψn(t)χn(x) , (17.7)

where ψn(t) is the complex amplitude for the atom to be found in the ground state at the nth site. In our
very crude approximation here, we take the overlap integrals between neighboring sites as approximately
orthogonal: ∫ L

0

dxχ†n′(x)χn(x) ≈ δn′,n . (17.8)

So this means that the kinetic terms become approximately:

∫ L

0

dx
{
i

2
[

Ψ†(x, t) Ψ̇(x, t)− Ψ̇†(x, t) Ψ(x, t)
]
≈
N−1∑

n=0

i

2
[
ψ∗n ψ̇n − ψ̇∗n ψn

]
. (17.9)
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For the potential terms, we keep only the nearest neighbor interactions, so we find:

−
∫ L

0

dx
N−1∑

n=0

Vn(x) |Ψ(x, t)|2 ≈
N−1∑

n=0

{
−Vn(x) |ψn(t)|2 + Γ

[
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

] }

where

Γ = −
∫
χ∗n+1(x)

[
Vn+1(x) + Vn(x)

]
χn(x) dx > 0 . (17.10)

So since:
∫ L

0

dxχ†n′(x)hn(x)χn(x) ≈ ε0 δn′n , (17.11)

we find the Lagrangian for the electron part:

Le(ψ,ψ∗; ψ̇, ψ̇∗) =
N−1∑

n=0

{ i~
2
[
ψ∗n(t) ψ̇n(t)− ψ̇∗n(t)ψn(t)

]

− ε0 |ψn(t) |2 + Γ
[
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

] }
. (17.12)

The electron-lattice interaction comes from the second term in Eq. (17.5). We find:

−
∫ L

0

dx
N−1∑

n=0

∂Vn(x)
∂x

φn(t)

≈ −K
N−1∑

n=0

φn
[
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)− ψ∗n(t)ψn−1(t)− ψ∗n−1(t)ψn(t)

]

= −K
N−1∑

n=0

[
φn(t)− φn−1(t)

] [
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

]
. (17.13)

where the electron-atom interaction coefficent K is written by:

K =
∫ L

0

dxχ†n(x)
∂Vn(x)
∂x

χn+1(x) = −
∫ L

0

dxχ†n−1(x)
∂Vn(x)
∂x

χn(x) > 0 . (17.14)

Then the interaction Lagrangian is given by:

Lep(ψ,ψ∗, φ) = −K
N−1∑

n=0

[
φn(t)− φn−1(t)

] [
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

]
. (17.15)

In Fig. 17.2, we show plots of V (x) and V ′(x) for site n and the wave functions for neighboring sites. One
can see from these plots that Γ and K are positive quantities.

So with these approximations, the complete Lagrangian is given by:

L(ψ,ψ∗, φ; ψ̇, ψ̇∗, φ̇) = Le(ψ,ψ∗; ψ̇, ψ̇∗) + Lp(φ, φ̇) + Lep(ψ,ψ∗, φ) (17.16)
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Figure 17.2: Plot of V (x) and V ′(x) for site n with wave functions for sites n, n ± 1, showing the overlap
integrals between nearest neighbor sites.

where

Le(ψ,ψ∗; ψ̇, ψ̇∗) =
N−1∑

n=0

{ i~
2
[
ψ∗n(t) ψ̇n(t)− ψ̇∗n(t)ψn(t)

]
(17.17)

− ε0 |ψn(t) |2 + Γ
[
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

] }
.

Lp(φ, φ̇) =
M

2

N−1∑

n=0

{
φ̇2
n(t)− ω2

0 [φn+1(t)− φn(t) ]2
}
. (17.18)

Lep(ψ,ψ∗, φ) = −K
N−1∑

n=0

[
φn(t)− φn−1(t)

] [
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

]
. (17.19)

17.2 Equations of motion

From the Lagrangian, Eq. (17.16), we find the canonical momenta:

πn =
∂L

∂ψ̇n
=
i~
2
ψ∗n , π∗n =

∂L

∂ψ̇∗n
= − i~

2
ψn , pn =

∂L

∂φ̇n
= M φ̇n , (17.20)

and the equations of motion:

i~ ψ̇n = ε0 ψn − Γ
[
ψn+1 + ψn−1

]
−K

[
(φn+1 − φn )ψn+1 + (φn − φn−1 )ψn−1

]
,

−i~ ψ̇∗n = ε0 ψ
∗
n − Γ

[
ψ∗n+1 + ψ∗n−1

]
−K

[
(φn+1 − φn )ψ∗n+1 + (φn − φn−1 )ψ∗n−1

]
,

M φ̈n = M ω2
0

[
φn+1 − 2φn + φn−1

]
−K

[
(ψ∗n+1 − ψ∗n−1 )ψn + ψ∗n (ψn+1 − ψn−1 )

]
.

(17.21)
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Note that the coupling between the systems is so as to provide a modified jumping probability for the electron
to the next site, depending on the difference between the positions of the atoms at those sites, and that
the force on an atom at a site depends on the occupation of electrons at adjacent sites. We can if we wish
eliminate ε0 from the dynamics by setting:

ψn(t) = ψ̄n(t) e−iε0t/~ . (17.22)

Then we find the same equations of motion as (17.21) for ψ̄n(t) without the first term on the right-hand side
involving ε0, with a similar relation for ψ̄∗n(t).

The Hamiltonian is given by a sum of three terms:

H(ψ,ψ∗, φ, φ̇) =
N−1∑

n=0

{
ψ̇n πn + ψ̇∗n π

∗
n + φ̇n pn

}
− L(ψ,ψ∗, φ; ψ̇, ψ̇∗, φ̇)

= He(ψ,ψ∗) +Hp(φ, φ̇) +Hep(ψ,ψ∗, φ) ,

(17.23)

where

He(ψ,ψ∗) =
N−1∑

n=0

{
ε0 |ψn |2 − Γ

[
ψ∗n+1 ψn + ψn+1 ψ

∗
n

] }

Hp(φ, φ̇) =
M

2

N−1∑

n=0

{
φ̇2
n + ω2

0 (φn+1 − φn )2
}

Hep(ψ,ψ∗, φ) = K

N−1∑

n=0

[
φn(t)− φn−1(t)

] [
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

]
.

(17.24)

We study the electron and photon modes for the case of no interactions between the electrons and the latice
in the next two sections.

17.2.1 Numerical classical results

In this section, we describe some numerical results for the classical equations. We solve the classical equations
of motion given in Eqs. (17.21) using a fourth-order Runga-Kutta method, as described in Numerical Recipes
[1][p. 706]. Here, we have set ψn(t) = xn(t) + iyn(t). A sample of the results are shown for the case when
ε0 = ω0 = Γ = 1, and K = 0.5, for 100 sites. We show in Figs. 17.3, 17.4, 17.5, and 17.6 plots of xn(t),
yn(t), φn(t), and dφn(t)/dt, as a function of t for the first 10 sites. A movie of the same thing for all sites,
as a function of time, can be found at: http://www.theory.unh.edu/graph animation.

17.3 Electron modes

In this section, we find equations of motion for the electrons assuming no interactions with the vibrational
modes of the lattice. The Lagrangian for the electrons is given by 17.12:

Le(ψ,ψ∗; ψ̇, ψ̇∗) =
N−1∑

n=0

{ i~
2
[
ψ∗n(t) ψ̇n(t)− ψ̇∗n(t)ψn(t)

]

− ε0 |ψn(t) |2 + Γ
[
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

] }
. (17.25)

The boundary conditions require that ψN (t) = ψ0(t). The canonical momentua is:

πn =
∂L

∂ψ̇n
=
i~
2
ψ∗n , π∗n =

∂L

∂ψ̇∗n
= − i~

2
ψn , (17.26)
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Figure 17.3: Plot of xn(t) for the first 10 sites as a function of time for ε0 = ω0 = Γ = 1, and K = 0.5, for
100 sites.
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Figure 17.4: Plot of yn(t) for the first 10 sites as a function of time for ε0 = ω0 = Γ = 1, and K = 0.5, for
100 sites.
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Figure 17.5: Plot of φn(t) for the first 10 sites as a function of time for ε0 = ω0 = Γ = 1, and K = 0.5, for
100 sites.
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Figure 17.6: Plot of dφn(t)/dt for the first 10 sites as a function of time for ε0 = ω0 = Γ = 1, and K = 0.5,
for 100 sites.
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and the equations of motion are:

i~ ψ̇n = ε0 ψn − Γ
[
ψn+1 + ψn−1

]
,

−i~ ψ̇∗n = ε0 ψ
∗
n − Γ

[
ψ∗n+1 + ψ∗n−1

]
,

(17.27)

and the Hamiltonian is:

H(ψ,ψ∗) =
N−1∑

n=0

[
ψ̇n πn + ψ̇∗n π

∗
n

]
− L(ψ,ψ∗; ψ̇, ψ̇∗)

=
N−1∑

n=0

{
ε0 |ψn(t) |2 − Γ

[
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

] }
.

(17.28)

We have previously explained in Section 16.3 that the sympletic variables here are ψn and ψ∗n. This form of
the Hamiltonian is the same as what we had for the N = 2 case of a diatomic molecule, only now written
in terms the amplitudes ψn(t) for finding the electron at N atomic sites. Wave functions for electrons
are described by the sympletic anticommuting operators ψ(t) and ψ∗(t) which satisfy the anticommutation
relations (See Sec. ??):

{ψn(t), ψ†n′(t) } = δn,n′ . (17.29)

The periodic requirement can be satisfied by finding solutions in the form of finite Fourier transforms. We
put:

ψn(t) =
1√
N

[N/2]∑

k=−[N/2]+1

ψ̃k(t) e+iθk n ,

ψ†n(t) =
1√
N

[N/2]∑

k=−[N/2]+1

ψ̃†k(t) e−iθk n ,

(17.30)

where θkN = 2πk. Then ψ0(t) = ψN (t). The inverse relations are:

ψ̃k(t) =
1√
N

N−1∑

n=0

ψn(t) e−iθk n ,

ψ̃†k(t) =
1√
N

N−1∑

n=0

ψ†n(t) e+iθk n ,

(17.31)

The finite Fourier transforms then obey the algebra:

{ ψ̃k(t), ψ̃†k′(t) } =
1
N

N−1∑

n,n′=0

{ψn(t), ψ†n′(t) }e+i( θk′ n
′−θkn )

=
1
N

N−1∑

n=0

e+i( θk′−θk )n = δk,k′ .

(17.32)

The equations of motion then become:

i~ ˙̃
ψk(t) =

[
ε0 − 2Γ cos(θk)

]
ψ̃k(t) ≡ εk ψ̃k(t) ,

−i~ ˙̃
ψ†k(t) =

[
ε0 − 2Γ cos(θk)

]
ψ̃†k(t) ≡ εk ψ̃†k(t) ,

(17.33)

which have solutions:
ψ̃k(t) = ck e

−iεkt/~ , ψ̃†k(t) = c†k e
+iεkt/~ , (17.34)
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where
εk = ε0 − 2Γ cos(2πk/N) . (17.35)

Note that for k in the range −[N/2]− 1 ≤ k ≤ [N/2], ε−k = εk. There are exactly N eigenvalues. If we let
a be the distance between atomic sites, then it is useful to define:

xn = na , pk =
θk
a

=
2π~ k
L

, so that: θk n = pk xn/~ . (17.36)

where L = aN is the length around the circular chain. The operator amplitudes for finding the electron at
site n are then given by:

ψn(t) =
1√
N

[N/2]∑

k=−[N/2]+1

ck e
+i( pkxn−εkt )/~ ,

ψ†n(t) =
1√
N

[N/2]∑

k=−[N/2]+1

c†k e
+i( pkxn−εkt )/~ .

(17.37)

where the time independent operators ck and c†k obey the anticommutator algebra:

{ ck, c
†
k′ } = δk,k′ . (17.38)

Using these solutions, the Hamiltonian is given by:

H =
1
2

[N/2]∑

k=−[N/2]+1

εk

{
c†k ck − ck c

†
k

}
. (17.39)

Each mode k has a number operator Nk = c†k ck which is Hermitian and has two eigenvalues:

Nk |nk 〉 = nk |nk 〉 , where nk = 0, 1. (17.40)

A basis set for the system is then given by the direct product of the eigenvectors for each k mode. We let n
be the set of integers having integer values of zero or one for each mode: n = {n0, n±1, n±2, . . . , n+[N/2] },
and write the eigenvector for this set in a short-hand notation:

|n 〉 ≡ |n0, n±1, n±2, . . . , n+[N/2] 〉 . (17.41)

The Hamiltonian is diagonal in these eigenvectors:

H |n 〉 = En |n 〉 , En =
[N/2]∑

k=−[N/2]+1

εk

{
nk −

1
2

}
. (17.42)

The excitation of a single k mode produces a travelling electron wave on the lattice so that the electron is
distributed over the entire lattice. The dispersion of the wave is shown in Fig. 17.7. For large N and small
value of k, we find that:

εk ≈ E0 +
p2
k

2m∗
+ · · · , (17.43)

where E0 = ε0 − 2Γ, and the effective mass m∗ is given by:

m∗ =
~2

2 Γ a2
> 0 , (17.44)

which has nothing to do with the physical mass, but with the transition rate between adjacent atomic sites.
Because of the Pauli principle and the spin of the electron, at zero temperature the electrons fill up the
available states to a final state labeled by kF .
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Figure 17.7: Plot of the electron and phonon energy spectra εk and ωk on the periodic chain, as a function
of k. Energies and k values have been normalized to unity. Note that near k = 0, the electron spectra is
quadratic whereas the phonon spectrum is linear.

17.4 Vibrational modes

For the vibrational modes, the Lagrangian is given by (17.4):

Lp(φ, φ̇) =
M

2

N−1∑

n=0

{
φ̇2
n(t)− ω2

0 [φn+1(t)− φn(t) ]2
}
. (17.45)

The periodic condition requires that φ0 = φN . The canonical momenta is:

πn =
∂L

∂φ̇n
= mφ̇n , (17.46)

and the equations of motion are:

φ̈n − ω2
0 (φn+1 − 2φn + φn−1 ) = 0 , (17.47)

and the Hamiltonian is given by:

H(φ, π) =
N−1∑

n=0

{ π2
n

2M
+

1
2
Mω2

0 (φn+1 − φn )2
}
. (17.48)

The equations of motion can be solved by introducing solutions of the form:

φn(t) = φ̃k(t) eiθkn . (17.49)

The periodic condition requires that θk satisfy θkN = 2πk, with k an integer. Then Eq. (17.47) becomes:

¨̃
φk(t) + ω2

k φ̃k(t) = 0 . (17.50)
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where
ω2
k = 2ω2

0 ( 1− cos(θk) ) = 4ω2
0 sin2(θk/2) . (17.51)

choosing ω|k| to be the positive root:

ω|k| = 2ω0 sin(θ|k|/2) = 2ω0 sin(π|k|/N ) > 0 , (17.52)

the classical solutions of (17.50) can be written in the form:

φ̃k(t) = ãk e
−iω|k|t + ã∗k e

+iω|k|t . (17.53)

The linear combination of these solutions for all values of k give the general classical solution to the vibrations
of the molecule.

It will be useful for the quantum problem to define pk by:

pk =
~ θk
a

=
2π~ k
L

, so that: θk n = pkxn/~ , (17.54)

with L = aN . Canonical quantization of the vibrations requires that φn and πn become operators satisfying
the algebra:

[φn(t), πn′(t) ] = i~ δn,n′ . (17.55)

As we have learned, because of the periodic condition, it is useful to introduce finite Fourier transforms:

φn(t) =
1√
N

[N/2]∑

k=−[N/2]+1

φ̃k(t) eipkxn/~ ,

πn(t) =
1√
N

[N/2]∑

k=−[N/2]+1

π̃k(t) eipkxn/~ ,

(17.56)

where π̃k(t) = m
˙̃
φk(t). Here we have introduced a factor of 1/

√
N in our definitions. Since φn(t) and πn(t)

are real,
φ̃∗k(t) = φ̃−k(t) , π̃∗k(t) = π̃−k(t) . (17.57)

The inverse relations are:

φ̃k(t) =
1√
N

N−1∑

n=0

φn(t) e−ipkxn/~ ,

π̃k(t) =
1√
N

N−1∑

n=0

πn(t) e−ipkxn/~ .

(17.58)

So the commutation relations for the finite Fourier transforms are:

[ φ̃k(t), π̃†k′(t) ] =
1
N

N−1∑

n,n′=0

[φn(t), πn′(t) ]ei(pk′xn′−pkxn)/~

=
i~
N

N−1∑

n=0

ei(pk′−pk) xn/~ = i~ δk,k′ .

(17.59)

Using the orthorgonality realationships for finite Fourier transforms, the kintic energy becomes:

T =
1

2M

N−1∑

n=0

π2
n(t) =

1
2MN

∑

k,k′

π̃∗k′(t)π̃k(t)
N−1∑

n=0

ei(pk−pk′ ) xn/~

=
1

2M

[N/2]∑

k=−[N/2]+1

∣∣πk(t)
∣∣2 =

M

2

[N/2]∑

k=−[N/2]+1

∣∣ ˙̃
φk(t)

∣∣2 ,
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and for the potential part, we find:

V =
1
2
Mω2

0

N−1∑

n=0

(φn+1(t)− φn(t) )2

=
Mω2

0

2N

∑

k,k′

φ̃∗k′(t)φ̃k(t)( e+iθk − 1 ) ( e−iθk′ − 1 )
N∑

n=1

ei(pk−pk′ ) xn

=
M

2

[N/2]∑

k=−[N/2]+1

ω2
|k|
∣∣ φ̃k(t)

∣∣2 .

So the Lagrangian and Hamiltonian can be written as:

L =
M

2

[N/2]∑

k=−[N/2]+1

{ ∣∣ ˙̃
φk(t)

∣∣2 − ω2
|k|
∣∣ φ̃k(t)

∣∣2
}
, (17.60)

H =
M

2

[N/2]∑

k=−[N/2]+1

{ ∣∣ ˙̃
φk(t)

∣∣2 + ω2
|k|
∣∣ φ̃k(t)

∣∣2
}
. (17.61)

Introducing the non-Hermitian operators ak(t) and a†k(t):

φ̃k(t) =

√
~

2Mω|k|

[
ak(t) + a†−k(t)

]
, ak(t) =

√
Mω|k|

2~
φ̃k(t) +

1
i

√
1

2M~ω|k|
π̃k(t) ,

π̃k(t) = i

√
M~ω|k|

2
[
ak(t)− a†−k(t)

]
, a†−k(t) =

√
Mω|k|

2~
φ̃k(t)− 1

i

√
1

2M~ω|k|
π̃k(t) . (17.62)

from which we find:
[ ak(t), a†k′(t) ] = δk,k′ , (17.63)

with all other commutators vanishing. In terms of these variables, the Lagrangian and Hamiltonian becomes:

L =
−1
2

[N/2]∑

k=−[N/2]+1

~ω|k|
{
a†k(t) a†−k(t) + ak(t) a−k(t)

}
,

H =
1
2

[N/2]∑

k=−[N/2]+1

~ω|k|
{
a†k(t) ak(t) + ak(t) a†k(t)

}
.

(17.64)

In terms of these variables, the displacement and canonical momentum is given by:

φn(t) =
[N/2]∑

k=−[N/2]+1

√
~

2NMω|k|

{
ak(t) + a†−k(t)

}
eipkxn/~ ,

=
[N/2]∑

k=−[N/2]+1

√
~

2NMω|k|

{
ak(t) e+ipkxn/~ + a†k(t) e−ipkxn/~

}

πn(t) = i

[N/2]∑

k=−[N/2]+1

√
M~ω|k|

2N

{
ak(t)− a†−k(t)

}
eipkxn/~ ,

= i

[N/2]∑

k=−[N/2]+1

√
M~ω|k|

2N

{
ak(t) e+ipkxn/~ − a†k(t) e−ipkxn/~

}

(17.65)
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Each mode k has a number operator Nk = a†k ak which is Hermitian and has non-negative integers as
eigenvalues:

Nk |nk 〉 = nk |nk 〉 , where nk = 0, 1, 2, . . . . (17.66)

A basis set for the system is then given by the direct product of the eigenvectors for each k mode. We let n
be the set of integers for each mode: n = {n±1, n±2, . . . , n±[N/2] }, and write the eigenvector for this set in
a short-hand notation:

|n 〉 ≡ |n±1, n±2, . . . , n±[N/2] 〉 . (17.67)

Here we have omitted the spurious k = 0 mode, which represents a translation of the system, and will be
discussed below. The Hamiltonian is diagonal in these eigenvectors:

H |n 〉 = En |n 〉 , En =
[N/2]∑

k=−[N/2]+1

~ω|k|
{
nk +

1
2

}
. (17.68)

This represents harmonic oscillator vibrations built on each mode k. The dynamics is best solved using
Heisenberg’s equations of motion for ak(t). We have:

dak(t)
dt

=
[ ak(t), H ]

i~
= −iω|k| ak(t) , (17.69)

so
ak(t) = ak e

−iω|k|t , a†k(t) = a†k e
+iω|k|t . (17.70)

where ak and a†k are constant operators. The displacement operators are then given by:

φn(t) =
[N/2]∑

k=−[N/2]+1

√
~

2NMω|k|

{
ak e

+i(pkxn−ekt)/~ + a†k e
−i(pkxn−ekt)/~

}
, (17.71)

where ek = ~ω|k|. The excitation of a single k mode, which involve a travelling compressional wave on the
lattice, is called a phonon. The dispersion of the wave is shown in Fig. 17.7. For large values of N and
small values of k, we find that:

ek = ~ωk ≈ aω0
2π~|k|
L

= v0 p|k| , (17.72)

where v0 = aω0 is the group velocity. Thus for small k, the wave travels without dispersion.

2 ! 0

0

1

2
3

!
k

Figure 17.8: Construction for finding the oscillation frequencies for the six periodic sites of Fig. 12.3, for
values of k = 0,±1,±2,+3.

Exercise 46. Show that the six vibrational frequencies of the N = 6 periodic chain of molecules shown in
Fig. 12.3 is given by the construction shown in Fig. 17.8.
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17.5 Electron-phonon interaction

From Eq. (17.24), we find:

Hep(ψ,ψ∗, φ) = K

N−1∑

n=0

[
φn(t)− φn−1(t)

] [
ψ∗n+1(t)ψn(t) + ψ∗n(t)ψn+1(t)

]
. (17.73)

Using the finite Fourier mode expansions given in Eqs. (17.30) and (17.56) for the electron and phonon
modes, we find:

ψ∗n+1(t)ψn(t) =
1
N2

[N/2]∑

k,k′=−[N/2]

ψ̃∗k′(t) ψ̃k(t) ei2πn(k−k′)/N e−i2πk
′/N ,

ψ∗n(t)ψn+1(t) =
1
N2

[N/2]∑

k,k′=−[N/2]

ψ̃∗k′(t) ψ̃k(t) ei2πn(k−k′)/N e+i2πk/N ,

φn(t)− φn−1(t) =
1
N

[N/2]∑

q=−[N/2]

φ̃q(t)
[

1− e−i2πq/N
]
e+i2πnq/N .

So using orthogonality relations, Hep becomes:

Hep(ψ,ψ∗, φ) =
1
N2

[N/2]∑

k,k′=−[N/2]

Vk′,k φ̃k′−k(t) ψ̃∗k′(t) ψ̃k(t) , (17.74)

where

Vk′,k = 2 iK
[

sin(2πk′/N)− sin(2πk/N)
]

= 4 iK sin(π(k′ − k)/N) cos(π(k′ + k)/N)
≈ 4π iK (k′ − k)/N .

(17.75)

The last line is valid only for small values of k and k′. Note that V ∗k′,k = Vk,k′ = −Vk′,k. From Eq. (17.62),
we can also write this as:

Hep(ψ,ψ∗, φ) =
1
N2

[N/2]∑

k,k′=−[N/2]

Mk′,k

[
ak′−k(t) + a∗k−k′(t)

]
ψ̃∗k′(t) ψ̃k(t) , (17.76)

where

Mk′,k =

√
~

2Mω|k′−k|
Vk′,k . (17.77)

So the normal mode expansion of the Hamiltonian is given by:

H =
1
N

[N/2]∑

k=−[N/2]

{
εk ψ̃

∗
k(t) ψ̃k(t) + ωk a

∗
k(t) ak(t)

}

+
1
N2

[N/2]∑

k,k′=−[N/2]

Mk′,k

{
ak′−k(t) + a∗k−k′(t)

}
ψ̃∗k′(t) ψ̃k(t) . (17.78)

Eq. (17.78) is called the Fröhlich Hamiltonian.
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17.6 The action revisited

We can write the action as:
S[ψ̃, ψ̃∗, φ] =

∫
dt L(ψ̃, ψ̃∗, φ, φ̇) , (17.79)

where the Lagrangian is now given by the normal mode expansion:

L(ψ̃, ψ̃∗, φ, φ̇) =
1
N

[N/2]∑

k=−[N/2]

{
i

2
[
ψ̃∗k(t) ˙̃

ψk(t)− ˙̃
ψ∗k(t) ψ̃k(t)

]
− εk |ψ̃k(t)|2

+
m

2

[
| ˙̃φk(t)|2 − ω2

k |φ̃k(t)|2
]}
− 1
N2

[N/2]∑

k,k′=−[N/2]

Vk′,k φ̃k′−k(t) ψ̃∗k′(t) ψ̃k(t) . (17.80)

Here ψ̃k(t) and ψ̃∗k(t) are Grassmann variables. φk(t) is an ordinary commuting variable. We can write the
action in a more compact form by integrating by parts over t. We first introduce two vectors:

φk(t) =
(
φ̃k(t)
φ̃∗k(t)

)
, φ†k(t) =

(
φ̃∗k(t), φ̃k(t)

)
, (17.81)

and

χk(t) =
(
ψ̃k(t)
ψ̃∗k(t)

)
, χ†k(t) =

(
ψ̃∗k(t), ψ̃k(t)

)
, (17.82)

and the inverse Green function operators:

G−1
k,k′(t, t

′) =
1
2

[ ∂2
t + ω2

k ]
(

1 0
0 1

)
δkk′ δ(t, t′) , (17.83)

and

D−1
k,k′(t, t

′) =
(
i∂t − εk 0

0 −i∂t − εk

)
δkk′ δ(t, t′) . (17.84)

Here φk(t) are Bose fields and χk(t) Fermi fields. We can also define the four-component supervector:

Φk(t) =
(
φk(t)
χk(t)

)
, Φ†k(t) =

(
φ∗k(t), χ∗k(t)

)
, (17.85)

and the inverse Green function matrix:

G−1
k,k′(t, t

′) =
(
G−1
k,k′(t, t

′) 0
0 D−1

k,k′(t, t
′)

)
. (17.86)

Then the action can be written in a very compact way as:

S[Φ] = −1
2

∫
dt
∫

dt′
1
N2

[N/2]∑

k,k′=−[N/2]

{
Φ†k(t)G−1

k,k′(t, t
′) Φk′(t

′)

+ Vk,k′ φ̃k−k′(t) ψ̃
∗
k(t) ψ̃k′(t)

}
. (17.87)

Since the action is quadratic in the ψ̃k(t)-variables, an approximation in which we integrate away these
variables in favor of an effective action in terms of the φk(t) variables suggests itself. We invesitgate this
approximation in a following section.
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17.7 Quantization

For the electron system, the Grassmann canonical variables ψn, ψ
∗
n become quantum operators, obeying

anticommutation relations. These are given by:

{ψn, ψ†n′ } = δn,n′ , {ψn, ψn′ } = {ψ†n, ψ†n′ } = 0 . (17.88)

The Fourier transformed operators obey:

{ ψ̃k, ψ̃
†
k′ } = δk,k′ , (17.89)

with all other operators anticommuting. The electron number operator is given by:

Ne =
N−1∑

n=0

φ†n(t)φn(t) =
1
N

[N/2]∑

k=−[N/2]

ψ̃†k(t) ψ̃k(t) . (17.90)

For the lattice motion, φn and πn = M φ̇n are real conjugate variables which become Hermitian operators
in quantum mechanics and obey the commutation relations:

[φn(t), πn′(t) ] = i~ δn,n′ . (17.91)

The Fourier transformed non-Hermitian operators ak(t) and a†k′(t) obey:

[ ak(t), a†k′(t) ] = δk,k′ , (17.92)

with all other phonon operators commuting.

17.8 Block wave functions

An electron moving in a periodic one-dimensional lattice experiences a periodic potential. We have written
this potential in the form:

V (x) =
N−1∑

n=0

V (x− an) . (17.93)

Our approximation in the last section has been to expand the electron wave function in a basis set of wave
functions localized at the the N sites. We do not need to do this. Instead, we can expand the wave function
directly in terms of solutions of the electron in the complete periodic potential. Solutions of the Schrödinger
equation in a periodic potential are called “Block wave functions,” and were studied by Felix Block in the
early 1930’s in his investigation of the conduction of electricity in metals.

17.8.1 A one-dimensional periodic potential

Block wave functions are solutions of Schrödinger’s equation
{ ~2

2m
d2

dx2
+ V (x)

}
ψ(x) = E ψ(x) , (17.94)

for the case of a periodic potential, V (x+a) = V (x), with period a. The solution can be stated as a theorem,
called “Floquet’s theorem:”

Theorem 37 (Floquet’s theorem). The solution of Schrödinger’s Eq. (17.94) for a periodic potential of
period a can be expressed as:

ψK(x) = eiKx uK(x) , (17.95)

where uK(x+ a) = uK(x) is a periodic function with period a.
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Proof. If we put x→ x+ a in Eq. (17.94), we see that ψ(x+ a) satisfies:

{ ~2

2m
d2

dx2
+ V (x)

}
ψ(x+ a) = E ψ(x+ a) . (17.96)

So this means that ψ(x+a) is the solution of the same equation as before and therefore, since the probability
of finding the electron somewhere must be the same, ψ(x+ a) can differ from ψ(x) by only a phase:

ψ(x+ a) = eiKa ψ(x) , (17.97)

where we have chosen the phase to be Ka. The solution of (17.97) can be expressed in the form (17.95),
which completes the proof.

17.8.2 A lattice of delta-functions

We find here solutions of the one-dimensional Schrödinger’s time-independent equation (17.94) for a particle
in a periodic delta-function potential of the form:

V (x) = −λ
∑

n

δ(x− an) , (17.98)

where a is the lattice spacing. By Floquet’s theorem, the solution of Schrödinger’s equation is given by:

ψK(x) = eiKx uK(x) , where uK(x+ a) = uK(x) . (17.99)

Periodic boundary conditions at x = 0 and x = L = Na give:

Kn =
2πn
L

=
2πn
aN

, for n = 0, 1, 2, . . . , N − 1. (17.100)

So we find that:

ψ(x+ a) = eiK(x+a) uK(x) = eiKa ψ(x) ,

ψ(x− a) = eiK(x−a) uK(x) = e−iKa ψ(x) ,
(17.101)

so that we only need to solve for ψ(x) in the range 0 < x < a, and then use the second of Eq. (17.101) to
find ψ(x) in the range −a < x < 0. That is, for positive energies, E = ~2k2/(2m), the solutions are given
by:

ψ(x) =

{
A cos(kx) +B sin(kx) , for 0 < x < a,
e−iKa

{
A cos(k(x+ a)) +B sin(k(x+ a))

}
, for −a < x < 0,

(17.102)

whereas for negative energies, E = −~2κ2/(2m), we find:

ψ(x) =

{
A cosh(κx) +B sinh(κx) , for 0 < x < a,
e−iKa

{
A cosh(κ(x+ a)) +B sinh(κ(x+ a))

}
, for −a < x < 0.

(17.103)

The boundary conditions require that the wave function be continuous at x = 0 and that the derivative of
the wave function be discontinuous, with a jump given by:

dψ(+ε)
dx

− dψ(−ε)
dx

= −2mλ
~2

ψ(0) . (17.104)

This gives the two equations:

A = e−iKa
{
A cos(ka) +B sin(ka)

}
,

B − e−iKa
{
−A sin(ka) +B cos(ka)

}
= −2β A/(ka) ,
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for positive energies, and

A = e−iKa
{
A cosh(κa) +B sinh(κa)

}
,

B − e−iKa
{
A sinh(κa) +B cosh(κa)

}
= −2β A/(κa) ,

for negative energies, where β = mλa/~2. The boundary conditions give two equations for A and B:
[
e−iKa cos(ka)− 1

]
A+ e−iKa sin(ka)B = 0 ,

[
e−iKa sin(ka) + 2β/(ka)

]
A+

[
1− e−iKa cos(ka)

]
B = 0 ,

(17.105)

for positive energies, and
[
e−iKa cosh(κa)− 1

]
A+ e−iKa sinh(κa)B = 0 ,

[
−e−iKa sinh(κa) + 2β/(κa)

]
A+

[
1− e−iKa cosh(κa)

]
B = 0 ,

(17.106)

for negative energies. Non-trivial solutions exist when the determinant of these equations vanish. This give
the eigenvalue equations:

cos(Kna) = cos(ka)− β sin(ka)/(ka) . (17.107)

for positive energies, and
cos(Kna) = cosh(κa)− β sinh(κa)/(κa) . (17.108)

for negative energies. Numerical solutions of these equations are shown in Figs. 17.9, 17.10, and 17.11 for
β = 0.5, 1.0, and 1.5. Here values of ka/π are plotted on the positive x-axis and values of κa/π on the
negative x-axis. Solutions exists for values of k and κ for values of the curve which lie between −1 and
+1. The energy levels, shown in Fig. 17.12 for β = 1.5, therefore shows a band structure, with energy gaps
between the bands.

17.8.3 Numerical methods

In this section, we show how to numerically solve Schrödinger’s equation for a particle in a one-dimensional
periodic potential. The solutions are called Block wave functions. The eigenvalues for this problem give a
band structure with energy gaps.

We follow the work of Reitz [?]. We consider a one dimensional lattice with lattice spacing a, such that
the potential is periodic in a, V (x+a) = V (x), and a region of space between zero and L, which is a multiple
of the lattice spacing a, that is: 0 ≤ x ≤ L = Ma. Block wave functions ψk(x) are solutions of Schrödinger’s
time-independent energy eigenvalue equation for this periodic potential:

{
− 1

2m
∂2

∂x2
+ V (x)

}
ψk(x) = εk ψk(x) . (17.109)

By Floquet’s theorem, the solutions of this problem is of the form:

ψk(x) = eikx uk(x) , (17.110)

with uk(x+ a) = uk(x) periodic. uk(x) satisfies the differential equation:

{
1

2m

[
1
i

∂

∂x
+ k

]2

+V (x)
}
uk(x) = εk uk(x) . (17.111)

We also demand that the full region between zero and L be periodic. This means that we require ψk(L) =
ψk(0), or

eikL uk(Ma) = uk(0) . (17.112)
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Figure 17.9: Plot of the right-hand side of Eqs. (17.107) and (17.108), for β = 0.5.
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Figure 17.10: Plot of the right-hand side of Eqs. (17.107) and (17.108), for β = 1.0.
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Figure 17.11: Plot of the right-hand side of Eqs. (17.107) and (17.108), for β = 1.5.

But since uk(Ma) = uk(0), we must have:

k =
2πn
L

=
2πn
aM

, for n = 0, 1, 2, . . . ,M − 1. (17.113)

The boundary conditions on uk(x) are:

uk(a) = uk(0) , u′k(a) = u′k(0) . (17.114)

Translating these boundary conditions on uk(x) to boundary conditions on ψk(x), we find:

ψk(a) = ψk(0) eika ,
{
ψ′k(a)− ik ψk(a)

}
=
{
ψ′k(0)− ik ψk(0)

}
eika .

(17.115)

These equations can be combined to give:

ψk(a) = ψk(0) eika ,

ψ′k(a) = ψ′k(0) eika .
(17.116)

It is easier to solve Eq. (17.109) for ψk(x) that Eq. (17.111) for uk(x). The energy εk is then determined by
the solution of Eq. (17.109) in the region 0 ≤ x ≤ a, subject to boundary conditons (17.116). The energy is
generally a multivalued function of k, so it will become useful later to label energies and wave functions by
an additional label indicating the k-branch of the energy function.

Block wave functions are orthogonal over the full region 0 ≤ x ≤ L. From (17.109), we find:

ψ∗k′(x)
{
− 1

2m
∂2

∂x2
+ V (x)

}
ψk(x) = εk ψ

∗
k′(x)ψk(x) ,

ψk(x)
{
− 1

2m
∂2

∂x2
+ V (x)

}
ψ∗k′(x) = εk′ ψk(x)ψ∗k′(x) .
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Figure 17.12: Plot of the energy, in units of 2m/~2, as a function of Ka/π for β = 1.5.

c© 2009 John F. Dawson, all rights reserved. 219



17.8. BLOCK WAVE FUNCTIONS CHAPTER 17. ELECTRONS AND PHONONS

Subtracting these two equations and integrating over x gives:

( εk − εk′ )
∫ L

0

dxψ∗k′(x)ψk(x) =
1

2m

[
ψ∗k′(x)ψ ′k(x)− ψ∗ ′k′ (x)ψk(x)

]L

0

= 0 , (17.117)

for εk 6= εk′ , since ψk(l) = ψk(0) and ψ ′k(L) = ψ ′k(0), for all k. The wave functions for the same values of k
but on different k-branches of the energy function are also orthogonal. We can normalize them in the full
region 0 ≤ x ≤ L, and require: ∫ L

0

dxψ∗n,b(x)ψn′,b′(x) = δn,n′ δb,b′ . (17.118)

Here we have labeled the wave functions by the value of n which determines kn and the k-branch, which we
label by b = 1, 2, . . . . So we can always expand the field ψ(x, t) in Block wave functions:

ψ(x, t) =
∑

n,b

qn,b(t)ψn,b(x) , (17.119)

so that:

H0 =
∫ L

0

dxψ∗(x, t)
{
− 1

2m
∂2

∂x2
+ V (x)

}
ψ(x, t) =

∑

n,b

εn,b |qn,b(t)|2 ,

N =
∫ L

0

dx |ψ(x, t)|2 =
∑

n,b

|qn,b(t)|2 .
(17.120)

We can always solve Eq. (17.109) for ψk(x) numerically. We review here how to do that. We first translate
the region 0 ≤ x ≤ a into a region symmetric about the origin by setting x → x − a/2. The differential
equation (17.109) remains the same, but the boundary conditions (17.116) now become:

ψk(a/2) e−ika/2 = ψk(−a/2) e+ika/2 ,

ψ′k(a/2) e−ika/2 = ψ′k(−a/2) e+ika/2 .
(17.121)

We now write ψk(x) as a sum of even and odd functions. We let:

ψk(x) = Ak fk(x) + i Bk gk(x) , (17.122)

where fk(−x) = fk(x) and gk(−x) = −gk(x). Starting at the origin, we choose a value of εk and numerically
integrate. using the differential equation, the even and odd functions separately out to x = a/2, then compute
the values and first derivatives of f and g. We can take f and g to be real. The boundary conditions (17.121)
become:

sin(ka/2) fk(a/2)Ak − cos(ka/2) gk(a/2)Bk = 0 ,
cos(ka/2) f ′k(a/2)Ak + sin(ka/2) g′k(a/2)Bk = 0 ,

(17.123)

which have solutions only if:

Bk
Ak

=
sin(ka/2)
cos(ka/2)

fk(a/2)
gk(a/2)

= −cos(ka/2)
sin(ka/2)

f ′k(a/2)
g′k(a/2)

, (17.124)

or

tan(ka/2) =

√
−gk(a/2) f ′k(a/2)
g′k(a/2) fk(a/2)

. (17.125)

Since the wave functions on the right-hand side depend on the value of εk from the differential equation,
Eq. (17.124) determines the eigenvalues εk for a given value of k, provided k is real. There can be many
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values of εk for a given value of k. The edges of the allowed bands are when either fk(a/2), f ′k(a/2), gk(a/2),
or g′k(a/2) is zero. We would expect that the k = 0 state in the first band (the ground state) is when
f ′k(a/2) = 0. The edges of the band are when:

ka

2
=
πn

M
=
π

2
m , with m = 0, 1, 2, . . . . (17.126)

or n = mM/2. However, since 0 ≤ n ≤M − 1, m is restricted to be either 0 or 1. Once a solution is found
which satisfies (17.125), the Block wave function and it’s derivative is given by the equations:

ψk(x) = Nk
{

cos(ka/2)
fk(x)
fk(a/2)

+ i sin(ka/2)
gk(x)
gk(a/2)

}
,

ψ′k(x) = N ′k
{

cos(ka/2)
g′k(x)
g′k(a/2)

+ i sin(ka/2)
f ′k(x)
f ′k(a/2)

}
,

(17.127)

where

Nk =
fk(a/2)

cos(ka/2)
Ak ,

N ′k = −i f ′k(a/2)
sin(ka/2)

Ak .

(17.128)

So
Nk
N ′k

=

√
fk(a/2) gk(a/2)
f ′k(a/2) g′k(a/2)

. (17.129)

Recall that our normalization is:

M

∫ a/2

−a/2
dx |ψk(x)|2 = 1 . (17.130)

So, from the first of (17.128), we can fix Nk by the numerical requirement:

1
|Nk|2

= 2M
∫ a/2

0

dx
{

cos2(ka/2)
[
fk(x)
fk(a/2)

]2

+ sin2(ka/2)
[
gk(x)
gk(a/2)

]2}
. (17.131)

This completes the discussion of the numerical solution of the Block equation.

Example 32. Atoms can be trapped by potentials, called “electromagnetic tweezers,” created by laser
beams. These potentials are of the form:

V (x) =
V0

2

[
1− cos

(
2πx
a

)]
. (17.132)

The eigenvalue equation (17.109) then becomes:
{
− 1

2m
d2

dx2
+
V0

2

[
1− cos

(
2πx
a

)]}
ψk(x) = εk ψk(x) . (17.133)

Changing variables, we set:

z =
πx

a
, s =

2mV0a
2

π2
, ek =

aεk
π

√
2m
V0

. (17.134)

then (17.133) becomes: {
− d2

dz2
+
s

2

[
1− cos(2z)

]}
ψk(z) = ek

√
sψk(z) . (17.135)

This is one form of the Mathieu equation [2][p. 720], the solutions of which are Mathieu functions.
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Chapter 18

Schrödinger perturbation theory

In this chapter, we discuss perturbation theory in the Schrödinger representation. However we first derive a
useful theorem. The Feynman-Hellman theorem states that:

Theorem 38 (Feynman-Hellman). Let λ be any real parameter of a real Hermitian operator H(λ) satisfying
the eigenvalue equation:

H(λ) |ψn,α(λ) 〉 = En(λ) |ψn,α(λ) 〉 , (18.1)

where |ψn,α(λ) 〉 is any of the eigenvectors with eigenvalue En(λ). Then the rate of change of the eigenvalue
En(λ) with λ is given by:

∂En(λ)
∂λ

=
〈
ψn,α(λ)

∣∣∣ ∂H(λ)
∂λ

∣∣∣ψn,α(λ)
〉
. (18.2)

Proof. Differentiating Eq. (18.1) by λ gives:

∂H(λ)
∂λ

|ψn,α(λ) 〉+H(λ)
∂|ψn,α(λ) 〉

∂λ
=
∂En(λ)
∂λ

|ψn,α(λ) 〉+ E(λ)
∂|ψn,α(λ) 〉

∂λ
. (18.3)

Multiplying through by 〈ψn,α(λ) | and using the fact that H is Hermitian, results in cancelation of the
derivatives of the eigenvectors and in Eq. (18.2), which was what we wanted to prove. The result is exact.

18.1 Time-independent perturbation theory

In this section, we derive equations for first and second order time-independent perturbation theory for
operators. Suppose we wish to find an approximate solution to the problem:

H(λ) |ψ(λ) 〉 = E(λ) |ψ(λ) 〉 , (18.4)

where H(λ) is given by: H(λ) = H0 + λV with λ, in some sense, “small.” Then it is clearly advantagious
to try to expand the eigenvector and eigenvalue in a power series in λ:

|ψ(λ) 〉 =
M(n)∑

α=1

c(0)
n,α |ψ(0)

n,α 〉+ λ

M(n)∑

α=1

c(1)
n,α |ψ(1)

n,α 〉+ λ2

M(n)∑

α=1

c(2)
n,α |ψ(2)

n,α 〉+ · · · ,

E(λ) = E(0)
n + λE(1)

n + λ2E(2)
n + · · · ,

(18.5)

where |ψ(0)
n,α 〉 is a solution of:

H0 |ψ(0)
n,α 〉 = E(0)

n |ψ(0)
n,α 〉 , 〈ψ(0)

n,α |ψ(0)
n′,α′ 〉 = δn,n′ δα,α′ , (18.6)
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with α labeling the M(n) possible degenerate states of the unperturbed Hamiltonian H0. The coefficients
c
(m)
n,α are to be determined. They are normalized so that:

M(n)∑

α=1

∣∣ c(m)
n,α |2 = 1 . (18.7)

For the case when there are no degeneracies, M(n) = 1 and we can set all the c(m)
n,α = 1. We considere here

the general case for any value of M(n). Substituting (18.5) into (18.4) gives:

{
H0 + λV

}M(n)∑

α=1

{
c(0)
n,α |ψ(0)

n,α 〉+ λ c(1)
n,α |ψ(1)

n,α 〉+ λ2 c(2)
n,α |ψ(2)

n,α 〉+ · · ·
}

=
{
E(0)
n + λE(1)

n + λ2E(2)
n + · · ·

}M(n)∑

α=1

{
c(0)
n,α |ψ(0)

n,α 〉+ λ c(1)
n,α |ψ(1)

n,α 〉+ λ2 c(2)
n,α |ψ(2)

n,α 〉+ · · ·
}
.

Equating coefficients of λ yields the equations:

H0 |ψ(0)
n,α 〉 = E(0)

n |ψ(0)
n,α 〉 , (18.8)

M(n)∑

α=1

{
c(1)
n,αH0 |ψ(1)

n,α 〉+ c(0)
n,α V |ψ(0)

n,α 〉
}

=
M(n)∑

α=1

{
c(1)
n,αE

(0)
n |ψ(1)

n,α 〉+ c(0)
n,αE

(1)
n |ψ(0)

n,α 〉
}
, (18.9)

M(n)∑

α=1

{
c(2)
n,αH0 |ψ(2)

n,α 〉+ c(1)
n,α V |ψ(1)

n,α 〉
}

=
M(n)∑

α=1

{
c(2)
n,αE

(0)
n |ψ(2)

n,α 〉+ c(1)
n,αE

(1)
n |ψ(1)

n,α 〉

+ c(0)
n,αE

(2)
n |ψ(0)

n,α 〉
}
, (18.10)

· · · · · ·

Eq. (18.8) defines the unperturbed solutions (18.6). Operating on (18.9) on the left by 〈ψ(0)
n′,α′ | and using

the Hermitian property of H0 gives:

M(n)∑

α=1

(
E(0)
n − E(0)

n′

)
〈ψ(0)

n′,α′ |ψ(1)
n,α 〉 c(1)

n,α

+
M(n)∑

α=1

{
E(1)
n 〈ψ(0)

n′,α′ |ψ(0)
n,α 〉 − 〈ψ(0)

n′,α′ |V |ψ(0)
n,α 〉

}
c(0)
n,α = 0 . (18.11)

Setting n′ = n, the first term in (18.11) vanishes, leaving the set of equations:

M(n)∑

α=1

{
E(1)
n δα′,α − 〈ψ(0)

n′,α′ |V |ψ(0)
n,α 〉

}
c(0)
n,α = 0 . (18.12)

The set of Eqs. (18.12) has M(n) eigenvalues E(1)
n (β) and eigenvectors c(0)

n,α(β), which we label by β =
1, . . . ,M(n). This equation fixes the values of c(0)

n,α(β). We define eigenvectors |φ(0)
n,β 〉 of the degenerate state

n which diagonalize the matrix (18.12) by:

|φ(0)
n,β 〉 =

M(n)∑

α=1

c(0)
n,α(β) |ψ(0)

n,α 〉 . (18.13)
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The set of vectors |φ(0)
n ,β 〉 are also orthonormal:

〈φ(0)
n ,β |φ

(0)
n′,β′ 〉 = δn,n′ δβ,β′ . (18.14)

Now setting n′ 6= n in Eq. (18.11), the second term in (18.11) vanishes, from which we find the result for the
overlap:

〈φ(0)
n′,β′ |φ

(1)
n ,β 〉 =

〈φ(0)
n′,β′ |V |φ

(0)
n ,β 〉

E
(0)
n − E

(0)
n′

, n′ 6= n , (18.15)

where we have defined:

|φ(1)
n,β 〉 =

M(n)∑

α=1

c(1)
n,α(β) |ψ(1)

n,α 〉 , (18.16)

and have multiplied by c
(0)
n′,α′(β

′) and summed over α′. So, to first order, the eigenvectors and eigenvalues
are given by:

|ψn(β) 〉 = |φ(0)
n ,β 〉+

M(n)∑

β′=1
n′ 6=n

|φ(0)
n′,β′ 〉 〈φ

(0)
n′,β′ |λV |φ

(0)
n ,β 〉

E
(0)
n − E

(0)
n′

,

En(β) = E(0)
n + λE(1)

n (β) .

(18.17)

This eigenvector is normalized to order λ2.

Remark 26. The question of whether the perturbative power series in λ for the eigenvalues and eigenvectors
converge cannot be answered in general. In general, the perturbation series does not lead to a normalized
eigenvector. In order to correct for this, and perhaps for other problems with perturbation theory, one
often tries to resum parts of the perturbation series. This has produced a proliferation of resumed “non-
perturbative” approximations to perturbation theory. One of these, for example is the XXX approximation.

18.2 Time-dependent perturbation theory

In this section, we derive equations for time-dependent perturbation theory in the Schrödinger representation.

References
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Chapter 19

Variational methods

19.1 Introduction

Use of variational approximations in quantum mechanics have a long and interesting history. The time-
independent method was first applied by Lord Rayleigh in 1873 to the computation of the vibration frequen-
cies of mechanical systems[?]. In this method, a normalized “trial” wave function for the ground state is
taken to be a function of a number of arbitrary parameters. These parameters are varied until a minimum is
found. With some ingenuity, trial wave functions with thousands of parameters have been used successfully
in atomic physics for the ground states of atoms and molecules.

The time-dependent version of the variational approximation can be traced to an obscure appendix in
the 1930 Russian edition of the “Principles of Wave Mechanics,” by Dirac.1 In this version of the variational
approximation, the wave function is taken to be a function of a number of time-dependent parameters.
Variation of the action, as defined by Dirac, leads to a classical set of Hamiltonian equations of motion for
the parameters. These classical equations are then solved as a function of time to provide an approximation
to the evolution of the wave function.

19.2 Time dependent variations

Dirac pointed out that unrestricted variation of the action:

S[ψ,ψ∗] =
∫ T

0

dt
{ i~

2
[
〈ψ†(t) | ∂t ψ(t) 〉 − 〈 ∂t ψ†(t) |ψ(t) 〉

]
− 〈ψ(t) |H |ψ(t) 〉

}
, (19.1)

with no variation at the end points | δψ(0) 〉 = | δψ(T ) 〉 = 0, leads to Schrödinger’s equation and its adjoint:

H |ψ(t) 〉 = i~ ∂t|ψ(t) 〉 , 〈ψ(t) |H† = −i~ ∂t〈ψ(t) | . (19.2)

We assume here that H is hermitian, and independent explicitly of time. Then solutions of (19.2) obey a
probability conservation equation:

∂t 〈ψ(t) |ψ(t) 〉 = 0 . (19.3)

We consider in this chapter a variational approximation to the exact time-dependent wave function of the
form:

|ψ(t) 〉 = |ψ(N (t), θ(t), y(t)) 〉 ≡ N (t)eiθ(t) |ψ(y(t)) 〉 , (19.4)

1P. A. M. Dirac, Appendix to the Russian edition of The Principles of Wave Mechanics, as cited by Ia. I. Frenkel, Wave Me-
chanics, Advanced General Theory (Clarendon Press, Oxford, 1934), pp. 253, 436. The reference often quoted, P. A. M. Dirac,
Proc. Cambridge Philos. Soc. 26, 376 (1930), does not appear to contain this equation.
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where y(t) = [ y1(t), y2(t), . . . , y2n(t) ] is a set of 2n parameters which depend on time. We have selected
out two of these parameters, the normalization N (t) and overall phase θ(t) to treat specially. The varia-
tional approximation consists of requiring that these parameters are chosen so as to minimize the action of
Eq. (19.1), subject to the constraint given by Eq. (19.3). So with the choice (19.4), the action of Eq. (19.1)
becomes:

S[N , θ, y] =
∫

dt
{
−~ θ̇N 2 + L(N , y; ẏ)

}
,

L(N , y; ẏ) = πi(N , y) ẏi −H(N , y) ,
(19.5)

where

πi(N , y) =
i~
2
{
〈ψ(N , y) | ∂i ψ(N , y) 〉 − 〈 ∂i ψ(N , y) |ψ(N , y) 〉

}
,

H(N , y) = 〈ψ(N , y) |H |ψ(N , y) 〉 .
(19.6)

Here we have defined:2 ∂i ≡ ∂/∂yi. Since the integrand of the action in Eq. (19.5) is independent of θ,
Lagrange’s equation for θ gives a conservation equation for the normalization:

dN 2

dt
= 0 . (19.7)

The integrand of the action in Eq. (19.5) is also independent of Ṅ , and since both πi(N , y) and H(N , y) are
proportional to N 2, Lagrange’s equation for N gives:

~ θ̇N 2 = L(N , y) = πi(N , y) ẏi −H(N , y) . (19.8)

Now setting N 2 = 1 makes N = N (y) a function of all the y parameters, and we find:

θ̇ = L(y, ẏ)/~ =
{
πi(y) ẏi −H(y)

}
/~ , (19.9)

which has the solution:

θ(t) =
∫ t

0

dt L(y, ẏ)/~ . (19.10)

θ(t) can only be found after the equations of motion are solved for yi(t). Lagrange’s equations for the
y-variables are now given by:

d
dt

(
∂L

∂ẏi

)
− ∂L

∂yi
= 0 , (19.11)

where
L(y, ẏ) = πi(y) ẏi −H(y) . (19.12)

and both N and θ have been eliminated in favor of y. The trial wave function is now of the form given in
Eq. (19.4) with N = 1, θ(t) given by Eq. (19.10), and normalized so that:

〈ψ(y) |ψ(y) 〉 = 1 . (19.13)

From (19.12), the equations of motion for y are given by:

fij(y) ẏj = ∂iH(y) , where fij(y) = ∂i πj(y)− ∂j πi(y) , (19.14)

which can be solved if the co-variant matrix fij(y) is non-singular. We define the inverse as the contra-variant
matrix with upper indices:

fij(y) f jk(y) = f ij(y) fjk(y) = δji , (19.15)
2Because of the symplectic nature of the equations of motion for y, it is natural, but not necessary, to use contra- and

co-variant indices here.
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in which case, the equations of motion can be put in the form:

ẏi = f ij(y) ∂j H(y) ≡ ∂iH(y) . (19.16)

Here, we have defined contra-variant derivatives by:

∂i ≡ f ij(y) ∂j . (19.17)

Total energy is conserved:

dH(y)
dt

= ẏi (∂iH(y)) = f ij(y) (∂iH(y)) (∂j H(y)) ≡ 0 , (19.18)

since f ij(y) is antisymmetric.

Definition 30. If A(y) and B(y) are functions of y we define Poisson brackets by:3

{A(y), B(y) } = (∂iA(y)) f ij(y) (∂jB(y)) = (∂iA(y)) (∂iB(y)) . (19.19)

Note that for example { yi, yj } = f ij(y). However, Poisson brackets must also obey Jacobi’s identity.
This is proved in the following theorem.

Theorem 39 (Jacobi’s identity). Poisson brackets, defined by Eq. (19.19), satisfy Jacobi’s identity:

{A, {B,C } }+ {B, {C,A } }+ {C, {A,B } } = 0 . (19.20)

Proof. We start by noting that, after some algebra:

{A, {B,C } }+ {B, {C,A } }+ {C, {A,B } }
= ( ∂iA ) ( ∂jB ) ( ∂kC )

{
f il( ∂lf jk ) + f jl( ∂lfki ) + fkl( ∂lf ij )

}

= ( ∂iA ) ( ∂jB ) ( ∂kC )
{

( ∂if jk ) + ( ∂jfki ) + ( ∂kf ij )
}
. (19.21)

But now we note that since f jkfkl = δjl , differentiating this expression with respect to yi, we find:

( ∂if jk ) fkl + f jk ( ∂ifkl ) = 0 . (19.22)

Inverting this expression, and interchanging indices, we find:

( ∂if jk ) = −f jj′ ( ∂if j
′k′ ) fk

′k = f jj
′
fkk

′
( ∂if j

′k′ ) ,

( ∂if jk ) = f ii
′
( ∂i′f jk ) = f ii

′
f jj
′
fkk

′
( ∂if j

′k′ ) .

Using this expression in the last line of Eq. (19.21), we find:

{A, {B,C } }+ {B, {C,A } }+ {C, {A,B } }
= ( ∂iA ) ( ∂jB ) ( ∂kC )

{
( ∂ifjk ) + ( ∂jfki ) + ( ∂kfij )

}
. (19.23)

But since
fij(y) = ∂i πj(y)− ∂j πi(y) ,

satisfies Bianchi’s identity:
∂i fjk(y) + ∂j fki(y) + ∂k fij(y) = 0 , (19.24)

Jacobi’s identity also holds for our definition of the classical Poisson brackets. This completes the proof that
the set of 2n classical parameters are symplectic variables.

3Here, we follow Das [?].
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Remark 27. As one might expect from our use of contra- and co-variant concepts in this section, that it is
possible to develop a non-metric geometry based on the symplectic structure of our equations. This geometry
is throughly discussed in the book by Kramer and Saraceno [1], and we reproduce some of their results in
Appendix ??. The derivation of our variational equations are somewhat simpler using geometric concepts,
but a geometric descriptions is not necessary to apply the method to any problem of interest. For that, a
good guess as to the structure of the wave function is the most important question to answer. We turn next
to some examples.

Remark 28. Thus we have shown, in a quite general way, that Dirac’s quantum action is an extreemum for
arbitrary time-dependent variational parameters of the trial state vector, when these parameters satisfy a
classical symplectic (Hamiltonian) system of equations.

19.3 The initial value problem

If the initial value of the state vector is specified, the only requirement of our variational approximation is
that it must match the initial wave function. That is, at t = 0,

|ψ(θ(0), y(0)) 〉 = |ψ(0) 〉 , (19.25)

so that the parameterized form of the trial vector at t = 0 must be made to agree with the desired initial
vector. This places a minor restriction on the allowed parameterization.

The solutions for yi(t), i = 1, . . . , 2n then evolve according to (19.16), with yi(0) given by initial values.
For most of these initial values and Hamiltonians, the evolution will eventually lead to chaotic orbits. This
generally signals a failure of the variational approximation so that the wave function cannot be trusted for
times beyond the chaotic breakdown.4

19.4 The eigenvalue problem

The simplest choice of parameters yi are those that are independent of time. For this case, variation of the
action leads to equations for the variational parameters which satisfy:

∂iH(y) = 0 , H(y) = 〈ψ(y) |H |ψ(y) 〉 , (19.26)

subject to the constraint: 〈ψ(y) |ψ(y) 〉 = 1. This is just the time-independent variational equation, and leads
to a bound on the ground state of the system, since if we expand |ψ(y) 〉 in terms of the exact eigenvectors
of the system,

|ψ(y) 〉 =
∑

n

cn |ψn 〉 , (19.27)

we find that
H(y) =

∑

n

En ≥ E0 . (19.28)

So condition (19.26) gives an upper bound on the ground state. Bounds on eigenvalues of the energy for
states other than the ground state rely on constructing variational trial wave functions which are orthogonal,
or approximately orthogonal, to the variational ground state. Sometimes symmetries, such as parity, can be
used to find such states.

But we do not have to restruct ourselves to time-independent variational parameters to find eigenvalues
of the energy. In general the solutions for yi(t) of the classical equations of motion, given by (19.16), for
arbitrary initial conditions lead to chaotic orbits. However for a particular choice of initial conditions,
there could be regions of phase space where periodic closed orbits exists. These stable orbits are related to
eigenvalues of the quantum Hamiltonian.

4See ref. [?, ?] for an example of this “quantum chaos.”
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So we suppose that it is possible to find initial conditions for the classical equations of motion which lead
to periodic orbits with period T such that yi(T ) = yi(0), for all i = 1, . . . , 2n. Our problem is to find these
orbits. Now the exact time-dependent wave function for the nth eigenvector is given by:

|ψn(t) 〉 = e−iEnt/~ |ψn 〉 , (19.29)

and is periodic with period Tn = 2π~/En. That is |ψn(Tn) 〉 = |ψn(0) 〉. So we require that our variational
wave function is also periodic with period Tn:

eiθ(Tn) |ψ(y(Tn)) 〉 = eiθ(0) |ψ(y(0)) 〉 . (19.30)

But θ(0) = 0, and we assume that we have found periodic orbits such that yi(Tn) = yi(0). Then the periodic
requirement on the variational wave function states that

θ(Tn) = 2πn′ , (19.31)

where n′ is an integer. However

θ(Tn) =
∫ Tn

0

L(t)
dt
~

=
∫ Tn

0

πi(t) ẏi(t)
dt
~
− EnTn

~
=
∫ Tn

0

πi(t) ẏi(t)
dt
~
− 2π . (19.32)

Here we have replaced the conserved energy H(y) by the exact energy En. So we find

I(Tn) =
∫ Tn

0

πi(t) ẏi(t)
dt

2π~
= n (19.33)

where n = n′ + 1 ≥ 0 is a positive integer. Only certain closed orbits have integral actions, and it is these
that represent approximate time-dependent variational wave functions to the eigenstates of the system. Note
that these wave functions depend on time, but are periodic.

The phase space requirement (19.33) is similar to the Bohr-Sommerfeld quantization rule, however there
is an essential difference: the variational “quantization rule” (19.33) applies to the action of a classical
Hamiltonian, derived from the variational parameterization of the trial state vector, not a classical version
of the quantum Hamiltonian, as in the usual Bohr-Sommerfeld quantization.

One way to find closed orbits with integral action is to vary the initial conditions until the action is
integral, as was done by Pattanayak and Schieve[?].

We will study some examples of the application of these formulas in the next section.

19.5 Examples

We now turn to several example of the use of the variational approximation.

19.5.1 The harmonic oscillator

As a first example, we study the one-dimensional harmonic oscillator with the Hamiltonian:

H(x, p) =
p2

2m
+

1
2
mω2 x2 , (19.34)

and consider a trial wave function of the form:

ψ(x; Γ(t),Σ(t)) =
1

[ 2πΓ(t) ]1/4
exp
{
iθ(t)− x2

[ 1
4 Γ(t)

− iΣ(t)
]}

, (19.35)
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which depend on the two parameters y1(t) = Γ(t) and y2(t) = Σ(t). θ(t) is the phase parameter, defined by
Eq. (19.10). The wave function is normalized, as required by the theory:

∫ +∞

−∞
dx |ψ(x; Γ(t),Σ(t)) |2 = 1 . (19.36)

After some algebra and calculus, we find the results:

πΓ = 0 , πΣ = −~ Γ ,

H(Γ,Σ) =
~2

2m

{ 1
4Γ

+ 4Γ Σ2
}

+
1
2
mω2 Γ ,

and so

L(Γ,Σ; Σ̇) = πΓΓ̇ + πΣΣ̇−H(Γ,Σ) ,

= −~ Γ Σ̇− ~2

2m

( 1
4Γ

+ 4 Γ Σ2
)
− 1

2
mω2 Γ .

(19.37)

The equations of motion are:

~ Γ̇ =
4~2

m
Γ Σ ,

~ Σ̇ =
~2

2m

( 1
4Γ2
− 4 Σ2

)
− 1

2
mω2 .

(19.38)

We also find:

fij(Γ,Σ) = ~
(

0 −1
1 0

)
, f ij(Γ,Σ) =

1
~

(
0 1
−1 0

)
, (19.39)

which is of the required symplectic form. From the equations of motion, we find that the Hamiltonian is a
constant of the motion. We put:

H(Γ,Σ) =
~2

2m
1

4Γ

{
1 + ( 4 Γ Σ )2

}
+

1
2
mω2 Γ = E =

1
2
mω2 a2 , (19.40)

where a is the classical turning point. From the equations of motion, we have:

~ Γ̈ =
4~2

m

{
Γ̇ Σ + Γ Σ̇ ,

}

=
4~
m

{(4~2

m

)
Γ Σ2 +

( ~2

2m

) [ 1
4Γ
− 4 Γ Σ2

]
− 1

2
mω2 Γ

}

=
4~
m

{
E −mω2 Γ

}
,

from which we find:
Γ̈ + (2ω)2 Γ = (2ω)2 (a2/2) , (19.41)

the solution of which is:
Γ(t) =

{
a2 +R2 cos(2ωt− φ)

}
/ 2 , (19.42)

where R and φ are to be fixed by the energy and initial conditions. Since

Γ̇(t)/ω = −R2 sin(2ωt− φ) , (19.43)

from Eq. (19.40), we find:

1
2
mω2 a2 =

~2

2m
1

4Γ

{
1 +

(
4 Γ Σ

)2 }+
1
2
mω2 Γ

=
~2

2m
1

4Γ

{
1 +

(
mΓ̇/~

)2 }+
1
2
mω2 Γ ,

(19.44)
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which can be written as:
a2 Γ2 =

(
Γ̇/ω

)2 +
(
b2/2

)2 + Γ2 ,

where b is the oscillator parameter, b =
√

~/(mω). Substituting our solutions (19.42) and (19.43) into this
expression gives:

R4 = a4 − b4 > 0 , so that: R2 =
√
a4 − b4 . (19.45)

which fixes R2 in terms of the energy and the oscillator parameter. It is useful to rewrite Γ(t) and Γ̇(t) in
the following way. We note from Eq. (19.42) that we can write:

Γ(t) =
{
a2 +R2 cos(2ωt− φ)

}
/ 2

= b2
{

cosh(2r) + sinh(2r) cos(2ωt− φ)
}
/ 2

= b2
{

cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(2ωt− φ)
}
/ 2

= b2
{

cosh(r) + e+i(2ωt−φ) sinh(r)
}{

cosh(r) + e−i(2ωt−φ) sinh(r)
}
/ 2 .

(19.46)

where
cosh(2r) = (a/b)2 , sinh(2r) =

√
(a/b)2 − 1 . (19.47)

For Σ(t), we find:

Σ(t) =
m

4~
Γ̇(t)
Γ(t)

=
( 1

2b2
) − sinh(2r) sin(2ωt− φ)

cosh(2r) + sinh(2r) cos(2ωt− φ)
, (19.48)

so that

1
4Γ(t)

− iΣ(t) =
( 1

2b2
) 1 + i sinh(2r) sin(2ωt− φ)

cosh(2r) + sinh(2r) cos(2ωt− φ)

=
( 1

2b2
) cosh2(r)− sinh2(r) + 2i sinh(r) cosh(r) sin(2ωt− φ)

cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(2ωt− φ)

=
( 1

2b2
) { cosh(r)− e−i(2ωt−φ) sinh(r)

}{
cosh(r) + e+i(2ωt−φ) sinh(r)

}
{

cosh(r) + e−i(2ωt−φ) sinh(r)
}{

cosh(r) + e+i(2ωt−φ) sinh(r)
}

=
( 1

2b2
) cosh(r)− e−i(2ωt−φ) sinh(r)

cosh(r) + e−i(2ωt−φ) sinh(r)
.

From (19.37) and (19.38), the Lagrangian is given by:

L(t) = − ~2

4mΓ(t)
, (19.49)

so the phase angle is:

θ(t) =
∫ t

0

L(t) dt/~ = − ~
4m

∫ t

0

L(t) dt
dt

Γ(t)
= −1

2

∫ x

x0

dx
cosh(2r) + sinh(2r) cos(2x)

= −1
2

∫ x

x0

dx
(cosh(r) + sinh(r))2 cos2(x) + (cosh(r)− sinh(r))2 sin2(x)

= −1
2

1
(cosh(r) + sinh(r))2

∫ x

x0

dx
cos2(x) ( 1 + β2 tan2(x))

,

where we have put x = ωt− φ/2, so that x0 = −φ/2, and have defined β by:

β =
cosh(r)− sinh(r)
cosh(r) + sinh(r)

.
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With the substitution u = β tan(x), we obtain:

− 2θ(t) =
∫ u

u0

du
1 + u2

= tan−1(u)− tan−1(u0) = tan−1(K) , (19.50)

where we have set K equal to:

K =
u− u0

1 + uu0
=

β tan(x)− β tan(x0)
1 + β2 tan(x) tan(x0)

. (19.51)

Inverting expression (19.50), we find:

tan(2θ(t)) = −K
e2iθ(t) − e−2iθ(t)

e2iθ(t) + e−2iθ(t)
= −iK

or, if we put z = e2iθ(t), then
z − 1/z
z + 1/z

=
z2 − 1
z2 + 1

= −iK

which has the solution:

z2 =
1− iK
1 + iK

=
1 + β2 tan(x) tan(x0)− i ( tan(x)− tan(x0) )
1 + β2 tan(x) tan(x0) + i ( tan(x)− tan(x0) )

=
a2

+ cos(x) cos(x0) + a2
− sin(x) sin(x0)− i ( sin(x) cos(x0)− cos(x) sin(x0) )

a2
+ cos(x) cos(x0) + a2

− sin(x) sin(x0) + i ( sin(x) cos(x0)− cos(x) sin(x0) )
,

where we have set:
a+ = cosh(r) + sinh(r) , a− = cosh(r)− sinh(r) ,

so that a+a− = 1. So that z2 can be written as:

e4iθ(t) = z2 =
( a+ cos(x)− ia− sin(x) ) ( a+ cos(x0) + ia− sin(x0) )
( a+ cos(x) + ia− sin(x) ) ( a+ cos(x0)− ia− sin(x0) )

=
( cosh(r) e−ix + sinh(r) e+ix ) ( cosh(r) e+ix0 + sinh(r) e−ix0 )
( cosh(r) e+ix + sinh(r) e−ix ) ( cosh(r) e−ix0 + sinh(r) e+ix0 )

=
( cosh(r) + sinh(r) e+2ix ) ( cosh(r) + sinh(r) e−2ix0 )
( cosh(r) + sinh(r) e−2ix ) ( cosh(r) + sinh(r) e+2ix0 )

e−2i(x−x0) .

But since 2x = 2ωt − φ, 2x0 = −φ, and 2(x − x0) = 2ωt, the normalization factor together with the
time-dependent phase becomes:

eiθ(t)

[ 2πΓ(t) ]1/4
=

ei(φ−θ0−2ωt)/4

π1/4 [ b (cosh(r) + e−2iωt sinh(r)) ]1/2
(19.52)

where the phase θ0 is given by:
tan(θ0/2) = e−2r tan(φ/2) . (19.53)

Putting all this together, the variational wave function (19.35) for the harmonic oscillator is given by:

ψ(x, t) =
exp
{
−
( x2

2b2
) cosh(r)− ei(2ωt−φ) sinh(r)

cosh(r) + ei(2ωt−φ) sinh(r)
+
i

4
(
φ− θ0 − 2ωt

)}

π1/4 [ b (cosh(r) + e−i(2ωt−φ) sinh(r)) ]1/2
, (19.54)
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in agreement with our previous result for a squeezed state, with a squeeze parameter r. Thus this solution
is exact.

We note that our solutions for this parameterization yields periodic orbits, so that we can use them to
find eigenvalues of the system. From our solutions, Eqs. (19.46) and (19.48), we see that all (Γ(t),Σ(t))
orbits in phase space are periodic, with period T = π/ω, which is half the value of the classical orbit for a
harmonic oscillator. We need to find the phase space integral I(T ) for one of these orbits. We find:

I(T ) =
∫ T

0

πi(t) ẏi(t)
dt

2π~
(19.55)

But πi(t) ẏi(t) = E − L(t), so we get:

I(T ) =
ET

2π~
− θ(T )

2π
=

E

2~ω
− θ(T )

2π
. (19.56)

In order to evaluate θ(T ), we first note that x(T ) = π − φ/2, so that from (19.51)

K = β
tan(x(T ))− tan(x0)

1 + β2 tan(x(T )) tan(x0)
= 0 . (19.57)

Then θ(T ) is given by the solution to:
tan(2θ(T )) = 0 . (19.58)

After some consideration, the correct zero is given by 2θ(T ) = π, so we find:

I(T ) =
E

2~ω
− 1

4
≡ n . (19.59)

So the eigenvalues are given by:

E = ~ω
(

2n+
1
2
)
, (19.60)

with n = 0, 1, 2, . . . . Eq. (19.60) is the exact result. We only get the even eigenvalues because we picked a
trial wave function which was symmetric about the origin. Thus our results happen to be exact because we
chose a Gaussian form for the wave function. Note however that the Gaussian form we selected is not an
eigen function, nevertheless the Gaussian form gave the exact eigenvalues. In the next section, we look at
an example which does not have a simple analytic solution.

19.5.2 The anharmonic oscillator

The Gaussian trial wave function for the harmonic oscillator in the last section happened to be an exact
solution, and the variational method for bound states gave the exact answer. In this section, we study the
anharmonic oscillator.

Let us scale the Lagrangian so that in appropriate units, it is given by:

L =
1
2
ẋ2 − x4 , (19.61)

Again, we take a simple Gaussian variational trial wave function φ of the form,

φ(x;N,G,Σ) =
1

[ 2πΓ(t) ]1/4
exp
{
iθ(t)− x2

[ 1
4 Γ(t)

− iΣ(t)
]}

, (19.62)

where Γ(t) and Σ(t) are the time-dependent variational parameters. The energy is now given by:

E(Γ,Σ) = 2 Γ Σ2 +
1

8 Γ
+ 3 Γ2 ,

c© 2009 John F. Dawson, all rights reserved. 235



REFERENCES REFERENCES

Table 19.1: The first five energies of the anharmonic oscillator computed using the time-dependent varia-
tional method compared to the exact results [?] and a SUSY-based variational method [?].

n variational exact SUSY
0 0.6814 0.6680 0.6693
1 6.6980 4.6968 4.7133
2 14.7235 10.2443 9.3102
3 24.0625 16.7118
4 34.4217 23.8900

and the equations of motion are:

Γ̇ = 4 Γ Σ ,

Σ̇ = −2Σ2 − 6 Γ +
1

8 Γ2
.

Changing variables to
Γ = ρ2 , Σ =

pρ
2 ρ

,

the equations of motion become

ρ̇ = pρ , ṗρ =
1

4 ρ3
− 12 ρ3 .

We can further scale the variables so as to completely remove the constants from the equations of motion.
If we let

ρ =
√

2x , pρ =
√

2 y ,

then the energy equation becomes:

E = y2 + 12x4 +
1

16x2
,

The action integral I for this case is given by:

I =
4

2π

∫ xmax

xmin

√
E − 12x4 − 1

16x2
dx . (19.63)

The turning points now have to be found numerically. The results for the first five (even) energy levels are
given in Table 19.1, where we have compared these results with the exact (numerical) results of Hioe and
Montroll [?] and the results of a SUSY-based variational method [?]. Note that the results for the variational
approximation are upper bounds on the energies. However these energies are not very accurate in this case,
and indicate that our assumed Gaussian form of the wave function does not capture the dynamics of the
anharmonic oscillator very well.

19.5.3 Time-dependent Hartree-Fock

References
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Chapter 20

Exactly solvable potential problems

In the past several years, there has been a much deeper understanding of why the one-dimensional Schrödinger
is analytically solvable for certain potentials. The factorization method introduced by Schrödinger [1], and
used in Section ?? for the coulomb potential, was known in 1940. Infeld a Hull [2] developed the factorization
method more fully in 1951. It appears that Gendenshtein [3] was the first to discover the principle of shape
invariance and the surprising relation of supersymmetry to the analytic solution of potential problems in
quantum mechanics.

In this chapter, we follow the review work of F. Cooper, A. Khare, and U. Sukhatme [?, ?].

20.1 Supersymmetric quantum mechanics

Here we formulate supersymmetry for a general potential in one-dimensional quantum mechanics. We apply
the general method discussed in Section ?? for the harmonic oscillator. There we had found that . . .

20.2 The hierarchy of Hamiltonians

Here we develop the method.

20.3 Shape invariance

And here we explain shape invariance, and give some examples.

References

[1] E. Schrödinger, “A method of determining quantum mechanical eigenvalues and eigenfunctions,” Proc.
Roy. Irish Acad. A 46, 9 (1940).

[2] L. Infeld and T. E. Hull, “The factorization method,” Rev. Mod. Phys. 23, 21 (1951).

[3] L. E. Gendenshtein, “Derivation of the exact spectra of the Schrödinger equation by means of Supersym-
metry,” JETP Lett. 38, 356 (1983).
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Chapter 21

Angular momentum

In this chapter, we discuss the theory of angular momentum in quantum mechanics and applications of
the theory to many practical problems. The relationship between group theory and the generators of the
group are much simpler for the rotation group than the complete Galilean group we studied in Chapter 9 on
symmetries. The use of angular momentum technology is particularly important in applications in atomic
and nuclear physics. Unfortunately there is a lot of overhead to learn about before one can become reasonably
knowledgeable in the field and a proficient calculator. But the effort is well worth it — with a little work,
you too can become an “angular momentum technician!”

We start in this chapter with the eigenvalue problem for general angular momentum operators, followed
by a discussion of spin one-half and spin one systems. We then derive the coordinate representation of orbital
angular momentum wave functions. After defining parity and time-reversal operations on eigenvectors of
angular momentum, we then discuss several classical descriptions of coordinate system rotations, followed
by a discussion of how eigenvectors of angular momentum are related to each other in rotated systems. We
then show how to couple two, three, and four angular momentum systems and introduce 3j, 6j, and 9j
coupling and recoupling coefficients. We then define tensor operators and prove various theorems useful for
calculations of angular momentum matrix elements, and end the chapter with several examples of interest
from atomic and nuclear physics.

You will find in Appendix G, a presentation of Schwinger’s harmonic oscillator theory of angular mo-
mentum. This method, which involves Boson algebra, is very useful for calculation of rotation matrices
and Clebsch-Gordan coefficients, but is not necessary for a general understanding of how to use angular
momentum technology. We include it as a special topic, and use it to derive some general formulas.

A delightful collection of early papers on the quantum theory of angular momentum, starting with original
papers by Pauli and Wigner, can be found in Biedenharn and Van Dam [1]. We adopt here the notation
and conventions of the latest edition of Edmonds[2], which has become one of the standard reference books
in the field.

21.1 Eigenvectors of angular momentum

The Hermitian angular momentum operators Ji, i = 1, 2, 3, obey the algebra:

[ Ji, Jj ] = i~ εijkJk (21.1)

In this section, we prove the following theorem:

Theorem 40. The eigenvalues and eigenvectors of the angular momentum operator obey the equations:

J2| j,m 〉 = ~2 j(j + 1)| j,m 〉 ,
Jz| j,m 〉 = ~m| j,m 〉 ,
J±| j,m 〉 = ~A(j,∓m)| j,m± 1 〉 ,

(21.2)
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where J± = Jx ± iJy, and

A(j,m) =
√

(j +m)(j −m+ 1) , A(j, 1±m) = A(j,∓m) , (21.3)

with
j = 0, 1/2, 1, 3/2, 2, . . . , −j ≤ m ≤ j .

Proof. It is easy to see that J2 = J2
z + J2

y + J2
z commutes with Jz: [J2, Jz] = 0. Of course, J2 commutes

with any other component of J. Thus, we can simultaneously diagonalize J2 and any component of J, which
we choose to be Jz. We write these eigenvectors as |λ,m 〉. They satisfy:

J2|λ,m 〉 = ~2 λ |λ,m 〉 ,
Jz|λ,m 〉 = ~m |λ,m 〉 .

We now define operators, J± by linear combinations of Jx and Jy: J± = Jx ± iJy, with the properies:

J†± = J∓ , [Jz, J±] = ±~ J± , [J+, J−] = 2~ Jz

The total angular momentum can be written in terms of J± and Jz in several ways. We have:

J2 =
1
2

(J−J+ + J+J−) + J2
z = J+J− + J2

z − ~Jz = J−J+ + J2
z + ~Jz . (21.4)

The ladder equations are found by considering,

Jz {J±|λ,m 〉} = (J±Jz + [Jz, J±]) |λ,m 〉 = ~ (m± 1) {J±|λ,m 〉} .

Therefore J±|λ,m 〉 is an eigenvector of Jz with eigenvalue ~(m± 1). So we can write:

J+|λ,m 〉 = ~B(λ,m)|λ,m+ 1 〉 , (21.5)
J−|λ,m 〉 = ~A(λ,m)|λ,m− 1 〉 .

But since J− = J†+, it is easy to show that B(λ,m) = A∗(λ,m+ 1).
Using (21.4), we find that m is bounded from above and below. We have:

〈λ,m |{J2 − J2
z }|λ,m 〉 = ~2 (λ−m2) =

1
2
〈λ,m |(J†+J+ + J†−J−)|λ,m 〉 ≥ 0 .

So 0 ≤ m2 ≤ λ. Thus, for fixed λ ≥ 0, m is bounded by: −
√
λ ≤ m ≤ +

√
λ. Thus there must be a maximum

and a minimum m, which we call mmax, and mmin. This means that there must exist some ket, |λ,mmax 〉,
such that:

J+|λ,mmax 〉 = 0 ,

or, J−J+|λ,mmax 〉 = (J2 − J2
z − ~Jz)|λ,mmax 〉

= ~2(λ−m2
max −mmax)|λ,mmax 〉 = 0 ,

so mmax(mmax + 1) = λ. Similarly, there must exist some other ket, |λ,mmin 〉 such that:

J−|λ,mmin 〉 = 0 ,

or, J+J−|λ,mmin 〉 = (J2 − J2
z + ~Jz)|λ,mmin 〉

= ~2(λ−m2
min +mmin)|λ,mmin 〉 = 0 ,

so we find that mmin(mmin − 1) = λ. Therefore we must have

mmax(mmax + 1) = λ = mmin(mmin − 1) ,
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Which means that either mmin = −mmax, which is possible, or mmin = mmax + 1, which is impossible! So
we set j = mmax = −mmin, which defines j. Then λ = mmax(mmax + 1) = mmin(mmin − 1) = j(j + 1).
Now we must be able to reach |λ,mmax 〉 from |λ,mmin 〉 by applying J+ in unit steps. This means that
mmax −mmin = 2j = n, where n = 0, 1, 2, . . . is an integer. So j = n/2 is half-integral.

We can find A(j,m) and B(j,m) by squaring the second of (21.5). We find:

~2|A(j,m)|2〈 j,m− 1 | j,m− 1 〉 = 〈 j,m |J+J−| j,m 〉 ,
= 〈 j,m |(J2 − J2

z + ~Jz)| j,m 〉 ,
= ~2{j(j + 1)−m2 +m} ,
= ~2(j +m)(j −m+ 1) .

Taking A(j,m) to be real (this is conventional), we find:

A(j,m) =
√

(j +m)(j −m+ 1) ,

which also determines B(j,m) = A(j,m+ 1). This completes the proof.

Remark 29. Note that we used only the commutation properties of the components of angular momentum,
and did not have to consider any representation of the angular momentum operators.

Remark 30. The appearance of half-integer quantum numbers for j is due to the fact that there exists a
two-dimensional representation of the rotation group. We will discuss this connection in Section 21.2.4 below.

Remark 31. The eigenvectors of angular momentum | j,m 〉 refer to a particular coordinate frame Σ, where we
chose to find common eigenvectors of J2 and Jz in that frame. We can also find common angular momentum
eigenvectors of J2 and Jz′ , referred to some other frame Σ′, which is rotated with respect to Σ. We write
these eigenvectors as | j,m 〉′. They have the same values for j and m, and are an equivalent description of
the system, and so are related to the eigenvectors | j,m 〉 by a unitary transformation. We find these unitary
transformations in Section 21.3 below.

21.1.1 Spin

The spin operator S is a special case of the angular momentum operator. It may not have a coordinate
representation. The possible eigenvalues for the magnitude of intrinsic spin are s = 0, 1/2, 1, 3/2, . . . .

Spin one-half

The case when s = 1/2 is quite important in angular momentum theory, and we have discussed it in great
detail in Chapter 15. We only point out here that the Pauli spin-1/2 matrices are a special case of the
general angular momentum problem we discussed in the last section. Using the results of Theorem 40 for
the case of j = 1/2, the matrix elements of the spin one-half angular momentum operator is given by:

〈 1/2,m | ( Jx + iJy ) | 1/2,m′ 〉 = ~
(

0 1
0 0

)
, 〈 1/2,m | ( Jx − iJy ) | 1/2,m′ 〉 = ~

(
0 0
1 0

)
,

〈 1/2,m | Jz | 1/2,m′ 〉 =
~
2

(
1 0
0 −1

)
,

So the matrices for spin-1/2 can be written in terms of the Pauli matrices by writing: S = (~/2)σ, where
σ = σxx̂ + σyŷ + σz ẑ is a matrix of unit vectors, and where the Pauli matrices are given by:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (21.6)
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The Pauli matrices are Hermitian, traceless matrices which obey the algebra:

σi σj + σj σi = 2 δij , σi σj − σj σi = 2 i εijk σk , (21.7)
or: σi σj = δij + i εijk σk ,

A spin one-half particle is fully described by a spinor χ(θ, φ) with two parameters of the form:

χ(θ, φ) =
(
e−iφ/2 cos(θ/2)
e+iφ/2 sin(θ/2)

)
, (21.8)

where (θ, φ) is the direction of a unit vector p̂. χ(θ, φ) is an eigenvector of p̂ · σ with eigenvalue +1, i.e.
spin-up in the p̂ direction. Here p̂ is called the polarization vector. The density matrix for spin one-half
can be written in terms of just one unit vector (p̂) described by two polar angles (θ, φ):

ρ(p̂) = χ(θ, φ)χ†(θ, φ) =
1
2

( 1 + p̂ · σ ) . (21.9)

This result will be useful for describing a beam of spin one-half particles.

Spin one

The Deuteron has spin one. The spinor χ describing a spin one particle is a 3× 1 matrix with three complex
components. Since one of these is an overall phase, it takes eight real parameters to fully specify a spin-one
spinor. In contrast, it takes only two real parameters to fully describe a spin one-half particle, as we found in
the last section. The density matrix ρ = χχ† is a 3×3 Hermitian matrix and so requires nine basis matrices
to describe it, one of which can be the unit matrix. That leaves eight more independent matrices which are
needed. It is traditional to choose these to be combinations of the spin-one angular momentum matrices.
From the results of Theorem 40, the matrix elements for the j = 1 angular momentum operator is given by:

〈 1,m | ( Jx + iJy ) | 1,m′ 〉 = ~




0
√

2 0
0 0

√
2

0 0 0


 , 〈 1,m | ( Jx − iJy ) | 1,m′ 〉 = ~




0 0 0√
2 0 0

0
√

2 0


 ,

〈 1,m | Jz | 1,m′ 〉 = ~




1 0 0
0 0 0
0 0 −1


 ,

So let us put J = ~ S, where

Sx =
1√
2




0 1 0
1 0 1
0 1 0


 , Sy =

1√
2




0 −i 0
i 0 −i
0 i 0


 , Sz =




1 0 0
0 0 0
0 0 −1


 . (21.10)

The spin one angular momentum matrices obey the commutation relations: [Si, Sj ] = i εijkSk. Also they
are Hermitian, S†i = Si, and traceless: Tr[Si ] = 0. They also obey Tr[S2

i ] = 2 and Tr[SiSj ] = 0. An
additional five independent matrices can be constructed by the traceless symmetric matrix of Hermitian
matrices Sij , defined by:

Sij =
1
2
(
SiSj + SjSi

)
− 1

3
S · S , S†ij = Sij . (21.11)

We also note here that Tr[Sij ] = 0 for all values of i and j. So then the density matrix for spin one particles
can be written as:

ρ =
1
3
(

1 + P · S +
∑

ij

Tij Sij
)
, (21.12)

and where P is a real vector with three components and Tij a real symmetric traceless 3×3 matrix with five
components. So Pi and Tij provide eight independent quantities that are needed to fully describe a beam of
spin one particles.
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Exercise 47. Find all independent matrix components of Sij . Find all values of Tr[Si Sjk ] and Tr[Sij Skl ].
Use these results to find Tr[ ρSi ] and Tr[ ρSij ] in terms of Pi and Tij .

Exercise 48. Show that for spin one, the density matrix is idempotent: ρ2 = ρ. Find any restrictions this
places on the values of Pi and Tij .

21.1.2 Orbital angular momentum

The orbital angular momentum for a single particle is defined as:

L = R×P , (21.13)

where R and P are operators for the position and momentum of the particle, and obey the commutation
rules: [Xi, Pi ] = i~ δij . Then it is easy to show that:

[Li, Lj ] = i~ εijkLk , (21.14)

as required for an angular momentum operator. Defining as before L± = Lx± i Ly, we write the eigenvalues
and eigenvectors for orbital angular momentum as:

L2 | `,m 〉 = ~2 `(`+ 1) | `,m 〉 ,
Lz | `,m 〉 = ~m | `,m 〉 ,
L± | `,m 〉 = ~A(`,∓m) | `,m± 1 〉 ,

(21.15)

for −` ≤ m ≤ +`, and ` = 0, 1, 2, . . . . We will show below that ` has only integer values. We label
eigenvectors of spherical coordinates by | r̂ 〉 7→ | θ, φ 〉, and define:

Y`,m(r̂) = 〈 r̂ | `,m 〉 = 〈 θ, φ | `,m 〉 = Y`,m(θ, φ) . (21.16)

In the coordinate representation, L̃ is a differential operator acting on functions:

L̃Y`,m(θ, φ) = 〈 r̂ |L | `,m 〉 =
~
i

r̂×∇Y`,m(θ, φ) , (21.17)

We can easily work out the orbital angular momentum in spherical coordinates. Using

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ , (21.18)

with spherical unit vectors defined by:

r̂ = sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ

φ̂ = − sinφ x̂ + cosφ ŷ

θ̂ = cos θ cosφ x̂ + cos θ sinφ ŷ − sin θ ẑ ,

(21.19)

we find that the gradient operator is given by:

∇ = r̂
∂

∂r
+ φ̂

1
r sin θ

∂

∂φ
+ θ̂

1
r

∂

∂θ
. (21.20)

So in the coordinate representation, the vector angular momentum operator is given by:

L̃ =
~
i

r×∇ =
~
i

{
r̂× φ̂ 1

sin θ
∂

∂φ
+ r̂× θ̂ ∂

∂θ

}
=

~
i

{
−θ̂ 1

sin θ
∂

∂φ
+ φ̂

∂

∂θ

}
, (21.21)
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which is independent of the radial coordinate r. Components are given by:

L̃x =
~
i

{
− sinφ

∂

∂θ
− cosφ

tan θ
∂

∂φ

}
,

L̃y =
~
i

{
+ cosφ

∂

∂θ
− sinφ

tan θ
∂

∂φ

}
,

L̃z =
~
i

{ ∂

∂φ

}
,

(21.22)

from which we get:

L̃± = Lx ± i Ly =
~
i
e±iφ

{
±i ∂

∂θ
− 1

tan θ
∂

∂φ

}
, (21.23)

and so

L̃2 =
1
2

(L+L− + L−L+) + L2
z = −~2

{ 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

}
, (21.24)

Single valued eigenfunctions of L2 and Lz are the spherical harmonics, Y`m(θ, φ), given by the solution of
the equations,

−~2
{ 1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

}
Y`,m(θ, φ) = ~2 `(`+ 1)Y`,m(θ, φ) ,

~
i

{ ∂

∂φ

}
Y`,m(θ, φ) = ~mY`m(θ, φ) ,

~
i
e±iφ

{
±i ∂

∂θ
− 1

tan θ
∂

∂φ

}
Y`,m(θ, φ) = ~A(`,∓m)Y`,m±1(θ, φ) ,

(21.25)

where ` = 0, 1, 2, . . ., with −` ≤ m ≤ `, and A(`,m) =
√

(`+m)(`−m+ 1). Note that the eigenvalues
of the orbital angular momentum operator are integers. The half-integers eigenvalues of general angular
momentum operators are missing from the eigenvalue spectra. This is because wave functions in coordinate
space must be single valued.

Definition 31 (spherical harmonics). We define spherical harmonics by:

Y`,m(θ, φ) =





√
2`+ 1

4π
(`−m)!
(`+m)!

(−)m eimφ Pm` (cos θ) , for m ≥ 0,

(−)m Y ∗`,−m(θ, φ) , for m < 0.

(21.26)

where Pm` (cos θ) are the associated Legendre polynomials which are real and depend only on |m|. This is
Condon and Shortly’s definition [3], which is the same as Edmonds [2][pages 19–25] and is now standard.

The spherical harmonics defined here have the properites:

• The spherical harmonics are orthonormal and complete:
∫
Y ∗`m(Ω)Y`′m′(Ω) dΩ = δ`,`′δm,m′ ,

∑

`m

Y ∗`m(Ω)Y`m(Ω′) = δ(Ω− Ω′) ,

where dΩ = d(cos θ) dφ.

• Under complex conjugation,
Y ∗`,m(θ, φ) = (−)m Y`,−m(θ, φ) . (21.27)

• Under space inversion:
Y`,m(π − θ, φ+ π) = (−)` Y`,m(θ, φ) . (21.28)
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• We also note that since Pm` (cos θ) is real,

Y`,m(θ,−φ) = Y`,m(θ, 2π − φ) = Y ∗`,m(θ, φ) . (21.29)

• At θ = 0, cos θ = 1, Pm` (1) = δm,0 so that:

Y`,m(0, φ) =

√
2`+ 1

4π
δm,0 , (21.30)

independent of φ.

Other properties of the spherical harmonics can be found in Edmonds [2] and other reference books. It us
useful to know the first few spherical harmonics. These are:

Y0,0(θ, φ) =

√
1

4π
, Y1,0(θ, φ) =

√
3

4π
cos θ , Y1,±1(θ, φ) = ∓

√
3

8π
sin θ e±iφ ,

Y2,0(θ, φ) =

√
5

16π
( 2 cos2 θ − sin2 θ ) , Y2,±1(θ, φ) = ∓

√
15
8π

cos θ sin θ e±iφ ,

Y2,±2(θ, φ) =

√
15

32π
sin2 θ e±2iφ . (21.31)

Definition 32 (Reduced spherical harmonics). Sometimes it is useful to get rid of factors and define reduced
spherical harmonics (Racah [4]) C`,m(θ, φ) by:

C`,m(θ, φ) =

√
4π

2`+ 1
Y`,m(θ, φ) . (21.32)

Remark 32. The orbital angular momentum states for ` = 0, 1, 2, 3, 4, . . . are often referred to as s, p, d, f, g, . . .
states.

21.1.3 Kinetic energy operator

In this section, we relate the kinetic energy operator for a single particle to orbital angular momentum.
We first note that in spherical coordinates, coordinate representations of operators should be defined to
correspond to the usual coordinate transformation from Cartesian to spherical coordinates. That is:

R̂ ·P =
R
R
·P so that 〈 r | R̂ ·P |ψ 〉 =

~
i

r
r
·∇ψ(r) =

~
i

∂ψ(r)
∂r

. (21.33)

This means that we should require the operator relation:

[R, R̂ ·P ] = i~ . (21.34)

However in spherical coordinates, R̂ ·P, is not Hermitian. However, we see that we can fix this by defining
an operator Pr by:

Pr =
1
R

[
R ·P− i~

]
, so that 〈 r |Pr |ψ 〉 =

~
i

[ ∂
∂r

+
1
r

]
ψ(r) . (21.35)

Let us now show that Pr is Hermitian. We first note that [ R ·P,P ·R ] = 3i~ and that

[ R ·P, 1
R

] =
1
R

[R,R ·P ]
1
R

=
Xj

R
[R,Pj ]

1
R

= i~
Xj

R

Xj

R

1
R

=
i~
R
, (21.36)
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so that:

P †r =
[
P ·R + i~

] 1
R

=
[
R ·P− 2i~

] 1
R

=
1
R

R ·P + [ R ·P, 1
R

]− 2i~
R

=
1
R

[
R ·P− i~

]
= Pr . (21.37)

This miracle happens only in spherical coordinates, and is due to the factor of r2 in the radial measure. We
also have the commutation relation:

[R,Pr ] = [R,
1
R

R ·P ] =
Xi

R
[R,Pi ] = i~ . (21.38)

The square of the radial momentum operator is given by:

P 2
r =

[
R̂ ·P− i~

R

]2
= (R̂ ·P) · (R̂ ·P)− i~

R
(R̂ ·P)− (R̂ ·P)

i~
R
− 1
R2

= (R̂ ·P) (R̂ ·P)− 2i~
R

(R̂ ·P) =
1
R2

[
(R ·P) (R ·P)− i~ (R ·P)

]

so 〈 r |P 2
r |ψ 〉 = −~

i

[ ∂2

∂r2
+

2
r

∂

∂r

]
ψ(r) ,

(21.39)

which we recognize as the radial part of the Laplacian operator. The kinetic energy operator can now be
written in terms of Pr and the square of the angular momentum operator L2. We notice that:

L2 = (R×P) · (R×P) = R · (P× (R×P))

= XiPjXiPj −XiPjXjPi = R2 P 2 − i~ (R ·P)− (R ·P) (R ·P) + 2i~ (R ·P)

= R2 P 2 −
[

(R ·P) (R ·P)− i~ (R ·P)
]

= R2
{
P 2 − P 2

r

}
.

(21.40)

So P 2 = P 2
r + L2/R2, which is just a statement of what the Laplacian looks like in spherical coordinates.

So the kinetic energy operator becomes:

T =
P 2

2m
=
P 2
r

2m
+

L2

2mR2
. (21.41)

We will have occasion to use this definition of a radial momentum operator Pr when we discuss reduced
matrix elements of the linear momentum tensor operator in Section 21.5.2, and in the operator factorization
methods of Section 22.3.4.

21.1.4 Parity and Time reversal

We discussed the effects of parity and time reversal transformations on the generators of Galilean transforma-
tions, including the angular momentum generator, in Chapter 9. We study the effect of these transformations
on angular momentum states in this section.

Parity

For parity, we found in Section 9.7.1 that P is linear and unitary, with eigenvalues of unit magnitude, and
has the following effects on the angular momentum, position, and linear momentum operators:

P−1 XP = −X ,

P−1 PP = −P ,

P−1 JP = J .

(21.42)

We also found that P−1 = P† = P. So under parity, we can take:

P |x 〉 = | − x 〉 , P |p 〉 = | − p 〉 . (21.43)
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The angular momentum operator does not change under parity, so P operating on a state of angular mo-
mentum | jm 〉 can only result in a phase. If there is a coordinate representation of the angular momentum
eigenstate, we can write:

〈 r̂ | P | `,m 〉 = 〈 P† r̂ | `,m 〉 = 〈 P r̂ | `,m 〉 = 〈−r̂ | `,m 〉
= Y`,m(π − θ, φ+ π) = (−)` Y`,m(θ, φ) = (−)` 〈x | `,m 〉 ,

where we have used (21.28). Therefore:

P | `,m 〉 = (−)` | `,m 〉 . (21.44)

For spin 1/2 states, the parity operator must be the unit matrix. The phase is generally taken to be unity,
so that:

P | 1/2,m 〉 = | 1/2,m 〉 . (21.45)

So parity has different results on orbital and spin eigenvectors.

Time reversal

For time reversal, we found in Section 9.7.2 that T is anti-linear and anti-unitary, T −1i T = −i with
eigenvalues of unit magnitude, and has the following effects on the angular momentum, position, and linear
momentum operators:

T −1 X T = X ,

T −1 P T = −P ,

T −1 J T = −J .

(21.46)

Under time-reversal,
T |x 〉 = |x 〉 , T |p 〉 = | − p 〉 . (21.47)

The angular momentum operator reverses sign under time reversal, so T operating on a state of angular
momentum can only result in a phase. Because of the anti-unitary property, the commutation relations for
angular momentum are invariant under time reversal. However since T J2 T −1 = J2, T Jz T −1 = −Jz, and
T J± T −1 = −J∓, operating on the eigenvalue equations (21.2) by T gives:

J2
{
T | j,m 〉

}
= ~2 j(j + 1)

{
T | j,m 〉

}
,

Jz
{
T | j,m 〉

}
= −~m

{
T | j,m 〉

}
,

J∓
{
T | j,m 〉

}
= −A(j,∓m)

{
T | j,m 〉

}
.

(21.48)

These equations have the solution:
T | j,m 〉 = (−)j+m | j,−m 〉 . (21.49)

Here we have introduced an arbitrary phase (−)j so that for half-integer values of j, the operation of parity
will produce a sign, not a complex number. Let us investigate time reversal on both spin-1/2 and integer
values of j.

For spin-1/2 states, in a 2× 2 matrix representation, we require:

T −1 σi T = −σi , (21.50)

for i = 1, 2, 3. Now we know that σ2 changes the sign of any σi, but it also takes the complex conjugate,
which we do not want in this case. So for spin 1/2, we take the following matrix representation of the time
reversal operator:

T = i σ2K =
(

0 1
−1 0

)
K , (21.51)
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where K is a complex conjugate operator acting on functions. This makes T anti-linear and anti-unitary.
Now since (iσy)σx(iσy) = σx, (iσy)σy(iσy) = −σy, and (iσy)σz(iσy) = σz, and recalling that σx and σz are
real, whereas σ∗y = −σy, so that:

T −1 σi T = −σi , (21.52)

as required. Now the matrix representation of T on spinor states have the effect:

T | 1/2, 1/2 〉 = i σ2K | 1/2, 1/2 〉 =
(

0 1
−1 0

)
K
(

1
0

)
= −

(
0
1

)
= −| 1/2,−1/2 〉 .

T | 1/2,−1/2 〉 = i σ2K | 1/2,−1/2 〉 =
(

0 1
−1 0

)
K
(

0
1

)
= +

(
1
0

)
= +| 1/2,+1/2 〉 ,

so that
T | 1/2,m 〉 = (−)1/2+m | 1/2,−m 〉 , (21.53)

in agreement with (21.49).

Exercise 49. For the spin T operator defined in Eq. (21.51), show that:

T −1 = T † = T . (21.54)

For integer values of the angular momentum, there is a coordinate representation of the angular momen-
tum vector. If we choose

〈 r̂ | `,m 〉 = Y`,m(θ, φ) , (21.55)

then we can write:

〈 r̂ | T | `,m 〉 = 〈 T † r̂ | `,m 〉∗ = 〈 T r̂ | `,m 〉∗ = 〈 r̂ | `,m 〉∗
= Y ∗`,m(θ, φ) = (−)m Y`,−m(θ, φ) = (−)m 〈 r̂ | `,−m 〉 .

So we conclude that:
T | `,m 〉 = (−)m | `,−m 〉 , (21.56)

which does not agree with (21.49). However if we choose:

〈 r̂ | `,m 〉 = i` Y`,m(θ, φ) , (21.57)

then

〈 r̂ | T | `,m 〉 = 〈 T † r̂ | `,m 〉∗ = 〈 T r̂ | `,m 〉∗ = 〈 r̂ | `,m 〉∗

=
[
i` Y`,m(θ, φ)

]∗ = (−)`+m Y`,−m(θ, φ) = (−)`+m 〈 r̂ | `,−m 〉 .

which gives:
T | `,m 〉 = (−)`+m | `,−m 〉 , (21.58)

which does agree with (21.49). We will see in Section 21.4 that when orbital and spin eigenvectors are
coupled together by a Clebsch-Gordan coefficient, the operation of time reversal on the coupled state is
preserved if we choose the spherical functions defined in Eq. (21.57). However, Eq. (21.55) is generally used
in the literature.

21.2 Rotation of coordinate frames

A fixed point P in space, described by Euclidean coordinates (x, y, z) and (x′, y′, z′) in two frames Σ and
Σ′, are related to each other by a rotation if lengths and angles are preserved. The same point in space is
related to coordinates in these two systems by a linear orthogonal transformation of the form: x′i = Rij xj ,
with RijRik = δjk. Proper transformations which preserve orientation of the coordinate system are those
with det[R ] = +1. The set of all orthogonal rotation matrices R form a group, called SO(3), since:
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1. The product RR′ of any two group elements is another group element R′′.
2. Matrix multiplication is associative: (RR′)R′′ = R(R′R′′).
3. There is a unique identity element I = δij , such that I R = R for all R in the group, and
4. For any R there is an inverse, written R−1 = RT such that RR−1 = R−1R = I.

The rotation group is a subgroup of the more general Galilean group described in Section 9.1.1 of Chapter 9.
We will see below that the rotation matrices R are described by three parameters, and so this is a three-
parameter group.

There are several ways to describe the relative orientation of two coordinate frames. Some of the common
ones are: an axis and angle of rotation, denoted by (n̂, θ), Euler angles, denoted by three angles (α, β, γ),
and the Cayley-Kline parameters. We will discuss these parameterizations in this section.

In addition, there are two alternative ways to describe rotations: the active way, where a point in space
is transformed into a new point and which we can think of as a physical rotation of a vector or object, and
the passive way, where a point remains fixed and the coordinate system is rotated. We use passive rotation
here, which was our convention for the general Galilean transformations of Chapter 9. Edmonds [2] uses
passive rotation, whereas Biedenharn [5], Rose [6], and Merzbacher [7] all use active rotations.1

21.2.1 Rotation matrices

Let Σ and Σ′ be two coordinate systems with a common origin, and let a point P described by a vector r
from the origin to the point and let (x, y, z) be Cartesian coordinates of the point in Σ and (x′, y′, z′) be
Cartesian coordinates of the same point in Σ′. Let us further assume that both of these coordinate systems
are oriented in a right handed sense.2 Then we can write the vector r in either coordinate system using unit
vectors:3

r = xi êi = x′i ê
′
i , (21.59)

where êi and ê′i are orthonormal sets of unit vectors describing the two Cartesian coordinate systems:
êi · êj = ê′i · ê′j = δij . So we find that components of the vector r in the two systems are related by:

x′i = Rij xj , where Rij = ê′i · êj , (21.60)

where R must satisfy the orthogonal property:

RTik Rkj = RkiRkj = δij . (21.61)

That is R−1 = RT . The unit vectors transform in the opposite way:

ê′i = êj Rji = RTij êj , (21.62)

so that, using the orthogonality relation, Eq. (21.59) is satisfied. From Eq. (21.61) we see that det[R ] = ±1,
but, in fact, for rotations, we must restrict the determinant to +1 since rotations can be generated from the
unit matrix, which has a determinant of +1.

Matrices describing coordinate systems that are related by positive rotations about the x-, y-, and z-axis
by an amount α, β, and γ respectively are given by:

Rx(α) =




1 0 0
0 cosα sinα
0 − sinα cosα


 , Ry(β) =




cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ


 , Rz(γ) =




cos γ sin γ 0
− sin γ cos γ 0

0 0 1


 . (21.63)

Notice the location of negative signs! One can easily check that these matrices are orthogonal and have
determinants of +1.

1Biedenharn [5] states that the Latin terms for these distinctions are “alibi” for active and “alias” for passive descriptions.
2We do not consider space inversions or reflections in this chapter.
3In this section, we use a summation convention over repeated indices.
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Eq. (21.60) describes a general rotation in terms of nine direction cosines between the coordinate axes,

Rij = ê′i · êj = cos(θij) .

These direction cosines, however, are not all independent. The orthogonality requirement, and the fact
that the determinant of the matrix must be +1, provides six constraint equations, which then leave three
independent quantities that are needed to describe a rotation.

Exercise 50. Show that if Σ and Σ′ are related by a rotation matrix R and Σ′ and Σ′′ are related by a
rotation matrix R′, the coordinate systems Σ and Σ′′ are related by another orthogonal rotation matrix R′′.
Find R′′ in terms of R and R′, and show that it has determinant +1.

Definition 33 (The O+(3) group). The last exercise shows that all three-dimensional rotational matrices
R form a three parameter group, called O+(3), for orthogonal group with positive determinant in three-
dimensions.

The direction cosines are not a good way to parameterize the rotation matrices R since there are many
relations between the components that are required by orthogonality and unit determinant. In the next
sections, we discuss ways to parameterize this matrix.

21.2.2 Axis and angle parameterization

Euler’s theorem in classical mechanics states that “the general displacement of a rigid body with one point
fixed is a rotation about some axis.”[8, p. 156] We show in this section how to parameterize the rotation
matrix R by an axis and angle of rotation. We start by writing down the form of the rotation matrix for
infinitesimal transformations:

Rij(n̂,∆θ) = δij + εijkn̂k ∆θ + · · · ≡ δij + i (Lk )ij n̂k ∆θ + · · · , (21.64)

where n̂ is the axis of rotation, ∆θ the magnitude of the rotation. Here we have introduced three imaginary
Hermitian and antisymmetric 3 × 3 matrices (Lk )ij , called the classical generators of the rotation. They
are defined by:

(Lk )ij =
1
i
εijk . (21.65)

Explicitly, we have:

Lx =
1
i




0 0 0
0 0 1
0 −1 0


 , Ly =

1
i




0 0 −1
0 0 0
1 0 0


 , Lz =

1
i




0 1 0
−1 0 0
0 0 0


 . (21.66)

Note that these angular momentum matrices are not the same as the spin one angular momentum matrices
Si found in Eqs. (21.10), even though they are both 3× 3 matrices! The matrices Lk are called the adjoint
representation of the angular momentum generators. The matrix of unit vectors L is defined by:

L = Li êi =
1
i




0 ê3 −ê2

−ê3 0 ê1

ê2 −ê1 0


 . (21.67)

so that we can write, in matrix notation:

R(n̂,∆θ) = 1 + iL · n̂ ∆θ + · · · . (21.68)

So L† = −LT = L. So RT (n̂,∆θ) = 1 − iL · n̂ ∆θ + · · · . The L matrix is imaginary, but the R(n̂,∆θ)
matrix is still real. The classical angular momentum generators have no units and satisfy the commutation
relations:

[Li, Lj ] = i εijk Lk , (21.69)
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which is identical to the ones for the quantum angular momentum operator, except for the fact that in
quantum mechanics, the angular momentum operator has units and the commutation relations a factor of
~. There is no quantum mechanics or ~ here!

Exercise 51. Carefully explain the differences between the adjoint representation of the angular momentum
matrices Li defined here, and the angular momentum matrices Si discussed in Section 21.1.1. Can you find
a unitary transformation matrix U which relates the Si set to the Li set?

We can now construct a finite classical transformation matrix R(n̂, θ) by compounding N infinitesimal
transformation of an amount ∆θ = θ/N about a fixed axis n̂. This gives:

R(n̂, θ) = lim
N→∞

[
1 + i

n̂ · L θ
N

]N
= ei n̂·L θ . (21.70)

The difficulty here is that the matrix of vectors L appears in the exponent. We understand how to interpret
this by expanding the exponent in a power series. In order to do this, we will need to know the value of
powers of the Li matrices. So we compute:

( n̂ · L )ij =
1
i
nk εijk ,

( n̂ · L )2
ij = −nk nk′ εilk εljk′ = nk nk′ εikl εljk′ = nk nk′ ( δijδkk′ − δik′δkj )

= δij − ni nj ≡ Pij
( n̂ · L )3

ij = ( n̂ · L )2
il ( n̂ · L )lj =

1
i

( δil − ni nl)nk εljk =
1
i

(nk εijk − ni nl nk εljk )

=
1
i
nk εijk = ( n̂ · L )ij ,

( n̂ · L )4
ij = ( n̂ · L )2

ij = Pij , etc · · ·

(21.71)

One can see that terms in a power series expansion of R(n̂, θ) reproduce themselves, so we can collect terms
and find:

Rij(n̂, θ) =
[
ei θn̂·L

]
ij

= δij + i ( n̂ · L )ij θ −
1
2!

( n̂ · L )2
ij θ

2 − i

3!
( n̂ · L )3

ij θ
3 +

1
4!

( n̂ · L )4
ij θ

4 + · · ·

= ni nj + Pij + i ( n̂ · L )ij θ −
1
2!
Pij θ

2 − i

3!
( n̂ · L )ij θ3 +

1
4!
Pij θ

4 + · · ·
= ni nj + Pij cos(θ) + i ( n̂ · L )ij sin(θ)
= ni nj + ( δij − ni nj ) cos(θ) + εijk nk sin(θ) .

(21.72)

In terms of unit vectors, the last line can be written as:

Rij(n̂, θ) = ( n̂ · êi ) ( n̂ · êj ) +
[

( êi · êj )− ( n̂ · êi ) ( n̂ · êj )
]

cos(θ) + ( n̂× êi ) · êj sin(θ)

= ( n̂ · êi ) ( n̂ · êj ) +
[

( n̂× ( êi × n̂ ) ) · êj
]

cos(θ) + ( n̂× êi ) · êj sin(θ) .
(21.73)

So since r = xi êi, we have:

x′i = Rij(n̂, θ)xj = ( n̂ · êi ) ( n̂ · r ) +
[

( n̂× ( êi × n̂ ) ) · r
]

cos(θ) + ( n̂× êi ) · r sin(θ)

=
[

( n̂ · r ) n̂ + ( n̂× ( r× n̂ ) ) cos(θ) + ( r× n̂ ) sin(θ)
]
· êi ,

(21.74)

So if we define r′ as a vector with components in the frame Σ′, but with unit vectors in the frame Σ, we find:

r′ = x′i êi = ( n̂ · r ) n̂ + ( n̂× ( r× n̂ ) ) cos(θ) + ( r× n̂ ) sin(θ) . (21.75)
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Exercise 52. Consider the case of a rotation about the z-axis by an amount θ, so that n̂ = êz, and set
r = x êx + y êy + z êz, show that the components of the vector r′, given by Eq. (21.75), are given by
x′i = Rij(êz, θ)xj , as required.

Exercise 53. Show that the trace of R(n̂, θ) gives:
∑

i

Rii(n̂, θ) = 1 + 2 cos(θ) = 2 cos2(θ/2) , (21.76)

where θ is the rotation angle.

Exercise 54. Find the eigenvalues and eigenvectors of Rij(êz, θ). Normalize the eigenvectors to the unit
sphere, x2 + y2 + z2 = 1, and show that the eigenvector with eigenvalue of +1 describes the axis of rotation.
Extra credit: show that the eigenvalues of an arbitrary orthogonal rotation matrix R are +1, 0, and −1.
(See Goldstein [8].).

Exercise 55. For the double rotation R′R = R′′, show that the rotation angle θ′′ for the combined rotation
is given by:

2 cos2(θ′′/2) = (n̂′ · n̂)2 + 2 (n̂′ · n̂)2 cos(θ′ + θ)

+
[

1− (n̂′ · n̂)2
] [

cos(θ′) + cos(θ′) cos(θ) + cos(θ)
]
. (21.77)

It is more difficult to find the new axis of rotation n̂′′. One way is to find the eigenvector with unit eigenvalue
of the resulting matrix, which can be done numerically. There appears to be no closed form for it.

21.2.3 Euler angles

The Euler angles are another way to relate two coordinate systems which are rotated with respect to one
another. We define these angles by the following sequence of rotations, which, taken in order, are:4

1. Rotate from frame Σ to frame Σ′ an angle α about the z-axis, 0 ≤ α ≤ 2π.
2. Rotate from frame Σ′ to frame Σ′′ an angel β about the y′-axis, 0 ≤ β ≤ π.
3. Rotate from frame Σ′′ to frame Σ′′′ an angle γ about the z′′-axis, 0 ≤ γ ≤ 2π.

The Euler angles are shown in the Fig 21.1. For this definition of the Euler angles, the y′-axis is called the
“line of nodes.” The coordinates of a fixed point P in space, a passive rotation, is defined by: (x, y, z) in Σ,
(x′, y′, z′) in Σ′, (x′′, y′′, z′′) in Σ′′, and (X,Y, Z) ≡ (x′′′, y′′′, z′′′) in Σ′′′. Then, in a matrix notation,

x′′′ = Rz(γ)x′′ = Rz(γ)Ry(β)x′ = Rz(γ)Ry(β)Rz(α)x ≡ R(γ, β, α)x , (21.78)

where

R(γ, β, α) = Rz(γ)Ry(β)Rz(α)

=




cos γ sin γ 0
− sin γ cos γ 0

0 0 1






cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ






cosα sinα 0
− sinα cosα 0

0 0 1




=




cos γ cosβ cosα− sin γ sinα, cos γ cosβ sinα+ sin γ sinα, − cos γ sinβ
− sin γ cosβ cosα− cos γ sinα, − sin γ cosβ sinα+ cos γ cosα, sin γ sinβ

sinβ cosα, sinβ sinα, cosβ


 .

(21.79)

Here we have used the result in Eqs. (21.63). The rotation matrix R(γ, β, α) is real, orthogonal, and the
determinant is +1.

4This is the definition of Euler angles used by Edmonds [2][p. 7] and seems to be the most common one for quantum mechanics.
In classical mechanics, the second rotation is often about the x′-axis (see Goldstein [8]). Mathematica uses rotations about the
x′-axis. Other definitions are often used for the quantum mechanics of a symmetrical top (see Bohr).
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Figure 21.1: Euler angles for the rotations Σ→ Σ′ → Σ′′ → Σ′′′. The final axis is labeled (X,Y, Z).

We will also have occasion to use the inverse of this transformation:

R−1(γ, β, α) = RT (γ, β, α) = Rz(−α)Ry(−β)Rz(−γ)

=




cosα − sinα 0
sinα cosα 0

0 0 1






cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ






cos γ − sin γ 0
sin γ cos γ 0

0 0 1




=




cosα cosβ cos γ − sinα sin γ, − cosα cosβ sin γ + sinα sin γ, cosα sinβ
sinα cosβ cos γ + cosα sin γ, − sinα cosβ sin γ + cosα cos γ, sinα sinβ

− sinβ cos γ, sinβ sin γ, cosβ


 .

(21.80)

We note that the coordinates (x, y, z) in the fixed frame Σ of a point P on the unit circle on z′′′-axis in the
Σ′′′ frame, (x′′′, y′′′, z′′′) = (0, 0, 1) is given by:



x
y
z


 = R−1

ij (α, β, γ)




0
0
1


 =




sinβ cosα
sinβ sinα

cosβ


 , (21.81)

so the polar angles (θ, φ) of this point in the Σ frame is θ = β and φ = α. We will use this result later.

21.2.4 Cayley-Klein parameters

A completely different way to look at rotations is to describe them as directed great circle arcs on the unit
sphere in three dimensions. Points on the sphere are described by the set of real variables (x1, x2, x3), with
x2

1 + x2
2 + x2

3 = 1. These arcs are called turns by Biedenharn [5][Ch. 4], and are based on Hamilton’s theory
of quanterions [9]. Points at the beginning and end of the arc form two reflection planes with the center of
the sphere. The line joining these planes is the axis of the rotation and the angle between the planes half
the angle of rotation. In this section, we adopt the notion of turns as the active rotation of vectors, rather
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x

x1

x1

x

x3

−x3

1

Figure 21.2: Mapping of points on a unit sphere to points on the equatorial plane, for x3 > 0 (red lines) and
x3 < 0 (blue lines).

than the passive rotation used in the remainder of this chapter.5 Turns can be added much like vectors,
the geometric rules for which are given by Biedenharn [5][p. 184]. Now a stereographic projection from the
North pole of a point on the unit sphere and the equatorial plane maps a unique point on the sphere (except
the North pole) to a unique point on the plane, which is described by a complex number z = x + iy. The
geometric mapping can easily be found from Fig. 21.2 by similar triangles to be:

z = x+ iy =
x1 + i x2

1− x3
=

1 + x3

x1 − ix2
. (21.82)

The upper hemisphere is mapped to points outside the unit circle on the plane, and the lower hemisphere is
mapped to points inside the unit circle. Klein [10, 11] and Cayley [12] discovered that a turn, or the rotation
of a vector on the unit circle could be described on the plane by a linear fractional transformation of the
form:

z′ =
a z + b

c z + d
, (21.83)

where (a, b, c, d) are complex numbers satisfying:

|a|2 + |b|2 = |c|2 + |d|2 = 1 , c a∗ + d b∗ = 0 . (21.84)

The set of numbers (a, b, c, d) are called the Cayley-Klein parameters. In order to prove this, we need a way
to describe turns on the unit sphere. Let r̂ and p̂ be unit vectors describing the start and end point of the
turn. Then we can form a scalar ξ0 = r̂ · p̂ ≡ cos(θ/2) and a vector ξ = r̂ × p̂ ≡ n̂ sin(θ/2), which satisfy
the property:

ξ2
0 + ξ2 = 1 . (21.85)

5This is the common convention for Cayley-Klein parameters so that the composition rule is satisfied by quaternion multi-
plication.
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Thus a turn can be put in one-to-one correspondence with the set of four quantities (ξ0, ξ) lying on a four -
dimensional sphere. The rule for addition of a sequence of turns can be found from these definitions. Let r̂,
p̂, be unit vectors for the start and end of the first turn described by the parameters (ξ0, ξ), and p̂ and ŝ be
the start and end of the second turn described by the parameters (ξ′0, ξ

′). This means that:

p̂ = ξ0 r̂ + ξ × r̂ , ξ0 = r̂ · p̂ , ξ = r̂× p̂ , (21.86)
ŝ = ξ′0 p̂ + ξ′ × p̂ , ξ′0 = p̂ · ŝ , ξ′ = p̂× ŝ . (21.87)

Substituting (21.86) into (21.87) gives:

ŝ = ξ′0
(
ξ0 r̂ + ξ × r̂

)
+ ξ′ ×

(
ξ0 r̂ + ξ × r̂

)

= ξ′′0 r̂ + ξ′′ × r̂ ,
(21.88)

where

ξ′′0 = ξ′0 ξ0 − ξ′ · ξ ,
ξ′′ = ξ0 ξ

′ + ξ′0 ξ + ξ′ × ξ . (21.89)

Now since r̂ · ξ′′ = 0, we find from (21.88) that

r̂ · ŝ = cos(θ′′/2) , r̂× ŝ = n̂′′ sin(θ′′/2) , (21.90)

which means that the set of all turns form a group, with a composition rule.

Exercise 56. Show that (21.89) follows from (21.88). Show also that r̂ · ξ′′ = 0.

Cayley [13] noticed that the composition rule, Eq. (21.89), is the same rule for as the rule for multiplication
of two quaternions. That is, if we define

ξ̂ = ξ0 1̂ + ξ1 î+ ξ2 ĵ + ξ3 k̂ = ξ0 1̂ + ξ , (21.91)

where the quaternion multiplication rules are:6

î ĵ = −ĵ î = k̂ , ĵ k̂ = −k̂ ĵ = î , k̂ î = −î k̂ = ĵ , 1̂2 = 1̂ , î2 = ĵ2 = k̂2 = −1̂ , (21.92)

then it is easy to show that quaternion multiplication:

ξ̂′′ = ξ̂′ ξ̂ , (21.93)

reproduces the composition rule (21.89). So it is natural to use the algebra of quaternions to describe
rotations.

Exercise 57. Show that Eq. (21.93) reproduces the composition rule (21.89) using the quaternion multipli-
cation rules of Eq. (21.92).

Definition 34 (adjoint quaternion). The adjoint quaternion ξ̂† is defined by:

ξ̂† = ξ0 1̂− ξ1 î− ξ2 ĵ − ξ3 k̂ = ξ0 1̂− ξ , (21.94)

so that the length of ξ̂ is given by:
ξ̂† ξ̂ = ξ2

0 + ξ2 = 1 . (21.95)

6One should think of quaternions as an extension of the complex numbers. They form what is called a division algebra.
We designate quaternions with a hat symbol.
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Now let r̂ be a quaternion describing the position of a vector (x1, x2, x3) on the unit sphere, defined by:

r̂ = x1 î+ x2 ĵ + x3 k̂ = r̂ , with x0 = 0 , x2
1 + x2

2 + x2
3 = 1 . (21.96)

Then the rotation of the vector r̂ on the unit sphere is described by the quaternion product: r̂′ = ξ̂ r̂ ξ̂†. We
state this in the next theorem:

Theorem 41 (quaternion rotations). The rotation of a vector r̂ on the unit sphere is given by the quaternion
product:

r̂′ = ξ̂ r̂ ξ̂† . (21.97)

Proof. From (21.97) and the composition rules (21.89), we find:

r̂′ = ( ξ0 + ξ ) r̂ ( ξ0 − ξ )
= ( ξ0 + ξ ) ( r̂ · ξ + ξ0 r̂− r̂× ξ )
= ξ0 ( r̂ · ξ )− ξ · ( ξ0 r̂− r̂× ξ ) + ξ0 ( ξ0 r̂− r̂× ξ ) + ( r̂ · ξ ) ξ + ξ × ( ξ0 r̂− r̂× ξ )

= ( ξ2
0 − ξ2 ) r̂− 2 ξ0 ( r̂× ξ ) + 2 ( r̂ · ξ ) ξ

= r̂ cos(θ)− ( r̂× n̂ ) sin(θ) + ( r̂ · n̂ ) n̂ ( 1− cos(θ) )
= ( r̂ · n̂ ) n̂ + ( r̂− ( r̂ · n̂ ) n̂ ) cos(θ)− ( r̂× n̂ ) sin(θ)
= ( r̂ · n̂ ) n̂ + ( n̂× ( r̂× n̂ ) ) cos(θ)− ( r̂× n̂ ) sin(θ) = r̂′ ,

(21.98)

where r̂′ = x′1 î+x′2 ĵ+x′3 k̂. From Eq. (21.75), we recognize r̂′, as the active rotation of a vector r̂ in a fixed
coordinate system about an axis n̂ by an amount θ, which is what we were trying to prove.

Rather than using quaternions, physicists often prefer to use the Pauli matrices to represent turns. That
is, if we introduce the mapping,

1̂ 7→ 1 , î 7→ −iσx , ĵ 7→ −iσy , k̂ 7→ −iσz , (21.99)

so that a turn ξ̂ is represented by a unitary 2× 2 matrix:7

ξ̂ 7→ D(ξ) = ξ0 − i ξ · σ = cos(θ/2)− i (n̂ · σ) sin(θ/2) = e−i n̂·σ θ/2 . (21.100)

Here the quaternion composition rule is represented by matrix multiplication. The factor −i in the mapping
(21.99) is necessary to get the correct composition rule. We prove this in Exercise 58 below. Since the Pauli
matrices are Hermitian, ξ̂† 7→ D(ξ†) = ξ0 + i ξ · σ = D†(ξ), as expected.

Exercise 58. Prove that matrix multiplication D(ξ′′) = D(ξ′)D(ξ) yields the same composition rule as the
quaternion composition rule given in Eq. (21.89).

A point P on the unit sphere is now represented by a 2× 2 matrix function of coordinates given by:

r̂ 7→ −i r̂ · σ = −i
(

x3 x1 − ix2

x1 + ix2 −x3

)
. (21.101)

with a similar expression for the rotated vector r̂′ 7→ −i r̂′ ·σ on the unit sphere in a fixed coordinate system.
Then the matrix version of the quaternion rotation of Theorem 41 is given in the next theorem.

Theorem 42. The rotation of a vector r̂ on the unit sphere is given by the matrix product:

r̂′ · σ = D(ξ) r̂ · σD†(ξ) , (21.102)

where D(ξ) is given by Eq. (21.100).
7The D(ξ) matrix defined in this section is for active rotations.
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Proof. Using the properties of the Pauli matrices, we first work out:

D(ξ)σD†(ξ) =
[

cos(θ/2)− i (n̂ · σ) sin(θ/2)
]
σ
[

cos(θ/2) + i (n̂ · σ) sin(θ/2)
]

= σ cos2(θ/2) + i [σ, (n̂ · σ) ] sin(θ/2) cos(θ/2) + (n̂ · σ)σ (n̂ · σ) sin2(θ/2) .
(21.103)

Using:

[σ, (n̂ · σ) ] = 2i ( n̂× σ ) ,
(n̂ · σ)σ (n̂ · σ) = σ + 2i (n̂ · σ) (n̂× σ) = 2 (n̂ · σ) n̂− σ , (21.104)

then Eq. (21.103) becomes:

D(ξ)σD†(ξ) = σ cos(θ)− ( n̂× σ ) sin(θ) + (n̂ · σ) n̂ ( 1− cos(θ) )
= ( n̂ · σ ) n̂ + n̂× (σ × n̂ ) cos(θ)− ( n̂× σ ) sin(θ) .

(21.105)

So (21.102) is given by:

r̂′ · σ = D(ξ) r̂ · σD†(ξ)
= ( n̂ · r̂ ) ( n̂ · σ ) + ( r̂ · σ − (r̂ · n̂) (n̂ · σ) ) cos(θ)− r̂ · ( n̂× σ ) sin(θ)

=
[

( n̂ · r̂ ) n̂ + n̂× ( r̂× n̂ ) cos(θ)− ( r̂× n̂ ) sin(θ)
]
· σ = r̂′ · σ ,

(21.106)

where r̂′ is given by (21.98). This completes the proof.

Exercise 59. Show that det[ r̂′ · σ ] = det[ r̂ · σ ] = 1.

But Theorem 42 is not the only way to describe the rotation of a vector. We can also use the transfor-
mation properties of spinors which are eigenvectors of the operator r̂ · σ. This is the content of the next
theorem.

Theorem 43 (Cayley-Klein rotation). The rotation of a vector on the unit sphere can be described by a
linear fractional transformation on the plane of the form:

z′ =
a z + b

c z + d
, (21.107)

where z is given by:

z = x+ iy =
x1 + i x2

1− x3
, (21.108)

and where (a, b, c, d) satisfy:

|a|2 + |b|2 = |c|2 + |d|2 = 1 , c a∗ + d b∗ = 0 . (21.109)

Proof. From the results of Theorem 42, Eq. (21.102) gives:

r̂′ · σD(ξ) = D(ξ) r̂ · σ , (21.110)

since D(ξ) is unitary. Now the matrix r̂ ·σ is Hermitian and has two eigenvalues and eigenvectors. That is:

r̂ · σ χλ(r̂) = λχλ(r̂) , with λ = ±1 . (21.111)

One can easily check that the eigenvectors are given by (see Section 15.2.1):

χ+(r̂) = N+

(
x1 − ix2

1− x3

)
, and χ−(r̂) = N−

(
x3 − 1
x1 + ix2

)
, (21.112)
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where N± are normalization factors. So, from (21.110), we find:

r̂′ · σ
{
D(ξ)χλ(r̂)

}
= λ

{
D(ξ)χλ(r̂)

}
, (21.113)

from which we conclude that:
χλ(r̂′) = N D(ξ)χλ(r̂) , (21.114)

where N is some constant. Now from (21.100),

D(ξ) = ξ0 − i ξ · σ =
(
ξ0 − iξ3 −iξ1 + ξ2
−iξ1 − ξ2 ξ0 + iξ3

)
≡
(
a∗ b∗

c∗ d∗

)
(21.115)

which defines the parameters (a, b, c, d). From the unitarity of the D(ξ) matrix, we easily establish that:

|a|2 + |b|2 = |c|2 + |d|2 = 1 , c a∗ + d b∗ = 0 . (21.116)

So then for the λ = +1 eigenvector, Eq. (21.114) gives:

N ′+ (x′1 − ix′2 ) = N N+

[
a∗ (x1 − ix2 ) + b∗ ( 1− x3 )

]

N ′+ ( 1− x′3 ) = N N+

[
c∗ (x1 − ix2 ) + d∗ ( 1− x3 )

]
.

(21.117)

The complex conjugate of the ratio of the first and second equations of (21.117) gives:

z′ =
a z + b

c z + d
, where z =

x1 + ix2

1− x3
, (21.118)

which is the result we were trying to prove. We leave investigation of the λ = −1 eigenvector to Exercise 60.

Exercise 60. Show that the λ = −1 eigenvalue given in Eq. (21.112) gives a rotation on the unit sphere
for the mapping z 7→ −1/z∗ of the complex plane. This mapping corresponds to a stereographic projection
from the South pole followed by a negative complex conjugation, which is an equivalent one-to-one mapping
of points on the unit sphere to the complex plane.

Theorem 43 establishes the claim by Klein and Cayley that the fractional linear transformation of the
complex projection plane, Eq. (21.83), represents a rotation on the unit sphere.

Remark 33. We have exhibited in this section a direct connection between different ways to describe the
rotation of vectors. We can use either the rotation matrices Rij , quaternions ξ and the Cayley-Klein param-
eters (a, b, c, d), and two-dimensional Pauli matrices D(ξ). All of these methods are strictly classical, and
provide equivalent means of describing rotated coordinate systems. It should not be surprising that there is
this connection, since the 3×3 rotation matrices R belong to the group O+(3) and the 2×2 unitary matrices
D(ξ) belong to the group SU(2). It is well known that these two groups are isomorphic: O+(3) ∼ SU(2). In
this section, we have shown how to describe rotations with either representation and the connection between
them. We emphasize again that our discussion is completely classical.

Remark 34. Since in the rest of this chapter, we use the passive rotation convention where the point in space
remains fixed but the coordinate system is rotated, let us write down the Cayley-Klein transformations for
passive rotations. We have:

r′ · σ = D(R) r · σD†(R) , (21.119)

where now r = xi êi and r′ = x′i êi, with x′i = Rij xj . The D(R) rotation matrix acts only on σ and can be
written in several ways. In terms of an axis and angle of rotation (n̂, θ), the rotation matrix D(R) is given
by:

D(n̂, θ) = ei n̂·σ θ/2 = cos(θ/2) + i (n̂ · σ) sin(θ/2) , (21.120)
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in terms of the quaternion ξ = (ξ0, ξ) and the Cayley-Klein parameters (a, b, c, d), it is:

D(ξ) = ξ0 + i ξ · σ =
(
a b
c d

)
, (21.121)

and in terms of the Euler angles (α, β, γ),

D(γ, β, α) = D(êz, γ)D(êy, β)D(êz, α) = eiσzγ/2 eiσyβ/2 eiσzα/2

=
(
ei(+γ+α)/2 cos(β/2) ei(+γ−α)/2 sin(β/2)
−ei(−γ+α)/2 sin(β/2) ei(−γ−α)/2 cos(β/2)

)
,

(21.122)

We shall have occasion to use all these different forms.

Remark 35. A tensor T, defined by the expansion T = Tij σi σj , transforms under rotations of the coordinate
systems as:

T′ = D(R) TD†(R) , (21.123)

where T′ = T ′ij σi σj , with T ′i,j = Ri,i′ Rj,j′ Ti′,j′ . We can generalize this result to tensors of any rank.

21.3 Rotations in quantum mechanics

In quantum mechanics, symmetry transformations, such as rotations of the coordinate system, are repre-
sented by unitary transformations of vectors in the Hilbert space. Unitary representations of the rotation
group are faithful representations. This means that the composition rule, R′′ = R′R of the group is pre-
served by the unitary representation, without any phase factors.8 That is: U(R′′) = U(R′)U(R). We also
have U(1) = 1 and U−1(R) = U†(R) = U(R−1). For infinitesimal rotations, we write the classical rotational
matrix as in Eq. (21.68):

Rij(n̂,∆θ) = δij + εijkn̂k ∆θ + · · · , (21.124)

which we abbreviate as R = 1 + ∆θ + · · · . We write the infinitesimal unitary transformtion as:

UJ(1 + ∆θ) = 1 + i niJi ∆θ/~ + · · · , (21.125)

where Ji is the Hermitian generator of the transformation. We will show in this section that the set of
generators Ji, for i = 1, 2, 3, transform under rotations in quantum mechanics as a pseudo-vector and that
it obeys the commutation relations we assumed in Eq. (21.1) at the beginning of this chapter. The factor of
~ is inserted here so that Ji can have units of classical angular momentum, and is the only way that makes
UJ(R) into a quantum operator. Now let us consider the combined transformation:

U†J(R)UJ(1 + ∆θ′)UJ(R) = UJ(R−1)UJ(1 + ∆θ′)UJ(R) = UJ(R−1 ( 1 + ∆θ′ )R ) = UJ(1 + ∆θ′′) . (21.126)

We first work out the classical transformation:

1 + ∆θ′′ + · · · = R−1 ( 1 + ∆θ′ )R = 1 +R−1 ∆θ′R+ · · · (21.127)

That is
εijkn̂k ∆θ′′ = εi′j′k′ Ri′iRj′j n̂k′ ∆θ′ . (21.128)

Now using the relation:

det[R ] εijk = εi′j′k′ Ri′iRj′j Rk′k , or det[R ] εijk Rk′k = εi′j′k′ Ri′iRj′j . (21.129)

8This is not the case for the full Galilean group, where there is a phase factor involved (see Chapter 9 and particularly
Section 9.5).
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Inserting this result into (21.128) gives the relation:

n̂k ∆θ′′ = det[R ]Rk′k n̂k′ ∆θ′ (21.130)

So from (21.126), we find:

1 + i n̂jJj ∆θ′′/~ + · · · = U†J(R)
{

1 + i n̂iJi ∆θ′/~ + · · ·
}
UJ(R)

= 1 + i U†J(R) Ji UJ(R) n̂i ∆θ′/~ + · · · ,
(21.131)

or
U†J(R) Ji UJ(R) n̂i∆θ′ = n̂jJj ∆θ′′ = det[R ]Rij Jj n̂i ∆θ′ . (21.132)

Comparing coefficients of n̂i ∆θ′ on both sides of this equation, we find:

U†J(R) Ji UJ(R) = det[R ]Rij Jj , (21.133)

showing that under rotations, the generators of rotations Ji transform as pseudo-vectors. For ordinary
rotations det[R ] = +1; whereas for Parity or mirror inversions of the coordinate system det[R ] = −1. We
restrict ourselves here to ordinary rotations. Iterating the infinitesimal rotation operator (21.127) gives the
finite unitary transformation:

UJ(n̂, θ) = ei n̂·J θ/~ , R 7→ (n̂, θ) . (21.134)

Further expansion of U(R) in Eq. (21.133) for infinitesimal R = 1 + ∆θ + · · · gives:
{

1− i n̂jJj ∆θ/~ + · · ·
}
Ji
{

1 + i n̂jJj ∆θ/~ + · · ·
}

=
{
δij + εijkn̂k ∆θ + · · ·

}
Jj . (21.135)

Comparing coefficients of n̂j ∆θ on both sides of this equation gives the commutation relations for the angular
momentum generators:

[ Ji, Jj ] = i~ εijk Jk . (21.136)

This derivation of the properties of the unitary transformations and generators of the rotation group parallels
that of the properties of the full Galilean group done in Chapter 9.

Remark 36. When j = 1/2 we can put J = S = ~σ/2, so that the unitary rotation operator is given by:

US(n̂, θ) = ein̂·S/~ = ein̂·σ/2 , (21.137)

which is the same as the unitary operator, Eq. (G.131), which we used to describe classical rotations in the
adjoint representation.

Exercise 61. Suppose the composition rule for the unitary representation of the rotation group is of the
form:

U(R′)U(R) = eiφ(R′,R) U(R′R) , (21.138)

where φ(R′, R) is a phase which may depend on R and R′. Using Bargmann’s method (see Section 9.2.1),
show that the phase φ(R′, R) is a trivial phase, and can be absorbed into the overall phase of the unitary
transformation. This exercise shows that the unitary representation of the rotation group is faithful.

Now we want to find relations between eigenvectors | j,m 〉 angular momentum in two frames related by
a rotation. So let | j,m 〉 be eigenvectors of J2 and Jz in the Σ frame and | j,m 〉′ be eigenvectors of J2 and
Jz in the Σ′ frame. We first note that the square of the total angular momentum vector is invariant under
rotations:

U†J(R) J2 UJ(R) = J2 , (21.139)

so the total angular momentum quantum numbers for the eigenvectors must be the same in each frame,
j′ = j. From (21.133), Ji transforms as follows (in the following, we consider the case when det[R ] = +1):

U†J(R) Ji UJ(R) = Ri,j Jj = J ′i , (21.140)
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So multiplying (21.140) on the left by U†J(R), setting i = z, and operating on the eigenvector | j,m 〉 defined
in frame Σ, we find:

Jz′
{
U†J(R) | j,m 〉

}
= U†J(R) Jz | j,m 〉 = ~m

{
U†J(R) | j,m 〉

}
, (21.141)

from which we conclude that U†J(R) | j,m 〉 is an eigenvector of Jz′ with eigenvalue ~m. That is:

| j,m 〉′ = U†J(R) | j,m 〉 =
+j∑

m′=−j
| j,m′ 〉 〈 j,m′ |U†J(R) | j,m 〉 =

+j∑

m′=−j
D

(j) ∗
m,m′(R) | j,m′ 〉 , (21.142)

where we have defined the D-functions, which are angular momentum matrix elements of the rotation
operator, by:

Definition 35 (D-functions). The D-functions are the matrix elements of the rotation operator, and are
defined by:

D
(j)
m,m′(R) = 〈 j,m |UJ(R) | j,m′ 〉 = ′〈 j,m | j,m′ 〉 = ′〈 j,m |UJ(R) | j,m′ 〉′ . (21.143)

The D-function can be computed in either the Σ or Σ′ frames. Eq. (21.142) relates eigenvectors of the
angular momentum in frame Σ′ to those in Σ. Note that the matrix D

(j)
m,m′(R) is the overlap between the

state | j,m 〉′ in the Σ′ frame and | j,m 〉 in the Σ frame. The row’s of this matrix are the adjoint eigenvectors
of J ′z in the Σ frame, so that the columns of the adjoint matrix, D(j) ∗

m′,m(R) are the eigenvectors of J ′z in the
Σ frame.

For infinitesimal rotations, the D-function is given by:

D
(j)
m,m′(n̂,∆θ) = 〈 j,m |UJ(n̂,∆θ) | j,m′ 〉 = 〈 j,m |

{
1 +

i

~
n̂ · J ∆θ + · · ·

}
| j,m′ 〉

= δm,m′ +
i

~
〈 j,m | n̂ · J | j,m′ 〉∆θ + · · ·

(21.144)

Exercise 62. Find the first order matrix elements of D(j)
m,m′(n̂,∆θ) for n̂ = êz and n̂ = êx ± iêy.

21.3.1 Rotations using Euler angles

Consider the sequential rotations Σ → Σ′ → Σ′′ → Σ′′′, described by the Euler angles defined in Sec-
tion 21.2.3. The unitary operator in quantum mechanics for this classical transformation is then given by
the composition rule:

UJ(γ, β, α) = UJ(êz, γ)UJ(êy, β)UJ(êz, α) = eiJzγ/~ eiJyβ/~ eiJzα/~ . (21.145)

So the angular momentum operator Ji transforms according to (det[R ] = 1):

U†J(γ, β, α) Ji UJ(γ, β, α) = Rz ij(γ)Ry jk(β)Rz kl(α) Jl = Ril(γ, β, α) Jl ≡ J ′′′i , (21.146)

where Ril(γ, β, α) is given by Eq. (21.79). Again, multiplying on the right by U†J(γ, β, α), setting i = z, and
operating on the eigenvector | j,m 〉 defined in frame Σ, we find:

Jz′′′
{
U†J(γ, β, α) | j,m 〉

}
= U†J(γ, β, α) Jz | j,m 〉 = ~m

{
U†J(γ, β, α) | j,m 〉

}
. (21.147)

So we conclude here that U†J(α, β, γ) | j,m 〉 is an eigenvector of Jz′′′ with eigenvalue ~m. That is:

| j,m 〉′′′ = U†J(γ, β, α) | j,m 〉

=
+j∑

m′=−j
| j,m′ 〉 〈 j,m′ |U†J(γ, β, α) | j,m 〉 =

+j∑

m′=−j
D

(j) ∗
m,m′(γ, β, α) | j,m′ 〉 .

(21.148)
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where the D-matrix is defined by:

D
(j)
m,m′(γ, β, α) = 〈 j,m |UJ(γ, β, α) | j,m′ 〉 = 〈 j,m | eiJzγ/~ eiJyβ/~ eiJzα/~ | j,m′ 〉 (21.149)

We warn the reader that there is a great deal of confusion, especially in the early literature, concerning
Euler angles and representation of rotations in quantum mechanics. From our point of view, all we need
is the matrix representation provided by Eq. (21.79) and the composition rule for unitary representation
of the rotation group. Our definition of the D-matrices, Eq. (21.149), agrees with the 1996 printing of
Edmonds[2][Eq. (4.1.9) on p. 55]. Earlier printings of Edmonds were in error. (See the articles by Bouten
[14] and Wolf [15].)

21.3.2 Properties of D-functions

Matrix elements of the rotation operator using Euler angles to define the rotation are given by:

D
(j)
m,m′(γ, β, α) = 〈 jm |UJ(γ, β, α) | jm′ 〉 = ei(mγ+m′α) d

(j)
m,m′(β) , (21.150)

where djm,m′(β) is real and given by:9

d
(j)
m,m′(β) = 〈 jm | eiβJy/~ | jm′ 〉 .

We derive an explicit formula for the D-matrices in Theorem 72 in Section G.5 using Schwinger’s methods,
where we find:

D
(j)
m,m′(R) =

√
(j +m)! (j −m)! (j +m′) (j −m′)

×
j+m∑

s=0

j−m∑

r=0

δs−r,m−m′

(
D+,+(R)

)j+m−s (
D+,−(R)

)s (
D−,+(R)

)r (
D−,−(R)

)j−m−r

s! (j +m− s)! r! (j −m− r)! , (21.151)

where elements of the matrix D(R), with rows an columns labeled by ±, are given by any of the parameter-
izations:

D(R) =
(
a b
c d

)
= cos(θ/2) + i (n̂ · σ) sin(θ/2)

=
(
ei(+γ+α)/2 cos(β/2) ei(+γ−α)/2 sin(β/2)
−ei(−γ+α)/2 sin(β/2) ei(−γ−α)/2 cos(β/2)

)
.

(21.152)

Using Euler angles, this gives the formula:

d
(j)
m,m′(β) =

√
(j +m)! (j −m)! (j +m′) (j −m′)

×
∑

σ

(−)j−σ−m
(

cos(β/2)
)2σ+m+m′ ( sin(β/2)

)2j−2σ−m−m′

σ! (j − σ −m)! (j − σ −m′)! (σ +m+m′)!
. (21.153)

From this, it is easy to show that:

d
(j)
m,m′(β) = d

(j) ∗
m,m′(β) = d

(j)
m′,m(−β) = (−)m−m

′
d

(j)
−m,−m′(β) = (−)m−m

′
d

(j)
m′,m(β) . (21.154)

In particular, in Section G.5, we show that:

d
(j)
m,m′(π) = (−)j−m δm,−m′ , and d

(j)
m,m′(−π) = (−)j+m δm,−m′ . (21.155)

9This is the reason in quantum mechanics for choosing the second rotation to be about the y-axis rather than the x-axis.
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The D-matrix for the inverse transformation is given by:

D
(j)
m,m′(R

−1) = D
(j)∗
m′,m(R) = (−)m−m

′
D

(j)
−m,−m′(R) (21.156)

For Euler angles, since d(j)
m,m′(β) is real, this means that:

D
(j)∗
m,m′(α, β, γ) = D

(j)
m′,m(−γ,−β,−α) = D

(j)
m,m′(−α, β,−γ) = (−)m−m

′
D

(j)
−m,−m′(α, β, γ) . (21.157)

Exercise 63. Show that the matrix d(1)(β) for j = 1/2, is given by:

d(1/2)(β) = eiβσy/2 = cos(β/2) + iσy sin(β/2) =
(

cos(β/2) sin(β/2)
− sin(β/2) cos(β/2)

)
,

so that

D(1/2)(γ, β, α) =
(
ei(+γ+α)/2 cos(β/2) ei(+γ−α)/2 sin(β/2)
−ei(−γ+α)/2 sin(β/2) ei(−γ−α)/2 cos(β/2)

)
, (21.158)

which agrees with Eq. (??) if we put γ = 0, β = θ, and α = φ.

Exercise 64. Show that the matrix d(1)(β) for j = 1, is given by:

d(1)(β) = eiβSy =




(1 + cosβ)/2 sinβ/
√

2 (1− cosβ)/2
− sinβ/

√
2 cosβ sinβ/

√
2

(1− cosβ)/2 − sinβ/
√

2 (1 + cosβ)/2


 . (21.159)

Use the results for Sy in Eq. (21.10) and expand the exponent in a power series in iβSy for a few terms
(about four or five terms should do) in order to deduce the result directly.

Remark 37. From the results in Eq. (21.159), we note that:

Y1,m(θ, φ) =

√
3

4π





− sin θ e+iφ/
√

2 , for m = +1,
cos θ , for m = 0,

+ sinφ e−iφ/
√

2 , for m = −1.
(21.160)

so

D
(1)
0,m(γ, β, α) =

√
4π
3
Y1,m(β, α) , and D

(1)
m,0(γ, β, α) = (−)m

√
4π
3
Y1,m(β, γ) , (21.161)

in agreement with Eqs. (21.171) and (21.172).

21.3.3 Rotation of orbital angular momentum

When the angular momentum has a coordinate representation so that J = L = R×P,

U†L(γ, β, α)Xi UL(γ, β, α) = Rij(γ, β, α)Xj = X ′′′i , (21.162)

or
Xi UL(γ, β, α) = UL(γ, β, α)X ′′′i , (21.163)

so that:
Xi

{
UL(γ, β, α) | r 〉

}
= UL(γ, β, α)X ′′′i | r 〉 = x′′′i

{
UL(γ, β, α) | r 〉

}
, (21.164)

which means that UL(γ, β, α) | r 〉 is an eigenvector of Xi with eigenvalue x′′′i = Rij(γ, β, α)xj . That is:

| r′′′ 〉 = UL(γ, β, α) | r 〉 . (21.165)
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The spherical harmonics of Section 21.1.2 are defined by:

Y`,m(θ, φ) = 〈 r̂ | `,m 〉 = 〈 θ, φ | `,m 〉 . (21.166)

Now let the point P be on the unit circle so that the coordinates of this point is described by the polar
angles (θ, φ) in frame Σ and the polar angles (θ′, φ′) in the rotated frame Σ′. So on this unit circle,

Y`,m(θ, φ) = 〈 θ, φ | `,m 〉 = 〈 θ′′′, φ′′′ |UL(γ, β, α) | `,m 〉 = 〈 θ′′′, φ′′′ | `,m 〉′′′ = Y ′′′`,m(θ′′′, φ′′′)

=
+∑̀

m′=−`
〈 θ′′′, φ′′′ | `,m′ 〉 〈 `,m′ |UL(γ, β, α) | `,m 〉 =

+∑̀

m′=−`
Y`,m′(θ

′′′, φ′′′)D(`)
m′,m(γ, β, α) , (21.167)

where
D

(`)
m,m′(γ, β, α) = 〈 `,m |UL(γ, β, α) | `,m′ 〉 . (21.168)

As a special case, let us evaluate Eq. (21.167) at a point P0 = (x′′′, y′′′, z′′′) = (0, 0, 1) on the unit circle on
the z′′′-axis in the Σ′′′, or θ′′′ = 0. However Eq. (21.30) states that:

Y`,m′(0, φ′′′) =

√
2`+ 1

4π
δm′,0 , (21.169)

so only the m′ = 0 term in Eq. (21.167) contributes to the sum and so evaluated at point P0, Eq. (21.167)
becomes:

Y`,m(θ, φ) =

√
2`+ 1

4π
D

(`)
0,m(γ, β, α) . (21.170)

The point P in the Σ frame is given by Eqs. (21.81). So for this point, the polar angles of point P in the Σ
frame are: θ = β and φ = α, and Eq. (21.170) gives the result:

D
(`)
0,m(γ, β, α) =

√
4π

2`+ 1
Y`,m(β, α) = C`,m(β, α) . (21.171)

By taking the complex conjugate of this expression and using properties of the spherical harmonics, we also
find:

D
(`)
m,0(γ, β, α) = (−)m

√
4π

2`+ 1
Y`,m(β, α) = C∗`,−m(β, α) . (21.172)

As a special case, we find:
D

(`)
0,0(γ, β, α) = P`(cosβ) , (21.173)

where P`(cosβ) is the Lagrendre polynomial of order `.

Exercise 65. Prove Eq. (21.172).

21.3.4 Sequential rotations

From the general properties of the rotation group, we know that U(R′R) = U(R′)U(R). If we describe the
rotations by Euler angles, we write the combined rotation as:

R(γ′′, β′′, α′′) = R(γ′, β′, α′)R(γ, β, α) . (21.174)

The unitary operator for this sequential transformation is then given by:

UJ(γ′′, β′′, α′′) = UJ(γ′, β′, α′)UJ(γ, β, α) . (21.175)
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So the D-functions for this sequential rotation is given by matrix elements of this expression:

D
(j)
m,m′′(γ

′′, β′′, α′′) =
+j∑

m′=−j
D

(j)
m,m′(γ

′, β′, α′)D(j)
m′,m′′(γ, β, α) . (21.176)

We can derive the addition theorem for spherical harmonics by considering the sequence of transforma-
tions given by:

R(γ′′, β′′, α′′) = R(γ′, β′, α′)R−1(γ, β, α) = R(γ′, β′, α′)R(−α,−β,−γ) . (21.177)

The D-functions for this sequential rotation for integer j = `, is given by:

D
(`)
m,m′′(γ

′′, β′′, α′′) =
+∑̀

m′=−`
D

(`)
m,m′(γ

′, β′, α′)D(`)
m′,m′′(−α,−β,−γ) . (21.178)

Next, we evaluate Eq. (21.178) for m = m′′ = 0. Using Eqs. (21.171), (21.172), and (21.173), we find:

P`(cosβ′′) =
4π

2`+ 1

+∑̀

m′=−`
Y`,m(β′, α′)Y ∗`,m(β, α) . (21.179)

Here (β, α) and (β′, α′) are the polar angles of two points on the unit circle in a fixed coordinate frame. In
order to find cosβ′′, we need to multiply out the rotation matrices given in Eq. (21.177). Let us first set
(β, α) = (θ, φ) and (β′, α′) = (θ′, φ′), and set γ and γ′ to zero. Then we find:

R(γ′′, β′′, α′′) = Ry(θ′)Rz(φ′)Rz(−φ)Ry(−θ) = Ry(θ′)Rz(φ′ − φ)Ry(−θ)

=




cos θ′ 0 − sin θ′

0 1 0
sin θ′ 0 cos θ′






cosφ′′ sinφ′′ 0
− sinφ′′ cosφ′′ 0

0 0 1






cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




=




sin θ sin θ′ + cos θ cos θ′ cosφ′′ cos θ′ sinφ′′ − sin θ′ cos θ + cos θ′ cos θ cosφ′′

− cos θ sinφ′′ cosφ′′ − sin θ sinφ′′

− cos θ′ sin θ + sin θ′ cos θ cosφ′′ sin θ′ sinφ′′ cos θ′ cos θ + sin θ′ sin θ cosφ′′


 . (21.180)

where we have set φ′′ = φ′ − φ. We compare this with the general form of the rotation matrix given in
Eq. (21.79):

R(γ′′, β′′, α′′) =



cos γ′′ cosβ′′ cosα′′ − sin γ′′ sinα′′, cos γ′′ cosβ′′ sinα′′ + sin γ′′ sinα′′, − cos γ′′ sinβ′′

− sin γ′′ cosβ′′ cosα′′ − cos γ′′ sinα′′, − sin γ′′ cosβ′′ sinα′′ + cos γ′′ cosα′′, sin γ′′ sinβ′′

sinβ′′ cosα′′, sinβ′′ sinα′′, cosβ′′


 .

(21.181)

Comparing this with Eq. (21.180), we see that the (3, 3) component requires that:

cosβ′′ = cos θ′ cos θ + sin θ′ sin θ cosφ′′ . (21.182)

It is not easy to find the values of α′′ and γ′′. We leave this problem to the interested reader.

Exercise 66. Find α′′ and γ′′ by comparing Eqs. (21.180) and (21.181), using the result (21.182).

So Eq. (21.179) becomes:

P`(cos γ) =
4π

2`+ 1

+∑̀

m=−`
Y`,m(θ′, φ′)Y ∗`,m(θ, φ) , (21.183)

where cos γ = cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ). Eq. (21.183) is called the addition theorem of spherical
harmonics.
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21.4 Addition of angular momentum

If a number of angular momentum vectors commute, the eigenvectors of the combined system can be written
as a direct product consisting of the vectors of each system:

| j1,m1, j2,m2, . . . , jN ,mN 〉 = | j1,m1 〉 ⊗ | j2,m2 〉 ⊗ · · · ⊗ | jN ,mN 〉 . (21.184)

This vector is an eigenvector of J2
i and Ji,z for i = 1, 2, . . . , N . It is also an eigenvector of the total z-

component of angular momentum: Jz | j1,m1, j2,m2, . . . , jN ,mN 〉 = M | j1,m1, j2,m2, . . . , jN ,mN 〉, where
M = m1 +m2 + · · ·+mN . It is not, however, an eigenvector of the total angular momentum J2, defined by

J2 = J · J , J =
N∑

i=1

Ji . (21.185)

We can find eigenvectors of the total angular momentum of any number of commuting angular momentum
vectors by coupling them in a number of ways. This coupling is important in applications since very often
the total angular momentum of a system is conserved. We show how to do this coupling in this section. We
start with the coupling of the eigenvectors of two angular momentum vectors.

21.4.1 Coupling of two angular momenta

Let J1 and J2 be two commuting angular moment vectors: [ J1 i, J2 j ] = 0, with [ J1 i, J1 j ] = iεijkJ1 k and
[ J2 i, J12,j ] = iεijkJ2 k. One set of four commuting operators for the combined system is the direct product
set, given by: (J2

1 , J1 z, J
2
2 , J2,z), and with eigenvectors:

| j1,m1, j2,m2 〉 . (21.186)

However, we can find another set of four commuting operators by defining the total angular momentum
operator:

J = J1 + J2 , (21.187)

which obeys the usual angular momentum commutation rules: [ Ji, Jj ] = iεijkJk, with [ J2, J2
1 ] = [ J2, J2

2 ] =
0. So another set of four commuting operators for the combined system is: (J2

1 , J
2
2 , J

2, Jz), with eigenvectors:

| (j1, j2), j,m 〉 . (21.188)

Either set of eigenvectors are equivalent descriptions of the combined angular momentum system, and so
there us a unitary operator relating them. Matrix elements of this operator are called Clebsch-Gordan
coefficients, or vector coupling coefficients, which we write as:

| (j1, j2) j,m 〉 =
∑

m1,m2

| j1,m1, j2,m2 〉 〈 j1,m1, j2,m2 | (j1, j2) j,m 〉 , (21.189)

or in the reverse direction:

| j1,m1, j2,m2 〉 =
∑

j,m

| (j1, j2), j,m 〉〈 (j1, j2) j,m | j1,m1, j2,m2 〉 . (21.190)

Since the basis states are orthonormal and complete, Clebsch-Gordan coefficients satisfy:
∑

m1,m2

〈 (j1, j2) j,m | j1,m1, j2,m2 〉 〈 j1,m1, j2,m2 | (j1, j2) j′,m′ 〉 = δj,j′ δm,m′ ,

∑

j,m

〈 j1,m1, j2,m2 | (j1, j2) j,m 〉〈 (j1, j2) j,m | j1,m′1, j2,m′2 〉 = δm1,m′1
δm2,m′2

.
(21.191)
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In addition, a phase convension is adopted so that the phase of the Clebsch-Gordan coefficient 〈 j1, j1, j2, j−
j1 | (j1, j2) j,m 〉 is taken to be zero, i.e. the argument is +1. With this convention, all Clebsch-Gordan
coefficients are real.

Operating on (21.189) by Jz = J1 z + J2 z, gives

m | (j1, j2) j,m 〉 =
∑

m1,m2

(m1 +m2 ) | j1,m1, j2,m2 〉 〈 j1,m1, j2,m2 | (j1, j2) j,m 〉 , (21.192)

or
(m−m1 −m2 ) 〈 j1,m1, j2,m2 | (j1, j2) j,m 〉 = 0 , (21.193)

so that Clebsch-Gordan coefficients vanish unless m = m1 +m2. Operating on (21.189) by J± = J1±+ J2±
gives two recursion relations:

A(j,∓m) 〈 j1,m1, j2,m2 | (j1, j2) j,m± 1 〉 =
A(j1,±m1) 〈 j1,m1 ∓ 1, j2,m2 | (j1, j2) j,m 〉+A(j2,±m2) 〈 j1,m1, j2,m2 ∓ 1 | (j1, j2) j,m 〉 , (21.194)

where A(j,m) =
√

(j +m)(j −m+ 1) = A(j, 1 ∓ m). The range of j is determined by noticing that
〈 j1,m1, j − j1,m2 | (j1, j2) j,m 〉 vanished unless −j2 ≤ j − j1 ≤ j2 or j1 − j2 ≤ j ≤ j1 + j2. Similarly
〈 j1, j − j2, j2, j2 | (j1, j2) j,m 〉 vanished unless −j1 ≤ j − j2 ≤ j1 or j2 − j1 ≤ j ≤ j1 + j2, from which we
conclude that

| j1 − j2 | ≤ j ≤ j1 + j2 , (21.195)

which is called the triangle inequality. One can find a closed form for the Clebsch-Gordan coefficients by
solving the recurrence formula, Eq. (21.194). The result [5][p. 78], which is straightforward but tedious is:

〈 j1,m1, j2,m2 | (j1, j2) j,m 〉

= δm,m1+m2

[
(2j + 1) (j1 + j2 − j)! (j1 −m1)! (j2 −m2)! (j −m)! (j +m)!

(j1 + j2 + j + 1)! (j + j1 − j2)! (j + j2 − j1)! (j1 +m1)! (j2 +m2)!

]1/2

×
∑

t

(−)j1−m1+t

[
(j1 +m1 + t)! (j + j2 −m1 − t)!

t! (j −m− t)! (j1 −m1 − t)! (j2 − j +m1 + t)!

]
. (21.196)

This form for the Clebsch-Gordan coefficient is called “Racah’s first form.” A number of other forms of the
equation can be obtained by substitution. For numerical calculatins for small j, it is best to start with the
vector for m = −j and then apply J+ to obtain vectors for the other m-values, or start with the vector for
m = +j and then apply J− to obtain vectors for the rest of the m-values. Orthonormalization requirements
between states with different value of j with the same value of m can be used to further fix the vectors. We
illustrate this method in the next example.

Example 33. For j1 = j2 = 1/2, the total angular momentum can have the values j = 0, 1. For this
example, let us simplify our notation and put | 1/2,m, 1/2,m′ 〉 7→ |m,m′ 〉 and | (1/2, 1/2) j,m 〉 7→ | j,m 〉.
Then for j = 1 and m = 1, we start with the unique state:

| 1, 1 〉 = | 1/2, 1/2 〉 . (21.197)

Our convention is that the argument of this Clebsch-Gordan coefficient is +1. Apply J− to this state:

J− | 1, 1 〉 = J1− | 1/2, 1/2 〉+ J2− | 1/2, 1/2 〉 , (21.198)

from which we find:
| 1, 0 〉 =

1√
2

(
| − 1/2, 1/2 〉+ | 1/2,−1/2 〉

)
. (21.199)
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Applying J− again to this state gives:

| 1,−1 〉 = | − 1/2,−1/2 〉 . (21.200)

For the j = 0 case, we have:
| 0, 0 〉 = α | 1/2,−1/2 〉+ β | − 1/2, 1/2 〉 . (21.201)

Applying J− to this state gives zero on the left-hand-side, so we find that β = −α. Since our convention is
that the argument of α is +1, we find:

| 0, 0 〉 =
1√
2

(
| 1/2,−1/2 〉 − | − 1/2, 1/2 〉

)
. (21.202)

As a check, we note that (21.202) is orthogonal to (21.199). We summarize these familiar results as follows:

| j,m 〉 =





(
| 1/2,−1/2 〉 − | − 1/2, 1/2 〉

)
/
√

2 , for j = m = 0,
| 1/2, 1/2 〉 , for j = 1, m = +1,(
| 1/2,−1/2 〉+ | − 1/2, 1/2 〉

)
/
√

2 , for j = 1, m = 0,
| − 1/2,−1/2 〉 , for j = 1, m = −1.

(21.203)

Exercise 67. Work out the Clebsch-Gordan coefficients for the case when j1 = 1/2 and j2 = 1.

Tables of Clebsch-Gordan coefficients can be found on the internet. We reproduce one of them from the
Particle Data group in Table 21.1.10 More extensive tables can be found in the book by Rotenberg, et.al. [16],
and computer programs for numerically calculating Clebsch-Gordan coefficients, 3j-, 6j-, and 9j-symbols are
also available. Important symmetry relations for Clebsch-Gordan coefficients are the following:

1. Interchange of the order of (j1, j2) coupling:

〈 j2,m2, j1,m1 | (j2, j1) j3,m3 〉 = (−)j1+j2−j3 〈 j1,m1, j2,m2 | (j1, j2) j3,m3 〉 . (21.204)

2. Cyclic permutation of the coupling [(j1, j2) j3]:

〈 j2,m2, j3,m3 | (j2, j3) j1,m1 〉 = (−)j2−m2

√
2j1 + 1
2j3 + 1

〈 j1,m1, j2,−m2 | (j1, j2) j3,m3 〉 , (21.205)

〈 j3,m3, j1,m1 | (j3, j1) j2,m2 〉 = (−)j1+m1

√
2j2 + 1
2j3 + 1

〈 j1,−m1, j2,m2 | (j1, j2) j3,m3 〉 . (21.206)

3. Reversal of all m values:

〈 j1,−m1, j2,−m2 | (j1, j2) j3,−m3 〉 = (−)j1+j2−j3 〈 j1,m1, j2,m2 | (j1, j2) j3,m3 〉 . (21.207)

Some special values of the Clebsch-Gordan coefficients are useful to know:

〈 j,m, 0, 0 | (j, 0) j,m 〉 = 1 , 〈 j,m, j,m′ | (j, j) 0, 0 〉 = δm,−m′
(−)j−m√

2j + 1
. (21.208)

The symmetry relations are most easily obtained from the simpler symmetry relations for 3j-symbols, which
are defined below, and proved in Section G.6 using Schwinger’s methods.

10The sign convensions for the d-functions in this table are those of Rose[6], who uses an active rotation. To convert them to
our conventions put β → −β.

c© 2009 John F. Dawson, all rights reserved. 268



CHAPTER 21. ANGULAR MOMENTUM 21.4. ADDITION OF ANGULAR MOMENTUM
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.

Table 21.1: Table of Clebsch-Gordan coefficients, spherical harmonics, and d-functions.
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3j symbols

Clebsch-Gordan coefficients do not possess simple symmetry relations upon exchange of the angular momen-
tum quantum numbers. 3-j symbols which are related to Clebsch-Gordan coefficients, have better symmetry
properties. They are defined by (Edmonds [2]):

(
j1 j2 j3
m1 m2 m3

)
=

(−)j1−j2−m3

√
2j3 + 1

〈 j1,m1, j2,m2 | (j1, j2) j3,−m3 〉 . (21.209)

In terms of 3j-symbols, the orthogonality relations (21.191) become:

(2j3 + 1)
∑

m1,m2

(
j1 j2 j3
m1 m2 m3

) (
j1 j2 j′3
m1 m2 m′3

)
= δj3,j′3 δm3,m

′
3
,

∑

j3,m3

(2j3 + 1)
(
j1 j2 j3
m1 m2 m3

) (
j1 j2 j3
m′1 m′2 m3

)
= δm1,m

′
1
δm2,m

′
2
.

(21.210)

Symmetry properties of the 3j-symbols are particularly simple. They are:

1. The 3j-symbols are invariant under even (cyclic) permutation of the columns:
(
j1 j2 j3
m1 m2 m3

)
=
(
j2 j3 j1
m2 m3 m1

)
=
(
j3 j1 j2
m3 m1 m2

)
. (21.211)

and are multiplied by a phase for odd permutations:
(
j2 j1 j3
m2 m1 m3

)
=
(
j3 j2 j1
m3 m2 m1

)
=
(
j1 j3 j2
m1 m3 m2

)
= (−)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
. (21.212)

2. For reversal of all m values:
(

j1 j2 j3
−m1 −m2 −m3

)
= (−)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
. (21.213)

The 3j-symbols vanish unless m1 +m2 +m3 = 0. For j3 = 0, the 3j-symbol is:
(
j j 0
m m′ 0

)
= δm,−m′

(−)j−m√
2j + 1

. (21.214)

A few useful 3j-symbols are given in Table 21.2. More can be found in Edmonds [2][Table 2, p. 125] and
Brink and Satchler [17][Table 3, p. 36].

21.4.2 Coupling of three and four angular momenta

We write the direct product eigenvector for three angular momenta as:

| j1,m1, j2,m2, j3,m3 〉 = | j1,m1 〉 ⊗ | j2,m2 〉 ⊗ | j3,m3 〉 . (21.215)

This state is an eigenvector of J2
1 , J1 z, J2

2 , J2 z, and J2
3 , J3 z. If we want to construct eigenvectors of total

angular momentum J2 and Jz, where

J2 = J · J , J = J1 + J2 + J3 , (21.216)

there are three ways to do this: (1) couple J1 to J2 to get an intermediate vector J12 and then couple this
intermediate vector to J3 to get an eigenvector of J, (2) couple J2 to J3 to get J23 and then couple J1 to
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(
j j + 1/2 1/2
m −m− 1/2 1/2

)
= (−)j−m−1

√
j +m+ 1

(2j + 1)(2j + 2)
(
j j 1
m −m− 1 1

)
= (−)j−m

√
2(j −m)(j +m+ 1)
2j(2j + 1)(2j + 2)

(
j j 1
m −m 0

)
= (−)j−m

m√
j(j + 1)(2j + 1)

(
j j + 1 1
m −m− 1 1

)
= (−)j−m

√
(j +m+ 1)(j +m+ 2)
(2j + 1)(2j + 2)(2j + 3)

(
j j + 1 1
m −m 0

)
= (−)j−m−1

√
2(j −m+ 1)(j +m+ 1)
(2j + 1)(2j + 2)(2j + 3)

Table 21.2: Algebric formulas for some 3j-symbols.

J23 to get J, or (3) couple J1 to J3 to get J13 and then couple J2 to J13 to get J. Keeping in mind that the
order of the coupling of two vectors is just a phase and not a different coupling scheme, it turns out that
this last coupling is just a combined transformation of the first two (see Eq. (21.223) below). So the first
two coupling schemes can be written as:

| (j1, j2) j12, j3, j,m 〉 =
∑

m1,m2,m3
m12

〈 j1,m1, j2,m2 | (j1, j2) j12,m12 〉 〈 j12,m12, j3,m3 | (j12, j3) j,m 〉

× | j1,m1, j2,m2, j3,m3 〉 ,

| j1 (j2, j3) j23, j,m 〉 =
∑

m1,m2,m3
m23

〈 j2,m2, j3,m3 | (j2, j3) j23,m23 〉 〈 j1,m1, j23,m23 | (j1, j23) j,m 〉

× | j1,m1, j2,m2, j3,m3 〉 .

(21.217)

The overlap between these two coupling vectors is independent of m and is proportional to the 6j-symbol:
{
j1 j2 j12

j3 j j23

}
=

(−)j1+j2+j3+j

√
(2j12 + 1) (2j23 + 1)

〈 (j1, j2) j12, j3, j,m | j1 (j2, j3) j23, j,m 〉

=
(−)j1+j2+j3+j

√
(2j12 + 1) (2j23 + 1)

∑

m1,m2,m3
m12,m23

〈 j1,m1, j2,m2 | (j1, j2) j12,m12 〉

× 〈 j12,m12, j3,m3 | (j12, j3) j,m 〉 〈 j2,m2, j3,m3 | (j2, j3) j23,m23 〉 〈 j1,m1, j23,m23 | (j1, j23) j,m 〉

(21.218)

Here m = m1 + m2 + m3. The 6j-symbols vanish unless (j1, j2, j12), (j2, j3, j23), (j12, j3, j), and (j1, j23, j)
all satisfy triangle inequalities. In terms of 3j-symbols, the 6j-symbol is given by the symmetric expression:
{
j1 j2 j3
j4 j5 j6

}
=
∑

all m

(−)p

×
(
j1 j2 j3
m1 m2 m3

)(
j1 j5 j6
−m1 m5 −m6

)(
j4 j2 j6
−m4 −m2 m6

)(
j4 j5 j3
m4 −m5 −m3

)
, (21.219)

where p = j1 +j2 +j3 +j4 +j5 +j6 +m1 +m2 +m3 +m4 +m5 +m6. Here, the sums over all m’s are restructed
because the 3j-symbols vanish unless their m-values add to zero. A number of useful relations between 3j
and 6j-symbols follow from Eq. (21.219), and are tablulated by Brink and Satchler [17][Appendix II, p. 141].
One of these which we will use later is:
√

(2`+ 1)(2`′ + 1)
{
` `′ k
j′ j 1/2

}(
` `′ k
0 0 0

)
= (−)j+`+j

′+`′+1

(
`′ ` k
−1/2 1/2 0

)
δ(`, `′, k) , (21.220)
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{
j1 j2 j3
0 j3 j2

}
=

(−)j1+j2+j3

√
(2j2 + 1)(2j3 + 1)

,

{
j1 j2 j3

1/2 j3 − 1/2 j2 + 1/2

}
= (−)j1+j2+j3

√
(j1 + j3 − j2)(j1 + j2 − j3 + 1)
(2j2 + 1)(2j2 + 2)2j3(2j3 + 1)

,

{
j1 j2 j3

1/2 j3 − 1/2 j2 − 1/2

}
= (−)j1+j2+j3

√
(j2 + j3 − j1)(j1 + j2 + j3 + 1)

2j2(2j2 + 1)2j3(2j3 + 1)
,

{
j1 j2 j3
1 j3 j2

}
= 2 (−)j1+j2+j3

j1(j1 + 1)− j2(j2 + 1)− j3(j3 + 1)√
2j2(2j2 + 1)(2j2 + 2) 2j3(2j3 + 1)(2j3 + 2)

,

Table 21.3: Algebric formulas for some 6j-symbols.

where δ(`, `′, k) = 1 if `+ `′ + k is even and (`, `′, k) satisfy the triangle inequality, otherwise it is zero. The
6j-symbol is designed so as to maximize the symmetries of the coupling coefficient, as in the 3j-symbol. For
example, the 6j-symbol is invariant under any permutation of columns:
{
j1 j2 j3
j4 j5 j6

}
=
{
j2 j3 j1
j5 j6 j4

}
=
{
j3 j1 j2
j6 j4 j5

}
=
{
j2 j1 j3
j5 j4 j6

}
=
{
j1 j3 j2
j4 j6 j5

}
=
{
j3 j2 j1
j6 j5 j4

}
.

It is also invariant under exchange of the upper and lower elements of any two columns:
{
j1 j2 j3
j4 j5 j6

}
=
{
j4 j5 j3
j1 j2 j6

}
=
{
j4 j2 j6
j1 j5 j3

}
=
{
j1 j5 j6
j4 j2 j3

}
.

Some particular 6j-symbols are given in Table 21.3 Additional tables of 6j-symbols for values of j = 1
and 2 can be found in Edmonds [2][Table 5, p. 130]. Several relations between 6j-symbols are obtained by
consideration of the recoupling matrix elements. For example, since:

∑

j12

〈 j1 (j2, j3) j23, j | (j1, j2) j12, j3, j 〉 〈 (j1, j2) j12, j3, j | j1 (j2, j3) j′23, j 〉 = δj23,j′23 , (21.221)

we have: ∑

j12

(2j12 + 1)(2j23 + 1)
{
j1 j2 j12

j3 j j23

}{
j1 j2 j12

j3 j j′23

}
= δj23,j′23 . (21.222)

A similar consideration of
∑

j23

〈 (j1, j2) j12, j3, j | j1 (j2, j3) j23, j 〉 〈 j1 (j2, j3) j23, j | j2 (j3, j1) j31, j 〉

= 〈 (j1, j2) j12, j3, j | j2 (j3, j1) j31, j 〉 , (21.223)

gives:
∑

j23

(−)j23+j31+j12 (2j23 + 1)
{
j1 j2 j12

j3 j j23

}{
j2 j3 j23

j1 j j31

}
=
{
j3 j1 j31

j2 j j12

}
. (21.224)

Other important formula involving 6j-symbols can be found in standard references.
The coupling of four angular momenta is done in a similar way. Let us take the special case of two

particles with orbital angular momentum `1 and `2 and spin s1 and s2. Two important ways of coupling
these four angular momentum are the j-j coupling scheme:

| (`1, s1) j1, (`2, s2) j2, j,m 〉 =
∑

m`1 ,ms1 ,m`2 ,ms2
mj1 ,mj2

〈 `1,m`1 , s1,ms1 | (`1, s1) j1,m1 〉〈 `2,m`2 , s2,ms2 | (`2, s2) j2,m2 〉 〈 j1,m1, j2,m2 | (j1, j2) j,m 〉,

(21.225)
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and the `-s coupling scheme:

| (`1, `2) `, (s1, s2) s, j,m 〉 =
∑

m`1 ,m`2 ,ms1 ,ms2
m`,ms

〈 `1,m`1 , `2,m`2 | (`1, `2) `,m` 〉 〈 s1,ms1 , s2,ms2 | (s1, s2) s,ms 〉 〈 `,m`, s,ms | (`, s) j,m 〉 ,

(21.226)

The overlap between these two coupling schemes define the 9j-symbol:



`1 s1 j1
`2 s2 j2
` s j



 =

〈 (`1, s1) j1, (`2, s2) j2, j,m | (`1, `2) `, (s1, s2) s, j,m 〉√
(2j1 + 1) (2j2 + 1) (2`+ 1) (2s+ 1)

(21.227)

and is independent of the value of m. The rows and columns of the 9j-symbol must satisfy the triangle
inequality. From Eqs. (21.225) and (21.226), the 9j-symbol can be written in terms of sums over 6j-symbols
or 3j-symbols:




j11 j12 j13

j21 j22 j23

j31 j32 j33



 =

∑

j

(−)2j (2j + 1)
{
j11 j21 j31

j32 j33 j

}{
j12 j22 j32

j21 j j23

}{
j13 j23 j33

j j11 j12

}

=
∑

all m

(
j11 j12 j13

m11 m12 m13

)(
j21 j22 j23

m21 m22 m23

)(
j31 j32 j33

m31 m32 m33

)

×
(
j11 j21 j31

m11 m21 m31

)(
j12 j22 j32

m12 m22 m32

)(
j13 j23 j33

m13 m23 m33

)
. (21.228)

From Eq. (21.228), we see that an even permutation of rows or columns or a transposition of rows and
columns leave the 9j-symbol invariant, whereas an odd permutation of rows or columns produces a sign
change given by:

(−)j11+j12+j13+j21+j22+j23+j31+j32+j33 .

Orthogonal relations of 9j-symbols are obtained in the same way as with the 3j-symbols. We find:

∑

j12,j34

(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1)




j1 j2 j12

j3 j4 j34

j13 j24 j








j1 j2 j12

j3 j4 j34

j′13 j′24 j



 = δj13,j′13 δj24,j′24 , (21.229)

and

∑

j13,j24

(−)2j3+j24+j23−j34(2j13 + 1)(2j24 + 1)




j1 j2 j12

j3 j4 j34

j13 j24 j








j1 j3 j13

j4 j2 j24

j14 j23 j





=




j1 j2 j12

j4 j3 j34

j14 j23 j



 . (21.230)

Relations between 6j- and 9j-symbols are obtained from orthogonality relations and recoupling vectors. One
which we will have occasion to use is:

∑

j12

(2j12 + 1)




j1 j2 j12

j3 j4 j34

j13 j24 j





{
j1 j2 j12

j34 j j′

}
= (−)2j′

{
j3 j4 j34

j2 j′ j24

}{
j13 j24 j
j′ j1 j3

}
. (21.231)

c© 2009 John F. Dawson, all rights reserved. 273



21.4. ADDITION OF ANGULAR MOMENTUM CHAPTER 21. ANGULAR MOMENTUM

The 9j-symbol with one of the j’s zero is proportional to a 6j-symbol:



j1 j2 j
j3 j4 j
j′ j′ 0



 =

(−)j2+j3+j+j′

√
(2j + 1)(2j′ + 1)

{
j1 j2 j
j4 j3 j′

}
. (21.232)

Algebraic formulas for the the commonly occurring 9j-symbol:




` `′ L
j j′ J

1/2 1/2 S



 , (21.233)

for S = 0, 1 are given by Matsunobu and Takebe [18]. Values of other special 9j-symbols can be found in
Edmonds [2], Brink and Satchler [17], or Rotenberg, Bivins, Metropolis, and Wooten [16]. The coupling of
five and more angular momenta can be done in similar ways as described in this section, but the recoupling
coefficients are not used as much in the literature, so we stop here in our discussion of angular momentum
coupling.

21.4.3 Rotation of coupled vectors

The relation between eigenvectors of angular momentum for a coupled system described in two coordinate
frames Σ and Σ′ is given by a rotation operator U(R) for the combined system, J = J1 + J2. Since J1 and
J2 commute, the rotation operator can be written in two ways:

UJ(R) = ein̂·Jθ/~ = ein̂·J1θ/~ ein̂·J2θ/~ = UJ1(R)UJ1(R) . (21.234)

Operating with on (21.189) with UJ(R) and multiplying on the left by the adjoint of Eq. (21.189) gives:

〈 (j1, j2) j,m |UJ(R) | (j1, j2) j,m′ 〉 =
∑

m1,m2,m′1,m
′
2

〈 j1,m1 |UJ1(R) | j1,m′1 〉 〈 j2,m2 |UJ1(R) | j2,m′2 〉

× 〈 (j1, j2) j,m | j1,m1, j2,m2 〉 〈 j1,m′1, j2,m′2 | (j1, j2) j,m′ 〉 . (21.235)

Here we have used the fact that the matrix elements of the rotation operator is diagonal in the total angular
momentum quantum number j. But from Definition 35, matrix elements of the rotation operator are just
the D-functions, so (21.235) becomes:

D
(j)
m,m′(R) =

∑

m1,m2,m′1,m
′
2

D
(j1)
m1,m′1

(R)D(j2)
m2,m′2

(R) 〈 (j1, j2) j,m | j1,m1, j2,m2 〉 〈 j1,m′1, j2,m′2 | (j1, j2) j,m′ 〉 . (21.236)

Eq. (21.236) is called the Clebsch-Gordan series.11 Another form of it is found by multiplying (21.236)
through by another Clebsch-Gordan coefficient and using relations (21.191):

∑

m

〈 j1,m1, j2,m2 | (j1, j2) j,m 〉D(j)
m,m′(R)

=
∑

m′1,m
′
2

D
(j1)
m1,m′1

(R)D(j2)
m2,m′2

(R) 〈 j1,m′1, j2,m′2 | (j1, j2) j,m′ 〉 . (21.237)

11According to Rotenberg, et. al. [16], A. Clebsch and P. Gordan had little to do with what physicists call the Clebsch-Gordan
series.
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Exercise 68. Using the infinitesimal expansions:

D
(j)
m,m′(n̂z,∆θ) = δm,m′ + im δm,m′ ∆θ + · · ·

D
(j)
m,m′(n̂±,∆θ) = δm,m′ + i A(j,∓m′) δm,m′±1 ∆θ + · · · ,

(21.238)

evaluate the Clebsch-Gordan series, Eq. (21.237), for infinitesimal values of θ and for n̂ = n̂z and n̂± to
show that Clebsch-Gordan series reproduces Eqs. (21.193) and (21.194). That is, the Clebsch-Gordan series
determines the Clebsch-Gordan coefficients.

Multiplication of Eq. (21.237) again by a Clebsch-Gordan coefficient and summing over j and m′ gives a
third relation between D-functions:

D
(j1)
m1,m′1

(R)D(j2)
m2,m′2

(R)

=
∑

j,m,m′

〈 j1,m1, j2,m2 | (j1, j2) j,m 〉 〈 j1,m′1, j2,m′2 | (j1, j2) j,m′ 〉D(j)
m,m′(R) . (21.239)

In terms of 3j-symbols, (21.239) becomes:

D
(j1)
m1,m′1

(R)D(j2)
m2,m′2

(R) =
∑

j,m,m′

(2j + 1)
(
j1 j2 j
m1 m2 m

) (
j1 j2 j
m′1 m′2 m′

)
D

(j) ∗
m,m′(R) . (21.240)

For integer values of j1 = `1 and j2 = `2 and m1 = m2 = 0, (21.240) reduces to:

C`1,m1
(Ω)C`2,m2

(Ω) =
∑

`,m

(2`+ 1)
(
`1 `2 `
m1 m2 m

) (
`1 `2 `
0 0 0

)
C∗`,m(Ω) . (21.241)

Using the orthogonality of the spherical harmonics, Eq. (21.241) can be used to find the integral over three
spherical harmonics:

∫
dΩ C`1,m1

(Ω)C`2,m2
(Ω)C`3,m3

(Ω) = 4π
(
`1 `2 `3
m1 m2 m3

) (
`1 `2 `3
0 0 0

)
. (21.242)

A useful formula can be found from Eq. (21.241) by setting `1 = 1 and m1 = 0. Then (21.241) becomes:

cos θ C`2,m2(θ, φ) = (2`2 + 3)
(

1 `2 `2 + 1
0 m2 −m2

) (
1 `2 `2 + 1
0 0 0

)
C∗`2+1,−m2

(θ, φ)

+ (2`2 − 1)
(

1 `2 `2 − 1
0 m2 −m2

) (
1 `2 `2 − 1
0 0 0

)
C∗`2−1,−m2

(θ, φ)
(21.243)

Using Table (21.2) gives the result:

cos θ Y`,m(θ, φ) =

√
(`+m+ 1)(`−m+ 1)

(2`+ 1)(2`+ 3)
Y`+1,m(θ, φ) +

√
(`+m)(`−m)
(2`− 1)(2`+ 1)

Y`−1,m(θ, φ) . (21.244)

Similarly, setting ` = 1 and m = ±1 in (21.241), gives two additional equations:

sin θ e+iφ Y`,m(θ, φ) = −
√

(`+m+ 1)(`+m+ 2)
(2`+ 1)(2`+ 3)

Y`+1,m+1(θ, φ) +

√
(`−m)(`−m− 1)

(2`− 1)(2`+ 1)
Y`−1,m+1(θ, φ)

sin θ e−iφ Y`,m(θ, φ) = +

√
(`−m+ 1)(`−m+ 2)

(2`+ 1)(2`+ 3)
Y`+1,m−1(θ, φ)−

√
(`+m)(`+m− 1)

(2`− 1)(2`+ 1)
Y`−1,m−1(θ, φ) .

(21.245)
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21.5 Tensor operators

The key to problems involving angular momentum matrix elements of operators is to write the operators in
terms of tensor operators, and then use powerful theorems regarding the matrix elements of these tensors.
The most important theorem is the Wigner-Eckart theorem, which will be discussed in the next section.
Others are discussed in the next section where we also give several examples of the use of these theorems.

21.5.1 Tensor operators and the Wigner-Eckart theorem

Definition 36 (tensor operator). An irreducible tensor operator Tk,q of rank k and component q, with
−k ≤ q ≤ +k, is defined so that under rotation of the coordinate system, it transforms as:

UJ(R)Tk,q U
†
J(R) =

+k∑

q′=−k
Tk,q′ D

(k)
q′,q(R) . (21.246)

where D(k)
q,q′(R) is the rotation matrix. The infinitesimal version of (21.246) is:

[ Ji , Tk,q ] =
+k∑

q′=−k
Tk,q′ 〈 k, q′ | Ji | k, q 〉 , (21.247)

which gives the equations:

[ J±, Tk,q ] = ~A(k,∓q)Tk,q±1 , [ Jz, Tk,q ] = ~ q Tk,q . (21.248)

Definition 37 (Hermitian tensor operator). The usual definition of a Hermitian tensor operator for integer
rank k, and the one we will adopt here, is:

T †k,q = (−)q Tk,−q . (21.249)

R1,q and J1,q, defined above, and the spherical harmonics satisfies this definition and are Hermitian operators.
A second definition, which preserves the Hermitian property for tensor products (see Theorem 45 below) is:

T †k,q = (−)k−q Tk,−q . (21.250)

The only difference between the two definitions is a factor of ik.
The adjoint operator T †k,q transforms according to:

U(R)T †k,q U
†(R) =

+k∑

q′=−k
T †k,q′ D

(k) ∗
q′,q (R) =

+k∑

q′=−k
T †k,q′ D

(k)
q,q′(R

−1) . (21.251)

Or putting R→ R−1, this can be written as:

U†(R)T †k,q U(R) =
+k∑

q′=−k
T †k,q′ D

(k)
q,q′(R) . (21.252)

For tensors of half-integer rank, the definition of a Hermitian tensor operator does not work since, for this
case, the Hermitian adjoint, taken twice, does not reproduce the same tensor. So a definition of Hermitian
is not possible for half-integer operators.
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Example 34. The operator made up of the components of the angular momentum operator and defined
by:

J1,q =





−(Jx + i Jy)/
√

2 , for q = +1,
Jz , for q = 0,

+(Jx − i Jy)/
√

2 , for q = −1,
(21.253)

is a tensor operator of rank one. Since (Jx, Jy, Jz) are Hermitian operators, J1,q satisfies J†1,q = (−)qJ1,−q,
and therefore is a Hermitian tensor operator.

Example 35. The spherical harmonics Yk,q(Ω), considered as operators in coordinate space, are tensor
operators. Eqs. (21.25) mean that:

[ J±, Yk,q(Ω) ] = ~A(k,∓q)Yk,q±1(Ω) , [ Jz, Yk,q(Ω) ] = ~ q Yk,q(Ω) , (21.254)

The reduced spherical harmonics Ck,q(Ω), given in Definition 32, are also tensor operators of rank k compo-
nent q.

Example 36. The operator R1,q made up of components of the coordinate vector (X,Y, Z) and defined by:

R1,q =





−(X + i Y )/
√

2 , for q = +1,
Z , for q = 0,

+(X − i Y )/
√

2 , for q = −1.
(21.255)

where X, Y , and Z are coordinate operators, is a tensor operator of rank one. Using [Xi, Lj ] = i~ εijkXk,
one can easily check that Eq. (21.248) is satisfied. Note that since (X,Y, Z) are all Hermitian operators,
R1,q satisfies R†1,q = (−)q R1,−q and so R1,q is a Hermitian tensor operator.

The tensor operator R1,q is a special case of a solid harmonic, defined by:

Definition 38 (solid harmonic). A solid harmonic Rk,q is defined by:

Rk,q = Rk Ck,q(Ω) . (21.256)

Solid harmonics, like the reduced spherical harmonics, are tensor operators of rank k component q.

Example 37. The operator made up of components of the linear momentum and defined by:

P1,q =





−(Px + i Py)/
√

2 , for q = +1,
Pz , for q = 0,

+(Px − i Py)/
√

2 , for q = −1.
(21.257)

where Px, Py, and Pz are momentum operators, is a tensor operator of rank one. Using [Pi, Lj ] = i~ εijkPk,
one can easily check that Eq. (21.248) is satisfied. Note that since (Px, Py, Pz) are all Hermitian operators,
P1,q satisfies P †1,q = (−)q P1,−q and so P1,q is a Hermitian tensor operator.

Finally let us define spherical unit vectors êq by:

êq =





−(êx + i êy)/
√

2 , for q = +1,
êz , for q = 0,

+(êx − i êy))/
√

2 , for q = −1.
(21.258)

These spherical unit vectors are not operators. The complex conjugate satisfies: ê∗q = (−)q ê−q. They also
and obey the orthogonality and completeness relations:

êq · ê∗q′ = δq,q′ ,
∑

q

êq ê∗q =
∑

q

(−)qêq ê−q = 1 . (21.259)
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where 1 = êx êx+ êy êy+ êz êz is the unit dyadic. Any vector operator can be expanded in terms of spherical
tensors using these spherical unit vectors. For example, the vector operator R can be written as:

R =
∑

q

(−)q R1,q ê−q , where R1,q = R · êq . (21.260)

Exercise 69 (Edmonds). Let us define a vector operator S = ex Sx + ey Sy + ez Sz, which operates on
vectors, by:

Si = i~ êi × , for i = (x, y, z). (21.261)

Show that:
S2 êq = ~2 2 êq , Sz êq = ~ q êq . (21.262)

That is, S is vector operator for spin one.

Angular momentum matrix elements of irreducible tensor operators with respect to angular momen-
tum eigenvectors are proportional to a Clebsch-Gordan coefficient, or 3j-symbol, which greatly simplifies
calculation of these quantities. The Wigner-Eckart theorem [19, 20], which we now prove, states that fact:

Theorem 44 (Wigner-Eckart). Angular momentum matrix elements of an irreducible tensor operator T (k, q)
is given by:

〈 j,m |Tk,q | j′,m′ 〉 = (−)j
′−m′ 〈 j,m, j′,−m′ | (j, j′) k, q 〉√

2k + 1
〈 j ‖Tk ‖ j′ 〉 ,

= (−)j−m
(

j k j′

−m q m′

)
〈 j ‖Tk ‖ j′ 〉 ,

= (−)2k 〈 j′,m′, k, q | (j′, k) j,m 〉√
2j + 1

〈 j ‖Tk ‖ j′ 〉 .

(21.263)

Here 〈 j ‖Tk ‖ j′ 〉 is called the reduced matrix element, and is independent of m, m′, and q, which is the
whole point of the theorem.

Proof. Eq. (21.246) can be written as:

U(R)Tk,q′ U
†(R) =

+k∑

q=−k
T †k,qD

(k)
q,q′(R) . (21.264)

Matrix elements of this equation gives:

+k∑

q=−k
〈 j,m |Tk,q | j′,m′ 〉D(j)

q,q′(R) =
∑

m′′,m′′′

D
(j)
m,m′′(R)D(j) ∗

m′,m′′′(R) 〈 j,m′′ |Tk,q | j′,m′′′ 〉

=
∑

m′′,m′′′

(−)m
′−m′′′ D(j)

m,m′′(R)D(j′)
−m′,−m′′′(R) 〈 j,m′′ |Tk,q | j′,m′′′ 〉 (21.265)

Now let m′ → −m′ and m′′′ → −m′′′, so that (21.265) becomes:

+k∑

q=−k
〈 j,m |Tk,q | j′,−m′ 〉D(j)

q,q′(R)

=
∑

m′′,m′′′

(−)m
′−m′′′ D(j)

m,m′′(R)D(j′)
m′,m′′′(R) 〈 j,m′′ |Tk,q | j′,−m′′′ 〉 (21.266)
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Comparison with Eq. (21.237) gives:

〈 j,m |Tk,q | j′,−m′ 〉 = (−)j
′+m′ 〈 j,m, j′,m′ | (j, j′) k, q 〉 f(j, j′, k) , (21.267)

where f(j, j′, k) is some function of j, j′, and k, and independent of m, m′, and q. Choosing f(j, j′, k) to be:

f(j, j′, k) =
〈 j ‖Tk ‖ j′ 〉√

2k + 1
, (21.268)

proves the theorem as stated.

Definition 39 (tensor product). Let Tk1,q1(1) and Tk2,q2(2) be tensor operators satisfying Definition 36.
Then the tensor product of these two operators is defined by:

[Tk1(1)⊗ Tk2(2) ]k,q =
∑

q1,q2

〈 k1, q1, k2, q2 | (k1, k2) k, q 〉Tk1,q1(1)Tk2,q2(2) . (21.269)

Theorem 45. The tensor product of Definition 39 is a tensor operator also.

Proof. The proof relies on the Clebsch-Gordan series, and is left to the reader.

Theorem 45 means that the Wigner-Eckart theorem applies equally well to tensor products. The Hermi-
tian property for tensor products is preserved if we use the second definition, Eq. (21.250); it is not preserved
with the usual definition, Eq. (21.249).

Example 38. The tensor product of two commuting vectors

[R1(1)⊗R1(2) ]k,q =
∑

q1,q2

〈 1, q1, 1, q2 | (1, 1) k, q 〉R1,q1(1)R1,q2(2) , (21.270)

where R1,q1(1) and R1,q2(2) are tensor operators of rank one defined by Eq. (21.255), gives tensor operators
of rank k = 0, 1 and 2. For k = 0, the tensor product is:

[R1(1)⊗R1(2) ]0,0 =
∑

q1,q2

〈 1, q1, 1, q2 | (1, 1) 0, 0 〉R1,q1(1)R1,q2(2)

=
−1√

3

∑

q

(−)q R1,q(1)R1,−q(2) =
−1√

3
R(1) ·R(2) ,

(21.271)

which is a scalar under rotations. For k = 1, the tensor product is:

[R1(1)⊗R1(2) ]1,q =
∑

q1,q2

〈 1, q1, 1, q2 | (1, 1) 1, q 〉R1,q1(1)R1,q2(2) , (21.272)

so that using Table 21.1, for q = +1, we find:

[R1(1)⊗R1(2) ]1,1 =
1√
2

(R1,1(1)R1,0(2)−R1,0(1)R1,1(2) )

=
−i
2
(

(Y (1)Z(2)− Z(1)Y (2) ) + i (Z(1)X(2)−X(2)Z(1) )
)
=

i√
2

[ R(1)×R(2) ]1,1 , (21.273)

with similar expressions for q = 0,−1. So for q = 1, 0,−1, we find:

[R1(1)⊗R1(2) ]1,q =
i√
2

[ R(1)×R(2) ]1,q , (21.274)
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which is a pseudovector under rotations. For k = 2, the five q components are given by,

[R1(1)⊗R1(2) ]2,±2 = R1,±1(1)R1,±1(2) ,

[R1(1)⊗R1(2) ]2,±1 =
1√
2

(
R1,±1(1)R1,0(2) +R1,0(1)R1,±1(2)

)
,

[R1(1)⊗R1(2) ]2, 0 =
1√
6

(
R1,1(1)R1,−1(2) + 2R1,0(1)R1,0(2) +R1,1(−1)R1,1(2)

)
,

(21.275)

which can be written in terms of the Cartesian components of the traceless symmetric tensor:

Rij(1, 2) =
1
2
(
Ri(1)Rj(2) +Rj(1)Ri(2)

)
− 1

3
δij ( R(1) ·R(2) ) . (21.276)

Definition 40 (Scalar product). For the zero rank tensor product of two rank one tensors, it is useful to
have a special definition, called the scalar product, so that it agrees with the usual dot product of vectors.
So we define:

[Tk(1)� Tk(2) ] =
∑

q

(−)q Tk,q(1)Tk,−q(2) =
∑

q

Tk,q(1)T †k,q(2) =
∑

q

T †k,q(1)Tk,q(2)

=
√

2k + 1 (−)k [Tk(1)⊗ Tk(2) ]0,0 .
(21.277)

Example 39. The scalar product of two vectors is just the vector dot product. We find:

[R1(1)�R1(2) ] =
∑

q

(−)q R1,q(1)R1,−q(2) = R(1) ·R(2) . (21.278)

Example 40. An important example of a scalar product is given by writing the addition theorem for
spherical harmonics, Eq. (21.183), as a tensor product:

Pk(cos γ) =
4π

2`+ 1

+k∑

q=−k
Yk,q(Ω)Y ∗k,q(Ω

′) =
+k∑

q=−k
Ck,q(Ω)C∗k,q(Ω

′) = [Ck(Ω)� Ck(Ω′) ] . (21.279)

21.5.2 Reduced matrix elements

The Wigner-Eckart theorem enables us to calculate matrix elements of tensor operators for different values
of (m,m′, q) if we know the reduced matrix element, so it is useful to have a table of reduced matrix elements
for a number of operators that might enter into calculations. We can generate this table and find reduced
matrix elements by computing only one matrix element for certain specified values of (m,m′, q). For integer
rank tensors, we often just take the case when m = m′ = q = 0. Then the reduced matrix element is found
by using the Wigner-Eckart theorem backwards.

unit operator

Reduced matrix elements of the unit operator are easily found to be:

〈 j ‖ 1 ‖ j′ 〉 = δj,j′
√

2j + 1 . (21.280)

angular momentum

Reduced matrix elements for the angular momentum tensor operator J are easily found by noting that
〈 j,m | J1,0 | j′,m′ 〉 = mδj,j′δm,m′ , and using Table 21.2 for the appropriate 3j-symbol. This gives:

〈 j ‖ J ‖ j′ 〉 = ~ δj,j′
√

2j(2j + 1)(2j + 2)/2 . (21.281)

and 〈 ` ‖L ‖ `′ 〉 = ~ δ`,`′
√
`(`+ 1)(2`+ 1) . (21.282)
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A special case is:
〈 1/2 ‖σ ‖ 1/2 〉 =

√
6 . (21.283)

Exercise 70. The angular momentum tensor operator J1,q can be written as:

J1,q =





−J+/
√

2 , for q = +1,
Jz , for q = 0,

+J−/
√

2 , for q = −1.
(21.284)

Compute directly J1,q | j,m 〉 for all values of q. Now use the reduced matrix element given in Eq. (21.281)
and the Wigner-Eckart theorem to compute:

J1,q | j,m 〉 =
∑

j′,m′

| j′,m′ 〉 〈 j′,m′ | J1,q | j,m 〉 , (21.285)

and show that you get the same result.

spherical harmonics

The reduced matrix elements of spherical harmonics can be found most easily in coordinate space using
Eq. (21.242). This gives:

〈 ` ‖Ck ‖ `′ 〉 = (−)`
√

(2`+ 1)(2`′ + 1)
(
` k `′

0 0 0

)
. (21.286)

and 〈 ` ‖Yk ‖ `′ 〉 = (−)`
√

(2`+ 1)(2`′ + 1)(2k + 1)
4π

(
` k `′

0 0 0

)
. (21.287)

The reduced matrix elements of the solid harmonics involve radial integrals, which we have ignored up to
now. Adding radial quantum numbers to the matrix elements gives:

〈n, ` ‖Rk ‖n′, `′ 〉 = (−)`
√

(2`+ 1)(2`′ + 1)
(
` k `′

0 0 0

) ∫ ∞

0

r2 dr Rn,`(r) rk Rn′,`′(r) , (21.288)

where Rn,`(r) are (real) radial wave functions for the state (n, `), normalized to one with measure µ = r2.

linear momentum (the gradient formula)

The reduced matrix elements of the momentum operator require expansion of the gradient operator in
spherical coordinates. Let us first note that from Eqs. (21.19), (21.20), and (21.23), in a coordinate basis:

Pz =
~
i

∂

∂z
=

~
i

{
cos θ

∂

∂r
− sin θ

r

∂

∂θ

}

=
~
i

cos θ
∂

∂r
+
i sin θ

2 r

[
e−iφ L+ − e+iφ L−

]
.

(21.289)

Using Eqs. 21.245, we find:

sin θ e−iφ L+ Y`,m(θ, φ) = ~A(`,−m) sin θ e−iφ Y`,m+1(θ, φ)

= ~
√

(`−m)(`+m+ 1)

{√
(`−m)(`−m+ 1)

(2`+ 1)(2`+ 3)
Y`+1,m(θ, φ)−

√
(`+m+ 1)(`+m)

(2`− 1)(2`+ 1)
Y`−1,m(θ, φ)

}

= ~

{
(`−m)

√
(`+m+ 1)(`−m+ 1)

(2`+ 1)(2`+ 3)
Y`+1,m(θ, φ)− (`+m+ 1)

√
(`+m)(`−m)
(2`− 1)(2`+ 1)

Y`−1,m(θ, φ)

}
,

(21.290)
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and

sin θ e+iφ L− Y`,m(θ, φ) = ~A(`,m) sin θ e+iφ Y`,m−1(θ, φ)

= ~
√

(`+m)(`−m+ 1)

{
−
√

(`+m)(`+m+ 1)
(2`+ 1)(2`+ 3)

Y`+1,m(θ, φ) +

√
(`−m+ 1)(`−m)

(2`− 1)(2`+ 1)
Y`−1,m(θ, φ)

}

= ~

{
−(`+m)

√
(`+m+ 1)(`−m+ 1)

(2`+ 1)(2`+ 3)
Y`+1,m(θ, φ) + (`+m+ 1)

√
(`−m)(`+m)
(2`− 1)(2`+ 1)

Y`−1,m(θ, φ)

}
.

(21.291)

So

i

2

[
sin θ e−iφ L+ − sin θ e+iφ L−

]
Y`,m(θ, φ)

= −~
i

{
`

√
(`+m+ 1)(`−m+ 1)

(2`+ 1)(2`+ 3)
Y`+1,m(θ, φ)− (`+ 1)

√
(`+m)(`−m)
(2`− 1)(2`+ 1)

Y`−1,m(θ, φ)

}
. (21.292)

So Eq. (21.289) becomes:

Pz Y`,m(θ, φ) =
~
i

cos θ Y`,m(θ, φ)
∂

∂r
+
i sin θ

2 r

[
e−iφ L+ − e+iφ L−

]
Y`,m(θ, φ)

=
~
i

[
∂

∂r
− `

r

]√
(`+m+ 1)(`−m+ 1)

(2`+ 1)(2`+ 3)
Y`+1,m(θ, φ) +

~
i

[
∂

∂r
+
`+ 1
r

]√
(`+m)(`−m)
(2`− 1)(2`+ 1)

Y`−1,m(θ, φ) .

(21.293)

where we have used Eq. (21.244). So taking angular matrix elements of the above and setting m = 0 gives
the result:

〈 `′, 0 |Pz | `, 0 〉 =





`+ 1√
(2`+ 1)(2`+ 3)

~
i

[
∂

∂r
− `

r

]
, for `′ = `+ 1,

`√
(2`− 1)(2`+ 1)

~
i

[
∂

∂r
+
`+ 1
r

]
, for `′ = `− 1.

(21.294)

But from the Wigner-Eckart theorem,

〈 `′, 0 |P0 | `, 0 〉 = (−)`
′
(
`′ 1 `
0 0 0

)
〈 `′ ‖P ‖ ` 〉 , (21.295)

and using the Table 21.2 for the 3j-symbol, we find:

(
`′ 1 `
0 0 0

)
=





(−)`+1 `+ 1√
(`+ 1)(2`+ 1)(2`+ 3)

, for `′ = `+ 1,

(−)`
`√

`(2`− 1)(2`+ 1)
, for `′ = `− 1.

(21.296)

So the angular reduced matrix elements of the momentum operator is given by:

〈 `′ ‖P ‖ ` 〉 =





√
`+ 1

~
i

[
∂

∂r
− `

r

]
, for `′ = `+ 1,

−
√
`

~
i

[
∂

∂r
+
`+ 1
r

]
, for `′ = `− 1.

(21.297)
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Remark 38. There exists a simple derivation of Eq. (21.297) due to C. L. Schwartz [16][quoted by Rotenberg,
et. al.]. It rests on the observation that:

Pi =
1

2i~
[Xi, P

2 ] , (21.298)

and the result obtained in Section 21.1.3 that P 2 = P 2
r + L2/R2. Substituting this into (21.298) gives:

Pi =
1

2i~
[Xi, P

2
r ] +

1
2i~

[Xi, L
2/R2 ] . (21.299)

But we find:

[Xi, P
2
r ] = Pr [Xi, Pr ] + [Xi, Pr ]Pr = i~

{
Pr

Xi

R
+
Xi

R
Pr

}
= 2i~

Xi

R
Pr , (21.300)

since [Pr, Xi/R ] = 0. So (21.299) becomes:

Pi =
Xi

R
Pr +

1
2i~

[Xi, L
2/R2 ] . (21.301)

The same formula works for spherical tensor operators Pi 7→ P1,q and Xi 7→ R1,q. Noting that R1,q =
RC1,q(Ω), Eq. (21.301) becomes the operator equation:

P1,q = C1,q(Ω)Pr +
1

2i~
[C1,q(Ω), L2/R ] . (21.302)

The angular momentum reduced matrix elements of (21.302) gives, in a radial coordinate representation:

〈 `′ ‖P ‖ ` 〉 = 〈 `′ ‖C1 ‖ ` 〉
~
i

[
∂

∂r
+

1
r

+
`(`+ 1)− `′(`′ + 1)

2r

]
(21.303)

Substituting the result for 〈 `′ ‖C1 ‖ ` 〉 from Eq. (21.286) yields (21.297).

21.5.3 Angular momentum matrix elements of tensor operators

In this section, we give several theorems regarding angular momentum matrix elements of tensor operators.
These theorem are the basis for calculating all matrix elements in coupled schemes. The theorems are from
Edmonds [2][Chapter 7].

Theorem 46. Let Tk1,q1(1) and Sk2,q2(1) be two tensor operators of rank k1 and k2 which act on the same
angular momentum system, with [Tk1,q1(1), Sk2,q2(1) ] = 0. Then

〈 j ‖ [Tk1(1)⊗ Sk2(1) ]k ‖ j′ 〉

=
√

2k + 1 (−)k+j+j′
∑

j′′

{
k1 k2 k
j′ j j′′

}
〈 j ‖Tk1(1) ‖ j′′ 〉 〈 j′′ ‖Sk2(1) ‖ j′ 〉 . (21.304)

Proof. Inverting the Wigner-Eckart theorem, Eq. (21.263), using the orthogonality relations, Eq. (21.210)
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for 3j-symbols, and introducing a complete set of states, we have:

〈 j ‖ [Tk1(1)⊗ Sk2(1) ]k ‖ j′ 〉

=
∑

m,m′,q

(−)j−m
(

j k j′

−m q m′

)
〈 j,m | [Tk1(1)⊗ Sk2(1) ]k,q | j′,m′ 〉

=
√

2k + 1
∑

j′′

〈 j ‖Tk1(1) ‖ j′′ 〉 〈 j′′ ‖Sk2(1) ‖ j′ 〉

×
∑

m,m′,m′′
q1,q2,q

(−)k1−k2+q+j′′−m′′
(

j k j′

−m q m′

) (
k1 k2 k
q1 q2 −q

)(
j k1 j′′

−m q1 m′′

)(
j′′ k2 j′

−m′′ q2 m′

)

=
√

2k + 1 (−)k+j+j′
∑

j′′

〈 j ‖Tk1(1) ‖ j′′ 〉 〈 j′′ ‖Sk2(1) ‖ j′ 〉

×
∑

m,m′,m′′
q1,q2,q

(−)p
(
k1 k2 k
q1 q2 q

)(
k1 j j′′

−q1 m −m′′
)(

j′ k2 j′′

−m′ −q2 m′′

)(
j′ j k
m′ −m −q

)
(21.305)

where p = k1 + k2 + k + j + j′ + j′′ + q1 + q2 + q + m + m′ + m′′ (recall that all k’s and q’s are integers).
This last line is just the 6j-symbol defined in Eq. (21.219), which completes the proof. Note that if other
quantum numbers are needed to complete the states, they should be added to the intermediate sum.

Theorem 47. Let Tk1,q1(1) and Tk2,q2(2) be two tensor operators which act on parts one and two of a
combined system, with [Tk1,q1(1), Tk2,q2(2) ] = 0. Then

〈 (j1, j2) j ‖ [Tk1(1)⊗ Sk2(1) ]k ‖ (j′1, j
′
2) j′ 〉

=
√

(2k + 1)(2j + 1)(2j′ + 1)




j1 j′1 k1

j2 j′2 k2

j j′ k



 〈 j1 ‖Tk1(1) ‖ j′1 〉 〈 j2 ‖Tk2(2) ‖ j′2 〉 . (21.306)

Proof. Here again we invert the Wigner-Echart theorem, and uncouple the states, this time obtaining:

〈 (j1, j2) j ‖ [Tk1(1)⊗ Sk2(1) ]k ‖ (j′1, j
′
2) j′ 〉

=
√

2k + 1
∑

m,m′

(−)j
′+m′ 〈 j,m, j′,m′ | (j, j′) k, q 〉 〈 (j1, j2) j,m | [Tk1(1)⊗ Sk2(1) ]k,q | (j′1, j′2) j′,−m′ 〉

=
√

2k + 1
∑

m,m′,q1,q2
m1,m2,m

′
1,m
′
2

(−)j
′+m′ 〈 j,m, j′,m′ | (j, j′) k, q 〉 〈 k1, q1, k2, q2 | (k1, k2) k, q 〉

× 〈 j1,m1, j2,m2 | (j1, j2) j,m 〉〈 j′1,m′1, j′2,m′2 | (j′1, j′2) j′,−m′ 〉
× 〈 j1,m1 |Tk1,m1(1) | j′1,m′1 〉〈 j2,m2 |Tk2,m2(1) | j′2,m′2 〉

=

√
2k + 1

(2k1 + 1)(2k2 + 1)
〈 j1 ‖Tk1(1) ‖ j′1 〉 〈 j2 ‖Tk2(2) ‖ j′2 〉

×
∑

m,m′,q1,q2
m1,m2,m

′
1,m
′
2

(−)j
′
1+j′2−j−m′1−m′2−m′ 〈 j,m, j′,m′ | (j, j′) k, q 〉 〈 k1, q1, k2, q2 | (k1, k2) k, q 〉

× 〈 j1,m1, j2,m2 | (j1, j2) j,m 〉〈 j′1,m′1, j′2,m′2 | (j′1, j′2) j′,−m′ 〉
× 〈 j1,m1, j

′
1,−m′1 | (j1, j′1) k1, q1 〉 〈 j2,m2, j

′
2,−m′2 | (j2, j′2) k2, q2 〉 . (21.307)
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Now m′ +m′1 +m′2 = 0, and setting m′1 → −m′1 and m′2 → −m′2, and noting that

〈 j′1,−m′1, j′2,−m′2 | (j′1, j′2) j′,−m′ 〉 = (−)j
′
1+j′2−j′ 〈 j′1,m′1, j′2,m′2 | (j′1, j′2) j′,m′ 〉 , (21.308)

the last sum in (21.307) is just the recoupling coefficient:

〈 (j1, j2) j (j′1, j
′
2) j′, k, q | (k1, k2) k (k′1, k

′
2) k′, k, q 〉

=
√

(2j + 1)(2j′ + 1)(2k + 1)(2k′ + 1)




j1 j′1 k1

j2 j′2 k2

j j′ k



 , (21.309)

and is independent of q. Substitution of (21.309) into (21.307) proves the theorem.

Theorem 48. Matrix elements of the scalar product of two tensor operators Tk,q(1) and Tk,q(2) which act
on parts one and two of a coupled system is given by:

〈 (j1, j2) j,m | [Tk(1)� Tk(2) ] | (j′1, j′2) j′,m′ 〉

= δj,j′ δm,m′ (−)j
′
1+j2+j

{
j j2 j1
k j′1 j′2

}
〈 j1 ‖Tk(1) ‖ j′1 〉 〈 j2 ‖Tk(2) ‖ j′2 〉 . (21.310)

Proof. Here we use definition 40 of the scalar product, set k = 0, and put k1 = k2 → k in Theorem 47, and
use Eq. (21.232) for the 9j-symbol with one zero entry. The result follows easily.

Theorem 49. The reduced matrix element of a tensor operators Tk,q(1) which acts only on part one of a
coupled system is given by:

〈 (j1, j2) j ‖Tk(1) ‖ (j′1, j
′
2) j′ 〉

= δj2,j′2(−)j1+j2+j′+k
√

(2j + 1)(2j′ + 1)
{
j1 j j′2
j′ j′1 k

}
〈 j1 ‖Tk(1) ‖ j′1 〉 . (21.311)

Proof. Here we put T0,0(2) = 1, and put k2 = 0 and k = k1 in Theorem 47. Using (21.232) again, the result
follows.

Theorem 50. The reduced matrix element of a tensor operators T2(k, q) which acts only on part two of a
coupled system is given by:

〈 (j1, j2) j ‖Tk(2) ‖ (j′1, j
′
2) j′ 〉

= δj2,j′2(−)j
′
1+j2+j+k

√
(2j + 1)(2j′ + 1)

{
j2 j j′1
j′ j′2 k

}
〈 j2 ‖Tk(2) ‖ j′2 〉 . (21.312)

Proof. For this case, we put T0,0(1) = 1, and put k1 = 0 and k = k2 in Theorem 47 again, from which the
result follows.

Theorem 51 (Projection Theorem). If V is a vector operator such that [Vi, Jj ] = 0, then

〈 j,m |V | j,m′ 〉 = 〈 j,m | ( V · J ) J/J2 | j,m′ 〉 . (21.313)

Note that this theorem is valid only for the case when j′ = j.

Proof. We first note that from the Wigner-Eckart theorem, the left-hand-side of Eq. (21.313) is given by:

〈 j,m |V1,q | j,m′ 〉 = (−)j−m
′〈 j,m, j,−m′ | (j, j)1, q 〉 〈 j ‖V ‖ j′ 〉/

√
3 , (21.314)
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whereas on the right-hand-side of (21.313), we have:

〈 j,m | ( V · J ) J1,q/J
2 | j′,m′ 〉 =

∑

j′′m′′

〈 j,m | ( V · J ) | j′′,m′′ 〉 〈 j′′,m′′ | J1,q | j′,m′ 〉/j(j + 1) . (21.315)

Now

〈 j′′,m′′ | J1,q | j′,m′ 〉 = (−)j
′′−m′′〈 j′′,m′′, j′,−m′ | (j, j′)1, q 〉 〈 j′′ ‖ J ‖ j′ 〉/

√
3

= δj′′,j′(−)j
′−m′′〈 j′,m′′, j′,−m′ | (j, j′)1, q 〉

√
j(j + 1)(2j + 1)/

√
3 ,

(21.316)

and since ( V · J ) = −
√

3T0,0, where T0,0 is a tensor operator of rank zero, again using the Wigner-Eckart
theorem,

〈 j,m | ( V · J ) | j′′,m′′ 〉 = δj,j′′δm,m′′ 〈 j ‖ ( V · J ) ‖ j 〉/
√

2j + 1 . (21.317)

Now since [Vi, Jj ] = 0, Theorem 46 applies with k = 0 and k1 = k2 = 1, and using the first line in Table 21.2
and Eq. (21.281), we easily find:

〈 j ‖ ( V · J ) ‖ j 〉 =
√
j(j + 1) 〈 j ‖V ‖ j 〉 . (21.318)

So combining Eqs. (21.315), (21.316), (21.317), and (21.318), we find that matrix elements of the right-hand-
side gives:

〈 j,m | ( V · J ) J1,q/J
2 | j′,m′ 〉 = δj,j′ (−)j−m

′〈 j,m, j,−m′ | (j, j)1, q 〉 〈 j ‖V ‖ j 〉/
√

3 , (21.319)

which is the same result as (21.314), provided that j = j′, which proves the theorem.

Remark 39. The projection theorem is often quoted without proof in elementary texts, and “justified” by
stating that the average value of the vector V in good eigenstates of J2 is given by the projection of V
onto J in the direction of the angular momentum J. This argument assumes that the average value of the
component of V perpendicular to J vanishes. Usually, one thinks about this as a time average, but time has
nothing to do with it! The projection theorem is often used to find the Landé gJ -factor for computing the
weak field Zeeman effect in atoms. Of course, one can just apply the appropriate theorems in this section to
find matrix elements of any vector operator, the projection theorem is not really needed, but it provides a
quick way to get the same result.

21.6 Selected problems in atomic and nuclear physics

In this section, we give several examples of the use of tensor operators in atomic and nuclear physics.

21.6.1 Spin-orbit force in hydrogen

The spin-orbit force for the electron in a hydrogen atom in atomic units is given by a Hamiltonian of the
form (see Section 22.3.7):

Hso = V (R) ( L · S )/~2 . (21.320)

Of course it is easy to calculate this in perturbation theory for the states |n, (`, s) j,mj 〉. Since J = L + S,
and squaring this expression, we find that we can write:

L · S =
1
2

( J2 − L2 − S2 ) , (21.321)

so that we find:
〈 (`, s) j,mj |L · S | (`, s) j,mj 〉/~2 =

1
2
(
j(j + 1)− `(`+ 1)− 3/4

)
. (21.322)
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Since L ·S = [L�S ], we can also find matrix elements of the spin-orbit force using Theorem 48. This gives:

〈 (`, s) j,mj | [L� S ] | (`, s) j,mj 〉/~2 = (−)j+`+s
{
j s `
1 ` s

}
〈 ` ‖L ‖ ` 〉 〈 s ‖S ‖ s 〉/~2 . (21.323)

Now using the 6j-tables in Edmonds, we find:
{
j s `
1 ` s

}
= (−)j+`+s

2 [ j(j + 1)− `(`+ 1)− s(s+ 1) ]√
2`(2`+ 1)(2`+ 2)2s(2s+ 1)(2s+ 2)

,

〈 ` ‖L ‖ ` 〉/~ =
√

2`(2`+ 1)(2`+ 2)/2 ,

〈 s ‖S ‖ s 〉/~ =
√

2s(2s+ 1)(2s+ 2)/2 ,

(21.324)

so (21.323) becomes simply:

〈 (`, s) j,mj | [L� S ] | (`, s) j,mj 〉/~2 =
1
2
(
j(j + 1)− `(`+ 1)− 3/4

)
. (21.325)

in agreement with Eq. (22.163). Of course, using the fancy angular momentum theorems for tensor operators
in this case is over-kill! Our point was to show that the theorems give the same result as the simple way.
We will find in later examples that the only way to do the problem is to use the fancy theorems.

21.6.2 Transition rates for photon emission in Hydrogen

Omit?

21.6.3 Hyperfine splitting in Hydrogen

In this section, we show how to compute the hyperfine energy splitting in hydrogen due to the interaction
between the magnetic moment of the proton and the electron. We derive the forces responsible for the
splitting in Section 22.3.8 where, in atomic units, we found the Hamiltonian:

H̄hf = 2λp

(m
M

)
α2 Ke · Sp/~2

R̄3
, Ke = Le − Se + 3 (Se · R̂) R̂ , (21.326)

where Le and Se are the angular momentum and spin operators for the electron, Sp is the spin operator
for the proton, and R̂ is the unit vector pointing from the proton to the electron. Here Ke acts on the
electron part and Se on the proton part. Both Ke and Se are tensor operators of rank one. Using first order
perturbation theory, we want to show that matrix elements of this Hamiltonian in the coupled states:

|n, (`, se) j, sp, f,mf 〉 , (21.327)

are diagonal for states with the same value of j, and we want to find the splitting energy. We first want to
write Se − 3 (Se · R̂) R̂ as a tensor operator. We state the result of this derivation as the following theorem:

Theorem 52. The vector Se − 3 (Se · R̂) R̂ can be written as a rank one tensor operator of the form:

[ Se − 3 (Se · R̂) R̂ ]1,q =
√

10 [C2(R̂)⊗ S1(e) ]1,q . (21.328)

Proof. We start by writing:

[ Se − 3 (Se · R̂) R̂ ]1,q =
∑

q1

S1,q1(e)
{
δq1,q − 3C∗1,q1(R̂)C1,q(R̂)

}
. (21.329)
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Next, we have:

3C∗1,q1(R̂)C1,q(R̂) = 3 (−)q1
∑

k,q2

Ck,q2(R̂) 〈 1,−q1, 1, q | (1, 1) k, q 〉 〈 1, 0, 1, 0 | (1, 1) k, 0 〉

= δq1,q −
√

10
∑

q2

C2,q2(R̂) 〈 2, q2, 1, q1 | (1, 2) 1, q 〉 .
(21.330)

Here we have used 〈 1, 0, 1, 0 | (1, 1) k, 0 〉 = −1/
√

3, 0, and +
√

2/3 for k = 0, 1, and 2 respectively. Substi-
tution of (21.330) into (21.329) gives:

[ Se−3 (Se ·R̂) R̂ ]1,q =
√

10
∑

q2

〈 2, q2, 1, q1 | (1, 2) 1, q 〉C2,q2(R̂)S1,q1(e) =
√

10[C2(R̂)⊗S1(e) ]1,q , (21.331)

which proves the theorem.

We now want to find the matrix elements of the scalar product:

〈n, (`, se) j, sp, f,mf | [K1(e)� S1(p) ] |n, (`′, se) j, sp, f ′,m′f 〉 , (21.332)

where K1,q(e) is the rank one tensor operator:

K1,q(e) = L1,q(e)−
√

10 [C2(R̂)⊗ S1(e) ]1,q . (21.333)

Here K1(e) only operates on the electron part (the first part of the coupled state) and S1(p) on the proton
part (the second part of the coupled state). So using Theorem 48, we find:

〈n, (`, se) j, sp, f,mf | [K1(e)� S1(p) ] |n, (`′, se) j, sp, f ′,m′f 〉/~2

= δf,f ′ δmf ,m′f
(−)j+sp+f

{
f sp j
1 j sp

}
〈 (`, se) j ‖K1(e) ‖ (`′, se) j 〉 〈 sp ‖S1(p) ‖ sp 〉/~2

= δf,f ′ δmf ,m′f
(−)f+j+1/2

√
3/2

{
f 1/2 j
1 j 1/2

}
〈 (`, se) j ‖K1(e) ‖ (`′, se) j 〉/~

= δf,f ′ δmf ,m′f

f(f + 1)− j(j + 1)− 3/4
2
√
j(j + 1)(2j + 1)

〈 (`, se) j ‖K1(e) ‖ (`′, se) j 〉/~ . (21.334)

Since L1(e) only operates on the first part of the coupled scheme (`, se) j, its reduced matrix elements can
be found by application of Theorem 49, and we find:

〈 (`, se) j ‖L1(e) ‖ (`′, se) j 〉/~ = (−)`+j+3/2 (2j + 1)
{
` j 1/2
j `′ 1

}
〈 ` ‖L1(e) ‖ `′ 〉/~ .

= δ`,`′
1
2

√
2`(2`+ 1)(2`+ 2) (−)`+j+3/2 (2j + 1)

{
1/2 j `
1 ` j

}

= δ`,`′
1
2

√
2j + 1
j(j + 1)

{
j(j + 1) + `(`+ 1)− 3/4

}
,

(21.335)

where we have used Table 21.3. Using Theorem 47 the reduced matrix element of
√

10 [C2(r̂) ⊗ S1(e) ]1 is
given by
√

10 〈 (`, se) j ‖ [C2(R̂)⊗ S1(e) ]1 ‖ (`′, se) j 〉/~

=
√

30 (2j + 1)




` `′ 2
se se 1
j j 1



 〈 ` ‖C2(r̂) ‖ `′ 〉 〈 se ‖S1(e) ‖ se 〉/~

= (−)` 3
√

5 (2j + 1)
√

(2`+ 1)(2`′ + 1)
(
` 2 `′

0 0 0

) 


` `′ 2
1/2 1/2 1
j j 1



 . (21.336)
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The 6j-symbol vanished unless `+ `′ + 2 is even. But since we are only considering states with the same j
values, this means that ` = `′. From tables in Edmonds, we have:

(
` 2 `
0 0 0

)
= (−)`+1

√
`(`+ 1)

(2`− 1)(2`+ 1)(2`+ 3)
, (21.337)

and from tables in Matsunobu and Takebe [18], we have:




` ` 2
j j 1

1/2 1/2 1



 =

1
3
√

5 (2j + 1)(2`+ 1)





(−)
√

2`(2`− 1) , for j = `+ 1/2,

(+)
√

(2`+ 1)(2`+ 3) , for j = `− 1/2.
(21.338)

Putting Eqs. (21.337) and (21.338) into Eq. (21.336) gives:

√
10 〈 (`, se) j ‖ [C2(R̂)⊗ S1(e) ]1 ‖ (`′, se) j 〉/~

= δ`,`′
1
2

√
2j + 1
j(j + 1)

×
{
` for j = `+ 1/2,
−(`+ 1) for j = `− 1/2

= δ`,`′
1
2

√
2j + 1
j(j + 1)

{
j(j + 1)− `(`+ 1)− 3/4

}
. (21.339)

So subtracting (21.339) from (21.335), we find the result:

〈 (`, se) j ‖K1(e) ‖ (`′, se) j 〉/~ = δ`,`′ `(`+ 1)

√
2j + 1
j(j + 1)

. (21.340)

Putting this into Eq. (21.334) gives:

〈n, (`, se) j, sp, f,mf | [K1(e)� S1(p) ] |n, (`′, se) j, sp, f ′,m′f 〉/~2

= δf,f ′ δmf ,m′f
δ`,`′

`(`+ 1)
2j(j + 1)

{
f(f + 1)− j(j + 1)− 3/4

}
. (21.341)

So we have shown that:

〈n, (`, se) j, sp, f,mf | H̄hf |n, (`′, se) j, sp, f ′,m′f 〉 = δf,f ′ δmf ,m′f
δ`,`′ ∆En,`,j,f , (21.342)

where, in atomic units, the energy shift ∆Ēn,`,j,f is given by:

∆Ēn,`,j,f = 2λp

(m
M

)
α2 f(f + 1)− j(j + 1)− 3/4

n3 j(j + 1) (2`+ 1)
. (21.343)

Here we have used: 〈 1
R̄3

〉
n,`

=
2

n3 `(`+ 1)(2`+ 1)
. (21.344)

Eq. (21.343) is quoted in our discussion of the hyperfine structure of hydrogen in Section 22.3.8.

21.6.4 The Zeeman effect in hydrogen

The Hamiltonian for the Zeeman effect in Hydrogen is given by Eq. (22.191), where we found:

Hz = µB ( L + 2 S ) ·B/~ , with µB =
e ~

2mc
. (21.345)
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We shall find matrix elements within the hyperfine splitting levels. That is, taking the z-axis in the direction
of the B field,

〈 (`, se) j, sp, f,mf |Hz | (`, se) j, sp, f ′,m′f 〉
= µB B 〈 (`, se) j, sp, f,mf | (Lz + 2Sz ) | (`, se) j, sp, f ′,m′f 〉/~ . (21.346)

Now both Lz and Sz are q = 0 components of tensor operators of rank k = 1. So using the Wigner-Eckart
Theorem 44, and Theorems 49 and 50, we find:

〈 (`, se) j, sp, f,mf |L1,0(e) | (`, se) j, sp, f ′,m′f 〉/~

= (−)f−mf

(
f 1 f ′

−mf 0 m′f

)
〈 (`, se) j, sp, f ‖L1(e) ‖ (`, se) j, sp, f ′ 〉/~

= (−)f−mf +j+1/2+f ′+1
√

(2f + 1)(2f ′ + 1)
(

f 1 f ′

−mf 0 m′f

) {
j f 1/2
f ′ j 1

}
〈 (`, se) j ‖L1(e) ‖ (`, se) j 〉/~

= (−)f−mf +j+1/2+f ′+j+`+1/2 (2j + 1)
√

(2f + 1)(2f ′ + 1)
(

f 1 f ′

−mf 0 m′f

) {
j f 1/2
f ′ j 1

}

×
{
` j 1/2
j ` 1

}
〈 ` ‖L1(e) ‖ ` 〉/~

= (−)f−mf +j+1/2+f ′+j+`+1/2 (2j + 1)
√

(2f + 1)(2f ′ + 1) `(`+ 1)(2`+ 1)
(

f 1 f ′

−mf 0 m′f

) {
j f 1/2
f ′ j 1

}

×
{
` j 1/2
j ` 1

}

= (−)f+f ′−mf +j−1/2 1
2

√
(2j + 1)(2f + 1)(2f ′ + 1)

j(j + 1)

(
f 1 f ′

−mf 0 m′f

) {
j f 1/2
f ′ j 1

}

×
[
j(j + 1) + `(`+ 1)− 3/4

]
(21.347)

and

〈 (`, se) j, sp, f,mf |S1,0(e) | (`, se) j, sp, f ′,m′f 〉/~

= (−)f−mf

(
f 1 f ′

−mf 0 m′f

)
〈 (`, se) j, sp, f ‖S1(e) ‖ (`, se) j, sp, f ′ 〉/~

= (−)f−mf +j+1/2+f ′+1
√

(2f + 1)(2f ′ + 1)
(

f 1 f ′

−mf 0 m′f

) {
j f 1/2
f ′ j 1

}
〈 (`, se) j ‖S1(e) ‖ (`, se) j 〉/~

= (−)f−mf +j+1/2+f ′+j+`+1/2 (2j + 1)
√

(2f + 1)(2f ′ + 1)
(

f 1 f ′

−mf 0 m′f

) {
j f 1/2
f ′ j 1

}

×
{

1/2 j `
j 1/2 1

}
〈 1/2 ‖S1(e) ‖ 1/2 〉/~

= (−)f−mf +j+1/2+f ′+j+`+1/2 (2j + 1)
√

(2f + 1)(2f ′ + 1) 3/2
(

f 1 f ′

−mf 0 m′f

) {
j f 1/2
f ′ j 1

}

×
{

1/2 j `
j 1/2 1

}
= (−)f+f ′−mf +j−1/2 1

2

√
(2j + 1)(2f + 1)(2f ′ + 1)

j(j + 1)

(
f 1 f ′

−mf 0 m′f

) {
j f 1/2
f ′ j 1

}

×
[
j(j + 1)− `(`+ 1) + 3/4

]
. (21.348)
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So multiplying Eq. (21.348) by a factor of two and adding it to Eq. (21.347) gives:

〈 (`, se) j, sp, f,mf |Hz | (`, se) j, sp, f ′,m′f 〉

= µB B (−)f+f ′−mf +j−1/2 1
2

√
(2j + 1)(2f + 1)(2f ′ + 1)

j(j + 1)

(
f 1 f ′

−mf 0 m′f

) {
j f 1/2
f ′ j 1

}

×
[

3j(j + 1)− `(`+ 1) + 3/4
]
. (21.349)

The 3j-symbol vanishes unless m′f = mf , so the matrix element connects only states of the same mf . Now
if f ′ = f , we find the simple result:

〈 (`, se) j, sp, f,mf |Hz | (`, se) j, sp, f,mf 〉

= (µB B )mf

[
f(f + 1) + j(j + 1)− 3/4

] [
3j(j + 1)− `(`+ 1) + 3/4

]

4 f(f + 1) j(j + 1)
. (21.350)

On the other hand, if f ′ = f + 1, we get:

〈 (`, se) j, sp, f,mf |Hz | (`, se) j, sp, f + 1,mf 〉

= (µB B )
3j(j + 1)− `(`+ 1) + 3/4

j(j + 1) (f + 1)

×
√

(f −mf + 1)(f +mf + 1)(f + j + 5/2)(f + j + 1/2)(f − j + 3/2)(j − f + 1/2)
(2f + 1)(2f + 3)

. (21.351)

with an identical expression for the matrix elements of 〈 (`, se) j, sp, f + 1,mf |Hz | (`, se) j, sp, f,mf 〉. We
use these results in Section 22.3.9.

21.6.5 The Stark effect in hydrogen

In Section 22.3.10 we derived a Hamiltonian for the Stark effect in hydrogen. We found:

HS = e aE0 R̄ C1,0(Ω) . (21.352)

So we need to find the matrix elements:

〈 (`, s) j,mj |C1,0(Ω) | (`′, s′) j′,m′j 〉 = (−)j−mj

(
j 1 j′

−mj 0 m′j

)
〈 (`, s) j ‖C1(Ω) ‖ (`′, s′) j′ 〉

= δs,s′ δmj ,m′j
(−)j−mj+`+1/2+j′+1

√
(2j + 1)(2j′ + 1)

(
j 1 j′

−mj 0 mj

) {
` j 1/2
j′ `′ 1

}
〈 ` ‖C1(Ω) ‖ `′ 〉

= δs,s′ δmj ,m′j
(−)j+j

′−mj−1/2
√

(2j + 1)(2j′ + 1)(2`+ 1)(2`′ + 1)
(

j 1 j′

−mj 0 mj

) (
` 1 `′

0 0 0

)

×
{
` j 1/2
j′ `′ 1

}
. (21.353)

Now since ` + `′ must be odd, the diagonal matrix elements all vanish. For our case j = ` ± 1/2 and
j′ = `′± 1/2, so the only contributing non-zero elements are those in which `′ = `± 1 and j′ = j ± 1 Rather
than find a general formula, it is simpler to just work out the matrix elements for cases we want. For the
n = 1 fine structure levels, there is only the 1s1/2 state, so the matrix element vanishes for this case. For
the n = 2 fine structure levels, we have three states: 2s1/2, 2p1/2, and 2p3/2. For these cases, we find:

〈 2s1/2,m |C1,0(Ω) | 2p1/2,m 〉 = −2
3
m ,

〈 2s1/2,m |C1,0(Ω) | 2p3/2,m 〉 =
1
3

√
(3/2−m)(3/2 +m) =

√
2

3
,

(21.354)
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for m = ±1/2. We will use these results in Section 22.3.10.

21.6.6 Matrix elements of two-body nucleon-nucleon potentials

In the nuclear shell model, nucleons (protons and neutrons) with spin s = 1/2 are in (`, s) j,mj coupled
orbitals with quantum numbers given by: n(`)j = 1s1/2, 1p1/2, 2s1/2, 2p3/2, · · · . We leave it to a nuclear
physics book to explain why this is often a good approximation (see, for example, the book Nuclear Physics
by J. D. Walecka). The nucleon-nucleon interaction between nucleons in these orbitals give a splitting of the
shell energies of the nucleus. One such interaction is the one-pion exchange interaction of the form:

V (r1, r2) = V0
e−µr

r

{
σ1 · σ2 +

[ 1
(µr)2

+
1

(µr)
+

1
3

]
S1,2

}
τ 1 · τ 2 , (21.355)

where r = |r1 − r2| is the distance between the nucleons, µ = mπc/~ the inverse pion Compton wavelength,
σ1 and σ2 the spin operators, τ 1 and τ 2 the isospin operators for the two nucleons, and S1,2 the tensor
operator:

S1,2 = 3 (r̂ · σ1) (r̂ · σ2)− σ1 · σ2 . (21.356)

The nuclear state is given by the coupling:

|n1, n2; (`1, s1) j1, (`2, s2) j2, j,m 〉 (21.357)

To find the nuclear energy levels, we will need to find matrix elements of the nuclear force between these states.
The calculation of these matrix elements generally involve a great deal of angular momentum technology.
The nucleon-nucleon force, given in Eq. (21.355), is only one example of a static nucleon-nucleon interaction.
Other examples are the V6 and V12 Argonne interactions. Matrix elements of these interactions have been
worked out in the literature by B. Mihaila and J. Heisenberg [21]. We show how to compute some of these
matrix elements here.

Scalar force

Let us first make a multipole expansion of a scalar potential. Let r1 and r2 be the location of nucleon 1 and
nucleon 2 in the center of mass coordinate system of the nucleus. Then a scalar potential, which depends
only on the magnitude of the distance between the particles is given by:

VS(r1, r2) = VS(|r1 − r2|) = V (r1, r2, cos θ)

=
∞∑

k=0

Vk(r1, r2)Pk(cos θ) =
∞∑

k=0

Vk(r1, r2) [Ck(Ω1)� Ck(Ω2) ] ,
(21.358)

where

Vk(r1, r2) =
2k + 1

2

∫ +1

−1

V (r1, r2, cos θ)Pk(cos θ) d(cos θ) , (21.359)

and where we have used Eq. (21.279). Eq. (21.358) is now in the form required for the j-j coupling state
given in (21.357). So now applying Theorem 21.310, we find:

∆E = 〈n1, n2; (`1, s1) j1, (`2, s2) j2, j,m |V (|r1 − r2|) |n1, n2; (`1, s1) j1, (`2, s2) j2, j′,m′ 〉

=
∞∑

k=0

Fk(1, 2) 〈 (`1, s1) j1, (`2, s2) j2, j,m | [Ck(Ω1)� Ck(Ω2) ] | (`1, s1) j1, (`2, s2) j2, j,m 〉

= δj,j′ δm,m′
∞∑

k=0

Fk(1, 2) (−)j1+j2+j

{
j j2 j1
k j1 j2

}

× 〈 (`1, s1) j1 ‖Ck(Ω1) ‖ (`1, s1) j1 〉 〈 (`2, s2) j2 ‖Ck(Ω2) ‖ (`2, s2) j2 〉 .

(21.360)
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Here

Fk(1, 2) =
∫ ∞

0

r2
1 dr1

∫ ∞

0

r2
2 dr2 R

2
n1,`1,j1(r1)R2

n2,`2,j2(r2)Vk(r1, r2) (21.361)

are integrals over the radial wave functions for the nucleons in the orbitals n1(`1)j1 and n2(`2)j2 . It is now
a simple matter to compute the reduced matrix elements of Ck(Ω) using Theorem 49 and Eqs. (21.220) and
(21.286). We find:

〈 (`, 1/2) j ‖Ck(Ω) ‖ (`′, 1/2) j′ 〉 = (−)`+`
′+j′+k

√
(2j + 1)(2j′ + 1)

{
` j 1/2
j′ `′ k

}
〈 ` ‖Ck ‖ `′ 〉

= (−)`
′+j′+k

√
(2j + 1)(2j′ + 1)(2`+ 1)(2`′ + 1)

{
` j 1/2
j′ `′ k

} (
` k `′

0 0 0

)

= (−)k+j′−1/2
√

(2j + 1)(2j′ + 1)
{
j j′ k

1/2 −1/2 0

}
δ(`, `′, k) , (21.362)

where δ(`, `′, k) = 1 if ` + `′ + k is even and (`, `′, k) satisfy the triangle inequality, otherwise it is zero.
Substitution into Eq. (21.360) gives ∆E = δj,j′δm,m′ Ej , where Ej is given by:

∆Ej =
∞∑

k=0

Fk(1, 2) (−)j+1 (2j1 + 1)(2j2 + 1)

×
{
j j2 j1
k j1 j2

}{
j1 j1 k

1/2 −1/2 0

} {
j2 j2 k

1/2 −1/2 0

}
δ(`1, `1, k) δ(`2, `2, k) , (21.363)

which completes the calculation. Note that k has to be even.

Exercise 71. If j1 = j2 and all values of Fk(1, 2) are negative corresponding to an attractive nucleon-nucleon
potential, show that the expected nuclear spectra is like that shown in Fig. ??. [J. D. Walecka, p. 517].

Spin-exchange force

The nucleon-nucleon spin-exchange force is of the form:

VSE(r1, r2, σ1, σ2) = VSE(|r1 − r2|)σ1 · σ2 =
∑

k,`

(−)`+1−k V`(r1, r2) [T`,k(1)� T`,k(2) ] , (21.364)

where

T(`,1) k,q(1) = [C`(Ω1)⊗ σ(1) ]k,q ,
T(`,1) k,q(2) = [C`(Ω2)⊗ σ(2) ]k,q .

(21.365)

This now is in a form suitable for calculation in j-j coupling.

Spin-orbit force

XXX

Tensor force

The tensor force is of the form:

VT (r1, r2, σ1, σ2) = VT (|r1 − r2|)
{

(σ1 · r̂12 ) (σ2 · r̂12 )− (σ1 · σ2 )/3
}

= VT (|r1 − r2|) [L2(1, 2)� S2(1, 2)] ,
(21.366)
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where

S2,q(1, 2) = [σ1(1)⊗ σ1(2) ]2,q ,

L2,q(1, 2) = [ R̂1(1, 2)⊗ R̂1(1, 2) ]2,q ,
(21.367)

with R̂1(1, 2) the spherical vector of components of the unit vector r12. We follow the method described by
de-Shalit and Walecka [22] here. Expanding

VT (|r1 − r2|) =
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k=0

VT k(r1, r2) [Ck(Ω1)� Ck(Ω2) ] , (21.368)

After some work, we find:
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∑
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where

21.6.7 Density matrix for the Deuteron
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Chapter 22

Non-relativistic electrodynamics

In this chapter, we first derive the Hamiltonian and equations of motion for a non-relativistic charged particle
interacting with an external electromagnetic field. After discussing the motion of a charged particle in a
constant electric field, we find the eigenvalues and eigenvectors for the hydrogen atom. We then discuss the
fine structure, the hyperfine structure, the Zeeman and Stark effects in hydrogen.

22.1 The Lagrangian

We start with the classical Lagrangian of a non-relativistic particle of mass m and charge q interacting with
an external electromagnetic field. The justification of this Lagrangian is that it reproduces Newton’s laws
with a Lorentz force for the electromagnetic field, as we shall see. This Lagrangian is given by:

L(r,v) =
1
2
mv2 − q φ(r, t) + q v ·A(r, t)/c , (22.1)

where v = ṙ and φ(r, t) and A(r, t) are the external electromagnetic potential fields which transform under
rotations as scalar and vectors. We use electrostatic units in this section so that, for example, the charge of
the electron is q = −e = −4.511× 10−10 esu. The appearance of the velocity of light here is because of the
units we use; however, there is no getting around the fact that we are treating the particle as non-relativistic
but the external electromagnetic field is, by it’s very nature, relativistic. So with this treatment, we will
destroy the Galilean invariance of the theory. The consequences of this will be apparent later on.

The canonical momentum for Lagrangian (22.1) is given by:

p =
∂L

∂v
= mv + qA(r, t)/c , (22.2)

and the Hamiltonian is then found to be:

H = p · v − L =
1
2
mv2 + q φ(r, t) =

1
2m

[
p− qA(r, t)/c

]2 + q φ(r, t) , (22.3)

and is the total energy. We now quantize this system using the canonical quantization procedure of Chapter 2.
We let r→ R and p→ P become hermitian operators with commutation properties,

[Xi, Pj ] = i~ δij ,

with all other operators commuting. Heisenberg equations of motion can be easily found. The velocity
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operator Ẋi is given by

Ẋi = [Xi, H ] /i~ =
[
Pi − q Ai(R, t)/c

]
/m

Ṗi = [Pi, H ] /i~ =
m

2

{
Ẋj

∂Ẋj

∂Xi
+
∂Ẋj

∂Xi
Ẋj

}
− q ∂φ(R, t)

∂Xi

= q
{ 1

2c

{
Ẋj

∂Aj(R, t)
∂Xi

+
∂Aj(R, t)
∂Xi

Ẋj

}
− ∂φ(R, t)

∂Xi

}
.

(22.4)

But from the first of (22.4), we find

Ṗi = mẌi +
q

c

{ ∂Ai
∂t

+
1
2

{
Ẋj

∂Ai
∂Xj

+
∂Ai
∂Xj

Ẋj

}}
.

Thus we find:

mẌi = q
{
− ∂φ

∂Xi
− 1
c

∂Ai
∂t

+
Ẋj

2c

{ ∂Aj
∂Xi

− ∂Ai
∂Xj

}
+
{ ∂Aj
∂Xi

− ∂Ai
∂Xj

} Ẋj

2c

}
,

or, in vector form:
m R̈ = q

{
E(R, t) +

{
V ×B(R, t)−B(R, t)×V

}
/(2c)

}
, (22.5)

where
E = −∇φ− 1

c

∂A
∂t

, B = ∇×A . (22.6)

Eq. (22.5) is the quantum version of the Lorentz force on a charged particle.
Our treatment here of a charged particle in an external electromagnetic field is called “semi-classical”

because we have not considered the field as part of the energy to be quantized. Thus we cannot treat
problems in which the reaction of a charged particle back on the field are included.

22.1.1 Probability conservation

In the Schrödinger picture, the wave function in the coordinate basis satisfies the equation:
{ 1

2m

[ ~
i

∇− q

c
A(r, t)

]2
+ q φ(r, t)

}
ψ(r, t) = i~

∂ψ(r, t)
∂t

. (22.7)

The probability conservation equation obeyed by solutions of (22.7) is given by:

∂ρ(r, t)
∂t

+ ∇ · j(r, t) = 0 , (22.8)

with the probability density and current given by:

ρ(r, t) = |ψ(r, t)|2 ,

j(r, t) =
1

2m

{
ψ∗(r, t)

[ ~
i

∇− q

c
A(r, t)

]
ψ(r, t) +

{[ ~
i

∇− q

c
A(r, t)

]
ψ(r, t)

}∗
ψ(r, t)

}
,

=
~

2im

{
ψ∗(r, t)

[
∇ψ(r, t)

]
−
[
∇ψ∗(r, t)

]
ψ(r, t)

}
− q

mc
A(r, t) ρ(r, t) .

(22.9)

22.1.2 Gauge transformations

In the Heisenberg representation, the equations of motion for R(t), Eqs. (22.5), depend only on the elec-
tric and magnetic fields and are therefore gauge invariant. However in the Schrödinger representation,
Schrödinger’s equation, Eq. (22.7), depends on the potential functions, φ(r, t) and A(r, t), and not on the
electric and magnetic fields, and so appear to be gauge dependent. This is, in fact, not the case, if we gauge
transform the wave function as well as the fields. We shall prove the following theorem:
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Theorem 53 (gauge invariance). Solutions of Schrödinger’s equation are invariant under the following
gauge transformation:

φ′(r, t) = φ(r, t) +
1
c

∂Λ(r, t)
∂t

,

A′(r, t) = A(r, t)−∇Λ(r, t) ,

ψ′(r, t) = eiqΛ(r,t)/(~c) ψ(r, t) .

(22.10)

Proof. We first compute:

i~
∂ψ′(r, t)

∂t
= eiqΛ(r,t)/(~c)

{
i~
∂ψ(r, t)
∂t

− q

c

[ ∂Λ(r, t)
∂t

]
ψ(r, t)

}
,

~
i

∇ψ′(r, t) = eiqΛ(r,t)/(~c)
{ ~
i

∇ψ(r, t) +
q

c

[
∇Λ(r, t)

]
ψ(r, t)

} (22.11)

The last of (22.11) gives:
{ ~
i
∇− q

c
A′(r, t)

}
ψ′(r, t) = eiqΛ(r,t)/(~c)

{ ~
i
∇− q

c
A(r, t)

}
ψ(r, t) .

Substitution of these results into Schrödinger’s equation in the prime system, gives:
{ 1

2m

[ ~
i

∇− q

c
A′(r, t)

]2
+ q φ′(r, t)

}
ψ′(r, t) = i~

∂ψ′(r, t)
∂t

.

where φ′(r, t) and A′(r, t) are the scalar and vector potentials in the prime system. The fact that the gauge
potential Λ(r, t), and thus the phase of the wave function in the transformed system, can depend on r and
t can have significant physical consequences, which we will study further in Section 22.5.

The probability ρ(r, t) and the probability current density j(r, t) are invariant under a gauge transforma-
tion:

|ψ′(r, t) |2 = |ψ(r, t) |2 , and j′(r, t) = j(r, t) . (22.12)

22.2 Free particle in a constant electric field

In this example, we find the motion of an electron in a constant electric field. That is, we put E(r, t) = E0

and set B(r, t) = 0. In the Heisenberg representation, we have the equation of motion for R(t):

m R̈ = qE0 .

So the solution is:

R(t) = R(0) + P(0) t/m+
q

2m
E0 t

2 , P(t) = P(0) +
q

m
E0 t .

Note that the last term on the right side of this equation is a c-number, and commutes with all operators.
Thus the motion of the average value of the position of the particle is accelerated by the field, and follows
the classical motion, as it must.

Let us look at the case when the electric field is in the x-direction, E0 = E0 êz. Now since:

[X(t), X(0) ] = − i~t
m

,

the width of a minimum wave packet in the x-direction grows linearly with time,

∆x(t) ≥ ~t
2m∆x(0)

,
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like a free particle, independent of E0.
In the Schrödinger picture, we must choose a gauge to solve the problem. We will consider two gauges.

In the first gauge, we take the scalar and vector potentials to be:

φ(r, t) = −r ·E0 ,

A(r, t) = 0 .
(22.13)

In the second gauge, we choose:

φ′(r, t) = 0 ,
A′(r, t) = −cE0 t .

(22.14)

The two gauges are connected by a gauge transformation of the form given in Eqs. (22.10) with a gauge
potential given

Λ(r, t) = c (r ·E0) t . (22.15)

The Schrödinger equations for the two gauges are given by:

{
− ~2

2m
∇2 − q r ·E0

}
ψ(r, t) = i~

∂ψ(r, t)
∂t

, (22.16)
{ 1

2m

[ ~
i

∇ + qE0 t
]2 }

ψ′(r, t) = i~
∂ψ′(r, t)

∂t
. (22.17)

The two solutions are connected by the gauge transformation,

ψ′(r, t) = ei q (r·E0)t/~ ψ(r, t) . (22.18)

It is easy to show that if (22.18) is substituted into (22.17) there results Eq. (22.16). We choose to solve
(22.16). Take E0 to be in the x-direction, and consider only one dimension. Then (22.16) becomes:

{
− ~2

2m
∂2

∂x2
− q E0 x

}
ψ(x, t) = i~

∂

∂t
ψ(x, t) .

Separating variables by writing
ψ(x, t) = ψω(x)e−iωt ,

we find that we need to solve the equation:

{
− ~2

2m
∂2

∂x2
− q E0 x

}
ψω(x) = ~ωψω(x) ,

or { ∂2

∂x2
+

2mqE0

~2
x+

2mω

~

}
ψω(x) = 0 .

The substitution, x = α ξ + x0, leads to the differential equation,

{ ∂2

∂ξ2
+ ξ

}
ψω(ξ) = 0 , (22.19)

provided we set:

α =
[ ~2

2mqE0

]1/3
≡ 1
γ
, and x0 = − ~ω

q E0
. (22.20)

Solving for ξ, we have ξ = γ (x − x0). The solutions of (22.19) are the Airy functions. From Abramowitz
and Stegun [1][p. 446], solutions with the proper boundary conditions are

ψω(ξ) = C(ω) Ai(−ξ) ,
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where C(ω) is a constant. So the most general wave function is given by the integral:

ψ(x, t) =
∫ +∞

−∞
dω C(ω) Ai

(
γ(x0 − x)

)
e−iωt = −qE0

~

∫ +∞

−∞
dx0 C(x0) Ai

(
γ(x0 − x)

)
ei q E0 x0 t/~ . (22.21)

The initial values are set by inverting this expression at t = 0, and solving for C(x0). This inversion, of
course, is not easy to do!

22.3 The hydrogen atom

One of the main problems in physics in the early 20th century was to explain the structure of the hydrogen
atom. The successful theoretical explanation of the energy levels and spectra of hydrogen was one of major
achievements of non-relativistic quantum mechanics, and later on, of relativistic quantum mechanics, and
we will study it in great detail in the following sections. We choose to first study the hydrogen atom because
it is the simplest atomic system, consisting of an electron in the static coulomb potential of the proton, and
illustrates many details of atomic structure. It is also satisfying to be able to calculate energy levels and
eigenvectors exactly without the use of numerical methods.

An important reference work on the hydrogen atom, containing many useful results, is by Bethe and
Salpeter, based on a 1932 article by Bethe in Handbuch der Physik, and republished as a book by Spinger-
Verlag-Academic Press [2] in 1957. One can find there the standard solution of the hydrogen atom in the
coordinate representation, obtaining hypergeometric functions, and first done by Schrödinger himself in 1926
[3]. We will choose a different method here, first done by Pauli, also in 1926 [4], which better illustrates the
underlying symmetry of hydrogen. We explain Pauli’s method in the next section.

22.3.1 Eigenvalues and eigenvectors

The Hamiltonian for the electron in the hydrogen atom center of mass system is given by:

H =
P 2

2m
− e2

R
, (22.22)

where R and P are the position and momentum operators of the electron in the center of mass system of the
atom. Here m is the reduced mass of the electron and e is the charge of the electron in electrostatic units.
We first select units appropriate to the size of atoms — this system of units is called atomic units. The
fine structure constant α, the Bohr radius a, the atomic unit of energy E0, and the atomic unit of time t0 is
defined by:1

α =
e2

~c
=

1
137

, a =
~2

me2
=

~c
mc2 α

= 5.29 nm = 0.529 Å , (22.23)

E0 =
me4

~2
=
e2

a
= mc2 α2 = 2× 13.61 eV , t0 =

~
E0

=
~3

me4
= 2.419× 10−17 s .

It is useful to further note that the velocity of the electron in the first Bohr orbit is v0 = e2/~ = α c =
2.188× 106 m/s., which is less that the velocity of light by a factor of α. This means that we should be able
to use non-relativistic physics for hydrogen and take into account relativity as a small perturbation. The
orbital period of the electron in the first Bohr orbit is 2πt0. In atomic units, we measure lengths in units of
a, momentum in units of ~/a, angular momentum in units of ~, energy in units of E0, and time in units of
t0. Then we can define dimensionless “barred” quantities by the following:

R̄ = R/a , P̄ = aP/~ , L̄ = L/~ H̄ = H/E0 , t̄ = t/t0 , (22.24)

1We have introduced here c, the velocity of light, to correspond with the usual definitions, but nothing in our results in this
section depend on c.

c© 2009 John F. Dawson, all rights reserved. 301



22.3. HYDROGEN ATOM CHAPTER 22. ELECTRODYNAMICS

so that

[ X̄i, P̄j ] = i δi,j , [ L̄i, L̄j ] = iεijk Lk ,
dX̄i

dt̄
= [ X̄i, H̄ ]/i .

dP̄i
dt̄

= [ P̄i, H̄ ]/i . (22.25)

The Rydberg unit of energy ER is the ionization energy of hydrogen and is one-half the atomic unit of
energy. It can be expressed conveniently in units of volts, Hertz, or nanometers by means of the formula:

ER =
1
2
E0 =

1
2
mc2 α2 = e VR = 2π ~ fR = 2π ~ c/λR , (22.26)

where VR ≈ 13.61 eV, fR ≈ 3.290× 109 MHz, λR ≈ 91.13 nm, and 1/λR = 109, 700 cm−1.
In atomic units, the Hamiltonian H̄ becomes:

H̄ =
P̄ 2

2
− 1
R̄
. (22.27)

with the commutation relations: [ X̄i, P̄j ] = i δij . We have now completely removed all units from the
problem, so let us revert back to using unbarred coordinates and momenta, and assume that throughout we
have scaled our problem using atomic units. So then in atomic units, we write:

H =
P 2

2
− 1
R
, with [Xi, Pj ] = iδij . (22.28)

The angular momentum operator, in atomic units, is then given by:

L = R×P , (22.29)

and is conserved: L̇ = [ L, H ]/i = 0.

Exercise 72. Prove that for the Hamiltonian given by Eq. (22.28) in atomic units, that L̇ = 0.

For the hydrogen Hamiltonian, there is a second vector, called the Runge-Lenz vector [5, 6], that is
conserved. Classically it is defined by:

A = P× L− R
R
. (22.30)

Exercise 73. Prove that for the Hamiltonian given by Eq. (22.28) that the classical Runge-Lenz vector
given in Eq. (22.30) is conserved: Ȧ = 0. Further, show that A lies in the plane of the orbit so that A ·L = 0
for all time t, and points in the direction of the perihelion of the orbit of the classical electron. For this,
you will need to solve for the classical orbit equation in these units. Show also that A has a magnitude of
A = ε =

√
1 + 2EL2, where E is the energy and ε the eccentricity of the orbit. (See, for example, Barger

and Olsson [7][p. 144], or Wikipedia.)

In quantum mechanics, Eq. (22.30) is not a Hermitian operator and cannot be observed since P does not
commute with L. So we construct a Hermitian operator by adding the complex conjugate of Eq. (22.30) to
Eq. (22.30) and dividing by two. This gives a quantum mechanical version of the Runge-Lenz vector:

A =
1
2
[
P× L− L×P

]
− R
R
,

= P× L− iP− R
R
,

= RP 2 −P ( R ·P )− R
R
.

(22.31)

This vector now is Hermitian and has eigenvalues and eigenvectors associated with it. The next theorem
shows that the quantum mechanical Runge-Lenz vector is conserved.
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Theorem 54 (Conservation of the Runge-Lenz vector). The Runge-Lenz vector A defined by Eq. (22.31) is
conserved: Ȧ = 0.

Proof. The time derivative of the Runge-Lenz vector in quantum mechanics is given by:

Ȧ = [ A, H ]/i

=
1
2i

{
[ P, H ]× L− L× [ P, H ] − [ R, H ]

1
R
− 1
R

[ R, H ]− [ 1/R,H ] R−R [ 1/R,H ]
}
,

(22.32)

since [ L, H ]/i = 0. Here we have symmetrized the ordering of the operators R/R. We first note that

[ R, H ]/i = P , and [ P, H ]/i = −[ P, 1/R ]/i = −R/R3 . (22.33)

Also

[ 1/R,H ]/i = −1
2

[P 2, 1/R ]/i = −1
2

{
P · [ P, 1/R ]/i+ [ P, 1/R ]/i ·P

}

= −1
2

{
P · R

R3
+

R
R3
·P
}
.

(22.34)

Substituting these results in (22.32), and working out the cross products, gives:

Ȧ =
1
2

{
− R
R3
× (R×P) + (R×P)× R

R3
−P

1
R
− 1
R

P

+
1
2

{(
P · R

R3

)
R +

( R
R3
·P
)

R + R
(
P · R

R3

)
+ R

( R
R3
·P
)}}

=
1
2

{
−R

( R
R3
·P
)

+
1
R

P + P
1
R
−R

(
P · R

R3

)
+ i

R
R3
−P

1
R
− 1
R

P

+ R
( R
R3
·P
)

+ R
(
P · R

R3

)
− i R

R3

}
= 0 ,

(22.35)

as stated in the theorem.

Theorem 55 (Properties of the Runge-Lenz vector). The quantum mechanical Runge-Lenz vector A defined
by Eq. (22.31) satisfies the following relations:

A2 = 1 + 2H (L2 + 1) ≡ ε2 , (22.36)

and
A · L = L ·A = 0 . (22.37)

Proof. The proof is left as an exercise. Note that the quantum mechanical definition of the eccentricity ε
differs slightly from the classical definition.

Theorem 56 (Commutation relations of the Runge-Lenz vector). The commutation relations of the Runge-
Lenz vector with the angular moment vector are given by:

[Ai, Aj ] = −2 iH εijk Lk , [Ai, Lj ] = i εijkAk , [Li, Lj ] = i εijkLk . (22.38)

Proof. We also leave this proof as an exercise for the reader. Take our word for it!

If the spectra of H is negative definite, then we see from Eqs. (22.38) that if we define a new vector K
by:

K = AN = N A , where N =
1√
−2H

. (22.39)
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Recall that H commutes with A. Then Eqs. (22.38) become:

[Ki,Kj ] = iεijk Lk , [Ki, Lj ] = i εijkKk , [Li, Lj ] = i εijkLk , (22.40)

with K · L = L ·K = 0. Furthermore Eq. (22.36) becomes:

K2 + L2 + 1 = N2 = −1/(2H) , H = − 1
2 (K2 + L2 + 1)

. (22.41)

In order to uncouple the system described by (22.40), we define two new vector J1 and J2 by:

J1 = ( L + K )/2 , J2 = ( L−K )/2 . (22.42)

Then we find the relations:

K2 + L2 = 2 ( J2
1 + J2

2 ) , K · L = J2
1 − J2

2 = 0 . (22.43)

and the commutation relations:

[ J1,i, J2,j ] = iεijk J1,k , [ J2,i, J2,j ] = i εijkJ2,k , [ J1,i, J2,j ] = 0 . (22.44)

So J1 and J2 are two commuting operators which obey the commutation relations of angular momentum,
and therefore have common direct product eigenvectors which we define by:

J2
1 | j1,m1, j2,m2 〉 = j1(j1 + 1) | j1,m1, j2,m2 〉 , J1,z | j1,m1, j2,m2 〉 = m1 | j1,m1, j2,m2 〉 ,
J2

2 | j1,m1, j2,m2 〉 = j2(j2 + 1) | j1,m1, j2,m2 〉 , J2,z | j1,m1, j2,m2 〉 = m2 | j1,m1, j2,m2 〉 ,

with j1 and j2 given by 0, 1/2, 1, 3/2, 2, . . . and −j1 ≤ m1 ≤ +j1 and −j2 ≤ m2 ≤ +j2. However since
J2

1 = J2
2 , the only eigenvectors allowed are those for which j1 = j2 ≡ j. So let us set j = j1 = j2 = (n−1)/2,

with n = 0, 1, 2, . . . . Furthermore, from Eq. (22.42), we see that the physical angular momentum vector L
is given by the sum of J1 and J2:

L = J1 + J2 . (22.45)

So the coupled angular momentum state | (j1, j2) `,m` 〉 given by:

| (j1, j2) `,m 〉 =
∑

m1,m2

〈 j1,m1, j2,m2 | (j1, j2) `,m 〉 | j1,m1, j2,m2 〉 , (22.46)

where the bracket is a Clebsch-Gordan coefficient, is an eigenvector of J2
1 , J2

2 , L2, and Lz (See Section 21.4.1).
If we set j1 = j2 = j, this is just the state that we want. So let us put:

|n, `,m 〉 ≡ | (j, j) `,m 〉 =
∑

m1,m2

〈 j,m1, j,m2 | (j, j) `,m 〉 | j,m1, j,m2 〉 , (22.47)

where j = (n − 1)/2, and from the triangle inequality for coupled states, ` = 0, 1, . . . , (n − 1), with −` ≤
m = m1 +m2 ≤ +`. Now from Eqs. (22.41) and (22.43), the Hamilton is given by:

H = − 1
2
(

2( J2
1 + J2

2 ) + 1
) = − 1

2
(
4J2

1 + 1
) , (22.48)

the eigenvector defined in Eq. (22.47) is also an eigenvector of H:

H |n, `,m` 〉 = En |n, `,m` 〉 ,

with En = − 1
2
(

2j(j + 1) + 1
) = − 1

2
(

(n− 1)(n+ 1) + 1
) = − 1

2n2
.

(22.49)
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From the definition of N is Eq. (22.39), we find that N is diagonal in eigenvectors of the Hamiltonian:

N |n, `,m` 〉 = n |n, `,m` 〉 . (22.50)

For a fixed value of n, there are (2j + 1)2 = n2 values of m1 and m2, so the degeneracy of the nth state is
n2. The unusual degeneracy here is a result of the conserved Lenz vector for the coulomb potential. Our
method of writing the Hamiltonian in terms of the Lenz and angular momentum vectors has reduced the
eigenvalue problem for the hydrogen atom to an algebra.

Exercise 74. Work out the eigenvectors for the n = 1, 2, and 3 levels of hydrogen in both the | j,m1, j,m2 〉
representation and in the coupled representation | (j, j) `,m 〉. Use the results in Table 21.1 for the Clebsch-
Gordan coefficients.

22.3.2 Matrix elements of the Runge-Lenz vector

Matrix elements of the Runge-Lenz vector K = N A in eigenvectors of the hydrogen atom can be found
easily by using the Wigner-Eckart theorem and the angular momentum theorems of Section 21.5.3. Writing
the vectors as tensor operators of rank one, we first compute reduced matrix elements of J1 and J2. We
find:

〈 (j, j) ` ‖ J1 ‖ (j′, j′) `′ 〉 = δj,j′ (−)2j+`′+1
√

(2`+ 1)(2`′ + 1)
{
j ` j
`′ j 1

}
〈 j ‖ J1 ‖ j 〉

= δj,j′ (−)2j+`′+1
√

(2`+ 1)(2`′ + 1)
{
j ` j
`′ j 1

}√
2j(2j + 1)(2j + 2)/2

(22.51)

and

〈 (j, j) ` ‖ J2 ‖ (j′, j′) `′ 〉 = δj,j′ (−)2j+`+1
√

(2`+ 1)(2`′ + 1)
{
j ` j
`′ j 1

}
〈 j ‖ J2 ‖ j 〉

= δj,j′ (−)2j+`+1
√

(2`+ 1)(2`′ + 1)
{
j ` j
`′ j 1

}√
2j(2j + 1)(2j + 2)/2

(22.52)

Now K = J1 − J2, so

〈 (j, j) ` ‖K ‖ (j′, j′) `′ 〉

= δj,j′ (−)2j+1

[
(−)`

′ − (−)`
]

2

√
(2`+ 1)(2`′ + 1)2j(2j + 1)(2j + 2)

{
j ` j
`′ j 1

}
. (22.53)

Now the 6j-symbol vanishes unless `′ = `− 1, `, `+ 1, but the factor
[

(−)`
′ − (−)`

]
vanishes for `′ = `. So,

recalling that 2j = n − 1, and switching the notation to |n, `,m 〉, the only non-vanishing reduced matrix
elements are:

〈n, ` ‖K ‖n, `− 1 〉 =
√
` (n2 − `2) ,

〈n, ` ‖K ‖n, `+ 1 〉 = −
√

(`+ 1) (n2 − (`+ 1)2) .
(22.54)

So matrix elements of the Runge-Lenz vector connect eigenvectors of the hydrogen Hamiltonian with the
same values of the principle quantum number n but values of `′ = ` ± 1. That is, the Runge-Lenz vector
is a ladder operator for the total angular momentum quantum number within the same principle quantum
number.

Since L = J1 + J2, we can easily check that

〈n, ` ‖L ‖n, `′ 〉 = δ`,`′
√

2` (2`+ 1) (2`+ 2)/2 , (22.55)

in agreement with (21.283).

Exercise 75. Using Eqs. (22.51) and (22.52), prove Eq. (22.55).
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22.3.3 Symmetry group

The symmetry group associated with the coulomb potential is apparently SO(3) × SO(3) ∼ SO(4). So
let us review the properties of the SO(4) group. Consider orthogonal transformations in four Euclidean
dimensions, given by:

x′α = Rα,β xβ , (22.56)

where the Greek indices α, β run from 0 to 3, and where R orthogonal: RTR = 1. The set of all such matrices
form the O(4) group. Infinitesimal transformations are given by: Rα,β = δα,β + ∆ωα,β + · · · . Infinitesimal
unitary transformations in Hilbert space are given by:

U(1 + ∆ω) = 1 +
i

~

{ 1
2

∆ωα,β Jα,β + · · ·
}
, (22.57)

where Jα,β = −Jβ,α are the generators of the group. Since Jα,β are antisymmetric, there are six of them.
The generators transform according to:

U†(R) Jα,β U(R) = Rα,α′ Rβ,β′ Jα′,β′ . (22.58)

Setting R = 1 + ∆ω, we find that the generators obey the algebra:

[ Jα,β , Jα′,β′ ] = i~
{
δα,α′ Jβ,β′ + δβ,β′ Jα,α′ − δα,β′ Jβ,α′ − δβ,α′ Jα,β′

}
. (22.59)

One can easily check that a realization of this algebra is obtained by setting:

Jα,β = Xα Pβ −Xβ Pα , (22.60)

where Xα and Pβ obey the commutation rules:

[Xα, Pβ ] = i~ δα,β , [Xα, Xβ ] = [Pα, Pβ ] = 0 . (22.61)

This realization of Jα,β is a generalization of angular momentum in four Euclidean dimensions.

Exercise 76. Show that Jα,β defined by Eq. (22.60) with Xα and Pβ satisfying (22.61), satisfies Eq. (22.59).

However we can also satisfy the commutation rules for the generators of SO(4) by embedding the six
operators K and L in Jα,β with the definitions:

J0,i = −Ji,0 = Ki , and Ji,j = εijk Lk , (22.62)

where the Roman indices i, j, k run from 1 to 3. Explicitly, Jα,β is given by the matrix:

Jα,β =




0 K1 K2 K3

−K1 0 L3 −L2

−K2 −L3 0 L1

−K3 L2 −L1 0


 . (22.63)

Exercise 77. Using the commutation relations (22.40), show that the definitions (22.63) satisfy the algebra
of Eq. (22.59).

Now for (α, β) = (i, j), the definitions (22.60) are exactly the angular momentum of the particle: Xi and
Pi. That is

Ji,j = εijk Lk = XiPj −XjPi . (22.64)

For J0,i, we find:
J0,i = Ki = N Ai = AiN = X0 Pi −Xi P0 . (22.65)

It is not at all easy to find X0 and P0 in terms of the dynamic variables Xi and Pi, the major difficulty being
the representation of N in terms of Xi and Pi.

The quantity:
1
2
Jα,βJα,β = K2 + L2 = N2 − 1 ≥ 0 , (22.66)

is a Casmir invariant for the SO(4) group.
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22.3.4 Operator factorization

A completely different method of solving for the eigenvalues and eigenvectors for the hydrogen Hamiltonian
is the operator factorization method, first done by Schrödinger in 1940 [8]. The method is further expanded
to several kinds of potential problems in an article by Infeld and Hull [9].

In Section 21.1.3, we introduced a Hermitian radial linear momentum operator Pr defined by (here
~→ 1):

Pr =
1
R

[
R ·P− i

]
7→ 1

i

[
∂

∂r
+

1
r

]
=

1
i

[
1
r

∂

∂r
r

]
. (22.67)

We also showed that P 2 = P 2
r + L2/R2. So the hydrogen Hamiltonian can be written as:

H =
P 2
r

2
+

L2

2R2
− 1
R
. (22.68)

Now let | ε, `,m 〉 be an eigenvector of L2 and Lz with eigenvalues `(`+ 1) and m respectively. Then for the
radial equation, we write:

H` | ε, ` 〉 = ε | ε, ` 〉 , with H` =
P 2
r

2
+
`(`+ 1)

2R2
− 1
R
, (22.69)

where 〈 r |n, ` 〉 = Rm`(r). Now the first thing to note here is that the Hamiltonian H` depends on ` and so
the eigenvectors | ε, ` 〉 are not orthogonal with respect to `. That is, ` must be regarded here as a parameter,
not an eigenvalue, of H`.

The operator factorization method consists of factoring H` into two parts of the form: H` = A†` A` + c`,
where c` is some constant. So let us try to find an operator A` of the form:

A` =
1√
2

{
Pr +

iα`
R
− iβ`

}
, (22.70)

with α` and β` real numbers. Then we find:

2A†` A` = P 2
r + iα` [Pr,

1
R

] +
α2
`

R2
− 2α`β`

R
+ β2

`

= P 2
r + iα`

1
R

[R,Pr ]
1
R

+
α2
`

R2
− 2α`β`

R
+ β2

`

= P 2
r +

α`(α` − 1)
R2

− 2α`β`
R

+ β2
` .

(22.71)

So we need to require that α`(α` − 1) = `(`+ 1) and α`β` = 1. There are two solutions to these equations:
α` = ` + 1, in which case β` = 1/(`` + 1), and α` = −`, in which case β` = −1/`. For the first of these
solutions, we have:

A
(+)
` =

1√
2

{
Pr +

i(`+ 1)
R

− i

(`+ 1)

}
, A

(+) †
` =

1√
2

{
Pr −

i(`+ 1)
R

+
i

(`+ 1)

}
, (22.72)

and for the second solution, we have:

A
(−)
` =

1√
2

{
Pr −

i`

R
+
i

`

}
, A

(−) †
` =

1√
2

{
Pr +

i`

R
− i

`

}
. (22.73)

For these second solutions, we must require that ` 6= 0. However, we see that these two solutions are related.
That is, since Pr is Hermitian,

A
(−)
`+1 = A

(+) †
` , and A

(−) †
`+1 = A

(+)
` . (22.74)
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That is the (−) solutions interchange creation and annihilation operators of the (+) solutions and decrement
the ` value by one unit. So they do not add any new information and we only need to consider the (+) set
of solutions. In the following, we choose the (+) solutions and omit the (+) designation from now one. We
find:

A†` A` =
P 2
r

2
+
`(`+ 1)

2R2
− 1
R

+
1

2(`+ 1)2
= H` +

1
2(`+ 1)2

, (22.75)

A` A
†
` =

P 2
r

2
+

(`+ 2)(`+ 1)
2R2

− 1
R

+
1

2(`+ 1)2
= H`+1 +

1
2(`+ 1)2

. (22.76)

So setting `→ `+ 1 in (22.75) and substituting into (22.76) gives:

A` A
†
` = A†`+1A`+1 +

1
2(`+ 1)2

− 1
2(`+ 2)2

. (22.77)

Eq. (22.77) is very much like a commutation relation, except that it involves different values of ` for the
reverse product. Nevertheless, since we have been able to factor the Hamiltonian, the eigenvalue problem
for H becomes:

A†` A` | ε, ` 〉 =
{
ε+

1
2 (`+ 1)2

}
| ε, ` 〉 . (22.78)

The left-hand-side of this expression is positive definite. Multiplying on the left by 〈 ε, ` | gives:

|A` | ε, ` 〉 |2 = ε+
1

2 (`+ 1)2
≥ 0 , (22.79)

which means that for fixed ε < 0, 0 ≤ ` ≤ 1/
√
−2ε− 1. Operating on Eq. (22.77), by A` gives

A` A
†
` A` | ε, ` 〉 =

{
ε+

1
2 (`+ 1)2

}
A` | ε, ` 〉 , (22.80)

and using (22.77) we find:
{
A†`+1A`+1 +

1
2(`+ 1)2

− 1
2(`+ 2)2

}
A` | ε, ` 〉 =

{
ε+

1
2 (`+ 1)2

}
A` | ε, ` 〉 , (22.81)

or {
A†`+1A`+1

}
A` | ε, ` 〉 =

{
ε+

1
2 (`+ 2)2

}
A` | ε, ` 〉 , (22.82)

and comparison with Eq. (22.78) gives

A` | ε, ` 〉 = cε,`+1 | ε, `+ 1 〉 , (22.83)

where cε,`+1 is some constant. So A`, when operating on | ε, ` 〉, increases the value of ` by one with the
same value of ε. Since ` is bounded from above by ` ≤ 1/

√
−2ε − 1, this can continue only until for some

value ` = `max, the right-hand side of (22.83) gives zero. That is:

A`max
| ε, `max 〉 = 0 . (22.84)

Operating on (22.84) by A†` gives:

A†`max
A`max

| ε, `max 〉 = 0 =
{
ε+

1
2 (`max + 1)2

}
| ε, `max 〉 . (22.85)

So let us put n = `max + 1 = 1, 2, . . . , then (22.85) requires that

ε = − 1
2 (`max + 1)2

= − 1
2n2

. (22.86)
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Then, for fixed n, ` = 0, 1, . . . , n− 1. Eq. (22.86) is the same result we got in Eq. (22.49) using the algebraic
method of Section 22.3.1.

So now label ε by n and put | ε, ` 〉 → |n, ` 〉. The normalization factor c`+1 in can be found by taking
the inner product of Eq. (22.83) with itself. We find:

| cn,`+1 |2 = 〈n, ` |A†` A` |n, ` 〉 =
1
2

{ 1
(`+ 1)2

− 1
n2

}
=
n2 − (`+ 1)2

2n2 (`+ 1)2
, (22.87)

so

cn,` = −i
√

[n2 − `2 ]/2
n `

. (22.88)

Here the phase is chosen so that the wave functions in coordinate space are all real. Then the normalized
operator which increases the value of ` for fixed n gives the result:

|n, `+ 1 〉 =
i n (`+ 1)√

[n2 − (`+ 1)2 ]/2
A` |n, ` 〉 , for ` = 0, 1, . . . , n− 2, and n > 1, (22.89)

which generates the |n, ` + 1 〉 radial state from the |n, ` 〉 one. For the special state when ` = n − 1, we
have:

An−1 |n, n− 1 〉 =
1√
2

{
Pr +

in

R
− i

n

}
|n, n− 1 〉 = 0 . (22.90)

In the coordinate representation, this gives:
{ ∂

∂r
+

1− n
r

+
1
n

}
Rn,n−1(r) = 0 , (22.91)

which has the normalized solution:

Rn,n−1(r) =

√
22n+1

n2n+1 (2n)!
rn−1 e−r/n . (22.92)

We still need to find a way to find an operator to lower the ` value for a fixed n. This is obtained by
operating on (22.78) by A†`−1. Doing this, we find:

A†`−1A
†
` A` |n, ` 〉 =

{
− 1

2n2
+

1
2 (`+ 1)2

}
A†`−1 |n, ` 〉 . (22.93)

Using (22.77) gives:

A†`−1

{
A`−1A

†
`−1 −

1
2`2

+
1

2(`+ 1)2

}
|n, ` 〉 =

{
− 1

2n2
+

1
2 (`+ 1)2

}
A†`−1 |n, ` 〉 , (22.94)

or {
A†`−1A`−1

}
A†`−1 |n, ` 〉 =

{
− 1

2n2
+

1
2 `2

}
A†`−1 |n, ` 〉 , (22.95)

so
A†`−1 |n, ` 〉 = dn,` |n, `− 1 〉 , (22.96)

where dn,` is some constant. So A†`−1 when operating on |n, ` 〉 decreases the value of ` for the same value
of n. The normalization factor dn,`−1 is again found by computing the inner product of (22.96) with itself.
This gives:

|dn,`|2 = 〈n, ` |A`−1A
†
`−1 |n, ` 〉 = 〈n, ` |

{
A†` A` +

1
2`2
− 1

2(`+ 1)2

}
|n, ` 〉

=
1
2

{ 1
`2
− 1
n2

}
=
n2 − `2
2n2 `2

, dn,` = −i
√

[n2 − `2 ]/2
n `

.

(22.97)
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R1,0(r) = 2 e−r ,

R2,1(r) =
1

2
√

6
r e−r/2 ,

R2,0(r) =
1√
2

(
1− 1

2
r
)
e−r/2 ,

R3,2(r) =
4

81
√

30
r2 e−r/3 ,

R3,1(r) =
8

27
√

6

(
r − 1

6
r2
)
e−r/3 ,

R3,0(r) =
2

3
√

3

(
1− 2

3
r +

2
27
r2
)
e−r/3 .

Table 22.1: The first few radial wave functions for hydrogen.

Again the phase is chosen so that the wave functions in coordinate space are all real. Note that dn,` = cn,`.
Then the normalized operator which decreases the value of ` for fixed n is given by:

|n, `− 1 〉 =
i n `√

[n2 − `2 ]/2
A†`−1 |n, ` 〉 , for ` = 1, 2, . . . , n− 1, and n > 1. (22.98)

We can use (22.98) to operate on the state with the maximum value of ` = n − 1 given in Eq. (22.92) to
obtain all the states for that fixed value of n. For example, for the R2,0(r) wave function, we have:

R2,0(r) =
2√
3

[
∂

∂r
+

2
r
− 1

]
R2,1(r) =

1√
2

(
1− 1

2
r
)
e−r/2 . (22.99)

The general result of this process produces Laguerre polynomials for each value of the principle quantum
number n. The first few radial wave functions for hydrogen are given in Table 22.1. Notice that none of the
` = 0 wave functions vanish at the origin. This is because of the 1/r singularity of the coulomb potential.

In this section, we have been able to find step operators to generate eigenvectors for total angular
momentum ` for the hydrogen Hamiltonian using the operator factorization method. However, we still do
not know what the step operators are for the principle quantum number n. We find these operators in the
next section.

22.3.5 Operators for the principle quantum number

In the last section, we found operators which generated all the eigenvectors for values of the total angular
momentum quantum number ` for the radial solutions of the hydrogen Hamiltonian for fixed values of the
principle quantum number n. In this section, we obtain operators which generate all the eigenvectors for the
principle quantum number n for fixed values of the total angular momentum quantum number `, just the
opposite result as in the last section. We do this in a round-about way, by first writing down three operators
which obey SO(2, 1) algebra, and then relating them to the radial eigenvectors of the last section. We follow,
more or less, the development by Hecht [10].

We start by defining generators of the SO(2, 1) algebra and proving a theorem concerning the eigenvalues
and eigenvectors of these generators.

Definition 41 (Generators of SO(2, 1) algebra). Three Hermitian operators T1, T2 and T3 are generators
of the SO(2, 1) algebra if they satisfy the commutation rules:

[T1, T2 ] = −i T3 , [T2, T3 ] = i T1 , [T3, T1 ] = i T2 . (22.100)

The “magnitude” T 2 is defined by:

T 2 = T 2
3 − T 2

1 − T 2
2 , with [T 2, T3 ] = 0 . (22.101)
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We also define T± = T1 ± iT2, so that T †± = T∓, and with the properties:

[T3, T± ] = ±T± , [T+, T− ] = −2T3 . (22.102)

The operator T 2 can be written in a number of ways:

T 2 = T 2
3 −

1
2

(T+T− + T−T+ ) = T 2
3 − T3 − T+T− = T 2

3 + T3 − T−T+ . (22.103)

The common eigenvalues and eigenvectors of T 2 and T3 is given in the next theorem.

Theorem 57 (eigenvalues and eigenvectors for the SO(2, 1) algebra). Common eigenvalues and eigenvectors
of the operators T 2 and T3, are given by:

T 2 | k, q ) = k(k + 1) | k, q ) ,
T3 | k, q ) = q | k, q ) ,
T± | k, q ) = A±(k, q) | k, q ± 1 ) ,

(22.104)

where

Aλ(k, q) =





√
(q − k)(q + k + 1) , for λ = +1,

√
(q + k)(q − k − 1) , for λ = −1.

(22.105)

For k ≥ 0, q = k+1, k+2, k+3, . . . , and q = −k−1,−k−2,−k−3, . . . . For k < 0, q = q0, q0±1, q0±2, . . . ,
where q0 is arbitrary.

Proof. Let us write the general eigenvalue problems as:

T 2 |λ, q ) = λ|λ, q ) , T3 |λ, q ) = q |λ, q ) , (22.106)

where λ and q must be real since T 2 and T3 are Hermitian operators. We start by noting that T± are step
operators. We find:

T3

{
T± |λ, q )

}
=
{
T± T3 + [T3, T± ]

}
|λ, q ) = T±

{
T3 + 1

}
|λ, q ) = ( q + 1 )

{
T± |λ, q )

}
, (22.107)

so, assuming no degenerate eigenvectors,

T+ |λ, q ) = A+(λ, q) |λ, q + 1 ) , and T− |λ, q ) = A−(λ, q) |λ, q − 1 ) . (22.108)

Now we also have:

〈λ, q | 1
2
{
T+T− + T−T+

}
|λ, q ) = 〈λ, q |

{
T 2

3 − T 2
}
|λ, q ) = q2 − λ ≥ 0 , (22.109)

since the left-hand-side is positive definite.
Let us first consider the case when λ ≥ 0. Then let qmin ≥ 0 be the minimum and −qmax ≤ 0 the

maximum value of q, so that qmin ≥
√
λ and qmax ≥

√
λ. Then, from Eqs. (22.108), q can have the values:

q = qmin, qmin + 1, qmin + 2, . . . and q = −qmax,−qmax − 1,−qmax − 2, . . . .
We next prove that qmin = qmax. The operator T−, when acting on the lowest q-state |λ, qmin ) must give

zero:
T− |λ, qmin ) = 0 . (22.110)

Operating again by T+ gives:

T+T− |λ, qmin ) =
{
T 2

3 − T3 − T 2
}
|λ, qmin ) =

{
qmin(qmin − 1)− λ

}
|λ, qmin ) = 0 , (22.111)

from which we conclude that
λ = qmin(qmin − 1) ≥ 0 . (22.112)
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Similarly, T+ when acting on the highest state |λ,−k0 ) must give zero:

T+ |λ,−qmax ) = 0 . (22.113)

Operating again by T− gives:

T−T+ |λ,−qmax ) =
{
T 2

3 + T3 − T 2
}
|λ,−qmax ) =

{
qmax(qmax − 1)− λ

}
|λ,−qmax ) = 0 , (22.114)

from which we conclude that
λ = qmax(qmax − 1) ≥ 0 . (22.115)

Comparing Eqs. (22.115) and (22.115) we conclude that qmin = qmax ≡ q0 ≥ 1. So let us put q0 = k + 1,
with k ≥ 0, so that λ = k(k + 1). So now q can have the values: q = k + 1, k + 2, k + 3, · · · and q =
−k−1,−k−2,−k−3, · · · . The algebra places no restrictions on the value of k, in particular k does not have
to be integer or half-integer. This means that k is not an eigenvalue and must be regarded as a parameter
of the eigenvector, which we now write as | k, q ).

To find A+(k, q), we take the inner product of the first of Eq. (22.108) with itself. This gives:

|A+(k, q) |2 = ( k, q |T−T+ | k, q ) = ( k, q |
{
T 2

3 + T3 − T 2
}
| k, q )

= q(q + 1)− k(k + 1) = (q − k) (q + k + 1) ,
(22.116)

So choosing the phase to be zero, we find:

A+(k, q) =
√

(q − k) (q + k + 1) . (22.117)

Similarly, for A−(k, q), we have

|A−(k, q) |2 = ( k, q |T+T− | k, q ) = ( k, q |
{
T 2

3 − T3 − T 2
}
| k, q )

= q(q − 1)− k(k + 1) = (q + k) (q − k − 1) .
(22.118)

Again choosing the phase to be zero, we find:

A−(k, q) =
√

(q + k) (q − k − 1) . (22.119)

For λ < 0, Eq. (22.109) only means that q2 ≥ 0, since q must be real. So there is no minimum or
maximum for q. Eqs. (22.108) in this case means that q can have the values: q0, q0 ± 1, q0 ± 2, . . . , where
now q0 is arbitrary and unrelated to λ. The eigenvectors are orthonormal with respect to the q quantum
number only:

( k, q | k, q′ ) = δq,q′ . (22.120)

In particular, in general ( k, q | k′, q ) 6= 0 if k 6= k′. This completes the proof.

For the hydrogen Hamiltonian, we define three operators by:

T1 =
1
2

{
RP 2

r +
`(`+ 1)
R

−R
}
7→r

2

{
− ∂2

∂r2
− 2
r

∂

∂r
+
`(`+ 1)
r2

− 1
}
, (22.121)

T2 = RPr 7→1
i

{
r
∂

∂r
+ 1

}

T3 =
1
2

{
RP 2

r +
`(`+ 1)
R

+R
}
7→r

2

{
− ∂2

∂r2
− 2
r

∂

∂r
+
`(`+ 1)
r2

+ 1
}
, (22.122)

which obey commutation rules Eqs. (22.100) of the SO(2, 1) algebra. For example, we see that:

[T1, T2 ] =
1
2

{
[RP 2

r , RPr ] + `(`+ 1) [
1
R
,RPr ]− [R,RPr ]

}

=
1
2

{
−i RP 2

r − i
`(`+ 1)
R

− i R
}

= −i T3 ,

(22.123)

as required. We leave proof of the other two commutation relations to the next exercise.
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Exercise 78. Prove that Eqs. (22.121) satisfy commutation rules of the SO(2, 1) algebra, defined by
Eqs. (22.100).

All the Ti operators are Hermitian with respect to a measure µ1 = R (not R2 !), in the sense that:

(α |Ti β ) =
∫ ∞

0

r drR̃∗α(r)
[
Ti R̃β(r)

]

=
∫ ∞

0

r dr
[
Ti R̃α(r)

]∗
R̃β(r) = (Ti α |β ) .

(22.124)

Here we have denoted states for which the inner product is defined by Eq. (22.124) with measure µ1 by |α )
with parenthesis ends, and wave functions by a tilde: R̃α(r) = ( r |α ). We can see directly from the operator
form of the Ti that they satisfy the relation: Ti = µ1 T

† µ−1
1 .

From (22.121), we find that:

T3 + T1 = RP 2
r +

`(`+ 1)
R

,

T3 − T1 = R .
(22.125)

For our case, T 2 is given by:

T 2 = T 2
3 − T 2

1 − T 2
2 = (T3 − T1)(T3 + T1)− [T3, T1 ]− T 2

2

= R2 P 2
r + `(`+ 1)− i RPr −RPr RPr = `(`+ 1) .

(22.126)

So from Theorem 57, we write the eigenvalues and eigenvectors of T 2 and T3 as:

T 2 | `, q ) = `(`+ 1) | `, q ) ,
T3 | `, q ) = q | `, q ) ,

(22.127)

with q = ` + 1, ` + 2, ` + 3, . . . with ` ≥ 0 and q = −` − 1,−` − 2,−` − 3 . . . . Here we have written the
eigenvectors as | `, q ) to indicated that they are orthogonal with respect to the measure µ. We shall see that
not all of these eigenvectors are allowed for the physical Hamiltonian.

The operator T2 = RPr generates a change of scale of the radial coordinate operator R and radial
momentum operator Pr. That is since i [T2, R ] = +1 and i [T2, Pr ] = −1, the finite transformation U(a)
that does this is given by:2

U(a) = eiaT2 7→ exp
{
a
(
r
∂

∂r
+ 1

)}
, (22.128)

U−1(a) = e−iaT2 7→ exp
{
−a
(
r
∂

∂r
+ 1

)}
.

Then it is easy to show that:

U(a)RU−1(a) = eaR , U(a)Pr U−1(a) = e−a Pr . (22.129)

The scale transformation preserves the commutation properties of R and Pr:

U(a) [R,Pr ]U−1(a) = [U(a)RU−1(a), U(a)Pr U−1(a) ] = [R,Pr ] = i , (22.130)

and is unitary with respect to the measure µ1. We can easily show this is a coordinate representation. We
first note that

( r |U(a)α ) = exp
{
a
(
r
∂

∂r
+ 1

)}
R̃α(r) = ea R̃α(ea r) ,

( r |U−1(a)α ) = exp
{
−a
(
r
∂

∂r
+ 1

)}
R̃α(r) = e−a R̃α(e−a r) .

(22.131)

2Sometimes this kind of transformation is called a dilation and the subsequent transformation of R a conformal transfor-
mation since the coordinate operator is expanded by a factor ea.
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On the other hand, U†(a) is defined by:

(U†(a)α |β ) = (α |U(a)β ) =
∫ ∞

0

r dr R̃∗α(r) exp
{
a
(
r
∂

∂r
+ 1

)}
R̃β(r)

=
∫ ∞

0

r dr R̃∗α(r) ea R̃α(ea r) =
∫ ∞

0

r′ dr′
[
e−a R̃∗α(e−a r′)

]∗
R̃β(r′)

=
∫ ∞

0

r′ dr′
[{
−a
(
r′

∂

∂r′
+ 1

)}
R̃α(r′)

]∗
R̃β(r′) ,

(22.132)

where we have changed variables: r′ = ear. So U(a) is unitary for the measure µ = r. We can, of course,
see this directly from the relation: U−1(a) = µ1 U

†(a)µ−1
1 .

Exercise 79. Prove Eqs. (22.129).

Now from Eq. (22.125), T3 + T1 and T3 − T1 transform under the U(a) scale transformation by:

U(a) (T3 + T1 )U−1(a) = e−a (T3 + T1 ) , U(a) (T3 − T1 )U−1(a) = ea (T3 − T1 ) . (22.133)

Of course T2 is unchanged by the transformation. So T1, T2, and T3 transform according to the rule:

U(a)



T1

T2

T3


 U−1(a) =




cosh a 0 − sinh a
0 1 0

− sinh a 0 cosh a





T1

T2

T3


 , (22.134)

which resembles a rotation about the 2-axis by an imaginary angle ia.
First let us note that RH is Hermitian with respect to the measure µ1 and that we can write RH in

terms of the operators T1 and T3:

RH` =
RP 2

r

2
+
`(`+ 1)

2R
− 1 =

1
2
{
T3 + T1

}
− 1 . (22.135)

We write the eigenvalue equation for the hydrogen Hamiltonian H as:

H |n, ` 〉 = εn |n, ` 〉 , (22.136)

which is Hermitian with respect to measure µ2. Here |n, ` 〉, written in using angles, are written in coordinate
space as Rn,`(r) = 〈 r |n, ` 〉 and normalized with the measure µ2. That is:

〈n, ` |n′, `′ 〉 =
∫ ∞

0

R∗n,`(r)Rn′,`′(r) r
2 dr . (22.137)

The eigenvalue problem for the measure µ1 is given by multiplying Eq. (22.136) by R. This gives:

R (H` − εn ) |n, ` 〉 = 0 , εn = − 1
2n2

. (22.138)

From Eqs. (22.125) and (22.135), we find:

R (H − εn ) =
RP 2

r

2
+
`(`+ 1)

2R
− 1 +

R

2n2

=
1
2

{
T3 + T1

}
+

1
2n2

{
T3 − T1

}
− 1

=
1
2

{
1 +

1
n2

}
T3 +

1
2

{
1− 1

n2

}
T1 − 1 .

(22.139)

c© 2009 John F. Dawson, all rights reserved. 314



CHAPTER 22. ELECTRODYNAMICS 22.3. HYDROGEN ATOM

The trick is now to use the scale transformation (22.134) about the 2-axis to “rotate” the operator R (H−εn)
to “point” in the 3-direction. This gives:

U(a)R (H − εn )U−1(a) =
e−a

2
{
T3 + T1

}
+

ea

2n2

{
T3 − T1

}
− 1

=
1
2

{
e−a +

ea

n2

}
T3 +

1
2

{
e−a − ea

n2

}
T1 − 1 .

(22.140)

T1 can now be eliminated from the rotated Hamiltonian operator by choosing a such that:

ea = n , a = ln(n) = −1
2

ln
( 1
n2

)
= −1

2
ln(−2εn) . (22.141)

Then Eq. (22.140) becomes:

U(a)R (H − εn )U−1(a) = e−a T3 − 1 =
1
n

(T3 − n ) . (22.142)

Then we find:
1
n

(T3 − n )
{
U(a) |n, ` 〉

}
= U(a)R (H − εn ) |n, ` 〉 = 0 . (22.143)

So U(a) |n, ` 〉 is a common eigenvector of T3 with eigenvalue n, and T with eigenvalue `(`+ 1). Comparing
(22.143) with the eigenvalue equations for T 2 and T3, Eqs. (22.127), we see that

|n, ` 〉 = Nn U−1(a) | `, n ) , (22.144)

where Nn is a normalization factor, and where k = ` and q = n = ` + 1, ` + 2, ` + 3, . . . > 0. That is, the
positive eigenvalues of T3 are the principle quantum numbers of the hydrogen Hamiltonian. The negative
eigenvalues of T3 are not physically realized here, which means that the states | `, n ) are not complete!

The duel of Eq. (22.144) is:
〈n, ` | = N ∗n ( `, n |U(a)R , (22.145)

the extra factor of R coming from the difference between the measures µ1 and µ2. So the normalization is
fixed by the requirement:

〈n, ` |n, ` 〉 = | Nn |2 ( `, n |U(a)RU−1(a) | `, n )

= | Nn |2 ea ( `, n |R | `, n )

= | Nn |2 ea ( `, n |
{
T3 − (T+ + T−)/2

}
| `, n ) = | Nn |2 n2 = 1 .

(22.146)

So we find Nn = 1/n. This does not mean that 〈n, ` |n, `′ 〉 = 0, and in fact it is not zero. The radial wave
functions in coordinate space in the two basis sets Rn,`(r) = 〈 r |n, ` 〉 and R̃`,n(r) = 〈r|`, n) are related by:

Rn,`(r) = 〈 r |n, ` 〉 = Nn 〈 r | e−iaRPr | `, n ) = Nn exp
{
−a
(
r
∂

∂r
+ 1

)}
R̃`,n(r)

= Nn e−a R̃`,n( e−ar ) =
1
n2

R̃`,n( r/n ) .
(22.147)

Note that |R̃`,n(r)|2 r dr is not the probability of finding the electron between r and r + dr, because of the
scaling factor r/n.

Radial wave functions R̃`,n(r) in the | `, n ) basis are readily obtained by operation by T− on the lowest
state, and then using T+ to obtain the rest of the wave functions. The ground state | `, `+ 1 ) basis is given
by the solution of:

T− | `, `+ 1 ) =
{
T1 − i T2

}
| `, `+ 1 ) = −

{
T3 − T1 + i T2 − T3

}
| `, `+ 1 )

= −
{
i RPr +R− `

}
| `, `+ 1 ) = 0 .

(22.148)
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In coordinate space, this reads: {
r
∂

∂r
+ r − `

}
R̃`,`+1(r) = 0 , (22.149)

which has the solution,

R̃`,`+1(r) =
2`+1

√
(2`+ 1)!

r` e−r , (22.150)

which has been normalized to one with measure µ1. From (22.147), the radial wave function Rn,n−1(r) for
` = n− 1 is then given by:

Rn,n−1(r) =
1
n2

R̃n−1,n(r/n) =

√
22n+1

n2n+1 (2n)!
rn−1 e−r/n , (22.151)

in agreement with our result Eq. (22.92) which we found in Section 22.3.4 using the operator factorization
method. Radial wave functions for arbitrary values of ` and n can be found by application of the n-raising
operator T+ on the state | `, `+ 1 ).

Exercise 80. Show that the radial wave functions R̃`,n(r), normalized with the measure µ1, are given in
general by:

R̃`,n(r) =
2`+1

√
(n+ `)! (n− `− 1)!

er

r`+1

∂n−`−1

∂rn−`−1

[
rn+` e−2r

]
. (22.152)

From Eqs. (22.144) and (22.145), the matrix elements of an operator O can be computed in either basis
by means of the relation:

〈n, ` |O |n′, `′ 〉 =
1
n2

( `, n |U(a)ROU−1(a) | `′, n′ ) = ( `, n | R̃O | `′, n′ ) , (22.153)

where
R̃O =

1
n2

U(a)ROU−1(a) . (22.154)

22.3.6 SO(4, 2) algebra

In Section 22.3.3, we developed

22.3.7 The fine structure of hydrogen

We have found that the Hamiltonian for the hydrogen atom, which we now call H0, in ordinary units is given
by:

H0 =
P 2

2m
− e2

R
, (22.155)

with energies and eigenvectors given by:

E0n =
1
2
mc2α2 1

n2
, and |n, `,m` 〉 . (22.156)

A careful examination of the spectra of hydrogen, however, reveals that Eq. (22.156) is only approximately
correct, but that there is a fine structure to the energy spectra which is not accounted for by this equation.
This turns out to be due to the relativistic nature of the electron. One of these relativistic manifestations
is that the electron has an intrinsic spin, with the value s = 1/2, and an intrinsic magnetic moment. The
other manifestation is that the kinetic energy of the electron needs to be corrected for the relativistic mass
change with velocity. We discuss both of these corrections in this section.
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Spin-orbit force

The spin-orbit force for the electron in hydrogen is a relativistic interaction between the magnetic moment
of the electron and the effective magnetic field as seen by the electron in its rest frame as a result of the
electric field of the proton. Sometimes this effect is described by noting that in the rest frame of the electron,
the proton is orbiting the electron and so creates a magnetic field at the position of the electron; however,
there is a subtle correction to this simple explanation due to a relativistic procession of the electron, called
the Thomas precession. So the spin-orbit energy is given by:

Hso = −µe ·Beff , µe = − e

mc
S , Beff = − 1

2c
V ×E , (22.157)

where S is the spin of the electron, and E is the electric field due to the proton, given by:

E =
eR
R3

. (22.158)

Putting this together, and noting that R×V = L/m, we find:

Hso =
e2

2m2c2
L · S
R3

=
1
2
mc2 α4

( a
R

)3 L · S
~2

. (22.159)

Writing this in atomic units with lengths in units of a, angular momentum in units of ~, and energies in
units of E0 = mc2α2, the spin-orbit Hamiltonian is:

H̄so =
α2

2
L · S
R̄3

, (22.160)

so this energy is down from the energies of the major shells by a factor of α2. For an derivation of the
effective magnetic field Beff, including Thomas presession, see the book by J. D. Jackson. With the extra
spin degree of freedom, we can construct direct product states given by |n, `,m`, s,ms 〉, or form the coupled
states:

|n, (`, s) j,mj 〉 =
∑

m`,ms

〈 `,m`, s,ms | (`, s) j,mj 〉 |n, `,m`, s,ms 〉 . (22.161)

Both of these states are eigenstates of H0. However, the coupled state, defined by (22.161), is also an
eigenstate of the spin-orbit force. We can easily calculate the spin-orbit energies using these states. Since
J = L + S, we have:

L · S =
1
2

( J2 − L2 − S2 ) , (22.162)

so that we find:
〈 (`, s) j,mj |L · S | (`, s) j,mj 〉 =

1
2
(
j(j + 1)− `(`+ 1)− 3/4

)
. (22.163)

We show an alternate way to calculate this matrix element in Section 21.6.1 using fancy angular momentum
technology (which is not necessary in this case!). Expectation values of the radial function in atomic units
is given by: 〈 1

R̄3

〉
n,`

=
2

n3 `(`+ 1)(2`+ 1)
. (22.164)

So using first order perturbation theory, the energy shift in atomic units in hydrogen due to the spin-orbit
force is given by:

∆Ē(so)n,`,j = 〈n, (`, s) j,mj | H̄so |n, (`, s) j,mj 〉 =
α2

2
j(j + 1)− `(`+ 1)− 3/4

n3 `(`+ 1)(2`+ 1)

= (±)α2 1
n3 (2`+ 1)(2j + 1)

,

(22.165)
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with the (+) for j = ` + 1/2 and (−) for j = ` − 1/2. Note that the spin-orbit energy is finite for s-
states even though L · S vanishes for s-states and 〈 1/r3 〉 blows up. So we have cheated here, canceling the
divergences, and obtaining something finite. The resolution of this strange result is to carefully examine the
spin-orbit interaction for s-states, averaging the Hamiltonian over a small region about the origin. This gives
a “contact” interaction proportional to a δ-function which should be added to the spin-orbit interaction. The
end result of the analysis gives the same answer we found in Eq. (22.165). For details, see ref. XX.

Relativistic correction

The relativistic expansion of the total energy E of an electron with momentum p is given by:

H =
√
P 2c2 + (mc2)2 ≈ mc2 +

P 2

2m
− P 4

8m3c2
+ · · · (22.166)

We accounted for the second term in this expansion in our non-relativistic expression for the Hamiltonian
for hydrogen, but we neglected the first and third terms. The first term is just a constant energy, which we
will ignore. However the third term gives a relativistic correction to the energy, which we will call

Hrel = − P 4

8m3c2
= − ~4

8m3c2a4

[aP
~

]4
= −1

8
mc2 α4

[aP
~

]4
. (22.167)

So in atomic units, with P = ~ P̄ /a and energies in units of E0 = mc2α2, the relativistic correction Hamil-
tonian is given by:

H̄rel = −α
2

8
P̄ 4 , (22.168)

which is the same order of magnitude as the spin-orbit force, down from the major shell energy by a factor
of α2. The complete fine structure Hamiltonian is then given by the sum:

H̄fs = H̄so + H̄rel . (22.169)

We can easily calculate the energy shift due to Hrel using the unperturbed Hamilton H̄ for hydrogen given
in Eq. (22.27):

P̄ 2 = 2 H̄ +
2
R̄
, with H̄ |n, (`, s) j,mj 〉 = − 1

2n2
|n, (`, s) j,mj 〉 . (22.170)

Substituting this into (22.168) gives:

H̄rel = −α
2

2

{
H̄2 + H̄

1
R̄

+
1
R̄
H̄ +

1
R̄2

}
, (22.171)

and expectation values of this in the states |n, (`, s) j,mj 〉 gives:

∆Ē(rel)n,`,j = 〈n, (`, s) j,mj | H̄rel |n, (`, s) j,mj 〉

= −α
2

8

{ 1
n4
− 4
n2

〈 1
R̄

〉
n,`

+ 4
〈 1
R̄2

〉
n,`

} (22.172)

Now 〈 1
R̄

〉
n,`

=
1
n2

, and
〈 1
R̄2

〉
n,`

=
2

n3 (2`+ 1)
. (22.173)

Substitution into (22.172) gives:

∆Ē(rel)n,`,j =
α2

2

{ 3
4

1
n4
− 2
n3 (2`+ 1)

}
. (22.174)
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E

1s1/2

2s1/2

3s1/2

2p1/2

2p3/2

3p3/2

3p1/2

3d3/2

3d5/2

n = 1

n = 2

n = 3

! = 0 ! = 1 ! = 2Bohr atom

Figure 22.1: The fine structure of hydrogen (not to scale). Levels with the same value of j are degenerate.

Adding the results of Eqs. (22.174) and (22.165) gives the fine structure splitting energy:

∆Ēfs = ∆Ē(so)n,`,j + ∆Ē(rel)n,`,j = − α2

2n4

( n

j + 1/2
− 3

4

)
, (22.175)

which is now independent of `. The total energy of hydrogen in ordinary units, including the mass-energy
and relativistic effects to first order, is now given by:

En,j = mc2
{

1− α2

2n2
− α4

2n4

( n

j + 1/2
− 3

4

)
+ · · ·

}
, (22.176)

which is in agreement with the expansion in powers of α of the exact energy from the solution of the
relativistic Dirac equation for hydrogen (see, for example, Bjorken and Drell [11]), and also with experiment.
Notice that the energy levels to this order depend only on n and j and are independent of `, so that states
with the same value of j but different values of `, such as 2s1/2 and 2p1/2 states, have the same energy. This
odd degeneracy, which is somehow due to the O(4) symmetry, persists even for the exact relativistic Dirac
equation. The energy levels, including the fine structure, are shown in Fig. 22.1. Note all the states are
shifted lower by the hyperfine energy and that the j = `+ 1/2 state is above the j = `− 1/2 state.
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The energy difference between the n = 2 and n = 1 major shells in hydrogen is (3/4)ER = 10.21 eV
corresponding to a frequency of (3/4) fR = 2.468 × 109 MHz or a wavelength of λ = (4/3)λR = 121 nm,
whereas the energy difference between the 2p3/2 and 2p1/2 fine structure levels is (α2/16)ER = 4.530× 10−5

eV or a frequency of (α2/16) fR = 10, 950 MHz.
We next see if the `-degeneracy persists after taking into account interactions between the magnetic

moment of the proton and the electron.

22.3.8 The hyperfine structure of hydrogen

The hyperfine structure of the atomic energy levels of hydrogen is due to the interaction of the magnetic
moment of the proton with magnetic fields due to the electron. It comes in two parts: (1) the dipole-dipole
interaction between the magnetic dipoles of the proton and the electron, and (2) the interaction between the
magnetic dipole of the the proton and a magnetic field created by the orbital motion of the electron in the
atom. We find the interaction energy of these effects in order.

For the dipole-dipole interaction, we note first that the magnetic moments of the electron and proton is
given by:

µe = − e

mc
Se , µp = +λp

e

Mc
Sp , (22.177)

where e is the magnitude of the charge on of the electron, m is the mass of the electron, M the mass of the
proton, and Se and Sp the spin of the electron and proton respectively. The anomalous magnetic moment
of the proton is found experimentally to give λp = +2.793. So the dipole-dipole energy is:

Hdd =
1
R3

{
µe · µp − 3 (µe · R̂ ) (µp · R̂ )

}
,

= − λpe
2 ~2

mM c2 a3

( a
R

)3 {
Se · Sp − 3 ( Se · R̂ ) ( Sp · R̂ )

}
/~2 ,

= −mc2 α4 λp

(m
M

) 1
R̄3

{
Se · Sp − 3 ( Se · R̂ ) ( Sp · R̂ )

}
/~2 ,

(22.178)

where r̂ is a unit vector from the proton to the electron and r̄ = r/a is the coordinate of the electron in
atomic units in the center of mass system. So in atomic units, the dipole-dipole Hamiltonian is:

H̄dd = α2 λp

(m
M

) 1
R̄3

{
Se · Sp − 3 ( Se · R̂ ) ( Sp · R̂ )

}
. (22.179)

So this energy is down by a factor of 2λp (m/M) ≈ 1/329 from the fine structure splitting energy.
For the dipole-orbit energy, using the Biot-Savart law, the magnetic field B at the proton as a result of

electron motion about the proton (at the origin in the center of mass system) is given by:

B =
(−eV)× (−R)

R3
=

e

m

P× r
R3

= − e

m

L
R3

, (22.180)

where L is the angular momentum of the electron in the center of mass system. So the energy of this
interaction of the magnetic field of the electron with the proton at the origin is given by:

Hdo = −µp ·B =
λpe

2 ~2

mM c2 a3

( a
R

)3

L · Sp/~2 = mc2 α4 λp

(m
M

) 1
R̄3

L · Sp/~2 . (22.181)

So measuring the energy in terms of the Bohr energy, the dipole-orbit Hamiltonian is:

H̄do = α2 λp

(m
M

) L · Sp

R̄3
. (22.182)

This is of the same order as the dipole-dipole term, so the final hyperfine splitting Hamiltonian in atomic
units is given by:

H̄hf = α2 λp

(m
M

) Ke · Sp

R̄3
, Ke = L− Se + 3 (Se · R̂) R̂ . (22.183)
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Now that we are including the spin of the proton in the dynamics of the atom, there is an additional two
degrees of freedom. So now the total angular momentum of the atom F is given by the sum:

F = L + Se + Sp . (22.184)

We will find that if we couple these angular momentum states in the following way:

|n, (`, se) j, sp, f,mf 〉 , (22.185)

matrix elements of the hyperfine splitting Hamiltonian, given in Eq. (22.183), are diagonal and independent
of mf . We work out the details in Section 21.6.3. There, we show that the hyperfine energy shift is diagonal
in f , mf , and `, independent of mf , and in atomic units, is given by:

∆Ē`,j,f = α2 λp

(m
M

) f(f + 1)− j(j + 1)− 3/4
n3 j(j + 1) (2`+ 1)

. (22.186)

where f = j ± 1/2. The energy level diagram for the n = 1 and n = 2 levels of hydrogen, including the
hyperfine energy, is shown in Fig. 22.2. The n = 1 state of hydrogen is now split into two parts with total
angular momentum f = 0 and f = 1. The f = 0 ground state is shifted lower by a factor of 6/3 whereas
the f = 1 state is shifted higher by a factor of 2/3, so the splitting of this state ∆E, in frequency units, is
given:

f = ∆E/(2π~) = fR 2α2 λp

(m
M

) 8
3

= 1421 MHz , or λ = c/f = 21 cm. (22.187)

and is the 21 cm radiation seen in the absorption spectra from the sun. For the electron in the 1s1/2 state,
the electron and the proton have spins pointing in opposite directions in the f = 0 ground state, whereas the
f = 1 state has spins pointing in the same direction, giving rise to a three-fold degeneracy. The hyperfine
splitting between the 2s1/2 levels is 178 MHz, between the 2p1/2 levels is 59.2 MHz, and between the 2p3/2

levels is 11.8 MHz. This leaves a small splitting between the 2s1/2 and the 2p1/2 f = 0 states of about 89
MHz. The measurement of the splitting between these states was a major experimental effort in the 1950’s.
A precise measurement by Lamb (ref?), found that there was a shift in energy of 1058 MHz between the
2s1/2 and 2p1/2 states which was not explainable in terms of ordinary quantum mechanics. The theoretical
calculation of this Lamb shift was finally carried out using quantum field theory methods, and is still regarded
as one of the major achievements of quantum field theory, a topic we do not discuss here.

22.3.9 The Zeeman effect

The Zeeman effect is a splitting of the energy levels of atoms as a result of the action of a static and position
independent magnetic field B with the electrons.

For hydrogen, adding the fine structure Hamiltonian from Eq. (22.169) and the hyperfine Hamiltonian
from Eq. (22.183), the complete Hamiltonian for hydrogen is now given by:

H =
(P + (e/c) A)2

2m
− e2

R
− µe ·B +Hfs +Hhf , µe = − e

mc
S , (22.188)

where e is again the magnitude of the charge on of the electron and µe is the intrinsic magnetic moment of
the electron with S the electron spin. For a constant magnetic field,

A =
1
2

B×R , so that B = ∇×A . (22.189)

Now since [ P,A ] = 0 and (P ·A) = 0, the expansion of Eq. (22.188) gives:

H =
P 2

2m
− e2

R
+

e

2mc
(B×R) ·P +

e

m c
S ·B +Hfs +Hhf + · · ·

= H0 +Hfs +Hhf +
e

2mc
( L + 2 S ) ·B + · · ·

= H0 +Hfs +Hhf +Hz + · · ·

(22.190)
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Figure 22.2: The hyperfine structure of the n = 1 and n = 2 levels of hydrogen (not to scale).

where the Zeeman Hamiltonian for hydrogen Hz is given by:

Hz = µB ( L + 2 S ) ·B/~ , with µB =
e ~

2mc
. (22.191)

Here µB is called the Bohr magneton, and has a value of 1.40 MHz/Gauss (See Table A.1 in appendix A).
We have ignored the quadratic magnetic field term in the Hamiltonian and the effect of the magnetic field
on the magnetic moment of the proton, since it is smaller than that of the electron by a factor of λp (m/M).

If we take the z-axis to be in the direction of the field B, then the Zeeman Hamiltonian is diagonal in
the states: | `,m`, se,mse

, sp,msp
〉. That is:

〈 `,m`, se,mse , sp,msp |Hz | `′,m′`, se,m′se
, sp,m

′
sp
〉 = δ`,`′δm`,m′`

δmsp ,m
′
sp
µBB (m` + 2mse

) , (22.192)

and proportional to the strength of the magnetic field B. If the magnetic field is so strong that Zeeman
energy is much larger than the fine structure and hyperfine structure, then the fine and hyperfine structure
are perturbations on top of the energy shifts given by Eq. (22.192). This takes a very large field. If, however,
the Zeeman energy is less that or on the order of the hyperfine energy, we must diagonalize the sub-matrix
for the hyperfine Hamiltonian along with the Zeeman Hamiltonian. For this diagonalization, it is easier to
carry out the diagonalization using the coupled vectors: | (`, se) j, sp, f,mf 〉. The factor of 2 multiplying the
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spin term complicates the calculation of the energy shift for the Zeeman Hamiltonian using coupled states.
We do this calculation in Section 21.6.4. For the case of the 1s1/2 hyperfine levels, using a simplified notation
| f,mf 〉 for these states, we find the matrix elements:

〈 0, 0 |Hz | 0, 0 〉 = 〈 1, 0 |Hz | 1, 0 〉 = µBB , (22.193)
〈 1, 1 |Hz | 1, 1 〉 = −〈 1, 1 |Hz | 1, 1 〉 = 〈 0, 0 |Hz | 1, 0 〉 = 〈 1, 0 |Hz | 0, 0 〉 = µBB .

So if we put E0 to be the energy of the f = 0 hyperfine state and E1 the f = 1 state, the Zeeman splitting
of the f = 1, mf = ±1 states is given by:

E± = E1 ± µBB , (22.194)

and for the coupled mf = 0 states, we must solve the eigenvalue equation:
∥∥∥∥
E0 − E µBB
µBB E1 − E

∥∥∥∥ = (E0 − E ) (E1 − E )− (µBB)2 = 0 , (22.195)

which gives two solutions:

E′± = (E0 + E1)/2±
√

[ (E0 − E1)/2 ]2 + (µBB)2 . (22.196)

We plot the Zeeman hyperfine splitting energies from Eqs. (22.196) and (22.196) in Fig. 22.3. For small values
of µBB, the hyperfine splitting dominates and the Zeeman splitting is a perturbation, governed by ignoring
the off-diagonal terms in Eq. (22.193), whereas for large values of µBB, the Zeeman splitting dominates,
governed by Eq. (22.192) and the hyperfine splitting is a perturbation.

Exercise 81. Using first order perturbation theory, find the hyperfine splitting when µBB is large, and the
states can be described by the vectors: | `,m`, se,mse

, sp,msp
〉. Show that this splitting is just ∆/2, where

∆ = 1421 MHz, as indicated in Fig. 22.3.

22.3.10 The Stark effect

The splitting of atomic energy levels as a result of a constant electric field is called the Stark effect. For a
constant electric field, the Stark Hamiltonian is given by:

HS = +eE ·R , (22.197)

where e is the magnitude of the charge on the electron, E the electric field, and R the center of mass position
of the electron. If we put E = E0 êz in the z-direction, and the electron position in units of the Bohr radius
a, the Stark Hamiltonian becomes:

HS = e aE0 R̄ C1,0(Ω) , (22.198)

where R̄ = R/a. Due to the small size of the Bohr radius, it takes an electric field on the order of 10, 000 V/m
to produce a splitting energy of 5.29 × 10−5 eV. But this is on the order of the fine structure of hydrogen.
So we consider the Stark splitting of the fine structure of hydrogen, where we can describe the states by the
coupling: |n, (`, s) j,mj 〉. Matrix elements for the same values of n are given by:

〈n, (`, s) j,mj |HS |n, (`′, s′) j′,m′j 〉
= e aE0 〈n, j | R̄ |n, j′ 〉 〈n, (`, s) j,mj |C1,0(Ω) |n, (`′, s′) j′,m′j 〉 . (22.199)

We worked out this matrix element in Section 21.6.5, and found that for the n = 1 level, the splitting
vanished. For the n = 2 fine structure levels, the only non-zero matrix elements are:

〈 2s1/2,m |C1,0(Ω) | 2p1/2,m 〉 = −2
3
m ,

〈 2s1/2,m |C1,0(Ω) | 2p3/2,m 〉 =
1
3

√
(3/2−m)(3/2 +m) =

√
2

3
,

(22.200)
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∆/2
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Figure 22.3: Zeeman splitting of the n = 1 hyperfine levels of hydrogen as a function of µBB (not to scale).

for m = ±1/2. Otherwise, the matrix elements vanish. This means that the 2p3/2 m = ±3/2 states are not
split. Now since the radial integrals are given by [2][p. 239]:

〈n, ` | R̄ |n, `− 1 〉 = −3
2
n
√
n2 − `2 , 〈 2, 1 | R̄ | 2, 0 〉 = −3

√
3 , (22.201)

we find the m = ±1/2 matrix elements are given by:

〈 2s1/2,m |HS | 2p1/2,m 〉 = 2m
√

3β ,

〈 2s1/2,m |HS | 2p3/2,m 〉 = −
√

6β ,
(22.202)

where β = e aE0. Let us introduce the basis set: | 1 〉 = | 2s1/2 〉, | 2 〉 = | 2p1/2 〉, and | 3 〉 = | 2p3/2 〉. Then
the Hamiltonian within the n = 2 fine structure levels is given, in matrix form, as:

Hm =



−∆/3 2m

√
3β −

√
6β

2m
√

3β −∆/3 0
−
√

6β 0 2 ∆/3


 , (22.203)

for m = ±1/2, and where ∆ = 4.530× 10−5 eV is the the fine structure splitting between the 2p3/2 and the
2p1/2 and 2s1/2 levels. We have chosen the zero of energy at the “center-of-mass” point so that the sum of
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2s1/2, 2p1/2

2p3/2

2∆/3

∆/3

β

Energy

Figure 22.4: Stark splitting of the n = 2 fine structure levels of hydrogen as a function of β = e aE0. ∆ is
the fine structure splitting energy. (not to scale).

the eigenvalues, λ1 +λ2 +λ3 = 0, remain zero for all values of β. The energies (λ) and eigenvectors are given
by the eigenvalue equation: Hm |λ 〉 = λ |λ 〉, from which we find the cubic equation:

λ3 −
(

9β2 +
∆2

3

)
λ− 2

27
∆3 = 0 , (22.204)

for both values of m = ±1/2. So the three eigenvalues which are the solutions of Eq. (22.204) are doubly
degenerate. The other two energies for the 2p3/2 state for m = ±3/2 are not split (in first order perturbation
theory), as is the 1s1/2 ground state. Ignoring the fine structure, the Stark energy splitting is given by:
∆Em`

= 3β m`, where m` = 0,±1. Note that for large β, solutions of Eq. (22.204) are given by λ =
0,±3β, in agreement with the result when ignoring the fine structure. The energy levels are sketched in
Fig. refem.f:Stark as a function of the electric field strength E0.

First order perturbation theory gives a vanishing energy shift for the ground state,

∆E(1)
1s1/2

= 〈 1s1/2,m |HS | 1s1/2,m 〉 = 0 . (22.205)

So the leading contribution to the ground state energy shift is a second order energy shift, given by:

∆E(2)
0 =

∑

α6=0

| 〈α |HS | 0 〉|2

E
(0)
0 − E(0)

α

. (22.206)

Here | 0 〉 and E(0)
0 are the ground state eigenvector and eigenvalue of the unperturbed hamiltonian H0. The

sum α goes over all excited states of H0. We can do this sum by a trick invented by Dalgarno and Lewis
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[12]. We first note that if we can find an operator F (R) such that:

[F (R), H0 ] | 0 〉 = HS | 0 〉 , (22.207)

then
〈α | [F (R), H0 ] | 0 〉 =

(
E

(0)
0 − E(0)

α

)
〈α |F (R) | 0 〉 = 〈α |HS | 0 〉 . (22.208)

Substituting this into Eq. (22.206), and using completeness of the states of H0, gives:

∆E(2)
0 =

∑

α 6=0

〈 0 |HS |α 〉 〈α |F (R) | 0 〉 = 〈 0 |HS F (R) | 0 〉 − 〈 0 |HS | 0 〉 〈 0 |F (R) | 0 〉

= 〈 0 |HS F (R) | 0 〉 ,
(22.209)

since 〈 0 |HS | 0 〉 = 0. So the problem reduces to finding a solution for F (R) from Eq. (22.207). It is simplest
to do this in coordinate space, where the ground state wave function for H0 is given by:

ψ0(r) =
1√
πa3

e−r/a , (22.210)

So Eq. (22.207) becomes:

~2

2m
[
∇2 (F (r) e−r/a)− F (r) (∇2 e−r/a)

]
= eE0 r cos θ e−r/a . (22.211)

Now we have:

∇2 (F (r) e−r/a) = (∇2 (F (r) ) e−r/a + 2 (∇F (r) · (∇e−r/a) + F (r) (∇2 e−r/a)

= (∇2 (F (r) ) e−r/a − 2
a

∂F (r)
∂r

e−r/a + F (r) (∇2 e−r/a) .
(22.212)

So (22.211) becomes:

∇2 F (r)− 2
a

∂F (r)
∂r

=
2meE0

~2
r cos θ . (22.213)

So if we put F (r) = f(r)z = f(r) r cos θ, then f(r) must satisfy:

r
∂2f(r)
∂r2

+
(

4− 2r
a

) ∂f(r)
∂r

− 2
a

∂f(r)
∂r

= 2κ r , κ =
meE0

~2
. (22.214)

A particular solution of this differential equation is:

f(r) = −κa
( r

2
+ a

)
. (22.215)

Putting this result into Eq. (22.209), and taking expectation values in the ground state gives:

∆E(2)
0 = −κa eE0 〈 z2 (r/2 + a) 〉 = −κaeE0

3
{
〈 r3 〉/2 + a 〈 r2 〉

}

= −a
3E2

0

3
{
〈 r̄3 〉/2 + 〈 r̄2 〉

}
= −9

4
a3E2

0 .

(22.216)

The fact that the second order perturbation theory for the Stark effect can be summed for hydrogen came as a
surprise in the 1955. We should, perhaps, consider this a result of the SO(4, 2) symmetry of the unperturbed
Hamiltonian for hydrogen.
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22.4 Atomic radiation

In this section, we discuss the interaction of time dependent electromagnetic radiation with an electron in
an atom. This is called a semi-classical approximation since the motion of the electron is treated quantum
mechanically but the electromagnetic radiation field is treated classically. As long as we can ignore individual
photon effects of the electromagnetic radiation field, this is a good approximation.

There are two phenomena we wish to discuss in a general way: (1) the absorption of radiation by an
electron in an atom, and (2) the production of radiation by an electron undergoing oscillations between
energy levels in an atom.

22.4.1 Atomic transitions

In this section, we discuss transitions of electrons between energy levels in atoms caused by electromagnetic
radiation.

22.4.2 The photoelectric effect

The photoelectric effect is the ejection of electrons by atoms caused by electromagnetic radiation.

22.4.3 Resonance fluorescence

Resonance fluorescence is often described as absorption and re-radiation of electromagnetic

22.5 Magnetic flux quantization and the Aharonov-Bohm effect

One of the striking properties of superconducting rings is that magnetic flux can get trapped in the ring in
quantized amounts. Experiments with superconductors were first done by Dever and Fairbanks in the 1960’s
and the theory worked out by Lee and Byers. Similar experiments with free electrons passing on each side of
magnetic needles go under the name of the Aharonov-Bohm effect. In both of these experiments, there is an
effect of a magnetic field on particles in regions where there is no magnetic field present; however the region
of space is not simply connected but contains “holes.” Both of these surprising results happen because of
quantum mechanics, there is no classical analogue. We first discuss the quantized flux experiments.

22.5.1 Quantized flux

In the superconductor quantized flux experiments, a ring is placed in a magnetic field, and the temperature
brought down below the superconducting temperature. The magnetic field is then turned off thus trapping
flux through the hole in the the superconducting ring. The current flowing in the ring maintains the trapped
flux indefinitely. It is this trapped flux that is observed to be in quantized amounts. Let us analyze this
experiment.

The first thing we have to understand is that the magnetic field B is completely excluded from the
superconductor so that there is no Lorentz force acting on the electrons. However, there is a vector potential
A inside the superconductor, which, in the Schrödinger picture, will have an effect on the wave function.
For r ≥ a, where where a is the inside radius of the superconducting ring, the magnetic flux is given by:

ΦB =
∫

B · dS =
∮

A · dl ,

So for a uniform field B in the z-direction, the magnetic flus is given by:

ΦB = πa2B = 2πr A , for r > a,
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In cylindrical coordinates, the vector potential is given by:

A(r) =
ΦB
2πr

êφ , for r ≥ a.

Now we can, by a gauge transformation, remove this vector potential completely from the problem. That is,
if we choose

Λ(r) =
ΦB
2π

φ ,

then the scalar potential remains the same, but the new vector potential vanishes. In cylindrical coordinates,

∇ = êr
∂

∂r
+ êφ

1
r

∂

∂φ
+ êz

∂

∂z
,

so:

A′(r) = A(r)−∇Λ(r) = 0 .

Thus the wave function is given by:

ψ(r, t) = exp
{
− iq

~c
ΦB
2π

φ
}
ψ′(r, t) .

where ψ′(r, t) is the solution of Schrödinger’s equation with no vector potential, and is single-valued about
the hole in the superconductor. But ψ′(r, t) must also be single-valued about the hole, so we must require:

q

~c
ΦB = 2π n ,

and we find that the flux ΦB is restricted to the quantized values:

ΦB =
2π~c
q

n =
π~c
e

n . (22.217)

Here, we have set q = 2e since the charge carriers in superconductors are electrons and holes pairs. The
essential feature of this analysis is that even though the vector potential for this problem can be removed by
a gauge transformation, the gauge potential depends on position and for problems where there are “holes”
in the allowed region for the electron, this can lead to physical consequences.

22.5.2 The Aharonov-Bohm effect

When an electron beam is required to pass on both sides of a region of magnetic flux contained in a tube of
radius a, the diffraction pattern produced also exhibites a phase shift due to the magnetic flux in the hole,
even though there is no magnetic field in the region where the particle is. This is called the Aharonov-Bohm
effect. Let us analyze this experiment. The wave function for an electron which can take the two paths shown
in the figure is the sum of the solutions of Schrödinger’s equation for the two paths, which, for simplicity,
we take to be plane waves given by:

ψk(r, t) = C1 e
i(kx1−ωk t) + C2 e

i(kx2−ωk t) , (22.218)

with E = ~2k2/(2m) = ~ωk, and where x1 and x2 are the two paths shown in the Figure. The wave function,
however, must be single-valued around a source of flux.

Finish this derivation!
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22.6 Magnetic monopoles

Maxwell’s equations does not preclude the possibility of the existance of magnetic monopoles. If magnetic
charge and current exists, Maxwell’s equations reads:

∇ ·E = 4πρe , ∇×B =
1
c

∂E
∂t

+
4π
c

Je

∇ ·B = 4πρm , −∇×E =
1
c

∂B
∂t

+
4π
c

Jm

These equations are invariant under a “duality” transformation in which electric and magnetic fields, charges,
and currents are rotated in an abstract vector space. Consider the duality transformation, given by:

(
E′

B′

)
=
(

cosχ sinχ
− sinχ cosχ

)(
E
B

)
,

with similar expressions for rotation of the coordinates. Here χ represents the “rotation” of E into B. Both
the electric and magnetic sources here obey conservation equations.

Now according to these equations, a single static magnetic “charge” qm, can generate a coulomb-like
magnetic field. Thus we find:

B =
qm
r2

êr .

We can still define the vector potentials by

E(r, t) = −∇φ(r, t)− 1
c

∂A(r, t)
∂t

,

B(r, t) = ∇×A(r, t) .

However for monopoles, the second of these contradicts Maxwell’s equations if A(r) is a single valued vector
function of r. We can get around this problem by constructing a double valued vector potential, valid in two
regions of space. By examining the form of the curl in spherical coordinates, we see that we can obtain the
correct B from the two expressions,

AI(θ) = +
{ qm(1− cos θ)

r sin θ
}

êφ , for 0 ≤ θ ≤ π − ε,

AII(θ) = −
{ qm(1 + cos θ)

r sin θ

}
êφ , for ε ≤ θ ≤ π.

However in the overlap region, ε ≤ θ ≤ π− ε, the two expressions for A give the same B field, and therefore
must be related by a gauge transformation,

AII(r) = AI(r)−∇Λ(r) .

Using the expression for the gradient in spherical coordinates, we find that the gauge field Λ(φ) is given by:

Λ(φ) = 2qm φ . (22.219)

Now suppose a second particle has an electric charge qe. The Lagrangian for the interaction of this
electrically charged particle with the vector potential associated with the magnetic monopole is given by:

L = qe v ·A(r, t)/c

At first, it might be surprising that there is an interaction between a magnetic monopole charge and an
electric monopole charge. This is because in the Schrödinger representation, the electric charge interects by
means of the vector potential, and the vector potential comes from the magnetic monopole. However in the
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overlap region where the two vector potentials are related by a gauge transformation, the wave functions in
the Schrödinger picture in the two gauges are given by:

ψII(r, t) = exp
{
−i2qeqm

~c
φ
}
ψI(r, t) .

Therefore, since both ψI and ψII must be single valued, we must have

2qeqm
~c

= n , for n = ±1,±2, . . . ,. (22.220)

This means that if a monopole exists, the electric charge must be quantized:

qe
e

=
~c
2e2

e

qm
n =

1
2α

e

qm
n ,

where α = e2/~c = 1/137 is the fine structure constant. As a result of this analysis, we are led to say that if
electric charge is quantized in units of e, and if this is due to the existence of magnetic monopoles, then the
magnetic charge of the monopole must be such that 2α qm = e. (Quarks, we think, have fractional charges!)

In our arguement, we only had to suppose that somewhere in the universe there existed a magnetic
monopole that can interact with any charged particle. Then gauge consistency required that the electric
charge is quantized. This remarkable results was first given by Dirac in 1931. Generally duality theories in
particle physics predict the existance of magnetic monopoles; since they haven’t been observed, either such
theories are incorrect or the magnetic monopoles have been banished to the edges of the universe.

[This section needs further work as it is hard to follow. I am not sure it is worth it to include since this
topic doesn’t seem to be very hot now-a-days, and no magnetic monopoles have ever been found.]
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Chapter 23

Scattering theory

The scattering of particles has been one of the important tools to study the fundamental forces in nature.
Thus it is important to understand how these experiments are carried out and what information can be
obtained from them. Of course, scattering takes place naturally in physical processes, and so we need to
know what happens during these events. In this chapter, we illustrate scattering by detailed analysis of
several examples.

23.1 Propagator theory

23.1.1 Free particle Green function in one dimension

In example 22 on page 40 and in remark 11, we found the Dirac bracket 〈 q, t | q′t′ 〉 in the Heisenberg
representation for a free particle in the coordinate representation:

〈 q, t | q′t′ 〉 =
√

m

2πi~ (t− t′) exp
{
i

~
m

2
(q − q′)2

(t− t′)

}
. (23.1)

We can use this bracket to find the free particle wave function at time t, given the free particle wave function
at time t′. From the properties of the Dirac brackets, we have:

ψ(q, t) = 〈 q, t |ψ 〉 =
∫ +∞

−∞
dq′ 〈 q, t | q′, t′ 〉 〈 q′, t′ |ψ 〉

=
√

m

2πi~ t

∫ +∞

−∞
dq′ exp

{
i

~
m

2
(q − q′)2

(t− t′)

}
ψ(q′, t′) .

(23.2)

Note that there is an integration only over q′, not t′. So the bracket 〈 q, t | q′t′ 〉 is a Green function for a free
particle. Let us define a Green function G(q, t; q′t′) by the equation:

{
i~

∂

∂t
− ~2

2m
∂2

∂q2

}
G(q, t; q′, t′) =

~
i
δ(q − q′) δ(t− t′) . (23.3)

The solution of this equation can be found by a double fourier transform. We let:

G(q, t; q′, t′) =
∫ +∞

−∞

dp
2π~

∫ +∞

−∞

dE
2π~

G̃(p,E) ei[ p (q−q′)−E (t−t′)]/~ . (23.4)

Then since ∫ +∞

−∞

dp
2π~

∫ +∞

−∞

dE
2π~

ei[ p (q−q′)−E (t−t′)]/~ = δ(q − q′) δ(t− t′) , (23.5)
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we find that G̃(p,E) is given by the solution of:
{
E − p2

2m

}
G̃(p,E) =

~
i
. (23.6)

There is no solution to this equation when E = p2/(2m). However we can find solutions by first allowing
E to be a complex variable. Then we introduce a small imaginary part ±iε to E, and take the limit ε → 0
after the integration. This gives two solutions, called the retarded (+) and advanced (−) solutions:

G̃(±)(p,E) =
~
i

1
E − p2/(2m)± iε . (23.7)

For the retarded Green function G̃(+)(q, t; q′, t′), we find:

G(+)(q, t; q′, t′) =
~
i

∫ +∞

−∞

dp
2π~

∫ +∞

−∞

dE
2π~

ei[ p (q−q′)−E (t−t′)]/~

E − p2/(2m) + iε

= Θ(t− t′)
∫ +∞

−∞

dp
2π~

exp
{
i

~

[
p (q − q′)− p2

2m
(t− t′)

]}

= Θ(t− t′) 〈 q, t | q′, t′ 〉 ,

(23.8)

where 〈 q, t | q′, t′ 〉 is given by Eq. (23.1). For the advanced Green function G(−)(q, t; q′, t′), we find:

G(−)(q, t; q′, t′) =
~
i

∫ +∞

−∞

dp
2π~

∫ +∞

−∞

dE
2π~

ei[ p (q−q′)−E (t−t′)]/~

E − p2/(2m)− iε

= −Θ(t′ − t)
∫ +∞

−∞

dp
2π~

exp
{
i

~

[
p (q − q′)− p2

2m
(t− t′)

]}

= −Θ(t′ − t) 〈 q, t | q′, t′ 〉 .

(23.9)

So we find that:

〈 q, t | q′, t′ 〉 = θ(t− t′)G(+)(q, t; q′, t′)− θ(t′ − t)G(−)(q, t; q′, t′) =

{
+G(+)(q, t; q′, t′) for t > t′,
−G(−)(q, t; q′, t′) for t < t′.

(23.10)

23.2 S-matrix theory

23.3 Scattering from a fixed potential

23.4 Two particle scattering

We begin by studying the scattering between two distinguishable, spinless particles of mass m1 and m2. We
suppose, for example, that particle 1 is incident along the z direction in the laboratory with kinetic energy
E1 to a target particle 2 at rest at the origin, as illustrated in the figure. We assume that the interaction
between the two particles can be represented by a potential that depends only on the magnitude of the
distance between them. For this reason, the problem is best solved in the center of mass coordinate system.
The relation between these systems is given by:

R =
m1

M
r1 +

m2

M
r2 , r1 = R +

µ

m1
r ,

r = r1 − r2 , r2 = R− µ

m2
r ,
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or where the total mass M = m1 +m2 and the reduced mass µ = m1m2/M . We have also define:

∇R = ∇1 + ∇2 , ∇1 =
m1

M
∇R + ∇r ,

∇r =
µ

m1
∇1 −

µ

m2
∇2 , ∇2 =

m2

M
∇R −∇r .

With these definitions, we can show that

r1 ·∇1 + r2 ·∇2 = R ·∇R + r ·∇r

~2

2m1
∇2

1 +
~2

2m2
∇2

2 =
~2

2M
∇2
R +

~2

2µ
∇2
r .

So it is useful the define total and relative wave numbers in the same way as the nabla operators:

K = k1 + r2 , k1 =
m1

M
K + k ,

k =
µ

m1
k1 −

µ

m2
k2 , k2 =

m2

M
K− k .

Then we can prove that

k1 · r1 + k2 · r2 = K ·R + k · r ,

E =
~2k2

1

2m1
+

~2k2
1

2m1
=

~2K2

2M
+

~2k2

2µ
. (23.11)

The Hamiltonian for this problem in the two systems is given by:

H = − ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V (|r1 − r2|) , (23.12)

= − ~2

2M
∇2
R −

~2

2µ
∇2
r + V (r) . (23.13)

So we can separate variables for the wave function for Schrödinger’s time independent equation in the relative
and center of mass system by the ansaz:

ψK,k(R, r) = eiK·R ψk(r) , (23.14)

where ψk(r) satisfies: {
− ~2

2µ
∇2
r + V (r)

}
ψk(r) =

~2k2

2µ
ψk(r) . (23.15)

Now as r →∞, we assume that V (r)→ 0 sufficiently rapidly, so that solutions of (23.15) become solutions
for a free particle. We want to require this to be the sum of an incident wave and a scattered wave. Thus
we require solutions of (23.15) to have the asymptotic form,

ψk(r, θ, φ) ∼ eik·r + fk(θ)
eikr

r
. (23.16)

Here cos θ = r̂ · k̂, the angle between the incident particle in the relative system (this is the z-axis in our
coordinate system) and the scattering direction r̂. The total energy is given by (23.11), which, for a given
k1 and k2 define both K and k. Requirement (23.16) gives for the incident and scattering flux:

jinc =
(

~k
m

)
,

jscat ∼
(

~k
m

) |fk(θ)|2
r2

r̂ ,
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and thus the differential scattering cross section is given by:

dσ
dΩ

=
4πr2 jscat

jinc
= |fk(θ)|2 .

So the physics is contained in the scattering amplitude fk(θ), and we turn now to its calculation in terms of
the potential function V (r) in Schrödinger’s equation (23.15). We will show that it depends only on k and
cos θ.

Since the potential in (23.15) depends only on r, we can separate variables, and write

ψk(r, θ, φ) =
∞∑

`=0

∑̀

m=−`
Rk`(r)Y`m(θ, φ) , (23.17)

where Y`m(r̂) are the spherical harmonics and Rk`(r) satisfies the radial equation,
{
− 1
r2

∂

∂r

(
r2 ∂

∂r

)
− `(`+ 1)

r2
+ w(r)

}
Rk`(r) = k2Rk`(r) , (23.18)

where w(r) is defined by:

V (r) =
~2

2µ
w(r) . (23.19)

The solutions Rk`(r) of (23.18) are independent of m.

Example 41. For a square well potential, given by:

V (r) =




−V0 = − ~2

2µ
w0 , for r ≤ a,

0 , for r > a,
(23.20)

solutions of (23.18), which are regular at the origin, are given by:

Rk`(r) =

{
D`(k) j`(κr) , for r ≤ a,
A`(k) j`(kr) +B`(k)n`(kr) , for r > a,

(23.21)

where κ =
√
k2 + w0, and j` and n` are the regular and irregular (real) spherical Bessel functions. The

coefficients A`(k), B`(k), and D`(k) have to be picked so that the solution Rk`(r) is continuous and has
continuous derivatives at r = a. This gives the requirements,

D`(k) j`(κa) = A`(k) j`(ka) +B`(k)n`(ka) , (23.22)
κD`(k) j′`(κa) = k A`(k) j′`(ka) + k B`(k)n′`(ka) . (23.23)

So if we put

A`(k) = C`(k) cos δ`(k) ,
B`(k) = −C`(k) sin δ`(k) , (23.24)

which defines the phase shifts δ`(k), then solutions of (23.22) and (23.23) are given by:

tan δ`(k) =
κj′`(κa)j`(ka)− kj`(κa)j′`(ka)
κj′`(κa)n`(ka)− kj`(κa)n′`(ka)

, (23.25)

D`(k) = C`(k) k [ j′`(ka)n`(ka)− j′`(ka)n`(ka) ] /N`(k) , (23.26)

N`(k) =
√
X2
` (k) + Y 2

` (k) , (23.27)

X`(k) = κj′`(κa)j`(ka)− kj`(κa)j′`(ka) , (23.28)
Y`(k) = κj′`(κa)n`(ka)− kj`(κa)n′`(ka) , (23.29)

which gives D`(k) in terms of C`(k), which will be fixed by the asymptotic conditions below.
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As long as V (r) → 0 as r → ∞ sufficiently rapidly, the radial solution is given by a linear combination
of the free particle solutions. Thus for any potential that satisfies this criterion, as r → ∞, Rk`(r) has the
asymptotic form,

Rk`(r) ∼ A`(k) j`(kr) +B`(k)n`(kr) ,
= C`(k) { cos δ`(k) j`(kr)− sin δ`(k)n`(kr) } ,
∼ C`(k) { cos δ`(k) sin(kr − `π/2) + sin δ`(k) cos(kr − `π/2) } /kr ,
= C`(k) { sin(kr − `π/2 + δ`(k)) } /kr ,

where we have used the asymptotic forms,

j`(kr) ∼ + sin(kr − `π/2)/(kr) , as r →∞. (23.30)
n`(kr) ∼ − cos(kr − `π/2)/(kr) , as r →∞. (23.31)

Therefore as r →∞, the solution to Schrödinger’s equation is given by:

ψk(r, θ, φ) ∼
∞∑

`=0

∑̀

m=−`
C`(k)

sin(kr − `π/2 + δ`(k))
kr

Y`m(θ, φ)

=
∞∑

`=0

∑̀

m=−`
C`(k)

{
ei[kr−`π/2+δ`(k)] − e−i[kr−`π/2+δ`(k)]

2ikr

}
Y`m(θ, φ) , (23.32)

which contains both ingoing and outgoing waves. On the other hand, from the asymptotic form of the wave
function, we find:

ψk(r, θ) ∼ eikz + fk(θ)
eikr

r

= 4π
∞∑

`=0

∑̀

m=−`
Y ∗`m(k̂) i`j`(kr)Y`m(θ, φ) + fk(θ)

eikr

r

∼ 4π
∞∑

`=0

∑̀

m=−`
Y ∗`m(k̂) i`

{
sin(kr − `π/2)

kr

}
Y`m(θ, φ) + fk(θ)

eikr

r

=
∞∑

`=0

∑̀

m=−`
Y ∗`m(k̂) i`

{
ei[kr−`π/2] − e−i[kr−`π/2]

2ikr

}
Y`m(θ, φ)

+ fk(θ)
eikr

r
(23.33)

Here, we have used the relation

eik·r =
∞∑

`=0

(2`+ 1) i`j`(kr)P`(k̂ · r̂) , (23.34)

= 4π
∞∑

`=0

∑̀

m=−`
i`j`(kr)Y ∗`m(k̂)Y`m(r̂) . (23.35)

Comparing coefficients of the ingoing wave ( e−ikr ) in equations (23.32) and(23.33), we find:

C`(k) = 4πY ∗`m(k̂) i` eiδ`(k) . (23.36)
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This gives, for the coefficients of the outgoing wave ( eikr ),

fk(θ) =
∞∑

`=0

∑̀

m=−`

e2iδ`(k) − 1
2ik

Y ∗`m(k̂)Y`m(r̂) ,

=
1
k

∞∑

`=0

(2`+ 1) eiδ`(k) sin δ`(k)P`(cos θ) . (23.37)

So the scattering amplitude depends only on cos θ, as expected. Eq. (23.37) is exact. We only need the
phase shifts δ`(k), which must be found by solving the radial Schrödinger equation for a given potential.

Note the different forms for the partial scattering amplitude:

f`(k) =
eiδ`(k) sin δ`(k)

k
=

1
k(cot δ`(k)− i) , (23.38)

and that |2ikf`(k) + 1| = 1 (It’s always on the unit circle!). At points where δ`(k) is a multiple of π/2, the
scattering amplitude is maximal.

Example 42 (The optical theorem). Show that:

σ =
∫
|fk(θ)|2 dΩ =

4π
k2

∞∑

`=0

(2`+ 1) sin2 δ`(k) =
4π
k

Im{fk(0)} . (23.39)

The optical theorem states that the total probability for scattering of a particle is equal to the loss of
probability from the incident beam. (Show this also.)

From classical arguements, we can understand how many phase shifts must be found for a given incident
wave number k. In classical scattering, the angular momentum is related to the impact parameter by
` = kb < ka, where a is the range of the potential (the radius, for the case of a square well). So if ka ∼ 10,
about 10 phase shifts must be calculated to obtain an accurate result for the scattering amplitude.

Example 43. Show that for a square well, the phase shifts for `� ka can be neglected.

Example 44. For low incident energy, ka � 1, find the s-wave phase shift for the square well, and show
that it has the expansion

k cot δ0(k) = − 1
a0

+
1
2
r0 k

2 + · · · (23.40)

Here a0 is called the “scattering length,” and r0 the “effective range.” Find the cross section using (23.40).
Note that the scattering amplitude at k = 0 can be found directly from the s-wave Schrödinger’s equation.

The behavior of the phase shifts as a function of k gives useful information about the general properties
of the potential and the nature of the scattering process. Levinson’s theorem relates the value of the phase
shifts at k = 0 to the number of bound states for a given angular momentum `:

Theorem 58 (Levinson’s theorem). This curious theorem states that if the phase shifts are normalized such
that δ`(k)→ 0 at k →∞, and if the phase shifts are then followed continuously into the origin where k = 0,
the phase shift at k = 0 is given by a multiple of π,

δ`(0) = Nπ , (23.41)

where N is the number of bound states that the potential can support for angular momentum `.
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This theorem is illustrated for a square well for ` = 0 and ` > 0 in Fig. 1. Notice that for ` = 0, if the
potential does not quite bind, the phase shift never quite gets to π/2, whereas if the potential barely binds
one state, the phase shift increases through π/2, reaching a value of π at the origin.

Discussion of scattering length.
For ` > 0, if the potential doesn’t quite bind, the phase shift can pass through π/2 with a negative slope

then again with a positive slope, winding up at δ`(0) = 0, whereas if the potential barely binds one state, the
phase shift again only increases through π/2. We will show below that we can associate a classical resonance
with the case when the phase shift goes through π/2 with a positive slope.

We will see an illustration of this theorem in proton-neutron scattering at low energy in what follows
next.

Example 45. Illustrate Levenson’s theorem for the square well for low energy s-wave scattering by plotting
the phase shift δ0(k) vs k for the case when there is “almost” one bound state, and when there is one bound
state.

23.4.1 Resonance and time delays

Here we introduce wave packets for the incident beam, and show that the asymptotic form of the wave
function provides a description of the time dependence of the scattering process. We also discuss time delays
and resonance phenomena here.

23.5 Proton-Neutron scattering

The potential between protons and neutrons is strongly dependent on the relative spin orientation of the
particles. In fact, if the particles is in the singlet state they are unbound, but in the triplet state they can
bind, and, in such a state, become the deuteron. The interaction is described by the potential,

V (|r1 − r2|,σ1,σ2) = V0(|r1 − r2|)P0(σ1,σ2) + V1(|r1 − r2|)P1(σ1,σ2) , (23.42)

where the singlet and triplet projection operators P0 and P1 are given by:

P0(σ1,σ2) = χ00(1, 2)χ†00(1, 2) =
1− σ1 · σ2

4
, (23.43)

P1(σ1,σ2) =
1∑

M=−1

χ1M (1, 2)χ†1M (1, 2) =
3 + σ1 · σ2

4
. (23.44)

We follow the same method as described in the preceding section. We take particle 1 to be incident on
particle 2 at rest, and change variables to relative and center of mass coordinates. Solutions to Schrödinger’s
equation can then be written as

ψK,k(R, r) = eiK·R ψk(r) , (23.45)

ψk(r) =
∑

SM

CSM (p̂1, p̂2)ψk,S(r)χSM (1, 2) , (23.46)

where ψk,S(r) is the solution of
{
− ~2

2µ
∇2
r + VS(r)

}
ψk,S(r) =

~2k2

2µ
ψk,S(r) . (23.47)

with asymptotic conditions,

ψk,S(r) ∼ eik·r + fk,S(r̂)
eikr

r
, as r →∞, (23.48)
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The scattering amplitudes fk,S(r̂) are given in terms of the phase shifts δ`S(k) by

fk,S(r̂) =
1
k

∞∑

`=0

(2`+ 1) eiδ`S(k) sin δ`S(k)P`(cos θ) , (23.49)

which must be found by solving the radial part of Schrödinger’s equation (23.47) for each S-dependent
potential, exactly as in the spinless case discussed in the previous section.

The coefficients CSM (p̂1, p̂2) in (23.46) are to be fixed by the initial spin polarizations of the particles,
p̂1 and p̂2. Thus the incident and scattered waves are given by:

ψk, inc(r) =
∑

SM

CSM (p̂1, p̂2)χSM (1, 2) eik·r , (23.50)

ψk, scat(r) =
∑

SM

CSM (p̂1, p̂2)χSM (1, 2) fk,S(r̂)
eikr

r
. (23.51)

We take the incident spinor to be the product of two spinors for each particle with polarization vectors p̂1

and p̂2:

χp̂1(1) =
∑

m1

Cm1(p̂1)χm1(1) =
(

cos(θ1/2)
eiφ1 sin(θ1/2)

)
,

χp̂2(2) =
∑

m2

Cm2(p̂2)χm2(2) =
(

cos(θ2/2)
eiφ2 sin(θ2/2)

)
.

Then we have
χp̂1(1)χp̂2(2) =

∑

SM

CSM (p̂1, p̂2)χSM (1, 2) , (23.52)

which we can invert to find the coefficients CSM (p̂1, p̂2):

CSM (p̂1, p̂2) =
∑

m1,m2

〈m1m2 |SM 〉Cm1(p̂1)Cm2(p̂2) . (23.53)

The final spinor is given by:

fk(r̂,p̂′1, p̂
′
2, p̂1, p̂2)χscat(1, 2)

=
∑

SM

fk,S(r̂)CSM (p̂1, p̂2)χSM (1, 2) ,

= [ fk,0(r̂)P0(σ1,σ2) + fk,1(r̂)P1(σ1,σ2) ]
∑

SM

CSM (p̂1, p̂2)χSM (1, 2) ,

= [ fk,0(r̂)P0(σ1,σ2) + fk,1(r̂)P1(σ1,σ2) ]χp̂1(1)χp̂2(2) .

The scattering amplitude fk(r̂, p̂′1, p̂
′
2, p̂1, p̂2) is introduced here so that the scattered spinor χscat(1, 2) can

be normalized to one. Thus if we take for the scattered spinor the form,

χscat(1, 2) = χp̂′1
(1)χp̂′2

(2) , (23.54)

the scattering amplitude fk(r̂) is given by:

fk(r̂,p̂′1, p̂
′
2, p̂1, p̂2) =

χ†p̂′1
(1)χ†p̂′2(2) [ fk,0(r̂)P0(σ1,σ2) + fk,1(r̂)P1(σ1,σ2) ]χp̂1(1)χp̂2(2) , (23.55)
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and the differential scattering cross section is then given by:

dσ
dΩ

= |fk(r̂, p̂′1, p̂
′
2, p̂1, p̂2)|2

= Tr1Tr2

{
ρp̂′1

(1)ρp̂′2
(2)[ f∗k,0(r̂)P0(σ1,σ2) + f∗k,1(r̂)P1(σ1,σ2) ]

× ρp̂1(1)ρp̂2(2)[ fk,0(r̂)P0(σ1,σ2) + fk,1(r̂)P1(σ1,σ2) ]
}

(23.56)

where the density matricies ρ are given by:

ρp̂1(1) = χp̂1(1)χp̂1†(1) =
1
2

(1 + p̂1 · σ1)

ρp̂2(2) = χp̂2(2)χp̂2†(2) =
1
2

(1 + p̂2 · σ2)

ρp̂′1
(1) = χp̂′1

(1)χp̂′1
†(1) =

1
2

(1 + p̂′1 · σ1)

ρp̂′2
(2) = χp̂′2

(2)χp̂′2
†(2) =

1
2

(1 + p̂′2 · σ2)

Eq. (23.56) is the formula we seek.
It is not clear that the final spinor is just a simple direct product of two spinors. This is the subject of

the next example.

Example 46. Find the density matrix for the scattered wave,

ρscatt(1, 2) = χscat(1, 2)χ†scat(1, 2) ,

in terms of fk,0(r̂), fk,1(r̂), p̂1, and p̂2. Show that ρscatt(1, 2) is given by the direct product of density
matrices for the two particles:

ρscatt(1, 2) = ρp̂′1
(1)ρp̂′2

(2) =
1
2

(1 + p̂′1 · σ1)
1
2

(1 + p̂′2 · σ2) . (23.57)

Find p̂′1 and p̂′2. [This problem might be too difficult! I believe that the final density matrix is not just the
simple product of two density matrices, and that there will be tensor correlations. Why don’t the books
discuss this?]

References
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Appendix A

Table of physical constants

speed of light in vacuum c 2.997 924 58×108 m/s
Planck constant h 6.626 069 3(11)×10−34 J-s
Planck constant, reduced ~ ≡ h/(2π) 1.054 571 68(18)×10−34 J-s

6.582 119 15(56)×10−22 MeV-s
electron charge magnitude e 1.602 176 53(14)×10−19 C

4.803 204 41(41)×10−10 esu
conversion constant ~ c 197.326 968(17) eV-nm

197.326 968(17) MeV-fm

electron mass me 0.510 998 918(44) MeV/c2

9.109 3826(16)×10−31 kg
proton mass mp 938.272 029(80) MeV/c2

1.672 621 71(29)×10−27 kg
1.007 276 466 88(13) u
1836.152 672 61(85) me

Bohr magneton µB = e~/(2mec) 5.788 381 804(39)×10−11 MeV/T
1.40 MHz/Gauss

nuclear magneton µN = e~/(2mpc) 3.152 451 259(21)×10−14 MeV/T

Table A.1: Table of physical constants from the particle data group.
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APPENDIX A. TABLE OF PHYSICAL CONSTANTS

1. Physical constants 1

1. PHYSICAL CONSTANTS
Table 1.1. Reviewed 2005 by P.J. Mohr and B.N. Taylor (NIST). Based mainly on the “CODATA Recommended Values of the Fundamental
Physical Constants: 2002” by P.J. Mohr and B.N. Taylor, Rev. Mod. Phys. 77, 1 (2005). The last group of constants (beginning with the Fermi
coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard-deviation uncertainties
in the last digits; the corresponding fractional uncertainties in parts per 109 (ppb) are given in the last column. This set of constants (aside
from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 2002
CODATA set of constants may be found at http://physics.nist.gov/constants

Quantity Symbol, equation Value Uncertainty (ppb)

speed of light in vacuum c 299 792 458 m s−1 exact∗

Planck constant h 6.626 0693(11)×10−34 J s 170
Planck constant, reduced � ≡ h/2π 1.054 571 68(18)×10−34 J s 170

= 6.582 119 15(56)×10−22 MeV s 85
electron charge magnitude e 1.602 176 53(14)×10−19 C = 4.803 204 41(41)×10−10 esu 85, 85
conversion constant �c 197.326 968(17) MeV fm 85
conversion constant (�c)2 0.389 379 323(67) GeV2 mbarn 170

electron mass me 0.510 998 918(44) MeV/c2 = 9.109 3826(16)×10−31 kg 86, 170
proton mass mp 938.272 029(80) MeV/c2 = 1.672 621 71(29)×10−27 kg 86, 170

= 1.007 276 466 88(13) u = 1836.152 672 61(85) me 0.13, 0.46
deuteron mass md 1875.612 82(16) MeV/c2 86
unified atomic mass unit (u) (mass 12C atom)/12 = (1 g)/(NA mol) 931.494 043(80) MeV/c2 = 1.660 538 86(28)×10−27 kg 86, 170

permittivity of free space ε0 = 1/µ0c
2 8.854 187 817 . . . ×10−12 F m−1 exact

permeability of free space µ0 4π × 10−7 N A−2 = 12.566 370 614 . . . ×10−7 N A−2 exact

fine-structure constant α = e2/4πε0�c 7.297 352 568(24)×10−3 = 1/137.035 999 11(46)† 3.3, 3.3
classical electron radius re = e2/4πε0mec

2 2.817 940 325(28)×10−15 m 10
(e− Compton wavelength)/2π −λe = �/mec = reα

−1 3.861 592 678(26)×10−13 m 6.7
Bohr radius (mnucleus =∞) a∞ = 4πε0�2/mee

2 = reα
−2 0.529 177 2108(18)×10−10 m 3.3

wavelength of 1 eV/c particle hc/(1 eV) 1.239 841 91(11)×10−6 m 85
Rydberg energy hcR∞ = mee

4/2(4πε0)2�2 = mec
2α2/2 13.605 6923(12) eV 85

Thomson cross section σT = 8πr2
e/3 0.665 245 873(13) barn 20

Bohr magneton µB = e�/2me 5.788 381 804(39)×10−11 MeV T−1 6.7
nuclear magneton µN = e�/2mp 3.152 451 259(21)×10−14 MeV T−1 6.7
electron cyclotron freq./field ωe

cycl/B = e/me 1.758 820 12(15)×1011 rad s−1 T−1 86
proton cyclotron freq./field ωp

cycl/B = e/mp 9.578 833 76(82)×107 rad s−1 T−1 86

gravitational constant‡ GN 6.6742(10)×10−11 m3 kg−1 s−2 1.5× 105

= 6.7087(10)×10−39 �c (GeV/c2)−2 1.5× 105

standard gravitational accel. gn 9.806 65 m s−2 exact

Avogadro constant NA 6.022 1415(10)×1023 mol−1 170
Boltzmann constant k 1.380 6505(24)×10−23 J K−1 1800

= 8.617 343(15)×10−5 eV K−1 1800
molar volume, ideal gas at STP NAk(273.15 K)/(101 325 Pa) 22.413 996(39)×10−3 m3 mol−1 1700
Wien displacement law constant b = λmaxT 2.897 7685(51)×10−3 m K 1700
Stefan-Boltzmann constant σ = π2k4/60�3c2 5.670 400(40)×10−8 W m−2 K−4 7000

Fermi coupling constant∗∗ GF /(�c)3 1.166 37(1)×10−5 GeV−2 9000

weak-mixing angle sin2 θ̂(MZ) (MS) 0.23122(15)†† 6.5× 105

W± boson mass mW 80.403(29) GeV/c2 3.6× 105

Z0 boson mass mZ 91.1876(21) GeV/c2 2.3× 104

strong coupling constant αs(mZ) 0.1176(20) 1.7× 107

π = 3.141 592 653 589 793 238 e = 2.718 281 828 459 045 235 γ = 0.577 215 664 901 532 861

1 in ≡ 0.0254 m

1 Å ≡ 0.1 nm

1 barn ≡ 10−28 m2

1 G ≡ 10−4 T

1 dyne ≡ 10−5 N

1 erg ≡ 10−7 J

1 eV = 1.602 176 53(14)× 10−19 J

1 eV/c2 = 1.782 661 81(15)× 10−36 kg

2.997 924 58× 109 esu = 1 C

kT at 300 K = [38.681 684(68)]−1 eV
0 ◦C ≡ 273.15 K

1 atmosphere ≡ 760 Torr ≡ 101 325 Pa

∗ The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792 458 of a second.
† At Q2 = 0. At Q2 ≈ m2

W the value is ∼ 1/128.
‡ Absolute lab measurements of GN have been made only on scales of about 1 cm to 1 m.
∗∗ See the discussion in Sec. 10, “Electroweak model and constraints on new physics.”
†† The corresponding sin2 θ for the effective angle is 0.23152(14).

Table A.2: Table of physical constants from the particle data group.
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Appendix B

Operator Relations

B.1 Commutator identities

The commutator and anti-commutator of two operators are written thus:

[A,B ] = AB −BA ,
{A,B } = AB +BA .

Sometimes we use the notation [A,B ]∓ for commutators (−) and anti-commutators (+). It is easy to verify
the following elementary commutator relations:

[A,αB + βC ] = α [A,B ] + β [A,C ]
[A,BC ] = [A,B ]C +B [A,C ]
[AB,C ] = A [B,C ] + [A,C ]B

[AB,CD ] = A [B,C ]D + [A,C ]BD + CA [B,D ] + C [A,D ]B
[A, [B,C ] ] + [B, [C,A ] ] + [C, [A,B ] ] = 0 (Jacobi’s identity)

[A,Bn ] = nBn−1 [A,B ]

[An, B ] = nAn−1 [A,B ]

For the special case of Q and P , obeying [Q,P ] = i~, we find:

[P, F (Q) ]/i~ = −dF (Q)
dQ

(B.1)

[Q,F (P ) ]/i~ = +
dF (P )
dP

(B.2)

If [A,A† ] = c where c is a number and A | 0 〉 = 0, a useful identity is:

[ (A )n, (A† )m ] | 0 〉 =
m!

(m− n)!
cn (A† )m−n | 0 〉 , for m ≥ n, (B.3)

from which we also find:

〈 0 | [ (A )n, (A† )m ] | 0 〉 = δn,m n! cn . (B.4)
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B.2 Operator functions

Functions f of operators are defined by their power series expansions:

f(A) =
∞∑

n=0

CnA
n , (B.5)

where Cn is a number. A function f of a set of commuting operators Ai, i = 1, 2, . . . , N is defined by a
multiple power series expansion:

f(A1, A2, . . . , AN ) =
∞∑

n1,n2,...,nN =0

Cn1,n2,...,nN
An1

1 An2
2 · · ·AnN

N . (B.6)

Definition 42 (Homogeneous functions). Let f(A1, A2, . . . , AN ) be a smooth function of N commuting
operators Ai, i = 1, 2, . . . , N . It is a homogeneous function of degree n if it obeys the relation:

f(λA1, λA2, . . . , λAN ) = λn f(A1, A2, . . . , AN ) . (B.7)

In terms of its power series expansion, the coefficient Cn1,n2,...,nN
for a homogeneous function vanishes unless

n1 + n2 + · · ·+ nN = n.

Example 47. The exponential operator B = eA is defined by the power series:

B = eA = 1 +
A

1!
+
A2

2!
+
A3

3!
+ · · · = lim

N→∞

(
1 +

A

N

)N
. (B.8)

Determinants and traces of operators are defined in terms of their eigenvalues. For example, for B defined
above,

det{B} =
∏

i

bi = e(
P

i ai) = eTr {A} . (B.9)

We note the determinant and trace properties. For and operators A and B, we have

det{AB} = det{A} det{B} , (B.10)
Tr {AB} = Tr {BA} , (B.11)

Tr {A+B} = Tr {A}+ Tr {B} . (B.12)

If U is unitary and H hermitian, then

U = eiH =
1 + i tan(H/2)
1− i tan(H/2)

. (B.13)

B.3 Operator theorems

Theorem 59 (Baker-Campbell-Hausdorff). In general, we have the expansion:

eABe−A = B + [A,B] +
1
2!

[A, [A,B]] +
1
3!

[A, [A, [A,B]]] + · · · (B.14)

Proof. We follow the proof given in Merzbacher [1][page 167]. Let f(λ) be given by

f(λ) = eλABe−λA = f(0) +
f ′(0)

1!
λ+

f ′′(0)
2!

λ2 +
f ′′′(0)

3!
λ3 + · · ·
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Then we find:

f(0) = B

f ′(0) = [A,B]
f ′′(0) = [A, [A,B]] , etc.

Setting λ = 1 proves the theorem.

Theorem 60 (exponent rule). This formula states that:

exp{A} exp{B} = exp
{
A+B +

1
2

[A,B] +
1
12

( [A, [A,B]]− [B, [B,A]] ) + · · ·
}
. (B.15)

If A and B both commute with their commutator,

[A, [A,B]] = [B, [A,B]] = 0 ,

then the formula states that:
eA+B = eAeBe−

1
2 [A,B] = eBeAe+ 1

2 [A,B] . (B.16)

Proof. We can use the proof given in Merzbacher[1][Exercise 8.18, p. 167]) for the case when [A, [A,B]] =
[B, [A,B]] = 0. For this case, we let

f(λ) = eλAeλBe−λ(A+B) .

Differenting f(λ) with respect to λ gives:

df(λ)
dλ

= λ[A,B]f(λ) .

Solution of this differential equation gives (B.16).

Theorem 61 (Euler’s theorem on homogeneous functions). Let f(A†1, A
†
2, . . . , A

†
m) be a homogeneous func-

tion of degree n of m commuting creation operators which obey the relation: [Ai , A
†
j ] = δi,j. Then

[N, f(A†1, A
†
2, . . . , A

†
m) ] = n f(A†1, A

†
2, . . . , A

†
m) , (B.17)

where

N =
m∑

i=1

A†i Ai .

Proof. The power series expansion of f is:

f(A†1, A
†
2, . . . , A

†
m) =

∞∑

n1,n2,...,nm=0

Cn1,n2,...,nm δn,n1+n2+···+nm A
† n1
1 A

† n2
2 · · ·A† nm

m . (B.18)

So since
[A†i Ai , A

† n1
1 A

† n2
2 · · ·A† nm

m ] = niA
† n1
1 A

† n2
2 · · ·A† nm

m , (B.19)
and since the function is homogeneous of degree n,

∑m
i=1 ni = n, which proves the theorem. The converse

of this theorem is also true. That is if f obeys Eq. (B.17), then it is a homogeneous function of degree n of
the m operators A†i . That is f(A†1, A

†
2, . . . , A

†
m) | 0 〉 is an eigenvector of N with eigenvalue n:

N f(A†1, A
†
2, . . . , A

†
m) | 0 〉 = n f(A†1, A

†
2, . . . , A

†
m) | 0 〉 . (B.20)

[Note: Euler’s theorem is usually stated in terms of a function f(x1, x2, . . . , xm) of real variables xi where N is
given by the differential operator N 7→∑m

i=1 xi ∂/∂xi. This is an operator version of the same theorem.]
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Appendix C

Binomial coefficients

In this appendix we review some relations between binomial coefficients which we use in Chapter ??. Ref-
erence material for binomial coefficients can be found on the web (Wikipedia), and Appendix 1 in Edmonds
[1].

The binomial coefficient is defined to be the coefficient of powers of x and y in the expansion of (x+ y)n:

(x+ y)n =
∑

m

(
n
m

)
xn−m ym =

∑

m

(
n
m

)
xm yn−m . (C.1)

For a positive integer n ≥ 0, the binomial coefficient is given by:

(
n
m

)
=





n!
(n−m)!m!

, for n ≥ 0 and m ≥ 0.

0 , for n ≥ 0 and m < 0 or m > n.
(C.2)

So for n ≥ 0, the sum in Eq. (C.1) runs from m = 0 to m = n. For negative integers n < 0, the binomial
coefficient is defined by:

(
n
m

)
= (−)m

(
m− n− 1

m

)
= (−)m

(m− n− 1)!
(−n− 1)!m!

, m ≥ 0 . (C.3)

From (C.1), (
n
m

)
=
(

n
n−m

)
. (C.4)

A recursion formula is Pascal’s rule:
(
n
m

)
+
(

n
m+ 1

)
=
(
n+ 1
m+ 1

)
, (C.5)

which can be proved for n ≥ 0 using the definiton (C.2) by manipulation of the factorials. By considering
the identity (x+ y)n (x+ y)m = (x+ y)n+m, we find Vandermonde’s identity:

∑

k

(
n
k

) (
m
l − k

)
=
(
n+m
l

)
, (C.6)

which, for n > 0 and m > 0, gives the relation:

∑

k

1
(n− k)! k! (m− l + k)! (l − k)!

=
(n+m)!

n!m! (n+m− l)! l! . (C.7)
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For n < 0 and m < 0, Vendermonde’s identity becomes:

∑

k

(
k − n− 1

k

)(
l − k −m− 1

l − k

)
=
(
l − n−m− 1

l

)
, (C.8)

which gives the relation:

∑

k

(k − n− 1)! (l − k −m− 1)!
k! (l − k)!

=
(−n− 1)! (−m− 1)! (l − n−m− 1)!

(−n−m− 1)! l!
. (C.9)

Setting k = s+ c, Eq. (C.9) becomes:

∑

s

(c− n− 1 + s)! (l −m− 1− c− s)!
(c+ s)! (l − c− s)! =

(−n− 1)! (−m− 1)! (l − n−m− 1)!
(−n−m− 1)! l!

. (C.10)

Furthermore, setting c− n− 1 = a, l −m− 1− c = b, and l − c = d so that (C.10) becomes:

∑

s

(a+ s)! (b− s)!
(c+ s)! (d− s)! =

(a− c)! (b− d)! (a+ b+ 1)!
(a+ b− c− d+ 1)! (d+ c)!

. (C.11)

Setting a = c = 0 gives the relation:

∑

s

(b− s)!
(d− s)! =

(b− d)! (b+ 1)!
(b− d+ 1)! d!

, (C.12)

whereas setting b = d = 0 gives: ∑

s

(a+ s)!
(c+ s)!

=
(a− c)! (a+ 1)!
(a− c+ 1)! c!

. (C.13)

For −n > m ≥ 0, Vandermonde’s identity becomes:

∑

k

(−)k
(
k − n− 1

k

)(
m
l − k

)
= (−)l

(
l − n−m− 1

l

)
, (C.14)

which gives the relation:

∑

k

(−)k
(k − n− 1)!

k! (m− l + k)! (l − k)!
= (−)l

(−n− 1)! (l − n−m− 1)!
m! (−n−m− 1)! l!

. (C.15)

Setting −n− 1 = a, m− l = b, and l = c, Eq. (C.15) becomes:

∑

k

(−)k
(a+ k)!

k! (b+ k)! (c− k)!
= (−)c

a! (a− b)!
c! (b+ c)! (a− b− c)! , (C.16)

for b ≥ 0 and a− b ≥ c ≥ 0.
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Appendix D

Fourier transforms

D.1 Finite Fourier transforms

In this section, we follow the convensions of Numerical Recipes [1, p. ??]. For any complex function fn of an
integer n which is periodic in n with period N so that fn = fn+N , we can define a finite Fourier transform
f̃k by the definitions:

fn =
1√
N

N−1∑

k=0

f̃k e
+2πi nk/N , (D.1)

f̃k =
1√
N

N−1∑

n=0

fn e
−2πi nk/N . (D.2)

The inverse relation (D.2) can be obtained from (D.1) by first noting that:

N−1∑

n=0

xn = 1 + x+ x2 + · · ·+ xN−1 =
1− xN
1− x . (D.3)

So setting x = exp{2πi (k − k′)/N}, we find

N−1∑

n=0

e2πi (k−k′)/N =
1− e2πi (k−k′)

1− e2πi (k−k′)/N = N δk,k′ , (D.4)

from which (D.2) follows. The same trick can be used to derive (D.1) from (D.2). The normalization of f̃k
can be defined in other ways (see ref. [1]).

Since f̃k is also periodic in k with period N , it is often useful to change the range of k by defining k′ by:

k′ =

{
k , for 0 ≤ k ≤ [N/2],
k −N , for [N/2] < k ≤ N − 1.

(D.5)

So the range of k′ is from −[N/2] + 1 ≤ k ≤ [N/2]. The reverse relation is:

k =

{
k′ , for 0 ≤ k′ ≤ [N/2],
k′ +N , for 0 > k′ ≥ −[N/2] + 1.

(D.6)

Here [N/2] means the largest integer of N/2. For fast Fourier transform routines, we must select N to be a
power of 2 so that N is always even. Then since

e+2πi nk/N = e+2πi nk′/N ,
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the finite Fourier transform pair can also be written as:

fn =
1√
N

[N/2]∑

k′=−[N/2]+1

f̃k′ e
+2πi nk′/N ,

f̃k′ =
1√
N

N−1∑

n=0

fn e
−2πi nk′/N .

(D.7)

We often drop the prime notation and just put k′ 7→ k.

D.2 Finite sine and cosine transforms

It is sometimes useful to have finite sine and cosine transforms. These can be generated from the general
transforms above.

References
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Appendix E

Classical mechanics

In Section E.1 in this chapter, we review the Lagrangian, Hamiltonian, and Poisson bracket formulations
of classical mechanics. In Sections E.2, we review differential geometry and the symplectic formulation of
classical mechanics.

E.1 Lagrangian and Hamiltonian dynamics

In this section, we use the notation of Goldstein [1] and Tabor [2][p. 48].
We suppose we can describe the dynamics of a system by n generalized coordinates q ≡ (q1, q2, . . . , qn)

and an action S[q] defined by:

S[q] =
∫

dt L(q, q̇) , (E.1)

where L(q, q̇) is the Lagrangian, which is at most quadratic in q̇i. Variation of the action leads to Lagrange’s
equations of motion:

d
dt

[∂L(q, q̇)
∂q̇i

]
− ∂L(q, q̇)

∂qi
= 0 , i = 1, 2, . . . , n. (E.2)

Canonical momenta pi are defined by:

pi =
∂L(q, q̇)
∂q̇i

, i = 1, 2, . . . , n, (E.3)

which, if the determinant of the matrix of second derivatives of the Lagrangian is nonsingular, can be solved
in the inverse way for pi = pi(q, q̇). A Hamiltonian can then be defined by the Legendre transformation
[2][For details, see p. 79.]:

H(q, p) =
∑

i

piq̇i − L(q, q̇) . (E.4)

Hamilton’s equations of motion are then given by:

q̇i = +
∂H(q, p)
∂pi

, ṗi = −∂H(q, p)
∂qi

. (E.5)

Poisson brackets are defined by:

{A(q, p), B(q, p) } =
∑

i

{ ∂A(q, p)
∂qi

∂B(q, p)
∂pi

− ∂B(q, p)
∂qi

∂A(q, p)
∂pi

}
. (E.6)

In particular,
{ qi, pj } = δij , { qi, qj } = 0 , { pi, pj } = 0 . (E.7)
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The time derivative of any function of q, p is given by:

dA(q, p, t)
dt

=
∑

i

{ ∂A
∂qi

q̇i +
∂A

∂pi
ṗi

}
+
∂A

∂t

= {A,H }+
∂A

∂t
.

(E.8)

Using Poisson brackets, Hamilton’s equations can be written as:

q̇i = { qi, H(q, p) } , ṗi = { pi, H(q, p) } . (E.9)

Long ago it was recognized that one could introduce a matrix, or symplectic,1 form of Hamilton’s equations
by defining 2n components of a contra-variant vector x with the definition:

x = (q, p) = (q1, q2, . . . , qn; p1, p2, . . . , pn) . (E.10)

For the symplectic coordinate xµ, we use Greek indices which run from µ = 1, 2, . . . , 2n. Using these
coordinates, Hamilton’s equations can be written in component form as:

ẋµ = fµν ∂νH(x) , ∂ν ≡
∂

∂xν
, (E.11)

and where fµν are components of a antisymmetric 2n× 2n matrix of the block form:

fµν =
(

0 1
−1 0

)
. (E.12)

The equations of motion (E.11) for the symplectic variables xµ are a set of first order coupled equations,
intertwined by the symplectic matrix fµν . Using this notation, the Poisson bracket, defined in Eq. (E.6), is
written in contra-variant coordinates xµ as:

{A(x), B(x) } = ( ∂µA(x) ) fµν ( ∂νB(x) ) . (E.13)

In particular, Eqs. (E.7) are written as:
{xµ, xν } = fµν . (E.14)

Now let us consider a general mapping from one set of x coordinates to another set X, given by: Xµ = Xµ(x).
Then the differentials and partial derivatives transform as:

dXµ =
∂Xµ

∂xν
dxν ,

∂

∂Xµ
=

∂xν

∂Xµ

∂

∂xν
. (E.15)

The Poisson brackets in Eq. (E.20) become:

{A(X), B(X) } =
∂A(X)
∂xµ

fµν
∂B(X)
∂xν

=
∂A(X)
∂Xµ′

∂Xµ′

∂xµ
fµν

∂B(X)
∂Xν′

∂Xν′

∂xν

=
∂A(X)
∂Xµ′

Fµ
′ν′(X)

∂B(X)
∂Xν′

,

(E.16)

where

Fµ
′ν′(X) =

∂Xµ′

∂xµ
∂Xν′

∂xν
fµν . (E.17)

1According to Goldstein [1][p. 343], the term “symplectic” comes from the Greek word for “intertwined.” The word was
apparently introduced by H. Weyl in his 1939 book on Classical Groups.
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Now if the new matrix Fµ
′ν′(X) = fµ

′ν′ , i.e. it is again a constant matrix of the block form given in
(E.12), then the transformation Xµ = Xµ(x) is called canonical since we can identify new position Q and
momentum coordinates P by setting X = (Q,P ). These new coordinates satisfy the same equations of
motion and fundamental Poisson brackets,

Ẋµ = fµν
∂H(X)
∂Xν

, {Xµ, Xν } = fµν . (E.18)

Poisson brackets, as defined in Eq. (E.6) or Eq. (E.20) satisfy Jacobi’s identity. Let A(x), B(x), and C(x)
be functions of x. Then Jacobi’s identity is:

{A, {B,C } }+ {B, {C,A } }+ {C, {A,B } } = 0 . (E.19)

However, it is not necessary that fµν(x) be independent of x in order that Poisson brackets satisfy Jacobi’s
identity. Let us define in general:

{A(x), B(x) } = ( ∂µA(x) ) fµν(x) ( ∂νB(x) ) , (E.20)

with fµν(x) an antisymmetric non-singular matrix. We write the inverse matrix fµν(x) so that

fµσ(x) fσν(x) = δνµ . (E.21)

We use fµν(x) to define covariant coordinates. We write:

∂µ = fµν(x) ∂ν , dxµ = dxν fνµ(x) . (E.22)

Note the differences in the order of the indices for raising and lowering indices for differentials and partial
derivatives.2 Then we can prove the following theorem:

Theorem 62 (Jacobi’s identity). Poisson brackets, defined by:

{A(x), B(x) } = ( ∂µA(x) ) fµν(x) ( ∂νB(x) ) , (E.23)

satisfy Jacobi’s identity:

{A(x), {B(x), C(x) } }+ {B(x), {C(x), A(x) } }+ {C(x), {A(x), B(x) } } = 0 , (E.24)

if fµν(x) satisfies:
∂µ fνλ(x) + ∂ν fλµ(x) + ∂λ fµν(x) = 0 , (E.25)

for three arbitrary functions A(x), B(x), and C(x). We will show later that Eq. (E.25) implies that d̃f̃ = 0,
which is Bianchi’s identity for the symplectic two-form.

Proof. We first calculate (we assume here that A, B, C, and f all depend on x):

{A, {B,C } }+ {B, {C,A } }+ {C, {A,B } }
= ( ∂µA ) ( ∂νB ) ( ∂λC )

{
fµγ( ∂γfνλ ) + fνγ( ∂γfλµ ) + fλγ( ∂γfµν )

}

= ( ∂µA ) ( ∂νB ) ( ∂λC )
{

( ∂µfνλ ) + ( ∂νfλµ ) + ( ∂λfµν )
}
. (E.26)

But now we note that since fνλfλγ = δνγ , differentiating this expression with respect to ∂µ, we find:

( ∂µfνλ ) fλγ + fνλ ( ∂µfλγ ) = 0 . (E.27)

2We must be careful here because unlike the metric used in special and general relativity, fµν(x) is anti-symmetric.
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Inverting this expression, and interchanging indices, we find:

( ∂µfνλ ) = −fνν′ ( ∂µfν′λ′ ) fλ
′λ = fνν

′
fλλ

′
( ∂µfν′λ′ ) ,

( ∂µfνλ ) = fµµ
′
( ∂µ′fνλ ) = fµµ

′
fνν

′
fλλ

′
( ∂µfν′λ′ ) .

Using this expression in the last line of Eq. (E.26), we find:

{A, {B,C } }+ {B, {C,A } }+ {C, {A,B } }
= ( ∂µA ) ( ∂νB ) ( ∂λC )

{
( ∂µfνλ ) + ( ∂νfλµ ) + ( ∂λfµν )

}
. (E.28)

So if fµν(x) satisfies Eq. (E.25), Bianchi’s identity:

∂µ fνλ(x) + ∂ν fλµ(x) + ∂λ fµν(x) = 0 ,

the functions A(x), B(x), and C(x) satisfy Jacobi’s identity, which was what we wanted to prove.

The crucial point here is that fµν(x) is anti-symmetric, invertible, and satisfies Bianchi’s identity. Then
our definition of Poisson brackets in Eq. (E.23) satisfies Jacobi’s identity. We can understand the origin of
fµν(x) if we consider a Lagrangian of the form:

L(x, ẋ) = πν(x) ẋν −H(x) , (E.29)

Then
∂L

∂ẋν
= πν(x) ,

∂L

∂xν
= ( ∂νπµ(x) ) ẋµ − ∂νH(x) , (E.30)

so that:
d
dt

[ ∂L
∂ẋν

]
= (∂µ πν(x) ) ẋµ , (E.31)

and Lagrange’s equation becomes:

fνµ(x) ẋµ = ∂νH(x) , where fµν(x) = ∂µπν(x)− ∂νπµ(x) . (E.32)

From the definition of fµν(x) in Eq. (E.32) in terms of derivatives of πν(x), we see that it is antisymmetric.
Also, in order to solve Lagrange’s equations of motion, fνµ(x) must be invertible. Satisfying Bianchi’s identity
is a further condition that must be imposed for the set (x) to be identified as, what we call symplectic
coordinates. The Hamiltonian is now given by: πµ(x)ẋµ − L(x, ẋ) = H(x). Inverting (E.32) using (E.21),
Hamilton’s equations are:

ẋµ(t) = fµν(x) ∂νH(x) = ∂µH(x) , (E.33)

the solution of which defines a curve in phase space xµ(t) starting from some initial values: xµ0 := xµ(0).
The state of the system is specified by a point x on the manifold. Now let vµ(x, t) be the flow velocity of
points in phase space, defined by:

vµ(x, t) = ẋµ(t) . (E.34)

But since ẋµ(t) satisfies Hamilton’s equations (E.11), the divergence of vµ(x, t) vanishes:

∂µv
µ(x, t) = ∂µẋ

µ(t) = ∂µ ( fµν(x) ∂νH(x) ) = �H(x) , (E.35)

where
� = ∂µ ∂

µ = ∂µ f
µν(x) ∂ν = ( ∂µ fµν(x) ) ∂ν ≡ 0 . (E.36)

where we have used Bianchi’s identity [?]. This means that if we think of phase space as a fluid, the flow is
such that the velocity field has no sources.
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When we can identify canonical coordinates (q, p), a volume element dΓ in phase space is given by:

dΓ =
dnq dnp
(2π~)n

=
d2nx

(2π~)n
. (E.37)

For the case of general symplectic coordinates x, this volume element is described by a volume form, which
is discussed in Section E.3.2 below. Here ~ is a factor which we introduce so as to make the phase space
differential dimensionless.3 Now let ρ(x, t) be the number of states per unit volume in phase space at time
t then the number of states in a region of phase space is given by:

N(t) =
∫

dΓ ρ(x, t) , (E.38)

where ρ(x, t) is the density of states at point x in phase space at time t. Liouville’s theorem states that:

Theorem 63 (Liouville’s theorem). If ρ(x, t) satisfies a conservation equation of the form:

∂ρ(x, t)
∂t

+ ∂µ
[
ρ(x, t) vµ(x, t)

]
= 0 , (E.39)

and ρ(x, t)→ 0 as x→∞ in any direction, then the number of states N(t) = N is constant in time.

Proof. We prove this by using a generalized form of Gauss’ theorem.4 Let V be a volume in phase space
containing ρ(x, t), and let S be the surface area of that volume. Then we find:

dN(t)
dt

=
∫

V

dΓ
∂ρ(x, t)
∂t

= −
∫

dΓ ∂µ
[
ρ(x, t) vµ(x, t)

]
= −

∫

S

dS
[
ρ(x, t) vµ(x, t)

]
→ 0 , (E.40)

as R→∞, since ρ(x, t)→ 0 as R→∞. So N(t) = N is a constant.

Remark 40. Using (E.35), Eq. (E.39) becomes:

∂ρ(x, t)
∂t

+ ( ∂µρ(x, t) ) ẋµ(t) =
∂ρ(x, t)
∂t

+ ( ∂µρ(x, t) ) fµν ( ∂νH(x) ) = 0 , (E.41)

from which we find that ρ(x, t) satisfies the equation of motion:

∂ρ(x, t)
∂t

= −{ ρ(x, t), H(x) } . (E.42)

At t = 0, ρ(x, 0) = ρ0(x). Note that Eq. (E.42) has the opposite sign from Poisson’s equations of motion
(E.9) for the coordinates x:

ẋµ(t) = {xµ(t), H(x) } . (E.43)

That is, the density function moves in a time-reversed way. We will see how important this is below.

Remark 41. Since the number of states are constant under Hamiltonian flow, we can just normalize the
density to unity. That is we write:

N =
∫

dΓ ρ(x, t) =
∫

dΓ0 ρ0(x0) = 1 . (E.44)

where, at t = 0, we have set dΓ0 = d2nx0 and ρ(x0, 0) = ρ0(x0).

3We emphasize again that we are studying a classical theory here. None of our answers in this section can depend on ~. We
only introduce ~ so as to make the classical phase space density dimensionless.

4This is called Stokes’ theorem in geometry. We will define the integration and the terms “volume” and “surface” more
precisely in Section E.3.2 below. For now, we sketch the proof using analogies from the conservation of charge in electrodynamics.
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Remark 42. If ρ0(x) is of the form:

ρ0(x) =

{
1 for x ∈ V ,
0 otherwise,

(E.45)

the integration is over a finite region V in phase space. Liouville’s theorem then states that this phase-space
volume is preserved as a function of time t.

As one might expect, classical mechanics can best be expressed using the language of differential manifolds
and differential forms. We do this in the next section.

E.2 Differential geometry

In this section we discuss concepts of differential geometry applied to classical mechanics. Unfortunately,
there is a certain amount of “overhead” required to understand differential geometry, but we will find the
effort well worth it. We use the definitions and notation of Schutz [?] where detailed discussion of the
concepts of differential geometry can be found. Calculus on manifolds and differential forms are explained
in several references: see for example Spivak [?, ?] or Flanders [3]. Our brief account here of symplectic
geometry cannot touch a more complete exposition which can be found in specialized works, such as those
by Berndt [?] and da Silva [?]. We follow the classical mechanics development of Das [?][p. 189].

Describing physical systems in terms of geometry focuses attention on a coordinate free picture of the
system in terms of topological properties of the geometry, rather than the differential equations describing
the dynamics. It gives a global view of the dynamics. In addition, the system can be described in a compact
notation.

Definition 43 (Manifold). A manifold M is a set of points P where each point has a open neighborhood
U with a one to one map h to a set x of n-tuples of real numbers: x = (x1, x2, . . . , xn) ∈ Rn.

The reason for introducing manifolds rather than vector spaces are that we can study interesting global
topologies using manifolds. The set of n-tuples for a neighborhood of a point P (x) are called coordinates.
Good coordinates are any set of linearly independent ones. We will always use good coordinates here. By
constructing charts (U , h), where h is a map of U 7→ Rn, the collection of overlapping charts, called an atlas
can be used to describe the entire manifold M. We will usually just define things on the neighborhood U
of a point P (x) labeled by coordinates x ∈ Rn and rely on the fact that we can extend our definitions and
results to the full manifold by patching with an atlas of charts.

Definition 44 (Curves). A curve C(t) on a manifold is a map from a real number t to a continuous set of
points P (x) on the manifold. Locally the curve can be described by a set of n functions: xµ = xµ(t), which
are (infinitely) differentiable. That is, this is a parametric representation of the curve C(t).

Definition 45 (Functions). A function f(P ) on a manifold maps points P (x) to real numbers. Since
the point P (x) can be locally described by n-coordinates xµ, we usually just write f(P ) ≡ f(x) :=
f(x1, x2, · · · , xn).

Remark 43. Let f(x) be a function defined on the manifold at point P (x) described by coordinates (x1, x2, · · · , xn)
on a curve C(t) described parametrically by parameter t. Then the derivative of f(x) with respect to the
parameter t on the curve C(t) is given by:

df
dt

= ẋµ ( ∂µf(x) ) , where: ẋµ :=
∂xµ

∂t
, ∂µf(x) :=

∂f(x)
∂xµ

. (E.46)

Since the same formula holds for any function f(x), the convective derivative operator,

d
dt

:= ẋµ ∂µ , (E.47)
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along the path of a curve C(t), defines a collection of n quantities ẋµ, µ = 1, · · · , n which is a vector, in the
usual sense, pointing in a direction tangent to C(t). A different parameterization of the same curve, say λ,
where t = t(λ), produces a new set of n quantities:

∂xµ(λ)
∂λ

= ẋµ
∂t(λ)
∂λ

, (E.48)

which point in the same direction but are a different length, which define a different convective derivative.
A different curve produces a vector pointing in some other direction. So the collection of these curves and
parameters define all possible convective derivatives at point P . It is a remarkable fact that we always
can find some curve C(λ) and some parameter λ for any directional derivative operator. This leads to the
following definition of vectors for manifolds:

Definition 46 (Vectors). A vector5 v̄x at the point P (x) is the convective derivative operator on a curve
C(t), parameterized by t. We write these vectors as:

v̄x :=
d
dt

∣∣∣
x

= vµ(x) ∂µ . (E.49)

Remark 44. A vector is the convective derivative of some curve! This definition depends only on the existence
of a set of curves on the manifold, and not of the local coordinate system x ∈ U used to describe the point
P (x). It does not depend, for example, on transformation properties between coordinate systems. However
this definition of vectors means that vectors at two points P and P ′ are not related. Additional structure
on the manifold is required to compare two vectors at two different points in the manifold. We will return
to this point later.

Remark 45. A particularly useful set of vectors are the convective derivatives of curves along good coordi-
nates. That is, for a set of curves given by:

xµ(t) = t , for all µ = 1, 2, . . . , n, (E.50)

the vectors associated with these curves, given by Eq. (E.47), are just the partial derivatives ∂̄µ ≡ ∂µ and
provide a set of n linearly independent basis vectors.

Definition 47 (Infinitesimal vectors). We define an infinitesimal vector d̄x on the curve C(t) at the point
P (x) by:

d̄x := dt
d
dt

∣∣∣
x

= dt ẋµ ∂̄µ = dxµ ∂̄µ , (E.51)

which is independent of the parameter t. This equation relates d̄x to displacements along the curve C(t)
described by the coordinate displacements dxµ for the basis set ∂̄µ.

Definition 48 (Tangent space). It is easy to show that the convective derivatives of a collection of all curves
with all parameters at a point P (x) described by coordinates x ∈ Rn form a vector space for each x, called
the tangent space TxM. The tangent space at x has n dimensions, the same as the manifold M.

Exercise 82. Show that two vectors v̄ and w̄, defined by the derivatives:

v̄ =
d
dt
, and w̄ =

d
ds

, (E.52)

on the curves C(t) and D(s) at point P , satisfy the requirements of a vector space, namely that a v̄ + b w̄,
where a and b are real-valued numbers, is some other vector at the point P , and that v̄ and w̄ satisfy the
usual commutative and associative rules of algebra (see Section 1.1).

5We use an over-bar to indicate vectors.
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Definition 49 (Frames). Any set of n linearly independent vector fields b̄xµ, µ = 1, 2, . . . , n at point P (x)
described in the open neighborhood U with coordinates x provides a basis for the tangent vector space TxM
and is called a frame. The basis vectors for a coordinate frame are the partial derivatives evaluated at x:

b̄xµ = ∂µ|x , (E.53)

and are tangent to the coordinate lines. A change of basis at point P (x) in the manifold is given by:

b̄′xµ = b̄x ν [ γ−1(x) ]νµ , γ(x) ∈ GLn (E.54)

where γ(x) is a general non-degenerate (invertible) n×n matrix. Note that a gauge group GLn has appeared
here. If the two basis vectors are coordinate bases,

γµν(x) =
∂x′µ

∂xν
. (E.55)

Any vector v̄x at point P (x) can be expanded in either basis:

v̄x = vµ(x) b̄xµ = v′µ(x) b̄′xµ , v′µ(x) = [ γ(x) ]µν vν(x) . (E.56)

We emphasize again that vectors at different points P (x) in the manifold M are unrelated.

Remark 46. The collection of vectors defined by a rule for selecting a vector at every point P in the manifold
is called a vector field. A fiber bundle is a more general concept and consists of a base manifold with
a tangent vector field, or fiber, attached to each point P in the base manifold. If the base manifold has
dimension m and the vector field dimension n, then the fiber bundle is a manifold with dimension m + n.
The fiber bundle is a special manifold, one that is decomposable by a projection from any point of a fiber
onto the base manifold. So a curve on the fiber bundle constitutes a rule for assigning a vector to each point
on the base manifold. Each vector on a curve in the fiber bundle is a vector field. For our case, the fiber
bundle we have defined on M is called the tangent bundle TM and is a manifold of dimension 2n. (See
Schutz [?][p. 37] for further details and examples of fiber bundles.)

Definition 50 (One-forms). A one-form6 φ̃x(v̄x) ∈ R is a linear function on the tangent space TxM at
point P (x) which maps a vector v̄x to a real number. We require one-forms to be linear with respect to
arguments:

φ̃x( a(x) v̄x + b(x) w̄x ) = a(x) φ̃x( v̄x ) + b(x) φ̃x( w̄x ) , a(x), b(x) ∈ R . (E.57)

The sum and multiplication of one-forms by scalars at P (x) are defined to obey:

( ˜a(x)φ+ b(x)ψ )x(v̄x) = a(x) φ̃x(v̄x) + b(x) ψ̃x(v̄x) . (E.58)

Vectors v̄x and one-forms φ̃x belong to different spaces. One-forms are linear functions of vectors and,
because of the linear requirement of one-forms, vectors can be said to be linear functions of one-forms. So
we can write:

φ̃x(v̄x) ≡ v̄x(φ̃x) ≡ 〈φx | vx 〉 , (E.59)

where in the last expression, we have used Dirac notation. That is, we can regard vectors as “kets” and
one-forms as “bras,” each attached to the same point P (x) on M. So the set of all one-forms at P (x) also
forms a vector space, called the cotangent space: T ∗xM.

For a vector basis set { b̄µx } ∈ TxM, we define a corresponding one-form basis set { b̃µx } ∈ T ∗xM by the
relation:

b̃µx( b̄ν x ) = δµν , for µ, ν = 1, 2, . . . , n. (E.60)

6We use a tilde to indicate a one-form.
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The set of basis vectors and one-forms are said to be dual to each other. Any one form can be expanded φ̃x
at P (x) in basis forms:

φ̃x = φµ(x) b̃µx . (E.61)

From (E.60), we see that any one form on an arbitrary vector has the value:

φ̃x(v̄x) = φµ(x) vµ(x) , (E.62)

called the contraction of a one-form with a vector. A change of basis in the tangent space given by
Eq. (E.54) induces a corresponding basis change of the dual vectors given by:

b̃′µx = [ γ(x) ]µν b̃νx , (E.63)

as can easily be checked. We will show later how to find the dual of a vector.

Definition 51 (Holonomic frames). If the basis set of one-forms is exact, then we can write:

b̃µx = d̃xµ , (E.64)

and the frame is called holonomic. The dual vectors are written as ∂̄µ and obey the relation:

d̃xµ(∂̄ν) = δµν . (E.65)

Example 48. A frame given by b̃1 = sin θ d̃φ, b̃2 = d̃θ is not holonomic because: d̃(sin θ d̃φ) = cos θ d̃θ∧d̃φ 6=
0.

Definition 52 (Tensors). We generalize one-forms and vectors to define (q, p)-tensors as fully linear functions
defined on the manifold at point P which take q one-forms and p vectors as arguments and produce real-
valued numbers. We write these general tensors as:

tx( ãx, b̃x, c̄x, d̃x, ēx, . . . ) = tα,βγ
δ
ε,...(x) aα(x) bβ(x) cγ(x) dδ(x) eε(x) · · · , (E.66)

where we have used the linearity property, and where

tα,βγ
δ
ε,...(x) = tx( d̃xα, d̃xβ , ∂̄γ , d̃xδ, ∂̄ε, . . . ) . (E.67)

The ordering of the one-forms and vectors here is important. We can only add and subtract like tensors.

Example 49. Let us construct a (1, 1) tensor by the direct product, or tensor product, of a one-form ã
and a vector b̄ which we write as: t = ã⊗ b̄, and which has the following value when operating on a vector c̄
and a one-form d̃ at point P (x):

tx(c̄x, d̃x) ≡ ãx ⊗ b̄x (c̄x, d̃x) ≡ ãx(c̄x) b̄x(d̃x) . (E.68)

The components of fx in a coordinate basis are defined by:

tµ
ν(x) = tx(∂̄µ, d̃xν) = aµ(x) bν(x) , (E.69)

so that
tx = ãx ⊗ b̄x = aµ(x) bν(x) d̃xµ ⊗ ∂̄ν = tµ

ν(x) d̃xµ ⊗ ∂̄ν . (E.70)

Example 50. A general (0, 2)-tensor f can be written in terms of components in a coordinate basis as:

fx(ā, b̄) = fµ,ν(x) d̃xµ ⊗ d̃xν(ā, b̄) = fµ,ν(x) d̃xµ(ā) d̃xν(b̄) , (E.71)

for arbitrary vectors ā and b̄. We can write this as a sum of symmetric and antisymmetric parts in the usual
way. Let

fx(ā, b̄) = f(S)
x (ā, b̄) + f(A)

x (ā, b̄) , (E.72)
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where f(S) is even and f(A) odd on interchange of the arguments. The symmetric part f(S) is given by:

f(S)
x (ā, b̄) =

1
2
[
fx(ā, b̄) + fx(b̄, ā)

]

=
1
2
fµ,ν(x)

[
d̃xµ(ā) d̃xν(b̄) + d̃xµ(b̄) d̃xν(ā)

]

=
1
2
f (S)
µν (x) [ d̃xµ ⊗ d̃xν + d̃xν ⊗ d̃xµ ](ā, b̄)

(E.73)

where f (S)
µν (x) = [ fµ,ν(x) + fν,µ(x) ]/2 is even on interchange of the indices The antisymmetric part of the

tensor f(A) is given by:

f(A)
x (ā, b̄) =

1
2
[
fx(ā, b̄)− fx(b̄, ā)

]

=
1
2
fµ,ν(x)

[
d̃xµ(ā)⊗ d̃xν(b̄)− d̃xµ(b̄)⊗ d̃xν(ā)

]

=
1
2
f (A)
µν (x) [ d̃xµ ⊗ d̃xν − d̃xν ⊗ d̃xµ ](ā, b̄)

(E.74)

where f (A)
µν (x) = [ fµ,ν(x)− fν,µ(x) ]/2 is odd on interchange of the indices.

Definition 53 (Metric tensors). A metric tensor gx at point P (x) in the manifold is a non-singular and
symmetric (0, 2)-tensor, not a form.7 The metric is usually also required to be positive definite. For
coordinates x at point P (x) in the manifold, it is defined in a general frame by:

gx = gµν(x) b̃µx ⊗ b̃νx , where gµν(x) ≡ gx(b̄xµ, b̄x ν) , (E.75)

which takes two vectors as arguments. The symmetry requirement means that gµν(x) = gνµ(x). The
non-singular requirement means that gµν(x) is invertible. We write the inverse as gµν(x) and obtain:

gµν(x) gνλ(x) = δµλ , (E.76)

for all points P (x).

Remark 47. The length ‖d`x‖ in a coordinate frame of the infinitesimal vector d̄x defined in Eq. (E.51) is
given by:

‖d`x‖2 = gx(d̄x, d̄x) = gµν(x) dxµ dxν . (E.77)

If there is a metric defined on the manifold, we can use it to relate vectors to corresponding forms. That is,
if v̄x ∈ TxM, then it’s dual one-form ṽx ∈ T ∗xM is given by:

ṽx = gx(v̄x) = gµν(x) vµ(x) b̃ν ≡ vν(x) b̃ν , (E.78)

so that the components of the one-form ṽx are given by:

vµ(x) = gµν(x) vν(x) , vµ(x) = gµν(x) vν(x) , (E.79)

where we have used the symmetry property of the metric and the inverse relation (E.76).
Remark 48. A transformation to a new coordinate frame, given by Eq. (E.63):

b̃′µx = [ γ(x) ]µν b̃νx , γ(x) ∈ GLn . (E.80)

Since the metric tensor gx is independent of the frame, the change to a new coordinate frame means that
the matrix of the metric tensor transforms according to:

g′µν(x′) = gµ′ν′(x) [ γ−1(x) ]µ
′

µ [ γ−1(x) ]ν
′

ν (E.81)

Coordinate frame transformations γ(x) which preserve the metric (such as matrices which belong to the
Lorentz group in flat space-time), are called isometries.

7Recall that a form is an anti-symmetric (0, 2)-tensor.
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Remark 49. An orthonormal frame is one in which:

gµν(x) = δµ,ν , (E.82)

and is independent of x. If a frame is both holonomic and orthonormal the coordinates are called Cartesian.
The metric is then called Euclidean. A four-dimensiona Minkowsky metric, used in relativity, is given
by:

gµν(x) ≡ ηµν = diag(1,−1,−1,−1) . (E.83)

We usually reserve the symbol ηµν for the metric, and write:8 The Minkowsky metric is not positive definite
and for this reason is sometimes called a pseudo-metric. There are no differences between upper and lower
indices for manifolds with Euclidean metrics: vµ = gµν v

ν = vµ. The space-parts of a vector change sign
for a Minkowsky metric. Matrices which belong to the Lorentz group are isometric transformation of the
Minkowsky metric.

Definition 54 (p-forms). We note that one-forms, which take a vector into a real number, are the same
as our definition of a (0, 1)-tensor. We will find it useful to define p-forms to be fully antisymmetric (0, p)-
tensors which take p-vectors into a real number. We write p-forms with a tilde. The antisymmetry of a
p-form means that for all i and j:

φ̃x(v̄1, . . . , v̄i, . . . , v̄j , . . . , v̄p) = −φ̃x(v̄1, . . . , v̄j , . . . , v̄i, . . . , v̄p) . (E.84)

The space of p-forms is written as: ΛpTxM. So in this notation, the cotangent space of one-forms is the
same as T ∗xM ≡ Λ1TxM. By convention, zero-forms are functions: Λ0TxM = R. Zero-forms acting on
vectors are defined to be zero. There are no p-forms for p > n, the dimension of the manifold.

We write ΛM as the direct sum of the collection of p-forms at P (x):

ΛM =
n⊕

p=0

ΛpM . (E.85)

Because of the antisymmetry of p-forms, the dimension of ΛpM and ΛM are given by:

dim{ΛpM} =
(
n
p

)
=

n!
p! (n− p)! , dim{ΛM} = 22n , (E.86)

so that the dimension of ΛM is even, for n ≥ 1.

Definition 55 (Wedge product). Let φ̃x be a p-form and ψ̃x be a q-form. Then the wedge product is a
(p+ q)-form given by:

(φ̃x ∧ ψ̃x)( v̄1, . . . , v̄p+q ) :=
1
p!q!

∑

π

(−)πφ̃x( v̄π(1), . . . , v̄π(p) ) ψ̃x( v̄π(p+1), . . . , v̄π(p+q) ) , (E.87)

where π runs over all permutations of p+ q objects. For example, the wedge product of two one-forms ã and
b̃ at point P (x) is given by:

ã ∧ b̃ ( v̄1, v̄2 ) = ã(v̄1) b̃(v̄2)− ã(v̄2) b̃(v̄1)

= ã(v̄1) b̃(v̄2)− b̃(v̄1) ã(v̄2)

=
{
ã⊗ b̃− b̃⊗ ã

}
( v̄1, v̄2 ) .

(E.88)

So we can just write:
ã ∧ b̃ = ã⊗ b̃− b̃⊗ c̃ . (E.89)

8This is the “particle physicists” metric. The one used most often in general relativity is with the signature: (−1, 1, 1, 1).
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The wedge product of three one-forms is the fully antisymmetric combination:

ã ∧ b̃ ∧ c̃ = (ã ∧ b̃) ∧ c̃ = ã ∧ (b̃ ∧ c̃)
= ã⊗ b̃⊗ c̃+ b̃⊗ c̃⊗ ã+ c̃⊗ ã⊗ b̃− b̃⊗ ã⊗ c̃− c̃⊗ b̃⊗ ã− ã⊗ c̃⊗ b̃

(E.90)

Now let b̃µx be a basis form at P (x). Then a p-form can be written as:

φ̃x =
1
p!

∑

µ1,...,µp

φµ1,...,µp
(x) b̃µ1

x ∧ b̃µ2
x ∧ · · · ∧ b̃µp

x , (E.91)

where φµ1,...,µp(x) is fully antisymmetric in all values of indices.
If φ̃n are a p-forms and ψ̃n are q-forms, then the wedge product obeys the following rules:

1. bilinear:

(a φ̃1 + b φ̃2) ∧ ψ̃ = a φ̃1 ∧ ψ̃ + b φ̃2 ∧ ψ̃ , (a, b) ∈ R ,

φ̃ ∧ (c ψ̃1 + d ψ̃2) = c φ̃ ∧ ψ̃1 + d φ̃ ∧ ψ̃2 , (c, d) ∈ R .
(E.92)

2. associative:
(φ̃ ∧ ψ̃) ∧ χ̃ = φ̃ ∧ (ψ̃ ∧ χ̃) . (E.93)

3. graded commutative:
φ̃ ∧ ψ̃ = (−)pq ψ̃ ∧ φ̃ . (E.94)

In particular, φ̃ ∧ φ̃ = 0 if p is odd.

Definition 56 (Contraction). The contraction of a vector v̄ at point P (x) with a p-form φ̃ produces
(p− 1)-form ψ̃. The contraction is usually defined by putting the vector into the first slot of φ̃:9

ψ̃ := φ̃(v̄) = φ̃(v̄, ·, ·, · · ·︸ ︷︷ ︸
p slots

) = φµ1,µ2,···(x) vµ1(x) d̃xµ2 ∧ · · · ≡ ψµ2,σ···(x) d̃xµ2 ∧ · · · . (E.95)

E.3 The calculus of forms

E.3.1 Derivatives of forms

In this section we define interior and exterior derivatives of forms.

Definition 57 (Interior derivative). The interior derivative iv̄ at point P (x) of a p-form ω̃ with respect to
any vector v̄ is a contraction which reduces ω̃ to a (p− 1)-form. We write:10

iv̄ ω̃ := ω̃(v̄) . (E.96)

Remark 50. Interior derivatives obey the following rules:

1. Linearity in v̄:
iav̄+bw̄ = a iv̄ + b iw̄ , (a, b) ∈ R . (E.97)

2. The Leibniz rule: Let ω̃ be a p-form and σ̃ a q-form. Then:

iv̄ (ω̃ ∧ σ̃) = ( iv̄ω̃ ) ∧ σ̃ + (−)p ω̃ ∧ ( iv̄σ̃ ) . (E.98)

9However, it any slot is OK.
10Loomis and Sternberg [?][p. 456] use the symbol y to denote the interior derivative: v̄y ω̃ ≡ iv̄ ω̃.
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3. iv̄ iw̄ + iw̄ iv̄ = 0.

By definition, the interior derivative of a zero form (a function) is zero: iv̄(f(x)) = 0.
The word “derivative” refers here to a purely algebraic property of the interior derivative, which satisfy

the rules given above. This definition is an example of a more general property called a “derivation” (for
more details, see Göckeler and Schücke [4][p. 86]).

Definition 58 (Gradient-form). The gradient one-form of a function f(x) defined onM, is defined to be a
one-form d̃f(x). Evaluated on an arbitrary vector v̄x = d/dt|x, it is defined by the rule:

d̃f(x)(v̄x) :=
df
dt

∣∣∣
x
. (E.99)

In particular, setting f(t) = xµ(t), we find:

d̃xµ(v̄x) =
dxµ

dt

∣∣∣
x

= ẋµ , (E.100)

so that (E.99) becomes:
d̃f(x)(v̄x) = (∂µf(x)) ẋµ = (∂µf(x)) d̃xµ(v̄x) , (E.101)

for any vector v̄x. So we can just write the one-form d̃f(x) as:

d̃f(x) := (∂µf(x)) d̃xµ . (E.102)

Remark 51. If v̄x is one of the basis vectors ∂̄ν along a coordinate line, then it is easy to see that our definition
of the gradient form means that the basis set of one-forms {d̃xµ} are dual to the basis set of coordinates
{∂̄µ} at point P (x):

d̃xµ( ∂̄ν ) =
∂xµ

∂xν
= δµν . (E.103)

Remark 52. From the definition of d̄x in Eq. (E.51), we find that:

d̃xµ( d̄x ) = dxν d̃xµ( ∂̄ν ) = dxν δµν = dxµ , (E.104)

The gradient of a function f(x) defined onM is a one-form, not a vector. When operating on the vector d̄x
at point P (x), we find:

d̃f(x)( d̄x ) = ( ∂µf(x) ) dxµ , (E.105)

which is the usual definition of the gradient operator when acting on functions.

Definition 59 (Exterior derivative). In Eq. (E.102), we defined the exterior derivative of a fuction f(x) by:

d̃f(x) := (∂µf(x)) d̃xµ . (E.106)

That is, the exterior derivative of a zero-form is a one-form. We wish to extend this definition to higher
forms so that the exterior derivative of a p-form will raise the form to a (p + 1)-form. We do this by the
following rules:

1. Linearity in ω̃: if ω̃ and σ̃ are p-forms:

d̃ ( a ω̃ + b σ̃ ) = a d̃ ω̃ + b d̃ σ̃ , (a, b) ∈ R . (E.107)

2. The Leibniz rule: let ω̃ be a p-form and σ̃ a q-form. Then:

d̃ ( ω̃ ∧ σ̃ ) = ( d̃ ω̃ ) ∧ σ̃ + (−)p ω̃ ∧ d̃σ̃ . (E.108)
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3. d̃ ( d̃ ω̃ ) = 0, where ω̃ is a p-form.

The exterior derivative of a general p-form is given in Exercise 85 below.

Example 51. Let us find the exterior derivative of a one-form using these rules. Let ã = aν(x) d̃xν be a
one-form. Then

d̃ ã = (d̃ aν(x)) ∧ d̃xν + aν(x) d̃ ( d̃xν ) = (∂µaν(x)) d̃xµ ∧ d̃xν

=
1
2
[
∂µaν(x)− ∂νaµ(x)

]
d̃xµ ∧ d̃xν .

(E.109)

Exercise 83. By using components, show that d̃d̃ f(x) = 0, where f(x) is a zero form. If f(x) and g(x) are
zero-forms, show that d̃ ( f(x) ( d̃ g(x) ) = ( d̃f(x) ) ∧ ( d̃g(x) ).

Exercise 84. Compute d̃(ω̃(V̄ )) and (d̃ ω̃) (V̄ ) and compare the two results.

Exercise 85. If f̃ is a p-form given by:

f̃ =
1
p!
fα,β,...,γ(x) d̃xα ∧ d̃xβ ∧ · · · ∧ d̃xγ , (E.110)

show that g̃(x) = d̃ f̃(x) is a (p+ 1)-form given by:

g̃ = d̃ f̃ =
1

(p+ 1)!
gα,β,...,γ(x) d̃xα ∧ d̃xβ ∧ · · · ∧ d̃xγ , (E.111)

where gα,β,...,δ(x) is the antisymmetric combination:

gα,β,...,δ(x) = ∂[αfβ,γ,...,δ](x) . (E.112)

We also will need to know the meaning of closed and exact forms, and understand Poincaré’s lemma. We
define them here:

Definition 60 (Closed form). If ω̃ is a p-form and d̃ ω̃ = 0, then ω̃ is said to be closed.

Definition 61 (Exact form). If ω̃ is a p-form which can be written as ω̃ = d̃ σ̃, where σ̃ is a (p − 1)-form,
then ω̃ is called exact.

It is clear from property 3 above that an exact form is closed. The reverse is generally not true, as a
simple example can show; however, if the domain of definition of the p-form is restricted to certain regions,
one can show that a closed form is also exact, except for the addition of a “gauge” term. The conditions for
which this is true is called Poincaré’s Lemma.

Theorem 64 (Poincaré’s Lemma). If a region U of the manifold is “star-shaped”, and a p-form ω̃ is closed
in this region, it is exact.

Proof. For a proof of the theorem, see Göckeler and Schücke [4][p. 21] or Schutz [?][p. 138].

In order to compare forms and vectors at two different points in M , we use the Lie derivative.

Definition 62 (Lie derivative). The Lie derivative £v̄(ω̃) of a p-form ω̃ with respect to a vector field v̄ is
defined by:

£v̄(ω̃) := ( d̃ iv̄ + iv̄ d̃ ) ( ω̃ ) = d̃( ω̃(v̄) ) + ( d̃ ω̃ )(v̄) . (E.113)

By definition, the contraction of a zero-form fx = f(x) on a vector v̄ vanishes, fx(v̄) = 0, so that the Lie
derivative of a function (zero-form) with respect to a vector is given by:

£v̄(f) = ( d̃ f(x) )(v̄) = ( ∂µf(x) ) vµ . (E.114)
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The volume form for a manifold is a special form which we will need for defining integration of forms.

Definition 63 (Volume form). The volume form for an n-dimensional manifold is an n-form defined by:

ω̃ = d̃x1 ∧ d̃x2 ∧ · · · ∧ d̃xn . (E.115)

Then d̃ ω̃ = 0, since the space is only n-dimensional.

Remark 53. Now let us suppose we change to new coordinates Xµ = Xµ(x). Then since

d̃xµ =
∂xµ

∂Xν
d̃Xµ , (E.116)

we find:

ω̃ =
∂x1

∂Xµ1

∂x2

∂Xµ2
· · · ∂xn

∂Xµn
d̃Xµ1 ∧ d̃Xµ2 ∧ · · · ∧ d̃Xµn

= det
[ ∂xµ
∂Xν

]
d̃X1 ∧ d̃X2 ∧ · · · ∧ d̃Xn = det

[ ∂xµ
∂Xν

]
Ω̃ ,

where: Ω̃ = d̃X1 ∧ d̃X2 ∧ · · · ∧ d̃Xn .

(E.117)

So the volume form transforms by multiplication of the form with the Jacobian of the transformation. Thus
it is suitable as a volume element for integration, as we show below.

Definition 64 (Orientation of n-forms). Any n ordered basis forms defines an orientation by means of a
volume form. Any other volume form obtained by a change of coordinates is said to have the same orientation
if the determinant of the Jacobian relating these forms is positive definite. Not every surface is orientable.
For example, a Möbius strip is not orientable.

It is useful also to have a definition for the divergence of a vector.

Definition 65 (Divergence). The divergence ∇̃ω̃(v̄) of a vector field v̄ with respect to the volume form ω̃ is
defined by the equation:

∇̃ω̃(v̄) ω̃ ≡ d̃( ω̃(v̄) ) . (E.118)

This states that if ω̃ is an n-form, then ω̃(v̄) is an (n− 1)-form, the exterior derivative of which is an n-form
again. This form must be proportional to ω̃ again, the factor of proportionality is the divergence.

Example 52. We illustrate our definition for the case of ordinary three-dimensional Euclidean manifold,
where the volume form ω̃ and an arbitrary vector v̄ is given by:

ω̃ = d̃x ∧ d̃y ∧ d̃z ,
v̄ = vx ∂̄x + vy ∂̄y + vz ∂̄z ,

(E.119)

where vx, vy, and vz depend on x, y, and z. So we find:

ω̃( v̄ ) = vx d̃y ∧ d̃z − vy d̃x ∧ d̃z + vz d̃x ∧ d̃y , (E.120)

and

d̃( ω̃(v̄) ) = ( ∂xvx ) d̃x ∧ d̃y ∧ d̃z − ( ∂yvy ) d̃y ∧ d̃x ∧ d̃z + ( ∂zvz ) d̃z ∧ d̃x ∧ d̃y

= ( ∂xvx + ∂yvy + ∂zvz ) d̃x ∧ d̃y ∧ d̃z ≡ ( ∇ · v ) ω̃ ,
(E.121)

so that ∇̃ω̃(v̄) = ∇ · v, in agreement with the usual definition of the divergence of a vector in Cartesian
coordinates.
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E.3.2 Integration of forms

Integration of forms over regions of a manifold can be defined without a definition of a metric, or length.
Nice discussions of integration can be found in Schutz [?][p. 144] and in Göckeler and Schücke [4][p. 22].

The point here is that the volume for a region of a manifold can be defined without the use of a metric.
In fact, a form is the natural way to define volume. Let us first define the integral of an n-form (the volume
form) over an oriented region U on TM . We do this in the following definition:

Definition 66 (Integration of n-forms). The integral of an n-form over a volume U on TM is defined to be:
∫

U

ω̃ :=
∫∫
· · ·
∫

U

dx1 dx2 · · · dxn , (E.122)

where, on the left-hand side we define the integral of an n- form, and on the right-hand side we have the
ordinary integral of calculus.

Remark 54. This definition implies that the integral of a form is independent of the coordinate system used.
We can easily prove this by noting from Eq. (E.117), that two forms with the same orientation are related
by:

Theorem 65 (Stokes’ theorem). Stokes’ theorem states that the integral of the exterior derivative of a p-
form ω̃ over a region U on a manifold is given by the integral of ω̃ evaluated on the boundary ∂U of the
region. That is: ∫

U

d̃ ω̃ =
∫

∂U

ω̃ , (E.123)

where on the right-hand side, ω̃ is restricted to the boundary ∂U .11

Proof. Schutz [?][p. 144] gives a geometric proof for p = n− 1, that is d̃ω̃ is an n-form, using Lie-dragging.
The theorem can be proved for p < n − 1 by defining oriented sub-manifolds (See Göckeler and Schücker
[4][p. 26]).

E.4 Non-relativistic space-time

Classical mechanics is described by a fiber bundle structure with time as a one-dimensional base manifold
with a symplectic manifold attached at each point in time. We illustrate this in the figure.

E.4.1 Symplectic manifolds

In this section we study properties of symplectic manifolds.

Definition 67 (Symplectic manifold). A symplectic manifold MS is one that has associated with it a
non-degenerate and closed two-form f̃ .

Since the two-form f̃ is an antisymmetric (0, 2)-tensor, the dimension of the manifold must be even:
n 7→ 2n. In a coordinate basis, we write the two-form f̃x as:

f̃x =
1
2
fµν(x) d̃xµ ∧ d̃xν , (E.124)

with fµν(x) = −fνµ(x). The statement that f̃x is non-degenerate means that det{fµν(x)} 6= 0, so that the
inverse of the matrix fµν(x) exists. We define the inverse matrix with upper indices:

fµλ(x) fλν(x) = δµν = fνλ(x) fλµ(x) . (E.125)
11The boundary of the region U must divide the space into an “inside” and an “outside.” That is, not around a wormhole.
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Now let v̄ = vµ(x) ∂̄µ be any vector. Then we define it’s dual by putting the vector v̄ in the second slot12 of
the symplectic two-form f̃x. That is:

ṽx(·) := f̃x(·, v̄) = fµν(x) d̃xµ(·) vν(x) , (E.126)

so since ṽx(·) = vµ(x) d̃xµ(·), we find that:

vµ(x) = fµν(x) vν(x) , vµ(x) = fµν(x) vν(x) . (E.127)

where we have used Eq. (E.125). Note that unlike the symmetric metric of relativity the ordering of indices
here are important. The set of base one-forms d̃xµ with lower indices, are then defined by:

d̃xµ = d̃xν fνµ(x) , d̃xµ = d̃xν fνµ(x) , (E.128)

so that
ṽx = vµ(x) d̃xµ = vµ(x) d̃xµ . (E.129)

where we have used Eq. (E.125). Note that d̃xµ(·) = f̃x(·, ∂̄µ). The set of base vectors ∂̄µ with upper indices
are then given by:

∂̄µ = fµν(x) ∂̄ν , ∂̄µ = fµν(x) ∂̄ν , (E.130)

so that ∂̄µ and d̃xµ are duals and obey the orthogonal relation:

d̃xµ(∂̄ν) = δµ
ν . (E.131)

These definitions make it easy to write vectors and one-forms as:

v̄x = vµ(x) ∂̄µ = vµ(x) ∂̄µ , (E.132)

ṽx = vµ(x) d̃xµ = vµ(x) d̃xµ .

Definition 68 (Hamiltonian vector field). If the Lie derivative of the symplectic two-form f̃x with respect
to a vector field v̄x vanishes, we call v̄x a Hamiltonian vector field. Since f̃x is closed, this means that a
Hamiltonian vector field v̄x satisfies:

£v̄x
(f̃x) = d̃( f̃x(·, v̄x) ) = 0 . (E.133)

Example 53. Let ṽx = d̃H(x), where H(x) is a function on M at point P (x). Then using our definitions
of upper and lower basis one-forms and vectors, we have:

ṽx = (∂µH(x)) d̃xµ , v̄x = (∂µH(x)) ∂̄µ . (E.134)

So
£v̄x

(f̃x) = d̃( f̃x(·, v̄x) ) = d̃( ṽx ) = d̃ d̃H(x) = 0 , (E.135)

and ṽx is a Hamiltonian vector field. Conversely, if v̄x is a Hamiltonian vector field, then

£v̄x
(f̃x) = d̃( f̃x(·, v̄x) ) = d̃( ṽx ) = 0 , (E.136)

so by Poincarè’s Lemma, if the region U is star-shaped, there exists a function H(x) such that ṽx = d̃H(x).

Example 54. The Lie derivative of a zero-form A(x) with respect to a Hamiltonian vector field v̄x = d/dt|x,
is given by:

£v̄x(A(x)) = ( d̃A(x) )(v̄) = ( ∂µA(x) ) ẋµ =
dA(x)

dt
, (E.137)

where we have used (E.100).
12We could just as well define the dual by putting the vector v̄ in the first slot, in which case the components of the dual

one-form would have opposite sign.

c© 2009 John F. Dawson, all rights reserved. 371



E.4. NON-RELATIVISTIC SPACE-TIME APPENDIX E. CLASSICAL MECHANICS

Example 55. Hamilton’s equations are:

ẋµ = fµν(x) (∂νH(x)) . (E.138)

The velocity vector v̄x at point P (x) in M is defined by the convective derivative:

v̄x =
d
dt

= ẋµ ∂̄µ , (E.139)

where the parameter t is time flow. So the one-form ṽx is given by:

ṽx = f̃x(·, v̄x) = fµν(x) ẋν ẋµ = (∂νH(x)) d̃xν = d̃H(x) , (E.140)

and is closed, d̃ṽx = 0. v̄x is therefore a Hamiltonian vector field.
From Eq. (E.137) if ẋµ is a solution of Hamilton’s equations,

£v̄x
(H(x)) =

dH(x)
dt

= (∂µH(x))(∂νH(x)) fµν(x) = 0 . (E.141)

That is, H(x) is a constant of the motion.

Remark 55. Using our definition of upper and lower indices, we can write the symplectic two-form in different
ways:

f̃x =
1
2
fµν(x) d̃xµ ∧ d̃xν

=
1
2
fµν(x) fµ

′µ(x) fν
′ν(x) d̃xµ′ ∧ d̃xν′ =

1
2
fν
′µ′(x) d̃xµ′ ∧ d̃xν′

= −1
2
fµν(x) d̃xµ ∧ d̃xν ,

(E.142)

so that the negative of the inverse symplectic matrix appears here with lower indices for the basis one-forms.
If āx and b̄x are two vectors, then:

f̃x(āx, b̄x) = aµ(x) bν(x) fµν(x) = aµ(x) bµ(x) (E.143)
= −aµ(x) bν(x) fµν(x) = −aµ(x) bµ(x) . (E.144)

Again, the negative sign in the last line is due to the antisymmetry of the symplectic form.

Definition 69 (Poisson bracket). If A(x) and B(x) are functions onM at point P . The Poisson bracket of
A(x) and B(x) is given by:

f̃(d̄A(x), d̄B(x)) = (∂µA(x)) fµν(x) (∂νB(x)) = −(∂µA(x)) fµν(x) (∂νB(x))
= −{A(x), B(x) } .

(E.145)

Again, because of the antisymmetry of fµν(x), we have to be careful here with raising and lowering indices
when passing from the first line to the second.

Theorem 66 (Jacobi’s identity). The statement that f̃ is closed, d̃f̃ = 0, means that Jacobi’s and Bianchi’s
identities are satisfied.

Proof. Using the rules of exterior differentiation, we find:

d̃ f̃ =
1
2

(d̃fµν(x)) ∧ d̃xµ ∧ d̃xν

=
1
2

(∂γfµν(x)) d̃xγ ∧ d̃xµ ∧ d̃xν

=
1
6
fµνλ(x) d̃xµ ∧ d̃xν ∧ d̃xγ ,

(E.146)
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where
fµνγ(x) = ∂µfνλ(x) + ∂νfλµ(x) + ∂λfµν(x) , (E.147)

which is odd under interchange of all indices. So from (E.146), we find:

d̃ f̃(d̄A, d̄B, d̄C) = ( ∂µA ) ( ∂νB ) ( ∂λC )
{

( ∂µfνλ ) + ( ∂νfλµ ) + ( ∂λfµν )
}
. (E.148)

Resuming terms in (E.146), we can also write:

d̃ f̃ = d̃xµ ∧ ( ∂µ f̃ ) = d̃xµ ⊗ ( ∂µ f̃ )− ( ∂µ f̃ )⊗ d̃xµ , (E.149)

from which we find:

d̃ f̃(d̄A, d̄B, d̄C) = {A, {B,C } }+ {B, {C,A } }+ {C, {A,B } } . (E.150)

So that using results (E.148) and (E.150), and using the fact that f̃ is closed, we find:

d̃ f̃(d̄A, d̄B, d̄C) = {A, {B,C } }+ {B, {C,A } }+ {C, {A,B } }
= ( ∂µA ) ( ∂νB ) ( ∂λC )

{
( ∂µfνλ ) + ( ∂νfλµ ) + ( ∂λfµν )

}
= 0 ,

(E.151)

in agreement with Theorem 62 and Bianchi’s identity.

Definition 70 (volume form). The volume form ω̃ for our symplectic space is given by:

Γ̃ = f̃ ∧ f̃ ∧ · · · ∧ f̃︸ ︷︷ ︸
n times

= f1,n+1f2,n+2 · · · fn,2n (d̃x1 ∧ d̃xn+1) ∧ (d̃x2 ∧ d̃xn+2) ∧ · · · ∧ (d̃xn ∧ d̃x2n) .

(E.152)

Remark 56. Since the space has 2n dimensions, d̃ Γ̃ = 0. Now let us define differential vectors d̄q = (dq) ∂̄q
and d̄p = (dp) ∂̄p. Then for a canonical system where fµν(x) is independent of x and is of the block form
(E.12), we have:

f̃(d̄q, d̄p) = dq dp . (E.153)

Similarly the volume form ω̃ when evaluated at vectors d̄qi and d̄pj for each value of µ = (i, j) gives, for a
canonical system the usual volume element given by Eq. (E.37):

dΓ =
dnq dnp
(2π~)n

=
Γ̃( d̄q1, d̄p1, d̄q2, d̄p2, . . . , d̄qn, d̄pn )

(2π~)n
. (E.154)

We conclude that Γ̃ is non-zero.
It is useful now to define a density of states form ρ̃(t) by:

Definition 71 (density of states). The density of states form ρ̃(t) is defined by:

ρ̃(t) ≡ ρ(t) Γ̃ , (E.155)

where ρ(t) is a function (a zero form), to be specified below. So ρ̃(t) is a 2n-form. Both ρ(t) and Γ̃ depend
on the coordinates x, which we have suppressed for simplicity here.

Theorem 67. The Lie derivative of the density form ρ̃(t) with respect to a Hamiltonian vector field v̄ is
given by:

£v̄( ρ̃(t) ) = vµ ∂µ( ρ(t) ) Γ̃ , (E.156)

from which we find that the divergence of the co-moving vector field ρ(t) v̄ with respect to the volume form Γ̃
is given by:

∇̃Γ̃( ρ(t) v̄ ) = vµ ∂µ( ρ(t) ) . (E.157)

The Hamiltonian vector field v̄ = d̄H(x) satisfies d̃ ṽ = 0.
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Proof. The Lie derivative is given by:

£v̄( ρ̃(t) ) = £v̄( ρ(t) Γ̃ ) = d̃( ρ(t) Γ̃(v̄) ) + d̃ ( ρ(t) Γ̃ )(v̄) . (E.158)

But we note that:
d̃ ( ρ(t) Γ̃ ) = (d̃ρ(t)) ∧ Γ̃ = (∂µρ(t)) d̃xµ ∧ Γ̃ = 0 , (E.159)

since Γ̃ saturates the space. Using f̃(v̄) = ṽ, we find:

Γ̃(v̄) = ṽ ∧ f̃ ∧ f̃ ∧ · · · ∧ f̃ + f̃ ∧ ṽ ∧ f̃ ∧ · · · ∧ f̃ + · · ·+ f̃ ∧ f̃ ∧ · · · ∧ ṽ (E.160)

where there are (n− 1) two-forms f̃ ’s. But since d̃f̃ = 0 and d̃ ṽ = 0, we find:

d̃( ρ(t)ṽ ) = d̃( ρ(t) ) ∧ ṽ = vν ( ∂µ ρ(t) ) ( d̃xµ ∧ d̃xν ) , (E.161)

so that:

d̃( ρ(t)Γ̃(v̄) ) = vν ( ∂µ ρ(t) )
{

( d̃xµ ∧ d̃xν ) ∧ f̃ ∧ f̃ ∧ · · · ∧ f̃
+ f̃ ∧ ( d̃xµ ∧ d̃xν ) ∧ f̃ ∧ · · · ∧ f̃ + · · ·+ f̃ ∧ f̃ ∧ · · · ∧ ( d̃xµ ∧ d̃xν )

}
. (E.162)

Now using the identity:

fνµ Γ̃ = ( d̃xµ ∧ d̃xν ) ∧ f̃ ∧ f̃ ∧ · · · ∧ f̃
+ f̃ ∧ ( d̃xµ ∧ d̃xν ) ∧ f̃ ∧ · · · ∧ f̃ + · · ·+ f̃ ∧ f̃ ∧ · · · ∧ ( d̃xµ ∧ d̃xν ) , (E.163)

we find:
d̃( ρ(t) Γ̃(v̄) ) = vν f

νµ ( ∂µρ(t) ) Γ̃ = vµ ( ∂µ ρ(t) ) Γ̃ , (E.164)

from which the result follows.

Exercise 86. Prove identity Eq. (E.172).

The next theorem states that the number of states in phase space, defined by an integral of the density
form ρ̃(t) is conserved.

Theorem 68. If the density of states form ρ̃(t) satisfies the equation:

{ ∂

∂t
+ £v̄

}
( ρ̃(t) ) = 0 , (E.165)

then the number of states N in a region U of phase space:

N =
∫

U

ρ̃(t, v̄) =
∫

U

ρ(t) Γ̃(v̄) , (E.166)

is conserved, dN/dt = 0. Here U is a region of phase space where on the boundary ∂U of which ρ(t)→ 0.

Proof. We first note that Theorem 67 shows that Eq. (E.165) means that:

∂ρ̃(t)
∂t

= −d̃( ρ(t) Γ̃(v̄) ) , (E.167)

So that:
dN
dt

= −
∫

U

d̃( ρ(t) Γ̃(v̄) ) = −
∫

∂U

ρ(t) Γ̃(v̄)
∣∣
∂V
→ 0 . (E.168)

where we have used Stoke’s theorem.
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Remark 57. Let us work out the left- and right-hand sides of Eq. (E.123). For the left-hand side, since
f̃(V̄ ) = Ṽ , we find:

ω̃(V̄ ) = Ṽ ∧ f̃ ∧ f̃ ∧ · · · ∧ f̃ + f̃ ∧ Ṽ ∧ f̃ ∧ · · · ∧ f̃ + · · ·+ f̃ ∧ f̃ ∧ · · · ∧ Ṽ (E.169)

where there are (n− 1) two-forms f̃ ’s. But since d̃f̃ = 0 and

d̃ Ṽ = ( ∂νVµ ) d̃xµ ∧ d̃xν , (E.170)

we find:

d̃( ω̃(V̄ ) ) = ( ∂ν Vµ )
{

( d̃xµ ∧ d̃xν ) ∧ f̃ ∧ f̃ ∧ · · · ∧ f̃
+ f̃ ∧ ( d̃xµ ∧ d̃xν ) ∧ f̃ ∧ · · · ∧ f̃ + · · ·+ f̃ ∧ f̃ ∧ · · · ∧ ( d̃xµ ∧ d̃xν )

}
. (E.171)

Now using the identity:

fνµ ω̃ = ( d̃xµ ∧ d̃xν ) ∧ f̃ ∧ f̃ ∧ · · · ∧ f̃
+ f̃ ∧ ( d̃xµ ∧ d̃xν ) ∧ f̃ ∧ · · · ∧ f̃ + · · ·+ f̃ ∧ f̃ ∧ · · · ∧ ( d̃xµ ∧ d̃xν ) , (E.172)

we find:
d̃( ω̃(V̄ ) ) = fνµ ( ∂ν Vµ ) ω̃ = ( ∂µ Vµ ) ω̃ . (E.173)

We also need to evaluate the right-hand side of (E.123) on the boundary ∂U . So let s̄ be any vector tangent
to ∂U and let ñ be a one-form normal to ∂U so that ñ(s̄) = 0. Then if S̃ is any (N − 1)-form such that:
ω̃ = ñ ∧ S̃, then:

ω̃(V̄ ) = ñ(V̄ ) S̃ = (nµV µ ) S̃ , (E.174)

and so Stokes’ theorem for symplectic forms becomes:
∫

U

( ∂µVµ ) ω̃ =
∫

∂U

(nµV µ ) S̃ , (E.175)

where S̃ is restricted to the boundary: ∂U .

E.4.2 Integral invariants

We assume that there exists a fundamental one-form π̃x ∈ T ∗xMS which describes the classical system. It is
given by:

π̃x = πµ(x) d̃xµ . (E.176)

The symplectic two-form is then given by:

f̃x = d̃ π̃ = (∂µπν(x)) d̃xµ ∧ d̃xν =
1
2
fµν(x) d̃xµ ∧ d̃xν , (E.177)

where
fµν(x) = ∂µπν(x)− ∂νπµ(x) = −fνµ(x) , (E.178)

is the antisymmetric symplectic matrix. Using Stokes’ theorem, we find:
∫

U

f̃x =
∫

U

d̃ π̃ =
∫

∂U

π̃ . (E.179)

For the case of n = 1 and a cannonical coordinate system, (E.179) becomes:
∫

U

d̃p ∧ d̃q =
∫

∂U

p(q) d̃q . (E.180)
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We now wish to include time as a variable. We take time to be a one dimensional base manifold,
t ∈ R. At each point t in this base manifold, we attach a symplectic manifold M of dimension 2n with
an antisymmetric non-degenerate two-form f attached. The fiber bundle consisting of M plus the base
manifold forms a projective manifold of dimension 2n + 1. The action one-form is given by the Poincaré-
Cartan invariant:

d̃S = π̃(x)−H(x) d̃t = πµ(x) d̃xµ −H(x) d̃t ≡ L(x) d̃t . (E.181)

The integral:

S =
∫

d̃S , (E.182)

is called Hilbert’s invariant integral.

E.4.3 Gauge connections

In this section, we introduce a general n-dimensional frame (a basis), and consider linear transformations
of the basis set. In this section, we think of the basis set as fields and the basis transformations as gauge
transformations, using the terminology of the gauge theory of fields.

Since the methods used in this section are applicable to both metric manifolds and symplectic manifolds,
we develop equations for both types of manifolds. We follow the development in Göckeler and Schücker [4][p.
61] for a manifold with a metric, which is called the Einstein-Cartan general relativity theory. The book by
Foster and Nightingale [?] is also very useful here.

Let us choose a frame13 b̄µ(x) ∈ TxM at point P (x) with the duals b̃µ(x) ∈ T ∗xM. Under a basis (gauge)
transformation:

b̄′µ(x) = b̄ν(x) [ γ−1(x) ]νµ , b̃′µ(x) = [ γ(x) ]µν b̃ν(x) , (E.183)

where γ(x) ∈ GLn. In an obvious matrix notation, we write simply:

b̄′(x) = b̄(x) γ−1(x) , b̃′(x) = γ(x) b̃(x) . (E.184)

With respect to this frame, we define a (symmetric) metric-form gx at P (x) by:

gx = gµν(x) b̃µ(x)⊗ b̃ν(x) , (E.185)

or a symplectic (anti-symmetric) two-form f̃x at P (x) by:

f̃x =
1
2
fµν(x) b̃µ(x) ∧ b̃ν(x) , (E.186)

depending on the type of manifold. The metric matrix gµν(x) then transforms according to:

g′µν(x) = gµ′ν′(x) [ γ−1(x) ]µ
′

µ [ γ−1(x) ]ν
′

ν = [ γ−1T (x) ]µµ
′
gµ′ν′(x) [ γ−1(x) ]ν

′

ν , (E.187)

which we can write in matrix notation as:

g′(x) = γ−1T (x) g(x) γ−1(x) . (E.188)

The symplectic matrix fµν(x) transforms in the same way:

f ′(x) = γ−1T (x) f(x) γ−1(x) . (E.189)

For infinitesimal transformations, we write:

γµν(x) = δµν + ∆γµν(x) + · · · , (E.190)

13In order to avoid confusion, we set b̄xµ 7→ b̄µ(x) in this section.
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where ∆γµν(x) ∈ gln are infinitesimal. So for infinitesimal transformations, we find, in matrix notation:

∆b̃(x) = ∆γ(x) b̃(x) ,

∆g(x) = −∆γT (x) g(x)− g(x) ∆γ(x) ,

∆f(x) = −∆γT (x) f(x)− f(x) ∆γ(x) .

(E.191)

We want to make sure that when we are done, the choice of frame is irrelevant. We seek here differential
equations for b̃µ(x) and gµν(x) or fµν(x) which are covariant under the gauge group GLn. For this purpose,
we introduce a gln connection, where gln is the Lie algebra of GLn, and find an invariant action. Minimizing
the action will lead to the equations we seek.

We first come to the problem of finding a connection. For this purpose, we seek a covariant exterior
derivative one-form matrix operator D̃(1)µ

ν(x) ∈ gln, which, when acting on the basis fields b̃µ(x), transform
homogeneously under gauge transformations. That is, we want to find a D̃(1)µ

ν(x) such that:

D̃(1)′µ
ν(x) b̃′ ν(x) = γµν(x) D̃(1)ν

λ(x) b̃λ(x) . (E.192)

We state the result in the form of a theorem, using matrix notation:

Theorem 69 (Covariant derivative of a vector). If b̃(x) transforms according to:

b̃′(x) = γ(x) b̃(x) , (E.193)

then the exterior covariant derivative D̃(1)(x) transforms according to:

D̃(1) ′(x) b̃′(x) = D̃(1) ′(x) γ(x) b̃(x) = γ(x) D̃(1)(x) b̃(x) , (E.194)

with D̃(1)(x) given by:
D̃(1)(x) = d̃ + Γ̃ ∧ , (E.195)

where the one-form (matrix) connection Γ̃ transforms according to the rule:

Γ̃′(x) = γ(x) Γ̃(x) γ−1(x) + γ(x) ( d̃ γ−1(x) ) . (E.196)

Proof. Using (E.193), we want to find a connection which satisfies:

d̃ ( γ(x) b̃(x) ) + Γ̃′(x) γ(x) ∧ b̃(x) = γ(x) ( d̃ b̃(x) ) + γ(x) Γ̃(x) ∧ b̃(x) (E.197)

from which we find:
d̃ γ(x) + Γ̃′(x) γ(x) = γ(x) Γ̃(x) , (E.198)

or:

Γ̃′(x) = γ(x) Γ̃(x) γ−1(x)− ( d̃ γ(x) ) γ−1(x)

= γ(x) Γ̃(x) γ−1(x) + γ(x) d̃ ( γ−1(x) ) ,
(E.199)

which was what we wanted to show. In the last line of (E.199) we used:

d̃ ( γ(x) γ−1(x) ) = ( d̃ γ(x) ) γ−1(x) + γ(x) ( d̃ γ−1(x) ) = 0 . (E.200)

Remark 58. The transformation rule (E.196) for the connection is called an affine representation of the
gauge group. In components, the connection can be written in terms of the basis as:

Γ̃µν(x) = Γµνλ(x) d̃xλ , Γµνλ(x) ∈ gln . (E.201)

Note carefully here that λ is a form index whereas µ and ν are matrix indices which refer to gauge trans-
formations. For infinitesimal transformations, we find from Eq. (E.196):

∆Γ̃(x) = −
{

d̃ ∆γ(x) + Γ̃(x) ∆γ(x)−∆γ(x) Γ̃(x)
}

= −
{

d̃ ∆γ(x) + [ Γ̃(x),∆γ(x) ]
}
. (E.202)

The connection form, or gauge fields, are considered here to be independent fields.
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Definition 72 (Curvature and torsion). The curvature R̃(x) and torsion T̃ (x) two-forms are defined as:

R̃(x) := D̃(1) Γ̃(x) = d̃ Γ̃(x) + Γ̃(x) ∧ Γ̃(x) , (E.203)

T̃ (x) := D̃(1) b̃(x) = d̃ b̃(x) + Γ̃(x) ∧ b̃(x) .

Remark 59. In the definition of the curvature, we have encountered the wedge product of two connection
one-forms. This term can be written in a number of ways:

[ Γ̃(x) ∧ Γ̃(x) ]µν = Γ̃µλ(x) ∧ Γ̃λν(x)

= Γµλσ(x) Γλνσ′(x) b̃σ(x) ∧ b̃σ′(x)

=
1
2
{

Γµλσ(x) Γλνσ′(x)− Γµλσ′(x) Γλνσ(x)
}
b̃σ(x) ∧ b̃σ′(x)

=
1
2

[ Γσ(x),Γσ′(x) ]µν b̃σ(x) ∧ b̃σ′(x) .

(E.204)

Since the commutator in this expression is a matrix product, it does not in general vanish. Another way
of saying this is that the connection one-form Γ̃ ∈ gln and obeys a Lie algegra. So it is useful to define a
commutation relation for matrices of one-forms belonging to a Lie algebra by:

Definition 73 (Wedge commutator). The wedge commutator of two one-forms Ã, B̃ ∈ gl4 is defined by:

[ Ã, B̃ ]
∧

:= [Aµ, Bν ] b̃µ(x) ∧ b̃ν(x) = Ã ∧ B̃ − B̃ ∧ Ã . (E.205)

In particular if Ta is a basis of gln and Ãi are p-forms and B̃j q-forms, the wedge commutator becomes:

Ã = Ãi Ti , B̃ = B̃j Tj , (E.206)

so that
[ Ã, B̃ ]

∧
= Ãi ∧ B̃j [ Ti, Tj ] . (E.207)

This definition means that:
[ Ã, B̃ ]

∧
= −(−)pq [ B̃, Ã ]

∧
, (E.208)

and in particular [ Ã, Ã ]
∧
6= 0 for odd-forms.

Using this definition, the curvature can be written as:

R̃(x) = d̃ Γ̃(x) +
1
2

[ Γ̃, Γ̃ ]
∧
. (E.209)

We next find the transformation properties of the curvature and torsion. This is stated in the following
theorem:

Theorem 70. The curvature and torsion transform homogeneously:

R̃′(x) = γ(x) R̃(x) γ−1(x) , and T̃ ′(x) = γ(x) T̃ (x) . (E.210)

For infinitesimal transformations, we have:

∆R̃(x) = [ ∆γ(x), R̃(x) ] , and ∆T̃ (x) = ∆γ(x) T̃ (x) . (E.211)

Proof. This is easily established using definitions (E.203), and is left as an exercise for the reader.
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Remark 60. The Bianchi identities for the curvature and torsion are:

D̃(1) T̃ (x) = D̃(1) D̃(1) b̃(x) = R̃(x) ∧ b̃(x) , (E.212)

which can easily be established using the definitions. The Bianchi identity for the curvature requires a
definition of the covariant derivative of a tensor, which we state in the following theorem.

Theorem 71 (Covariant derivative of a tensor). If R̃(x) transforms according to:

R̃′(x) = γ(x) R̃(x) γ−1(x) , (E.213)

then the exterior covariant derivative D̃(2)(x) transforms according to:

D̃(2) ′(x) R̃′(x) = D̃(2) ′(x) γ(x) R̃(x) γ−1(x) = γ(x) D̃(2)(x) R̃(x) γ−1(x) , (E.214)

with D̃(2)(x) R̃(x) given by:
D̃(2)(x) R̃(x) = d̃ R̃(x) + [ Γ̃(x), R̃(x) ]

∧
. (E.215)

with the connection form Γ̃(x) transforming according to the rule given in Eq. (E.196).

Proof. We have, in a short-hand notation:

D̃(2) ′ R̃′ = D̃(2) ′ γ R̃ γ−1

= d̃ ( γ R̃ γ−1 ) + [ Γ̃′, γ R̃ γ−1 ]
∧

=

(E.216)
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Appendix F

Statistical mechanics review

In this appendix we review statistical mechanics as applied to quantum mechanical systems. We start
with definitions of the canonical and grand canonical thermal density matrices and their relationship to
thermodynamic quantities. We discuss classical perturbative methods for computing statistical density
matrices for interacting systems, illustrated by the anharmonic oscillator. Finally, we discuss the Martin-
Siggia-Rose (MSR) [1, 2] method of finding a generating function for classical perturbation theory.

F.1 Thermal ensembles

We first study a classical system of N particles with dynamics governed by a Hamiltonian H.

F.2 Grand canonical ensemble

The thermal density matrix ρ̂ for a grand canonical ensemble is generated by writing the entropy (S), energy
(E), and particle number (N) in terms of a quantum density operator ρ̂ and quantum operators Ĥ and N̂ .1

S = −kB Tr[ ρ̂ ln ρ̂ ] , E = Tr[ ρ̂ Ĥ ] , N = Tr[ ρ̂ N̂ ] , 1 = Tr[ ρ̂ ] . (F.1)

Here kB is Boltzmann’s constant. The best choice of the density ρ̂ which minimizes the entropy, such that
the energy, particle number, and normalization is conserved is given by:

ρ̂ =
1
Z
e−β (Ĥ−µN̂) , (F.2)

where β, µ, and Z are Lagrange multipliers. This density matrix is not idempotent, and so it cannot be
represented by a projection operator for a single quantum state |ψ 〉〈ψ |. Instead it is a mixture of many
quantum states.

The partition function Z(β, µ, V ) is given by requiring the thermal density matrix to be normalized to
one:

Z(β, µ, V ) ≡ e−W (β,µ,V ) = Tr[ e−β(Ĥ−µN̂) ] . (F.3)

Here we have define a “connnected generator” W (β, µ, V ), which will be useful below. V is the volume of
the system, and enters through the trace definition. Derivatives of W (β, µ, V ) with respect to β and µ are
given:

− 1
Z

[
∂Z(β, µ, V )

∂β

]

µ,V

=
[
∂W (β, µ, V )

∂β

]

µ,V

= Tr[ ρ̂ (Ĥ − µN̂) ] = E − µN , (F.4)

1In this section, hatted quantities are quantum operators.
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and
1
Z

[
∂Z(β, µ, V )

∂µ

]

β,V

= −
[
∂W (β, µ, V )

∂µ

]

β,V

= β Tr[ ρ̂ N̂ ] = β N . (F.5)

The values of β and µ are fixed by these two equations. The entropy is now given by:

S(E,N, V )/kB = −Tr[ ρ̂ ln ρ̂ ] = β (E − µN) + lnZ(β, µ, V ) = β (E − µN)−W (β, µ, V ) . (F.6)

But Eq. (F.6) is a Legendre transformation to the entropy S which is now a function of E, N , and V as a
result of Eqs. (F.4) and (F.5). So we now find:

[
∂S(E,N, V )

∂E

]

N,V

= kB β ,

[
∂S(E,N, V )

∂N

]

E,V

= −kB β µ , (F.7)

[
∂S(E,N, V )

∂V

]

E,N

= −kB

[
∂W (β, µ, V )

∂V

]

β,µ

. (F.8)

The first and second laws of thermodynamics tells us that:

T dS(E,N, V ) = dE − µdN + p dV , (F.9)

which means that that:
[
∂S(E,N, V )

∂E

]

N,V

=
1
T
,

[
∂S(E,N, V )

∂N

]

E,V

= −µ
T
,

[
∂S(E,N, V )

∂V

]

E

=
p

T
. (F.10)

But from Eqs. (F.7) and (F.8), we see that β = 1/(kBT ) is the inverse temperature times kB and µ is called
the chemical potential. The pressure is found from the equation:

p = T

[
∂S(E,N, V )

∂V

]

E,N

= − 1
β

[
∂W (β, µ, V )

∂V

]

β,µ

= −
[
∂Ω(β, µ, V )

∂V

]

β,µ

, (F.11)

where we have defined a thermodynamic potential Ω(β, µ, V ) = W (β, µ, V )/β, so that now Z(β, µ, V ) is
related to the connected generator Ω(β, µ, V ) by:

Z(β, µ, V ) = e−β Ω(β,µ,V ) . (F.12)

In terms of the thermodynamic potential Ω(β, µ, V ) the number of particles and energy is given by:

N = −
[
∂Ω(β, µ, V )

∂µ

]

β,V

, E =
[
∂ [β Ω(β, µ, V ) ]

∂β

]

µ,V

+ µN . (F.13)

This completes the identification of the thermodynamic variables. So what we have learned here is that if
we can find the generating function Z(β, µ, V ), we can identify β with the inverse temperature times kB and
µ with the chemical potential and thus the number of particles N . The pressure is then calculated from
Eq. (F.11), which enables us to find the equation of state, p = p(T,N, V ) for the system. We will illustrate
this with some examples below.

F.2.1 The canonical ensemble

For systems of particles which do not conserve particle number, such as photons or pions, we use a canonical
ensemble. This is the same as the grand canonical ensemble with µ = 0. That is the best choice of the
density ρ̂ function which minimizes the entropy, such that the energy and normalization is conserved is given
by:

ρ̂(q, p) =
e−βH(q,p)

Z(β)
, Z(β) = Tr[e−βH ] . (F.14)
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F.3 Some examples

We start with a classical example of a N -free particles with the Hamiltonian:

H(p) =
N∑

i=1

|pi|2
2m

. (F.15)

In the classical case, the trace for calculation of the grand canonical ensemble is defined by:

Z(β, µ) =
∫∫ +∞

−∞

N∏

i=1

d3qi d3pi
(2π~)3N

exp
{
−β
[ N∑

i=1

|pi|2
2m

− µN
]}

(F.16)

Integration gives:

Z(β, µ) =
[ V

(2π~)3

]N [ 2mπ
β

]3N/2
eβ µN = exp

{
βµN +N ln

[
V/(2π~)3

]
+

3N
2

ln
[

2mπ/β
] }

. (F.17)

So
Ω(β, µ, V ) = −µN − N

β
ln
[
V/(2π~)3

]
− 3N

2β
ln
[

2mπ/β
]
. (F.18)

The pressure is then:

p = −
[
∂Ω(β, µ, V )

∂V

]

β,µ

=
N

βV
. (F.19)

Setting β = 1/(kBT ) and putting R = NA/kB and n = N/NA, where n is the number of moles and NA is
Avogardo’s number, we find the ideal gas law: pV = nRT . As expected, we find:

N = −
[
∂Ω(β, µ, V )

∂µ

]

β,V

,

E =
[
∂ [β Ω(β, µ, V ) ]

∂β

]

µ,V

+ µN =
3
2

1
β

=
3
2
kB T =

3
2
nRT .

(F.20)

The distribution function is the classical Boltzmann distribution:

ρ(q, p) =
1
Z

exp
{
−β
[ N∑

i=1

|pi|2
2m

− µN
]}

. (F.21)

Note that nothing here depends on ~, which was used only to make Z dimensionless.

F.4 Martin-Siggia-Rose formalism

The purpose of the Martin-Siggia-Rose (MSR) development is to find a generating function which can be
used to develop diagrammatic rules for classical perturbation expansions [1, 2] . We consider the case for a
anharmonic classical oscillator with a Hamiltonian of the form:

H(q, p) =
1
2

[ p2 + µ2 q2 ] +
λ

8
q4 . (F.22)

Here the classical canonical variables are q and p. The classical equations of motion, Eq. (??), are:

q̇ = { q,H } = p ,

ṗ = { p,H } = −µ2 q − λ q3/2 . (F.23)
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The classical Poisson bracket is defined by:

{A(q, p), B(q, p) } =
∂A

∂q

∂B

∂p
− ∂B

∂q

∂A

∂p
. (F.24)

q and q satisfy the Poisson bracket relations:

{ q, p } = 1 , { q, q } = { p, p } = 0 . (F.25)

So the classical equations of motion can be written in the form:

d
dt

(
q
p

)
=
(

p
−µ2 q − λ q3/2

)
. (F.26)

In the MSR formalism, we define quantum operators Q and P which satisfy quantum comutation relations
with the classical canonical variables q and p such that:

[ q, P ] = [Q, p ] = i~ ,
[ q, q ] = [P, P ] = [Q,Q ] = [ p, p ] = 0 ,
[ q,Q ] = [ q, p ] = [P,Q ] = [ p, P ] = 0 , (F.27)

Evidently, a representation of P and Q acting on functions of q and p is given by the differential operators:

P → ~
i

∂

∂q
, Q→ −~

i

∂

∂p
. (F.28)

This satisfies all the commutation relations (F.27). Next, we define a “non-hermitian Hamiltonian” HMSR

by:
HMSR[q, p;P,Q] = P p+Q {µ2q + λ q3/2 } . (F.29)

HMSR is an operator with scalar coefficients. Using the quantum Heisenberg equations of motion,

q̇ = [ q,HMSR ]/i~ = { q,H } = p ,

ṗ = [ p,HMSR ]/i~ = { p,H } = −µ2q − λ q3/2 ,

Ṗ = [P, ĤMSR ]/i~ = −(µ2 + 3λ q2/2 )Q ,

Q̇ = [Q,HMSR ]/i~ = P , (F.30)

we recover the original classical equations of motion for q and p, but find two additional equations of motion
for the quantum operators Q and P . The two second order equations of motion are obtained from these by
differentiation. We find:

q̈ + µ2 q + λ q3/2 = 0 ,

Q̈+ µ2Q+ 3λ q2Q/2 = 0 . (F.31)

It is now useful to change variables in the following way. We let:

Q± = q ± Q

2
= q ∓ ~

2i
∂

∂p
,

P± =
P

2
± p = ± p+

~
2i

∂

∂q
. (F.32)

Solving (F.32) in reverse, we find:

q = (Q+ +Q− )/2 , Q = Q+ −Q− ,
p = (P+ − P− )/2 , P = P+ + P− . (F.33)
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So we have the relations:
1
2

[P 2
+ − P 2

− ] = P p

1
2

[Q2
+ −Q2

− ] = q Q

1
8

[Q4
+ −Q4

− ] = q3Q/2 + q Q3/8 , (F.34)

Q± and P± are sums of functions and operators, so they obey commutation relations as well as Poisson
bracket relations. These new operators Q± and P± satisfy the commutation relations:

[Q+, P+ ] = [Q−, P− ] = i~ ,
[Q+, Q+ ] = [Q−, Q− ] = [Q+, Q− ] = 0 ,
[P+, P+ ] = [P−, P− ] = [P+, P− ] = 0 ,

[Q+, Q− ] = [Q−, P+ ] = 0 . (F.35)

and the Poisson bracket relations:

{Q+, P± } = {Q−, P± } = ±1 . (F.36)

Now as we have seen, the quantum mechanical closed-time-path Hamiltonian for this problem is given by
the difference of two identical Hamiltonians with varibles (Q+, P+) and (Q−, P−) respectively:

HCTP = H[Q+, P+]−H[Q−, P−] =
1
2

[P 2
+ − P 2

− ] +
µ2

2
[Q2

+ −Q2
− ] +

λ

8
[Q4

+ −Q4
− ] , (F.37)

which can be written as:

HCTP[q, p;Q,P ] = pP + µ2 q Q+ λ [ q3Q/2 + q P 3/8 ] . (F.38)

Thus, except for the factor q Q3/8 in the last term, the CTP Hamiltonian, Eq. (F.38), is the same as the
MSR Hamiltonian, Eq. (F.29). So if the CTP Hamiltonian is to reduce to the MSR Hamiltonian, we must
retain Q and P as quantum variables, and set q and p to be classical variables. Then, in the classical limit,
~→ 0, according to the differential representations (F.28), the first term in the last equation in (F.34) is of
order ~, whereas the second term is of order ~3, and is thus to be neglected. In which case

HCTP → HMSR (F.39)

in the classical limit. H still has a term linear in ~, but no classical equations depend on ~, as we have shown
in the first of Eqs. (F.31).

We can now reverse the whole arguement, and develop a rule for moving from quantum mechanics to
classical physics to obtain a generating function. Starting with the quantum CTP Lagrangian or Hamiltonian
with (Q+, P+;Q−, P−) variables, replace them with the set (q, p;Q,P ) set of variables, with q and p classical.
Retain the first order in ~ reduction of the quantum variables, Q and P , and the resulting Lagrangian or
Hamiltonian will generate the classical equations of motion, as well as quantum ones for Q and P .

We note from Eq. (F.30) that q̇ = p and Q̇ = P , so if we define the Lagrangian by

L[q,Q; q̇, Q̇] = q̇ P + Q̇ p−H[q̂, Q; p, P̂ ] ,

= Q̇ q̇ −Q {µ2q + λ q3/2 } , (F.40)

it gives the equations of motion:

d
dt

∂L

∂Q̇
− ∂L

∂Q
= 0 , → q̈ + µ2 q + λ q3/2 = 0 ,

d
dt

∂L

∂q̇
− ∂L

∂q
= 0 , → Q̈+ µ2Q+ λ 3 q2Q/2 = 0 , (F.41)
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which agree with our previous result, Eqs. (F.31). Introducing current terms into the Lagrangian, we can
write Eq. (F.40) as:

L′[q,Q; q̇, Q̇] = Q̇ q̇ −Q {µ2q + λ q3/2 }+ q J +Qj ,

= −Q
{

d2

dt2
+ µ2

}
q − λ

2
Qq3 + q J +Qj . (F.42)

in which case, the equations of motion become:

q̈ + µ2 q + λ q3/2 = j ,

Q̈+ µ2Q+ λ 3 q2Q/2 = J , (F.43)

It is useful to introduce two component vectors Qa = (q,Q) and J a = (j, J), and a metric gab, given by:

gab = gab =
(

0 1
1 0

)
, (F.44)

which raise and lower indicies, so that Qa = (Q, q) and Ja = (J, j). Then, from Eq. (F.42), the action can
be written in the compact form:

S[Q] = −1
2

∫∫
dtdt′Qa(t)G−1

0 ab(t, t
′)Qb(t′)

−
∫

dt
{1

4
γabcdQa(t)Qb(t)Qc(t)Qd(t)− Ja(t)Qa(t)

}
. (F.45)

where G−1
0 ab(t, t

′) and γabcd are given by,

G−1
0 ab(t, t

′) =
{

d2

dt2
+ µ2

}
gab δ(t− t′) . (F.46)

γq̂QQQ = γQq̂QQ = γQQq̂Q = γQQQq̂ =
λ

2
, (F.47)

all other γ’s vanish. The γ’s are fully symmetric with respect to permutations of the indices:

γabcd = γbacd = γcbad = γdbca = γacbd = · · · (F.48)

In this new notation, the equations of motion (F.43) are given by the single equation:
{

d2

dt2
+ µ2

}
Qa(t) + γabcdQb(t)Qc(t)Qd(t) = Ja(t) . (F.49)

We can also define the vector Pa = Q̇a = (p, P̂ ). Then,

[Qa(t),Pb(t) ] = i~ gab , [Qa(t),Qb(t) ] = [Pa(t),Pb(t) ] = 0 . (F.50)

Keep in mind that we are doing classical physics here! What we are trying to do is to bring out the similarities
and differences between classical and quantum perturbative calculations.

F.4.1 Classical statistical averages

We now come to the tricky point of defining a statistical average of our classical and (quantum) operator
quantities. Using a canonical ensemble, we define the statistical average of a function of Q and p by Eq. (??),
which here reads:

〈A(q, p) 〉 = Tr[A(q, p) ] =
1
Z

∫∫ +∞

−∞

dq dp
2π~

A(q, p) e−βH(q,p) . (F.51)
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We have supressed the time dependence of A(q, p). It is useful to note that H(q, p) and the phase space
element dq dp are invariant under a time translation generated by H(q, p).

For the operators Q and P , a different strategy for computing an average is required. We define these as
right-acting differential operators, given by Eq. (F.28), and define a generalized ensemble average by:

〈A(q,Q; p, P ) 〉 = Tr[A(q,Q; p, P ) ] =
1
Z

∫∫ +∞

−∞

dq dp
2π~

A(q,Q; p, P ) e−βH(q,p) , (F.52)

where now A(q,Q; p, P ) is a differential operator. For example, we find:

〈Q(t) 〉 = − ~
iZ

∫∫ +∞

−∞

dq(t) dp(t)
2π~

∂

∂p(t)

{
e−βH(q(t),p(t))

}
= 0 , (F.53)

by integration by parts. We also find that:

〈Q(t) q(t′) 〉 = − ~
iZ

∫∫ +∞

−∞

dq(t) dp(t)
2π~

∂

∂p(t)

{
q(t′) e−βH(q(t),p(t))

}
= 0 , (F.54)

Here we used the fact that the phase space dq(t) dp(t) and Hamiltonian H(q(t), p(t)) are invariant under
time translations. In a similar way, we find that

〈P (t) p(t′) 〉 = 0 . (F.55)

In fact the extended definition of the ensemble average, given in Eq. (F.52), shows that the average vanishes
if any operator stands first on the left. This is crucial for the definition of the tri-diagonal form of the Green
functions, as we will see below. If the operator stands last on the right, the situation is altogether different.
For example, consider:

〈 q(t)Q(t′) 〉 = − ~
iZ

∫∫ +∞

−∞

dq(t′) dp(t′)
2π~

q(t)
∂

∂p(t′)
e−βH(q(t′),p(t′))

=
~
iZ

∫∫ +∞

−∞

dq(t′) dp(t′)
2π~

e−βH(q(t′),p(t′)) ∂q(t)
∂p(t′)

(F.56)

= − ~
iZ

∫∫ +∞

−∞

dq(t′) dp(t′)
2π~

e−βH(q(t′),p(t′))

{
∂q(t)
∂q(t′)

∂q(t′)
∂p(t′)

− ∂q(t)
∂p(t′)

∂q(t′)
∂q(t′)

}

= i~ 〈 { q(t), q(t′) } 〉 = i~σ(t, t′) ,

since
∂q(t′)
∂q(t′)

= 1 , and
∂q(t′)
∂p(t′)

= 0 .

The Poisson bracket in Eq. (F.56) can be evaluated at any time, in particular at t = 0. From (F.54) and
(F.56), we obtain:

σ(t, t′) = 〈 { q(t), q(t′) } 〉 = 〈 [ q(t), Q(t′) ] 〉/i~ . (F.57)

Here, the first expression is classical and the second is an operator statement.
In a similar way, we find:

〈 p(t) P̂ (t′) 〉 =
~
iZ

∫∫ +∞

−∞

dQ(t′) dp(t′)
2π~

p(t)
∂

∂Q(t′)
e−βH(Q(t′),p(t′))

= − ~
iZ

∫∫ +∞

−∞

dQ(t′) dp(t′)
2π~

e−βH(Q(t′),p(t′)) ∂p(t)
∂Q(t′)

(F.58)

= − ~
iZ

∫∫ +∞

−∞

dQ(t′) dp(t′)
2π~

e−βH(Q(t′),p(t′))

{
∂p(t)
∂Q(t′)

∂p(t′)
∂p(t′)

− ∂p(t)
∂p(t′)

∂p(t′)
∂Q(t′)

}

= i~ 〈 { p(t), p(t′) } 〉 = i~ 〈 { Q̇(t), Q̇(t′) } 〉 = i~
∂2σ(t, t′)
∂t ∂t′

.
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So we can write:
∂2σ(t, t′)
∂t ∂t′

= 〈 { p(t), p(t′) } 〉 = 〈 [ p(t), P̂ (t′) ] 〉/i~ . (F.59)

Time- and antitime-ordered products are defined by:

T {Q(t) q̂(t′) } = Q(t) q̂(t′) Θ(t− t′) + q̂(t′)Q(t) Θ(t′ − t) ,
T ∗{Q(t) q̂(t′) } = Q(t) q̂(t′) Θ(t′ − t) + q̂(t′)Q(t) Θ(t− t′) = T { q̂(t′)Q(t) } . (F.60)

So again, using properties (F.54) and (F.56), we find:

−〈T {Q(t) q̂(t′) } 〉/i~ = −〈 {Q(t), Q(t′) } 〉Θ(t− t′) = −σ(t, t′) Θ(t− t′) = GR(t, t′)/i ,
+〈 T ∗{Q(t) q̂(t′) } 〉/i~ = +〈 {Q(t), Q(t′) } 〉Θ(t′ − t) = +σ(t, t′) Θ(t′ − t) = GA(t, t′)/i .

Except for the factor of ~, this is the same as we found before. Note that GA(t, t′) = GR(t′, t), so that we
only need to consider time-ordered operators.

Using the two-component notation, the ensemble average is defined by:

〈A(Q,P) 〉 = Tr[A(Q,P) ] =
1
Z

∫∫ +∞

−∞

dQdp
2π~

A(Q,P) e−βH(Q,p) . (F.61)

F.4.2 Generating functions

Green functions

Using the two-component notation, the generating functional for extended ensemble averages, given in the
last section, of time-orded products of Qa(ta) is defined by:

Z[J ] = eiW [J ]/~ =
〈
T
{

exp
{
i

~

∫ +∞

−∞
dtQa(t)J a(t)

}}〉
. (F.62)

Then the time-ordered product is given by:

〈 T {Qa(ta)Qb(tb)Qc(tc) . . . } 〉 =
(

~
i

)n 1
Z

[
δnZ[J ]

δJ a(ta) δJ b(tb) δJ c(tc) · · ·

]

J=0

. (F.63)

We define connected Green functions by the relation:

Wabc···(ta, tb, tc, . . .) =
(

~
i

)n−1[
δnW [J ]

δJ a(ta) δJ b(tb) δJ c(tc) · · ·

]

J=0

. (F.64)

The order n of the Green functions are given by the number of indices. So then first order Green functions
are average values:

〈Qa(t) 〉 =
(

~
i

)
1
Z

[
δZ[J ]
δJ a(t)

]

J=0

=
[
δW [J ]
δJ a(t)

]

J=0

= Wa(t) , (F.65)

and second order ones are correlation coefficients and the usual Green functions:

〈 T {Qa(ta)Qb(tb) } 〉 =
(

~
i

)2 1
Z

[
δ2Z[J ]

δJ a(ta) δJ b(tb)

]

J=0

= 〈Qa(ta) 〉〈Qb(tb) 〉+
~
i

[
δ2W [J ]

δJ a(ta) δJ b(tb)

]

J=0

= 〈Qa(ta) 〉〈Qb(tb) 〉+Wab(ta, tb) . (F.66)
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So
Wab(ta, tb) = 〈 T {Qa(ta)Qb(tb) } 〉 − 〈Qa(ta) 〉〈Qb(tb) 〉 . (F.67)

Explicitly, we find for the upper component Green functions:

WQQ(t, t′) = 〈 T {Q(t)Q(t′) } 〉 − 〈Q(t) 〉〈Q(t′) 〉
= 〈Q(t)Q(t′) 〉 − 〈Q(t) 〉〈Q(t′) 〉 = F (t, t′) , (F.68)

WQq̂(t, t′) = 〈 T {Q(t)q̂(t′) } 〉 − 〈Q(t) 〉〈 q̂(t′) 〉
= 〈Q(t)q̂(t′) 〉Θ(t− t′)
= i~ 〈 {Q(t), Q(t′) } 〉Θ(t− t′)
= i~σ(t, t′) Θ(t− t′) = −i~GR(t, t′) . (F.69)

W q̂Q(t, t′) = 〈 T { q̂(t)Q(t′) } 〉 − 〈 q̂(t) 〉〈Q(t′) 〉
= 〈Q(t′)q̂(t) 〉Θ(t′ − t)
= i~ 〈 {Q(t′), Q(t) } 〉Θ(t′ − t)
= i~σ(t′, t) Θ(t′ − t) = −i~GA(t, t′) , (F.70)

W q̂q̂(t, t′) = 〈 T { q̂(t)q̂(t′) } 〉 − 〈 q̂(t) 〉〈 q̂(t′) 〉 = 0 . (F.71)

So

iW ab(t, t′) =
(
iF (t, t′) ~GR(t, t′)

~GA(t, t′) 0

)
,

iWab(t, t′) =
(

0 ~GA(t, t′)
~GR(t, t′) iF (t, t′)

)
. (F.72)

The order of differentiation doesn’t matter since Ja(t) is considered to be a classical commuting variable.
So, for example, Wab(t, t′) = Wba(t′, t), as can be seen explicitly above.

We will also need third order Green functions. These are given by:

〈 T {Qa(ta)Qb(tb)Qc(tc) } 〉 =
(

~
i

)3 1
Z

[
δ3Z[J ]

δJ a(ta) δJ b(tb)J c(tc)

]

J=0

= 〈Qa(ta) 〉〈Qb(tb) 〉〈Qc(tc) 〉

+
~
i

[
δW [J ]
δJ a(ta)

δ2W [J ]
δJ b(tb) δJ c(tc)

+
δW [J ]
δJ b(tb)

δ2W [J ]
δJ c(tc) δJ a(ta)

+
δW [J ]
δJ c(tc)

δ2W [J ]
δJ a(ta) δJ b(tb)

]

J=0

+
(

~
i

)2[
δ3W [J ]

δJ a(ta) δJ b(tb) δJ c(tc)

]

J=0

= 〈Qa(ta) 〉〈Qb(tb) 〉〈Qc(tc) 〉+ 〈Qa(ta) 〉Wbc(tb, tc) + 〈Qb(tb) 〉Wca(tc, ta)
+ 〈Qc(tc) 〉Wab(ta, tb) +Wabc(ta, tb, tc) .

So

Wabc(ta, tb, tc) = 〈 T {Qa(ta)Qb(tb)Qc(tc) } 〉 − 〈Qa(ta) 〉Wbc(tb, tc)− 〈Qb(tb) 〉Wca(tc, ta)
− 〈Qc(tc) 〉Wab(ta, tb)− 〈Qa(ta) 〉〈Qb(tb) 〉〈Qc(tc) 〉 . (F.73)

Vertex functions

The inverse (vertex) functions are obtained by a Legendre transform. We define Γ[Q] by:

Γ[Q] =
∫

dtJa(t)Qa(t)−W [J ] . (F.74)
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Here we have set the ensemble average Qa(t) = 〈Qa(t) 〉 = W
(1)
a (t), which is a classical commuting variable2.

So then
δW [J ]
δJa(ta)

= Qa(ta) ,
δΓ[Q]
δQa(ta)

= Ja(ta) . (F.75)

In general, we define:

Γabc···(ta, tb, tc, . . .) =
(
i

~

)n−1[
δnΓ[Q]

δQa(ta) δQb(tb) δQc(tc) · · ·

]

Q=0

. (F.76)

In order for this to make sense, we must be able to solve (F.75) for Qa(ta) as a functional of Ja(ta). We
assume that this is always possible to do.

Differentiating expressions (F.75), we find:

δ2W [J ]
δJb(tb) δJa(ta)

=
δQa(ta)
δJb(tb)

,
δ2Γ[Q]

δQb(tb) δQa(ta)
=
δJa(ta)
δQb(tb)

. (F.77)

But, by the chain rule, ∫
dtb

δJb(tb)
δQa(ta)

δQc(tc)
δJb(tb)

= δa
c δ(ta − tc) , (F.78)

we find: ∫
dtb

δ2Γ[Q]
δQa(ta) δQb(tb)

δ2W [J ]
δJb(tb) δJc(tc)

= δa
c δ(ta − tc) . (F.79)

We can write this as: ∫
dtb Γab[Q](ta, tb)W bc[J ](tb, tc) = δa

c δ(ta − tc) , (F.80)

so that Γab[Q](ta,b ) is the inverse of W bc[J ](tb, tc). Note that gac = δa
c. In a similar way, we can show that

∫
dtbW ab[J ](ta, tb) Γbc[Q](tb, tc) = δac δ(t− t′′) . (F.81)

Differentiating (F.80) with respect to Jd(td) gives:
∫

dtb

{
δΓab[Q](ta, tb)

δJd(td)
W bc[J ](tb, tc) + Γab[Q](ta, tb)

δW bc[J ](tb, tc)
δJd(td)

}
= 0 . (F.82)

Now using:

δW bc[J ](tb, tc)
δJd(td)

= W dbc[J ](td, tb, tc) ,

δΓab[Q](ta, tb)
δJd(td)

=
∫

dte
δQe(te)
δJd(td)

δΓab[Q](ta, tb)
δQe(te)

=
∫

dteW de[J ](td, te) Γeab[Q](te, ta, tb) . (F.83)

So (F.82) becomes:

∫
dtb Γab[Q](ta, tb)W dbc[J ](td, tb, tc) =

−
∫∫

dtb dteW de[J ](td, te) Γeab[Q](te, ta, tb)W bc[J ](tb, tc) (F.84)

2There is a confusion of symbols here. In order to follow the usual notation, we have used Qa(t) both as the ensemble
average and an operator. One can distinguish the difference between the two by the context in which is it used.
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Now multiplying through by W fa(tf , ta), integrating over ta and using (F.81) gives:

W abc[J ](ta, tb, tc) = −
∫∫∫

dta′ dtb′ dtc′

×W aa′ [J ](ta, ta′)W bb′ [J ](tb, tb′) Γa′b′c′ [Q](ta′ , tb′ , tc′)W c′c[J ](tc′ , tc) . (F.85)

Differentiating this expression with respect to Jd(td), and using the chain rule again, gives:

W dabc[J ](td, ta, tb, tc) = −
∫∫∫

dta′ dtb′ dtc′

×
{
W daa′ [J ](td, ta, ta′)W bb′ [J ](tb, tb′) Γa′b′c′ [Q](ta′ , tb′ , tc′)W c′c[J ](tc′ , tc)

+W aa′ [J ](ta, ta′)W dbb′ [J ](td, tb, tb′) Γa′b′c′ [Q](ta′ , tb′ , tc′)W c′c[J ](tc′ , tc)

+W aa′ [J ](ta, ta′)W bb′ [J ](tb, tb′) Γa′b′c′ [Q](ta′ , tb′ , tc′)W dc′c[J ](td, tc′ , tc)
}

−
∫∫∫∫

dta′ dtb′ dtc′ dtd′
{
W dd′ [J ](td, td′)W aa′ [J ](ta, ta′)W bb′ [J ](tb, tb′)

× Γd′a′b′c′ [Q](td′ , ta′ , tb′ , tc′)W c′c[J ](tc′ , tc)
}
. (F.86)

F.4.3 Schwinger-Dyson equations

Using the two-component notation, the equations of motion, Eq. (F.49), can be written:
{

d2

dt2
+ µ2

}
gabQb(t) + γabcdQb(t)Qc(t)Qd(t) = Ja(t) . (F.87)

The ensemble average of this equation is given by:
{

d2

dt2
+ µ2

}
gab 〈Qb(t) 〉+ γabcd 〈Qb(t)Qc(t)Qd(t) 〉 = Ja(t) . (F.88)

Now

〈Qb(t) 〉 =
δW [J ]
δJb(t)

, (F.89)

and

〈Qb(t)Qc(t)Qd(t) 〉 = 〈 T {Qb(t)Qc(t)Qd(t) } 〉 =
δW [J ]
δJb(t)

δW [J ]
δJc(t)

δW [J ]
δJd(t)

+
~
i

[
δW [J ]
δJb(t)

δ2W [J ]
δJc(t) δJd(t)

+
δW [J ]
δJc(t)

δ2W [J ]
δJd(t) δJb(t)

+
δW [J ]
δJd(t)

δ2W [J ]
δJb(t) δJc(t)

]

+
(

~
i

)2[
δ3W [J ]

δJb(t) δJc(t) δJd(t)

]

It is only when these quantities are evaluated at J = 0 that they become generalized Green functions.
Eq. (F.88) is to be regarded as a functional differential equation for W [J ]:
{

d2

dt2
+ µ2

}
gab

δW [J ]
δJb(t)

+ γabcd

{
δW [J ]
δJb(t)

δW [J ]
δJc(t)

δW [J ]
δJd(t)

+
~
i

[
δW [J ]
δJb(t)

δ2W [J ]
δJc(t) δJd(t)

+
δW [J ]
δJc(t)

δ2W [J ]
δJd(t) δJb(t)

+
δW [J ]
δJd(t)

δ2W [J ]
δJb(t) δJc(t)

]

+
(

~
i

)2[
δ3W [J ]

δJb(t) δJc(t) δJd(t)

]}
= Ja(t) . (F.90)
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Differentiating (F.90) with respect to Je(t′) gives:

{
d2

dt2
+ µ2

}
gab

δ2W [J ]
δJe(t′) δJb(t)

+ γabcd

{
δ2W [J ]

δJe(t′) δJb(t)
δW [J ]
δJc(t)

δW [J ]
δJd(t)

+
δW [J ]
δJb(t)

δ2W [J ]
δJe(t′) δJc(t)

δW [J ]
δJd(t)

+
δW [J ]
δJb(t)

δW [J ]
δJc(t)

δ2W [J ]
δJe(t′) δJd(t)

+
~
i

[
δ2W [J ]

δJe(t′) δJb(t)
δ2W [J ]

δJc(t) δJd(t)
+

δ2W [J ]
δJe(t′) δJc(t)

δ2W [J ]
δJd(t) δJb(t)

+
δ2W [J ]

δJe(t′) δJd(t)
δ2W [J ]

δJb(t) δJc(t)

]

+
~
i

[
δW [J ]
δJb(t)

δ3W [J ]
δJe(t′) δJc(t) δJd(t)

+
δW [J ]
δJc(t)

δ3W [J ]
δJe(t′) δJd(t) δJb(t)

+
δW [J ]
δJd(t)

δ3W [J ]
δJe(t′) δJb(t) δJc(t)

]
+
(

~
i

)2[
δ4W [J ]

δJe(t′) δJb(t) δJc(t) δJd(t)

]}
= δae δ(t− t′) . (F.91)

We define Γ0 ab(t, t′) by:

Γ0 ab(t, t′) =
(
i

~

)[
d2

dt2
+ µ2

]
gab δ(t− t′) . (F.92)

Collecting terms using the symmetry of γabcd, Eq. (F.91) becomes:

∫
dt′′ Γ0 ab(t, t′′)

(
~
i

)
δ2W [J ]

δJe(t′) δJb(t′′)
+ γabcd

(
i

~

){
3
[
δW [J ]
δJc(t)

δW [J ]
δJd(t)

+
(

~
i

)
δ2W [J ]

δJc(t) δJd(t)

](
~
i

)
δ2W [J ]

δJe(t′) δJb(t)
+ 3
(

~
i

)2[
δW [J ]
δJb(t)

δ3W [J ]
δJe(t′) δJc(t) δJd(t)

]

+
(

~
i

)3[
δ4W [J ]

δJe(t′) δJb(t) δJc(t) δJd(t)

]}
= δa

e δ(t− t′) . (F.93)

So we obtain:

∫
dt′′ Γ0 ab(t, t′′)W be[J ](t′′, t′)

+ γabcd

(
i

~

){
3 {W c[J ](t)W d[J ](t) +W cd[J ](t, t) }W be[J ](t, t′)

+ 3W b[J ](t)W cde[J ](t, t, t′) +W bcde[J ](t, t, t, t′)
}

= δa
e δ(t− t′) . (F.94)

Evaluating this at J = 0, gives an equation connecting the second order Green functions to higher ones.
Multiplying Eq. (F.94) by Γee′′′ [Q](t′, t′′′), suming over e and integrating over t′ gives:

Γae[Q](t, t′′) = Γ0 ae(t, t′′)

+ γaecd

(
i

~

)
3 {Qc(t)Qd(t) +W cd[J ](t, t) } δ(t− t′)

+ γabcd

(
i

~

) ∫
dt′
{

3Qb(t)W cde′ [J ](t, t, t′) +W bcde′ [J ](t, t, t, t′)
}

Γe′e[Q](t′, t′′) (F.95)
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Inserting (F.85) and (F.86) into (F.95) gives:

Γae[Q](t, t′′) = Γ0 ae(t, t′′)

+ γaecd

(
i

~

)
3 {Qc(t)Qd(t) +W cd[J ](t, t) } δ(t− t′)

− γabcd
(
i

~

){
3Qb(t)

∫∫
dta′ dtb′W ca′ [J ](t, ta′)W db′ [J ](t, tb′) Γa′b′e[Q](ta′ , tb′ , t′′)

−
∫∫∫

dta′ dtb′ dtc′

×
{
W daa′ [J ](td, ta, ta′)W bb′ [J ](tb, tb′) Γa′b′c′ [Q](ta′ , tb′ , tc′)W c′c[J ](tc′ , tc)

+W aa′ [J ](ta, ta′)W dbb′ [J ](td, tb, tb′) Γa′b′c′ [Q](ta′ , tb′ , tc′)W c′c[J ](tc′ , tc)

+W aa′ [J ](ta, ta′)W bb′ [J ](tb, tb′) Γa′b′c′ [Q](ta′ , tb′ , tc′)W dc′c[J ](td, tc′ , tc)
}

−
∫∫∫∫

dta′ dtb′ dtc′ dtd′
{
W dd′ [J ](td, td′)W aa′ [J ](ta, ta′)W bb′ [J ](tb, tb′)

× Γd′a′b′c′ [Q](td′ , ta′ , tb′ , tc′)W c′c[J ](tc′ , tc)
}}

Γe′e[Q](t′, t′′) .

+ γabcd

(
i

~

) ∫
dt′
{

3Qb(t)W cde′ [J ](t, t, t′) +W bcde′ [J ](t, t, t, t′)
}

Γe′e[Q](t′, t′′) (F.96)

F.5 The classical anharmonic oscillator

In classical physics, the anharmonic oscillator can be scaled in the following way. We first let t′ = µt. Then
the Lagrangian (??) becomes:

L(q, q̇) =
µ2

2

[(
dq
dt′

)2
− q2

]
− λ

8
q4 . (F.97)

So if we now scale q by q = αq′, we find

L(q′, q̇′) =
µ2 α2

2

[(
dq′

dt′

)2
− q′ 2

]
− λα4

8
q′ 4 . (F.98)

So the requirement of scaling is that

µ2 α2 = κλα4 or, α2 =
µ2

κλ
, (F.99)

with κ arbitrary. Then (F.98) becomes:

L(q′, q̇′) =
µ4

κλ

{
1
2

[(
dq′

dt′

)2
− q′ 2

]
− 1

8κ
q′ 4
}

=
µ4

κλ
L′(q′, q̇′) . (F.100)

So we have:

t = t′/µ , q =
µ√
κλ

q′ , L =
µ4

κλ
L′ , (F.101)

with

p =
∂L

∂q̇
= q̇ =

dq
dt

=
µ2

√
κλ

dq′

dt′
=

µ2

√
κλ

∂L′

∂q̇′
=

µ2

√
κλ

p′ , (F.102)
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where the new Lagrangian is given by:

L′(q′, q̇′) =
1
2

[(
dq′

dt′

)2
− q′ 2

]
− 1

8κ
q′ 4 , (F.103)

If we choose κ = 1, then the new Lagrangian is the same as the old one with µ = λ = 1. Another choice is
κ = 3, in which case the new Lagrangian is the same as the old one if we set µ = 1 and λ = 1/κ = 1/3. The
reason for using this choice for κ seems to be that sometimes the self-interaction term in the Lagrangian is
written as λ/4! rather that λ/8, which is what we use here. This second choice is given by setting λ = 1
rather that 1/3 in the original Lagrangian. Of course, it doesn’t matter, and for our purposes, it is simpler
to just take κ = 1.

So using this convention, the equation of motion for the scaled variables are:
[

d2

dt′ 2
+ 1
]
q′(t′) = −1

4
q′ 3(t′) . (F.104)

The Hamiltonian scales like the Lagrangian, so if we require βH = β′H ′, we have:

H ′(q′, p′) =
1
2

[p′ 2 + q′ 2] +
1
8
q′ 4 , β =

λ

µ4
β′ . (F.105)

The phase space volume scales according to:

dq dp =
µ3

λ
dq′ dp′ , (F.106)

so the partition function scales according to:

Z(β) =
∫∫ +∞

−∞

dq dp
2π~

e−βH(q,p) =
µ3

~λ

∫∫ +∞

−∞

dq′ dp′

2π
e−β

′H′(q′,p′) =
µ3

~λ
I(β′) . (F.107)

Here I(β′) is a universal function of β′ = βµ4/λ.

F.5.1 The partition function for the anharmonic oscillator

We first look at the partition function. We expand Z in powers of the interaction λ. From (??), we find:

Z(β) =
∫∫ +∞

−∞

dq dp
2π~

e−βH(q,p) ,

=
∫∫ +∞

−∞

dq dp
2π~

e−βH0(q,p)

{
1− βλ

8
q4 +

β2λ2

128
q8 + · · ·

}
, (F.108)

where
H0(q, p) =

1
2

[p2 + µ2 q2] . (F.109)

We use: ∫ +∞

−∞
dx e−βx

2/2x2n =
1 · 3 · 5 · · · (2n− 1)

βn

√
2π
β
. (F.110)

So

Z0(β) =
∫∫ +∞

−∞

dq dp
2π~

e−βH0(q,p) =
1
β~µ

=
µ3

λ~

(
λ

βµ4

)
. (F.111)

and (F.108) becomes:

Z(β) = Z0(β)
{

1− 3
23

λ

βµ4
+

3 · 5 · 7
2 · 27

(
λ

βµ4

)2
+ · · ·

}
. (F.112)
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This is not a high temperature expansion!
In terms of the universal function I(β′), we have:

I(β) =
∫∫ +∞

−∞

dq dp
2π

exp
{
−β
{

1
2

[p2 + q2] +
1
8
q4

}}
=

1√
2πβ

∫ +∞

−∞
dq exp

{
−β
{

1
2
q2 +

1
8
q4

}}
. (F.113)

Clearly I(β)→ +∞ as β → 0. We can numerically integrate (F.113) to find the exact function.
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Appendix G

Schwinger’s Boson calculus theory of
angular momentum

In a paper in 1952, Schwinger [1] invented a harmonic oscillator basis for angular momentum eigenvectors.
The method consists of introducing two Bosonic harmonic oscillators and a connection between the Bosonic
operators and the angular momentum algebra. Now we recognize this procedure as a second quantization
of the quantum mechanical angular momentum operator, using spinors, but with Bose statistics. Of course,
no real oscillators are involved, only the creation and annihilation features of the Boson operators are used,
as in second quantization. We call the eigenvectors of the Bosonic oscillators a Bosonic basis for the angular
momentum eigenvectors.

Schwinger’s method is an explicit formulation of the group theory approach by Wigner[2][p. 163], which
employed the isomorphism between the SO(3) and SU(2) groups, and can be regarded as a useful formalism
to compute the rotation matrices and Clebsch-Gordan coefficients. In this section, we explain Schwinger’s
remarkable theory of angular momentum and derive some formulas for the rotation matrices and Clebsch-
Gordan coefficients using his methods.

G.1 Boson calculus

Let us define two sets of independent creation and annihilation operators A†± and A±, which satisfy the
commutation relations:

[Am, A
†
m′ ] = δm,m′ , [Am, Am′ ] = 0 , [A†m, A

†
m′ ] = 0 , (G.1)

for m = ±1/2. Common eigenvectors of N± = A†±A± are given by |n+, n− ) which satisfy the eigenvalue
equation:1

N+ |n+, n− ) = n+ |n+, n− ) , N− |n+, n− ) = n− |n+, n− ) , (G.2)

with the occupation number eigenvalues given by the non-negative integers: n± = 0, 1, 2, . . . . Also

A+ |n+, n− ) =
√
n+ |n+ − 1, n− 〉 , A− |n+, n− ) =

√
n− |n+, n− − 1 ) ,

A†+ |n+, n− ) =
√
n+ + 1 |n+ + 1, n− ) , A†− |n+, n− ) =

√
n− + 1 |n+, n− + 1 ) .

Next we define a two-dimensional column matrix A by:

A =
(
A+

A−

)
, A† =

(
A†+ , A†−

)
, (G.3)

1In order to avoid confusion between basis sets, we designate occupation number vectors by |n+, n− ).
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and construct an angular momentum vector J using the classical two-dimentional Pauli matrices:

J =
~
2
A† σA =

~
2
(
A†+ , A†−

)( +êz êx − iêy
êx + iêy −êz

)(
A+

A−

)
. (G.4)

Explicitly, we find:

Jx =
~
2
(
A†+A− +A†−A+

)
, Jy =

~
2i
(
A†+A− −A†−A+

)
, Jz =

~
2
(
A†+A+ −A†−A−

)
,

J+ = Jx + iJy = ~A†+A− , J− = Jx − iJy = ~A†−A+ .

It is easy to show that these definitions obey the commutation rules for angular momentum:

[ Ji, Jj ] = i~ εijkJk . (G.5)

Biedenharn [3][p. 214] called Eq. (G.4) the Jordan-Schwinger map, which is a mapping of Bosonic op-
erators to the angular momentum operator J, linear with respect to A± and anti-linear with respect to
A†±.

Exercise 87. Prove Eqs. (G.5).

Operating on an eigenvector |n+, n− ) by Jz gives:

Jz |n+, n− ) =
~
2
(
A†+A+ −A†−A−

)
|n+, n− ) =

~
2
(
n+ − n−

)
|n+, n− ) ≡ ~m |n+, n− ) , (G.6)

so m = (n+ − n− )/2. From Eq. (21.4), J2 can be written as:

J2 =
1
2

(J−J+ + J+J−) + J2
z

=
(~

2

)2 {
2
(
A†−A+A

†
+A− +A†+A−A

†
−A+

)
+
(
A†+A+ −A†−A−

)2 } (G.7)

So operating on an eigenvector |n+, n− 〉 by J2 gives:

J2 |n+, n− ) =
(~

2

)2 {
2
(
A†−A+A

†
+A− +A†+A−A

†
−A+

)
+
(
A†+A+ −A†−A−

)2 } |n+, n− )

=
(~

2

)2 {
2
(
n− (n+ + 1) + n+ (n− + 1)

)
+
(
n+ − n−

)2 } |n+, n− )

= ~2
{( n+ + n−

2

)2

+
( n+ + n−

2

)}
|n+, n− ) ≡ ~2 j( j + 1 ) |n+, n− ) .

(G.8)

So j = (n+ + n−)/2, and we find that n± = j ±m. We also see that:

J+ |n+, n− ) = ~
√

(n+ + 1)n− |n+ + 1, n− − 1 ) ,

J− |n+, n− ) = ~
√
n+ (n− + 1) |n+ − 1, n− + 1 ) .

(G.9)

So, when acting on the vectors | j +m, j −m ), gives:

J± | j,m ) = J± | j +m, j −m ) = ~
√

(j ∓m) (j ±m+ 1) | j +m± 1, j −m∓ 1 )
= ~A(j,∓m) | j,m± 1 〉 ,

(G.10)

in agreement with Eqs. (21.2) and (21.3). We also note that

J+ | 2j, 0 ) = 0 , and J− | 0, 2j ) = 0 . (G.11)

c© 2009 John F. Dawson, all rights reserved. 398



APPENDIX G. BOSON CALCULUS G.2. CONNECTION TO QUANTUM FIELD THEORY

Normalized angular momentum eigenvectors are then given in terms of the occupation number basis by:

| j,m ) ≡ | j +m, j −m ) =

(
A†+
)j+m(

A†−
)j−m

√
(j +m)! (j −m)!

| 0 ) . (G.12)

Eq. (G.12) gives angular momentum eigenvectors for any value of j and m in terms of two creation operators
acting on a ground state | 0 ).2

Exercise 88. Find the occupation number vectors |n+, n− ) for j = 1/2 and j = 1.

G.2 Connection to quantum field theory

In the section, we show the connection between second quantized field operators and the Boson calculus.
Let us define a two-component field operator Ψm(x) with m = ± as:

Ψm(r) =
∑

k,q

Ak,q [ψk,q(r) ]m , (G.13)

where ψk,q(r) is a two-component wave function and Ak,q an operator. The wave functions ψk,q(r) satisfy
the orthogonal and completeness relations:

∑

m

∫
d3x [ψ∗k,q(r) ]m [ψk′,q′(r) ]m = δk,k′ δm,m′ ,

∑

k,q

[ψk,q(r) ]m [ψ∗k,q(r
′) ]m′ = δm,m′ δ(r− r′) .

(G.14)

If we choose the Ak,q operators to satisfy the commutation relation:

[Ak,q, A
†
k′,q′ ] = δk,k′ δq,q′ , (G.15)

then the field operators Ψm(r) satisfy Bose statistics:

[ Ψm(r),Ψ†m′(r
′) ] = δm,m′ δ(r− r′) . (G.16)

On the other hand, if we choose the Ak,q operators to satisfy the anticommutation relation:

{Ak,q, A
†
k′,q′ } = δk,k′ δq,q′ , (G.17)

then the field operators Ψm(r) satisfy Fermi statistics:

{Ψm(r),Ψ†m′(r
′) } = δm,m′ δ(r− r′) . (G.18)

Now let us take basis wave functions of the form: ψk,q(r) = ψk(r)χq, where χq are the two-component
eigenspinors of σz. Then the field operators become:

Ψm(r) =
∑

k,q

Ak,q ψk(r) [χq ]m =
∑

k,q

[Ak ]m ψk(r) , (G.19)

where Ak is the two-component operator:

Ak =
∑

q

Ak,q χq =
(
Ak,+
Ak,−

)
. (G.20)

2We use | 0 ) to designate the ground state with n+ = n− = 0.
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Now we can define the angular momentum in this field by:

J =
~
2

∫
d3xΨ†(r)σΨ (r) =

~
2

∑

k

A†k σAk . (G.21)

For the case of only one state k = 1, this is the same Jordan-Schwinger map of Eq. (G.4). However, here we
see that we can choose the operators Ak to obey either commutators and Bose statistics or anticommutators
and Fermi statistics. Schwinger chose these to be commutators, but we could equally take them to be
anticommutators. We leave it to an exercise to show that if we choose Fermi statistics, the angular momentum
operator J still obeys the correct angular momentum commutation relations.

For the Bose case, we can think of the vectors described by Eq. (G.12) as being made up of primitive
spin-1/2 “particles” with n+ = j+m spin up in the z-direction and n− = j−m spin down in the z-direction.
That is, we can think of the system as composed of 2j spin-1/2 Bose particles.

Exercise 89. Show that if Am obeys anticommutation relations (Fermi statistics), the second quantized
angular momentum vector J, defined by Eq. (G.21) obeys the usual commutation relation: [ Ji, Jj ] =
i~ εijk Jk.

G.3 Hyperbolic vectors

The eigenvectors J± defined above are ladder operators which, when acting on the states | j,m 〉 create states
of | j,m± 1 〉 for fixed values of j. We can also find operators which, when operating on | j,m 〉 create states
of | j± 1,m 〉 for fixed values of m. That is, the role of j and m is reversed. To this end, we define the vector
operator K by:

Kx =
~
2
(
A†+A

†
− +A+A−

)
, Ky =

~
2i
(
A†+A

†
− −A+A−

)
, Kz =

~
2
(
A†+A+ +A†−A− + 1

)
,

K+ = Kx + iKy = ~A†+A
†
− , K− = Kx − iKy = ~A+A− . (G.22)

With these definitions, it is easy to show that the Ki operators obey the commutation rules:

[Ki,Kj ] = −i~ εijkKk , (G.23)

which are the commutation rules for an angular momentum with the sign reversed. The “length” of the
vector K in this hyperbolic space is defined by:

K2 = K2
x +K2

y −K2
z =

1
2
(
K+K− +K−K−

)
−K2

z , (G.24)

and is not positive definite. Schwinger [1] calls these operators hyperbolic because of the reversed sign. One
can easily check that

[ Jz,Kz ] = 0 , (G.25)

and so Jz and Kz have common eigenvectors. The eigenvector of Kz is given by:

Kz | j,m 〉 = Kz | j +m, j −m ) =
~
2
(
j +m+ j −m+ 1

)
| j +m, j −m ) = ~

(
j + 1/2

)
| j,m 〉 . (G.26)

For K± we find:

K+ | j,m 〉 = ~A†+A
†
− | j +m, j −m ) = ~

√
(j +m+ 1) (j −m+ 1) | j +m+ 1, j −m+ 1 )

= ~
√

(j +m+ 1) (j −m+ 1) | j + 1,m 〉 ,
K− | j,m 〉 = ~A+A− | j +m, j −m ) = ~

√
(j +m) (j −m) | j +m− 1, j −m− 1 )

= ~
√

(j +m) (j −m) | j − 1,m 〉 ,

(G.27)
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So K± create states of ±1 additional units of j for fixed m, as we wanted. For K2, we find:

K2 =
1
2
(
K+K− +K−K+

)
−K2

z

=
(~

2

)2 {
2
(
A†+A

†
−A+A− +A+A−A

†
+A
†
−
)
−
(
A†+A+ +A†−A− + 1

)2 }
.

(G.28)

Operating on an eigenvector |n+, n− ) by K2 gives:

K2 |n+, n− ) =
(~

2

)2 {
2
(
A†+A

†
−A+A− +A+A−A

†
+A
†
−
)
−
(
A†+A+ +A†−A− + 1

)2 } |n+, n− )

=
(~

2

)2 {
2
(
n+ n− + (n+ + 1)(n− + 1)

)
−
(
n+ + n− + 1

)2 } |n+, n− )

= ~2
{ 1

4
−
( n+ − n−

2

)2 }
|n+, n− ) =

{ ~2

4
− J2

z

}
|n+, n− ) .

(G.29)

That is
K2 | j,m 〉 = ~2

{ 1
4
−m2

}
| j,m 〉 . (G.30)

So K2, as we have defined it, is diagonal in the | j,m 〉 basis, and is simply related to Jz.

G.4 Coherent states

It will be useful to study coherent states of these occupation number basis vectors of angular momentum.
Following the development of coherent states in Section 16.4, we define these states by

Am | a+, a− ) = am | a+, a− ) , (G.31)

where a± are complex numbers. So from Eq. (G.12), we find:

( a+, a− | j,m 〉 = ( a+, a− | j +m, j −m ) = N ( a+, a− )

(
a∗+
)j+m(

a∗−
)j−m

√
(j +m)! (j −m)!

, (G.32)

where N ( a+, a− ) = ( a+, a− | 0, 0 ) is a normalization factor. The state | a+, a− ) is then given by:

| a+, a− ) =
∑

j,m

| j +m, j −m ) ( j +m, j −m | a+, a− )

= N ( a+, a− )
∑

j,m

(
a+A

†
+

)j+m(
a−A

†
−
)j−m

(j +m)! (j −m)!
| 0 ) .

(G.33)

Now using the binomial theorem, we have

j∑

m=−j

(
a+A

†
+

)j+m(
a−A

†
−
)j−m

(j +m)! (j −m)!
=

2j∑

k=0

(
a+A

†
+

)k(
a−A

†
−
)2j−k

k! (2j − k)!
=
(
a+A

†
+ + a−A

†
−
)2j

. (G.34)

So
| a+, a− ) = N ( a+, a− ) exp

{∑

m

amA
†
m

}
| 0 ) . (G.35)

So the coherent state is not a state of definite angular momentum, but contains all angular momentum
states. In this sense, it can be thought of as a generator of all the angular momentum states. Normalizing
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the coherent state, we find:

( a+, a− | a+, a− ) = | N ( a+, a− ) |2 ( 0 | exp
{∑

m

a∗mAm
}

exp
{∑

m′

am′ A
†
m′

}
| 0 )

= | N ( a+, a− ) |2 exp
{∑

m

| am |2
}

= 1 ,
(G.36)

so
N ( a+, a− ) = exp

{
−
∑

m

| am |2/2
}
. (G.37)

Then

| a+, a− ) = exp
{∑

m

amA
†
m −

∑

m

| am |2/2
}
| 0 ) = exp

{∑

m

[
amA

†
m − a∗mAm

] }
| 0 )

≡ D(am, a
∗
m) | 0 ) .

(G.38)

Here we have defined a unitary displacement operator D(am, a
∗
m) by:

D(am, a
∗
m) = exp

{∑

m

[
amA

†
m − a∗mAm

] }
, (G.39)

and has the property,
D†(am, a

∗
m)AmD(am, a

∗
m) = Am + am . (G.40)

Example 56. A generator of J+ can be constructed by considering the operation of exp{λJ+/~} on a
coherent state. We find:

exp
{
λJ+/~

}
| a+, a− ) = exp

{
λA†+A−

}
| a+, a− ) = exp

{
λA†+ a−

}
| a+, a− )

= exp
{
λA†+ a−

}
exp
{∑

m

[
amA

†
m − a∗mAm

] }
| 0 ) .

(G.41)

Again, using Eq. (B.16) and writing out these operators explicitly, we find:

exp
{
λJ+/~

}
| a+, a

∗
+; a−, a

∗
− )

= exp
{
λ a− a

∗
+/2

}
exp
{(

a+ + λ a−
)
A†+ + a−A

†
− − a∗+A+ − a∗−A−

}
| 0 )

= exp
{
λ a− a

∗
+/2

}
| a+ + λ a−, a

∗
+; a−, a

∗
− ) (G.42)

Operating on the left by the vector 〈 j,m | and introducing a complete set of states gives:

j∑

m′=−j
〈 j,m | exp

{
λJ+/~

}
| j,m′ 〉 〈 j,m′ | a+, a

∗
+; a−, a

∗
− )

= eλ a− a
∗
+/2 〈 j,m′ | a+ + λ a−, a

∗
+; a−, a

∗
− ) . (G.43)

But using the representation (G.32),

〈 j,m | a+, a− ) = e−
P

m′ a
∗
m′ am′/2

(
a+

)j+m(
a−
)j−m

√
(j +m)! (j −m)!

, (G.44)
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Eq. (G.43) becomes:

e−[ a∗+ a++a∗− a− ]/2

j∑

m′=−j
〈 j,m | exp

{
λJ+/~

}
| j,m′ 〉

(
a+

)j+m′(
a−
)j−m′

√
(j +m′)! (j −m′)!

= e[λ a− a
∗
+−a∗+ ( a++λ a− )−a∗− a− ]/2

(
a+ + λ a−

)j+m(
a−
)j−m

√
(j +m)! (j −m)!

. (G.45)

The exponential normalization factors cancel. Expanding both sides in powers of λ give:

∞∑

k=0

j∑

m′=−j
〈 j,m |

[
J+/~

]k | j,m′ 〉 λ
k
(
a+

)j+m′(
a−
)j−m′

k!
√

(j +m′)! (j −m′)!

=
j+m∑

n=0

(j +m)!
(j +m− n)!n!

λn
(
a+

)j+m−n (
a−
)j−m+n

√
(j +m)! (j −m)!

. (G.46)

Setting n = m−m′ on the right-hand-side of this expression gives:

∞∑

k=0

j∑

m′=−j
〈 j,m |

[
J+/~

]k | j,m′ 〉 λ
k
(
a+

)j+m′(
a−
)j−m′

k!
√

(j +m′)! (j −m′)!

=
m∑

m′=−j

√
(j +m)! (j −m′)!
(j −m)! (j +m′)!

λm−m
′ (
a+

)j+m′ (
a−
)j−m′

(m−m′)!
√

(j +m′)! (j −m′)!
. (G.47)

Comparing powers of λ, we find:

〈 j,m |
[
J+/~

]k | j,m′ 〉 = δk,m−m′

√
(j +m)! (j −m′)!
(j −m)! (j +m′)!

for m−m′ ≥ 0 . (G.48)

Similarly, for [ J−/~ ]k, we find:

〈 j,m |
[
J−/~

]k | j,m′ 〉 = δk,m′−m

√
(j +m′)! (j −m)!
(j −m′)! (j +m)!

for m′ −m ≥ 0 . (G.49)

In particular, by setting m′ = ±j in these two equations, we can easily find the vector | j,m 〉 from the
vectors | j,±j 〉:

| j,m 〉 =

√
(j −m)!

(2j)! (j +m)!
[
J+/~

]j+m | j,−j 〉 ,

| j,m 〉 =

√
(j +m)!

(2j)! (j −m)!
[
J−/~

]j−m | j,+j 〉 .
(G.50)

G.5 Rotation matrices

In this section, we use Boson second quantized basis states to find useful formulas for the D(j)
m,m′(R) rotation

matrices. It is closely related to the use of Cayley-Klein parameters which we discussed in Section 21.2.4.
In the Boson calculus, the unitary operator for rotations is given by:

U(R) = exp[ i n̂ · J θ/~ ] = exp[ i A† n̂ · σAθ/2 ] , (G.51)
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where we have used Eq. (G.4). Note that U(R) is an operator in the second quantized basis, and that
U(R) | 0 〉 = | 0 〉. One can easily show that the spinor A transforms as (see Exercise 90 below):

U†(R)Am U(R) = exp[−i A† n̂ · σAθ/2 ]Am exp[ i A† n̂ · σAθ/2 ] = Dm,m′(R)Am′ , (G.52)

where the 2×2 rotation matrixDm,m′(R) can be labeled by any of the parameterizations given in Theorem ??:
Cayley-Klein, axis and angle of rotation, or Euler angles. That is:

D(R) =
(
a b
c d

)
= cos(θ/2) + i (n̂ · σ) sin(θ/2)

=
(
ei(+γ+α)/2 cos(β/2) ei(+γ−α)/2 sin(β/2)
−ei(−γ+α)/2 sin(β/2) ei(−γ−α)/2 cos(β/2)

)
.

(G.53)

This D-matrix is identical to the D(1/2)
m,m′(R) matrix for spin 1/2. Operators which transformation according

to Eq. (G.52) are called rank one-half tensors.

Exercise 90. Using Eq. (B.14) in Appendix B, compute out a few terms in the expansion to convince
yourself of the truth of Eq. (G.52).

Using Eq. (??), we find:

U†(R) Ji U(R) = U†(R)
~
2
A† σiAU(R) =

~
2
U†(R)A† U(R)σi U†(R)AU(R)

=
~
2
A†D†(R)σiD(R)A = Rij

~
2
A† σj A = Rij Jj ≡ J ′i ,

(G.54)

as required. We now prove the following theorem:

Theorem 72 (D-matrix). The D(j)
m,m′(R) matrix for any j is given by:

D
(j)
m,m′(R) =

√
(j +m)! (j −m)! (j +m′) (j −m′)

×
j+m∑

s=0

j−m∑

r=0

δs−r,m−m′

(
D+,+(R)

)j+m−s (
D+,−(R)

)s (
D−,+(R)

)r (
D−,−(R)

)j−m−r

s! (j +m− s)! r! (j −m− r)! , (G.55)

where the elements of the two-dimensional matrix D(R) are given by Eq. (G.53) with the rows and columns
labeled by ±. Eq. (G.55) relates the D-matrices for any j to the D-matrices for j = 1/2. The range of the
sums over s and r is determined by the values of j, m, and m′.

Proof. The occupation number states, transform according to:

| j,m 〉′ = | j +m, j −m )′ = U†(R) | j +m, j −m ) = U†(R)

(
A†+
)j+m(

A†−
)j−m

√
(j +m)! (j −m)!

| 0 )

=

(
U†(R)A†+ U(R)

)j+m (
U†(R)A†− U(R)

)j−m
√

(j +m)! (j −m)!
| 0 )

=

(
D∗+,+(R)A†+ +D∗+,−(R)A†−

)j+m (
D∗−,+(R)A†+ +D∗−,−(R)A†−

)j−m
√

(j +m)! (j −m)!
| 0 )

(G.56)

Using the binomial expansion, we have:

(
D∗+,+(R)A†+ +D∗+,−(R)A†−

)j+m =
j+m∑

s=0

(j +m)!
s! (j +m− s)!

(
D∗+,+(R)A†+

)j+m−s (
D∗+,−(R)A†−

)s
,

(
D∗−,+(R)A†+ +D∗−,−(R)A†−

)j−m =
j−m∑

r=0

(j −m)!
r! (j −m− r)!

(
D∗−,+(R)A†+

)r (
D∗−,−(R)A†−

)j−m−r
.
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So Eq. (G.56) becomes:

| j,m 〉′ =
√

(j +m)! (j −m)!

×
j+m∑

s=0

j−m∑

r=0

(
D∗+,+(R)

)j+m−s (
D∗+,−(R)

)s (
D∗−,+(R)

)r (
D∗−,−(R)

)j−m−r

s! (j +m− s)! r! (j −m− r)!
(
A†+
)j+m−s+r (

A†−
)j−m+s−r | 0 )

=
j∑

m′=−j

{
j+m∑

s=0

j−m∑

r=0

δs−r,m−m′
√

(j +m)! (j −m)! (j +m′) (j −m′)

×
(
D∗+,+(R)

)j+m−s (
D∗+,−(R)

)s (
D∗−,+(R)

)r (
D∗−,−(R)

)j−m−r

s! (j +m− s)! r! (j −m− r)!

} (
A†+
)j+m′(

A†−
)j−m′

√
(j +m′)! (j −m′)!

| 0 )

=
j∑

m′=−j
D

(j)∗
m,m′(R) | j,m′ 〉 , (G.57)

where

D
(j)
m,m′(R) =

√
(j +m)! (j −m)! (j +m′) (j −m′)

×
j+m∑

s=0

j−m∑

r=0

δs−r,m−m′

(
D+,+(R)

)j+m−s (
D+,−(R)

)s (
D−,+(R)

)r (
D−,−(R)

)j−m−r

s! (j +m− s)! r! (j −m− r)! , (G.58)

which is what we were trying to prove.

It is easy to check that for j = 1/2 we get the correct result. It is useful to work out a special case for
the Euler angle description of the rotation when α = γ = 0. Then

Dm,m′(0, β, 0) =
(

cos(β/2) sin(β/2)
− sin(β/2) cos(β/2)

)
, (G.59)

and (G.55) becomes:

D
(j)
m,m′(0, β, 0) =

√
(j +m)! (j −m)! (j +m′) (j −m′)

×
j+m∑

s=0

j−m∑

r=0

δs−r,m−m′
(−)r

(
cos(β/2)

)2j−s−r ( sin(β/2)
)s+r

s! (j +m− s)! r! (j −m− r)!

=
√

(j +m)! (j −m)! (j +m′) (j −m′)

×
∑

σ

(−)j−σ−m
(

cos(β/2)
)2σ+m+m′ ( sin(β/2)

)2j−2σ−m−m′

σ! (j − σ −m)! (j − σ −m′)! (σ +m+m′)!
,

(G.60)

in agreement with Edmonds [4][Eq. (4.1.15), p. 57]. In the last line we put s = j−m− σ, so σ is an integer.
We also can work out some properties of the D-functions using this method. First, we note that for

α = γ = 0, β = π,

Dm,m′(0, π, 0) =
(

0 1
−1 0

)
. (G.61)

So in this case, Eq. (G.56) becomes:

| j,m 〉′ =

(
A†−

)j+m (−A†+
)j−m

√
(j +m)! (j −m)!

| 0 ) = (−)j−m
(
A†+
)j−m(

A†−
)j+m

√
(j +m)! (j −m)!

| 0 )

=
j∑

m′=−j
(−)j−m δm,−m′

(
A†+
)j+m′(

A†−
)j−m′

√
(j +m′)! (j −m′)!

| 0 ) =
j∑

m′=−j
(−)j−m δm,−m′ | j,m′ 〉 ,

(G.62)

c© 2009 John F. Dawson, all rights reserved. 405



G.6. ADDITION OF ANGULAR MOMENTUM APPENDIX G. BOSON CALCULUS

So
D

(j)
m,m′(0, π, 0) = (−)j−m δm,−m′ , similarly, D

(j)
m,m′(0,−π, 0) = (−)j+m δm,−m′ . (G.63)

The D-matrices can also be calculated directly in the occupation number basis. From Eq. (G.12), we
have:

D
(j)
m,m′(R) = 〈 j,m |U(R) | j,m′ 〉 = ( j +m, j −m |U(R) | j +m′, j −m′ )

= ( 0 |
(
A+

)j+m(
A−

)j−m
√

(j +m)! (j −m)!
U(R)

(
A†+
)j+m′(

A†−
)j−m′

√
(j +m′)! (j −m′)!

| 0 )

=
( 0 |U†(R)

(
A+

)j+m(
A−

)j−m
U(R)

(
A†+
)j+m′(

A†−
)j−m′ | 0 )√

(j +m)! (j −m)! (j +m′)! (j −m′)!

=
( 0 |

(
A′+(R)

)j+m(
A′−(R)

)j−m (
A†+
)j+m′(

A†−
)j−m′ | 0 )√

(j +m)! (j −m)! (j +m′)! (j −m′)!
,

(G.64)

where

A′+(R) = D+,+(R)A+ +D+,−(R)A− ,

A′−(R) = D−,+(R)A+ +D−,−(R)A− .
(G.65)

The method to be used here is to move the creation operators to the left and the annihilation operators to
the right, using the commutation properties, so that they operator on the ground state | 0 ) and give zero.

Exercise 91. Use Eq. (G.64) to find the components of D(j)
m,m′(0, β, 0) for j = 1/2 and j = 1.

G.6 Addition of angular momentum

In this section, we show how to use Bose operators to construct an eigenvector of total angular momentum
which is the sum of two angular momentum systems. We will use this result to find Clebsch-Gordan
coefficients, and a generating function for these coefficients.

So let A†1,m and A†2,m be two commuting sets of creation operators, m = ±, obeying the algebra:

[Aα,m, A
†
β,m′ ] = δm,m′δα,β , [Aα,m, Aβ,m′ ] = [A†α,m, A

†
β,m′ ] = 0 , (G.66)

with α, β = (1, 2), and describing the two angular momentum system by the Jordan-Schwinger maps:

J1 =
~
2
A†1 σA1 , J2 =

~
2
A†2 σA2 . (G.67)

Eigenvectors of the number operators Nα,m = A†α,mAα,m are written in a shorthand notation as |nα,m 〉 ≡
|n1,+, n1,−, n2,+, n2,− 〉 and satisfy:

Nα,m |nα,m ) = nα,m |nα,m ) ,

Aα,m |nα,m ) =
√
nα,m |nα,m − 1 )

A†α,m |nα,m ) =
√
nα,m + 1 |nα,m + 1 ) ,

(G.68)

with nα,m = 0, 1, 2, . . . . We put the A†α,m operators into a 2× 2 matrix of the form:

A† =

(
A†1,+ A†1,−
A†2,+ A†2,−

)
, so that A =

(
A1,+ A2,+

A1,− A2,−

)
. (G.69)
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Note that A† has rows and columns labeled by (α,m) but that A has rows and columns labeled by (m,α).
The total angular momentum J is given by the mapping:

J =
~
2

Tr[A† σA ] =
~
2

∑

m,m′,α

A†α,m σm,m′ Aα,m′ = J1 + J2 . (G.70)

Explicitly, we find:

Jx =
~
2

∑

α

(
A†α,+Aα,− +A†α,−Aα,+

)
,

Jy =
~
2i

∑

α

(
A†α,+Aα,− −A†α,−Aα,+

)
,

Jz =
~
2

∑

α

(
A†α,+Aα,+ −A†α,−Aα,−

)
=

~
2
(
N+ −N−

)
,

(G.71)

and
J+ = Jx + iJy = ~

∑

α

A†α,+Aα,− , J− = Jx − iJy = ~
∑

α

A†α,−Aα,+ . (G.72)

It is easy to show that Ji obeys the angular momentum algebra:

[ Ji, Jj ] = i~ εijk Jk , (G.73)

or
[ Jz, J± ] = ±~ J± , [ J+, J− ] = 2~ Jz . (G.74)

The square of the total angular momentum operator is:

J2 = J2
x + J2

y + J2
z =

1
2

( J+J− + J−J+ ) + J2
z = J+J− + J2

z − ~ Jz = J−J+ + J2
z + ~ Jz ,

=
( ~

2

)2∑

α,β

∑

m,m′,m′′,m′′′

A†α,mAα,m′A
†
β,m′′ Aβ,m′′′

(
σm,m′ · σm′′,m′′′

)

=
( ~

2

)2∑

α,β

∑

m,m′

{
2A†α,mAα,m′A

†
β,m′ Aβ,m −Nα,mNβ,m′

}
.

(G.75)

In the last line, we have used the identity:
(
σm,m′ · σm′′,m′′′

)
= 2 δm,m′′′ δm′,m′′ − δm,m′ δm′′,m′′′ . (G.76)

So eigenvectors of J2 and Jz obey the equations:

J2 | j,m ) = ~2 j(j + 1) | j,m ) ,
Jz | j,m ) = ~m | j,m ) ,
J± | j,m ) = ~A(j,∓m) | j,m± 1 ) ,

(G.77)

with j = 0, 1/2, 1, 3/2, . . . , −j ≤ m ≤ +j, and A(j,m) =
√

(j +m)(j −m+ 1).
We also define a Hermitian vector operator K by the mapping:

K =
~
2

Tr[σT A†A ] =
~
2

∑

α,β,m

σβ,αA
†
α,mAβ,m = K+ + K− . (G.78)
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Explicitly, we find:

Kx =
~
2

∑

m

(
A†2,mA1,m +A†1,mA2,m

)
,

Ky =
~
2i

∑

m

(
A†2,mA1,m −A†1,mA2,m

)
,

Kz =
~
2

∑

m

(
A†1,mA1,m −A†2,mA2,m

)
=

~
2
(
N1 −N2

)
,

(G.79)

and

K+ = Kx + iKy = ~
∑

m

A†2,mA1,m , K− = Kx − iKy = ~
∑

m

A†1,mA2,m . (G.80)

It is easy to show that Ki obeys the (hyperbolic) angular momentum algebra with a negative sign:

[Ki,Kj ] = −i~ εijkKk . (G.81)

or

[Kz,K± ] = ∓~K± , [K+,K− ] = −2~Kz . (G.82)

The square of the K vector is:

K2 = K2
x +K2

y +K2
z =

1
2

(K+K− +K−K+ ) +K2
z = K+K− +K2

z + ~Kz = K−K+ +K2
z − ~Kz ,

=
( ~

2

)2 ∑

m,m′

∑

α,β,α′,β′

A†α,mAβ,mA
†
α′,m′ Aβ′,m′

(
σβ,α · σβ′,α′

)

=
( ~

2

)2 ∑

m,m′

∑

α,β

{
2A†α,mAβ,mA

†
β,m′ Aα,m′ −Nα,mNβ,m′

}
.

(G.83)

Theorem 73. Common eigenvectors of K2 and Kz are:

K2 | k, q ) = ~2 k(k + 1) | k, q ) ,
Kz | k, q ) = ~ q | k, q ) ,
K± | k, q ) = ~A(k,±q) | k, q ∓ 1 ) ,

(G.84)

with k = 0, 1/2, 1, 3/2, . . . , −k ≤ q ≤ +k, and A(k, q) =
√

(k + q)(k − q + 1). These eigenvectors are
similar to the eigenvectors of J2 and Jz in Eqs. (G.77), except that the role of K± is reversed; K+ on these
eigenvectors decreases the q-value by one, and K− increases the q-value by one.

Proof. The proof is left as an exercise.

Theorem 74. For J, defined in Eq. (G.70), and K, defined in Eq. (G.78), the square of the vector operators
J2 and K2 are equal: J2 = K2.
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Proof. Starting with the last line of Eq. (G.83), we have:

K2 =
( ~

2

)2 ∑

m,m′

∑

α,β

{
2A†α,mAβ,mA

†
β,m′ Aα,m′ −Nα,mNβ,m′

}

=
( ~

2

)2 ∑

m,m′

∑

α,β

{
2A†α,mAβ,m

{
Aα,m′ A

†
β,m′ − [Aα,m′ , A

†
β,m′ ]

}
−Nα,mNβ,m′

}

=
( ~

2

)2 ∑

m,m′

∑

α,β

{
2
{
A†α,mAα,m′ Aβ,mA

†
β,m′ −A†α,mAα,m

}
−Nα,mNβ,m′

}

=
( ~

2

)2 ∑

m,m′

∑

α,β

{
2
{
A†α,mAα,m′

{
A†β,m′ Aβ,m + [Aβ,m, A

†
β,m′ ]

}
−A†α,mAα,m

}
−Nα,mNβ,m′

}

=
( ~

2

)2 ∑

m,m′

∑

α,β

{
2
{
A†α,mAα,m′ A

†
β,m′ Aβ,m +A†α,mAα,m −A†α,mAα,m

}
−Nα,mNβ,m′

}

=
( ~

2

)2 ∑

m,m′

∑

α,β

{
2A†α,mAα,m′ A

†
β,m′ Aβ,m −Nα,mNβ,m′

}
.

(G.85)

which agrees with the last line of Eq. (G.75). So K2 = J2, which is what we were trying to prove.

It is also easy to show that Ji commutes with all components of Kj :

[ Ji,Kj ] =
∑

m,m′,α

∑

α′,β′,m′′

σ(i)m,m′ σ(j) β′,α′ [A†α,mAα,m′ , A
†
α′,m′′ Aβ′,m′′ ] = 0 . (G.86)

The Boson number operator S is defined by:

S = Tr[A†A ] =
∑

α,m

A†α,mAα,m = N1,+ +N1,− +N2,+ +N2,− , (G.87)

which commutes with all operators. So we can find common eigenvectors of J2 = K2, Jz, Kz, and S. These
eigenvectors are defined by:

J2 | j,m, q, s ) = ~2 j(j + 1) | j,m, q, s ) , j = 0, 1/2, 1, 3/2, 2, . . . (G.88)
Jz | j,m, q, s ) = ~m | j,m, q, s ) , − j ≤ m ≤ +j , (G.89)
Kz | j,m, q, s ) = ~ q | j,m, q, s ) , − j ≤ q ≤ +j , (G.90)
S | j,m, q, s ) = 2s | j,m, q, s ) , s = 0, 1/2, 1, 3/2, 2, . . . (G.91)

Note that s has half-integer values. From our previous results, we know that:

j1 = (n1,+ + n1,− )/2 , m1 = (n1,+ − n1,− )/2 ,
j2 = (n2,+ + n2,− )/2 , m2 = (n2,+ − n2,− )/2 .

From the above, we also have:

m =
1
2
(
n1,+ + n2,+ − n1,− − n2,−

)
= m1 +m2 , (G.92)

and
q =

1
2
(
n1,+ + n1,− − n2,+ − n2,−

)
= j1 − j2 . (G.93)
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From Eq. (G.90), we find the triangle inequality: |j1 − j2| ≤ j. We also see that:

s =
1
2
(
n1,+ + n1,− + n2,+ + n2,−

)
= j1 + j2 . (G.94)

That is j1 = (s + q)/2 and j2 = (s − q)/2. So instead of labeling the vectors by (q, s) we can use the set
(j1, j2), and write:

| j,m, q, s ) 7→ | (j1, j2) j,m ) . (G.95)

Now we want to find the states | j,m, q, s 〉. We state the result in the form of the following theorem.

Theorem 75. The coupled state | j,m, q, s ) is given by:

| j,m, q, s ) =

√
(2j + 1)

(s− j)! (s+ j + 1)!
[

det[A† ]
]s−j

D(j) †
m,q (A ) | 0 ) , (G.96)

where Dm,q(A ) is the D-matrix given in Eq. (G.55), with D+,+(R) = A1,+, D+,−(R) = A2,+, D−,+(R) =
A1,−, and D−,−(R) = A2,−.

Proof. We follow a method due to Sharp [5] here. We start by constructing the top state | j, j, j, s ) with
m = j and q = j. This state is defined by:

J+ | j, j, j, s ) = ~
{
A†1,+A1,− +A†2,+A2,−

}
| j, j, j, s ) = 0 , (G.97)

K− | j, j, j, s ) = ~
{
A†1,+A2,+ +A†1,−A2,−

}
| j, j, j, s ) = 0 . (G.98)

We first note that:
det[A† ] = A†1,+A

†
2,− −A†1,−A†2,+ = [ det[A ] ]† , (G.99)

and that J+ and K− commute with det[A† ]:

[ J+,det[A† ] ] = [K−,det[A† ] ] = 0 . (G.100)

So in order to satisfy (G.97), | j, j, j, s ) must be of the general form:

| j, j, j, s ) =
∑

α,β,γ

Cα,β,γ
[

det[A† ]
]α [

A†1,+
]β [

A†2,+
]γ | 0 ) . (G.101)

Now K− commutes with A†1,+ but not with A†2,+, so we must have Cα,β,γ = δγ,0 Cα,β . So in order to satisfy
(G.98), | j, j, j, s ) must be of the general form:

| j, j, j, s ) =
∑

α,β

Cα,β
[

det[A† ]
]α [

A†1,+
]β | 0 ) . (G.102)

In addition, since Jz and Kz also commute with det[A† ]:

[ Jz,det[A† ] ] = [Kz,det[A† ] ] = 0 , (G.103)

we find that:

Jz | j, j, j, s ) =
∑

α,β

Cα,β
[

det[A† ]
]α
Jz
[
A†1,+

]β | 0 ) =
~
2

∑

α,β

β Cα,β
[

det[A† ]
]α [

A†1,+
]β | 0 )

= ~ j | j, j, j, s ) ,

(G.104)

so Cα,β = δβ,2j Cα. This also works for Kz, as can be easily checked. So we conclude that:

| j, j, j, s ) =
∑

α

Cα
[

det[A† ]
]α [

A†1,+
]2j | 0 ) . (G.105)
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Now since S is the Bose number operator, by Euler’s theorem on homogeneous functions, Theorem 61 in
Appendix B, the eigenvector | j, j, j, s 〉 must be a homogeneous function of the creation operators of degree
2s. That is, since [S,det[A† ]α ] = 2α det[A† ]α, we find:

S | j, j, j, s ) =
∑

α

Cα ( 2α+ 2j )
[

det[A† ]
]α [

A†1,+
]2j | 0 ) = 2s | j, j, j, s ) , (G.106)

so we conclude that Cα = δα,s−j C. Then the top eigenvector is given by:

| j, j, j, s ) = C
[

det[A† ]
]s−j [

A†1,+
]2j | 0 )

= C

s−j∑

n=0

(−)n
(
s− j
n

)(
A†1,+A

†
2,−
)s−j−n (

A†1,−A
†
2,+

)n [
A†1,+

]2j | 0 )

= C

s−j∑

n=0

(−)n
(
s− j
n

)
n!
√

(s+ j − n)! (s− j − n)! | s+ j − n, n, n, s− j − n )

= C (s− j)!
s−j∑

n=0

(−)n
√

(s+ j − n)!
(s− j − n)!

| s+ j − n, n, n, s− j − n ) .

(G.107)

The normalization requirement fixes the value of C. That is:

|C |2 [ (s− j)! ]2
s−j∑

n=0

(s+ j − n)!
(s− j − n)!

= |C |2 (s− j)! (s+ j + 1)!
(2j + 1)

= 1 , (G.108)

where we have used Eq. (C.12) in Appendix C. So we find that:

C =

√
(2j + 1)

(s− j)! (s+ j + 1)!
. (G.109)

The phase is arbitrary, and chosen here to be one, which will be explained later. So from (G.107), the vector
| j, j, j, s ) is given by:

| j, j, j, s ) =

√
(2j + 1)

(s− j)! (s+ j + 1)!
[

det[A† ]
]s−j [

A†1,+
]2j | 0 ) . (G.110)
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The vector | j, j, q, s ) is obtained by operating j − q times by K+ on (G.110):

| j, j, q, s ) =
1

~j−q

√
(j + q)!

(2j)! (j − q)!
[
K+

]j−q | j, j, j, s )

=

√
(2j + 1) (j + q)!

(s− j)! (s+ j + 1)! (2j)! (j − q)!
(
A†2,+A1,+ +A†2,−A1,−

)j−q [det[A† ]
]s−j [

A†1,+
]2j | 0 )

=

√
(2j + 1) (j + q)!

(s− j)! (s+ j + 1)! (2j)! (j − q)!
[

det[A† ]
]s−j

×
j−q∑

n=0

(
j − q
n

) [
A†2,+A1,+

]j−q−n [
A†1,+

]2j [
A†2,−A1,−

]n | 0 )

=

√
(2j + 1) (j + q)!

(s− j)! (s+ j + 1)! (2j)! (j − q)!
[

det[A† ]
]s−j [

A†2,+A1,+

]j−q [
A†1,+

]2j | 0 )

=

√
(2j + 1) (j + q)!

(s− j)! (s+ j + 1)! (2j)! (j − q)!
[

det[A† ]
]s−j [

A†2,+
]j−q [

(
A1,+

)j−q
,
(
A†1,+

)2j ] | 0 )

=

√
(2j + 1)!

(s− j)! (s+ j + 1)! (j + q)! (j − q)!
[

det[A† ]
]s−j [

A†2,+
]j−q [

A†1,+
]j+q | 0 )

(G.111)

Here, we have used the fact that K+ commutes with det[A† ] and Eq. (B.3). Finally, the vector | j,m, q, s )
is found by operating j −m times by J− on (G.111):

| j,m, q, s ) =
1

~j−m

√
(j +m)!

(2j)! (j −m)!
[
J−
]j−m | j, j, q, s 〉

=

√
(2j + 1) (j +m)!

(j −m)! (s− j)! (s+ j + 1)! (j + q)! (j − q)!
(
A†1,−A1,+ +A†2,−A2,+

)j−m

×
[

det[A† ]
]s−j [

A†2,+
]j−q [

A†1,+
]j+q | 0 ) .

(G.112)

Now using the fact that J− commutes with det[A† ], Eq. (G.112) becomes:

| j,m, q, s ) =

√
(2j + 1) (j +m)!

(j −m)! (s− j)! (s+ j + 1)! (j + q)! (j − q)!
[

det[A† ]
]s−j

×
j−m∑

n=0

(
j −m
n

) [
A†1,−A1,+

]n [
A†1,+

]j+q [
A†2,−A2,+

]j−m−n [
A†2,+

]j−q | 0 )

=

√
(2j + 1) (j +m)!

(j −m)! (s− j)! (s+ j + 1)! (j + q)! (j − q)!
[

det[A† ]
]s−j

×
j−m∑

n=0

(
j −m
n

)
[
(
A1,+

)n
,
(
A†1,+

)j+q ] [
(
A2,+

)j−m−n
,
(
A†2,+

)j−q ]

×
(
A†1,−

)n (
A†2,−

)j−m−n | 0 ) .

(G.113)
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Again, using (B.3), Eq. (G.113) becomes:

| j,m, q, s ) =

√
(2j + 1) (j +m)! (j −m)! (j + q)! (j − q)!

(s− j)! (s+ j + 1)!
[

det[A† ]
]s−j

×
j−m∑

n=0

(
A†1,+

)j+q−n (
A†2,+

)m−q+n (
A†1,−

)n (
A†2,−

)j−m−n

(j + q − n)! (m− q + n)! (n)! (j −m− n)!
| 0 )

=

√
(2j + 1) (j +m)! (j −m)! (j + q)! (j − q)!

(s− j)! (s+ j + 1)!
[

det[A† ]
]s−j

×
j−m∑

n=0

j+m∑

n′=0

δn′−n,m−q

(
A†1,+

)j+m−n′ (
A†2,+

)n′ (
A†1,−

)n (
A†2,−

)j−m−n

(j +m− n′)! (n′)! (n)! (j −m− n)!
| 0 ) ,

=

√
(2j + 1)

(s− j)! (s+ j + 1)!
[

det[A† ]
]s−j

D(j)†
m,q (A ) | 0 ) ,

(G.114)

where Dm,q(A ) is the D-matrix given in Eq. (G.55), with D+,+(R) = A1,+, D+,−(R) = A2,+, D−,+(R) =
A1,−, and D−,−(R) = A2,−, which is what we were trying to prove.

For our case, s = j1 + j2 and q = j1 − j2, so Theorem 75 states that the coupled angular momentum
state | (j1, j2) j,m ) in the Bose representation is given by:

| (j1, j2) j,m ) =

√
(2j + 1)

(j1 + j2 − j)! (j1 + j2 + j + 1)!

[ [
det[A ]

]j1+j2−j
D

(j)
m,j1−j2(A )

]†
| 0 ) . (G.115)

This formula was first stated by Biedenharn [3][p. 225]. We also know from Eq. (G.12) that the uncoupled
vector | j1,m1, j2,m2 ) is given by:

| j1,m1, j2,m2 ) =
(A†1,+ )j1+m1 (A†1,− )j1−m1 (A†2,+ )j2+m2 (A†2,− )j2−m2

√
(j1 +m1)! (j1 −m1)! (j2 +m2)! (j2 −m2)!

| 0 ) . (G.116)

Clebsch-Gordan coefficients are the overlap between these two vectors. We can easily find a closed formula
for these coefficients by expanding (G.115) and picking out the coefficients of | j1,m1, j2,m2 ). This gives:

| (j1, j2) j,m ) =

√
(2j + 1) (j +m)! (j −m)! (j + j1 − j2)! (j − j1 + j2)!

(j1 + j2 − j)! (j1 + j2 + j + 1)!
[
A†1,+A

†
2,− −A†1,−A†2,+

]j1+j2−j

×
j+m∑

n′=0

j−m∑

n=0

δn′−n,m−j1+j2

(
A†1,+

)j+m−n′ (
A†2,+

)n′ (
A†1,−

)n (
A†2,−

)j−m−n

(j +m− n′)! (n′)! (n)! (j −m− n)!
| 0 ) ,

=

√
(2j + 1) (j +m)! (j −m)! (j + j1 − j2)! (j − j1 + j2)!

(j1 + j2 − j)! (j1 + j2 + j + 1)!

×
j+m∑

n′=0

j−m∑

n=0

j1+j2−j∑

k=0

(−)k
(
j1 + j2 − j

k

)
δn′−n,m−j1+j2

×
(
A†1,+

)m−n′+j1+j2−k (
A†1,−

)n+k (
A†2,+

)n′+k (
A†2,−

)−m−n+j1+j2−k

(j +m− n′)! (n′)! (n)! (j −m− n)!
| 0 ) .

(G.117)

So let us put m1 = m−n′+j2−k = j1−n−s. So n+k = j1−m1. We also put n′+k = j2+m2 = j2+m−m1.
Then −m− n+ j1 + j2 − k = j2 −m2. This means that we can set n = j1 −m1 − k and n′ = j2 +m2 − k,
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so that (G.117) becomes:

| (j1, j2) j,m ) =
∑

m1,m2

δm,m1+m2

√
(2j + 1) (j +m)! (j −m)! (j + j1 − j2)! (j − j1 + j2)! (j1 + j2 − j)!

(j1 + j2 + j + 1)!

j1+j2−j∑

k=0

(−)k
(
A†1,+

)j1+m1
(
A†1,−

)j1−m1
(
A†2,+

)j2+m2
(
A†2,−

)j2−m2 | 0 )
(j1 + j2 − j − k)! k! (j +m1 − j2 + k)! (j2 +m−m1 − k)! (j1 −m1 − k)! (j −m− j1 +m1 + k)!

=
∑

m1,m2

| j1,m1, j2,m2 ) 〈 j1,m1, j2,m2 | (j1, j2) j,m 〉 , (G.118)

where the Clebsch-Gordan coefficient is given by:

〈 j1,m1, j2,m2 | (j1, j2) j,m 〉 = δm,m1+m2

√
(j +m)! (j −m)! (j1 +m1)! (j1 −m1)! (j2 +m2)! (j2 −m2)!

×
√

(2j + 1) (j + j1 − j2)! (j − j1 + j2)! (j1 + j2 − j)!
(j1 + j2 + j + 1)!

×
∑

k

(−)k

k! (j1 + j2 − j − k)! (j − j2 +m1 + k)! (j2 +m2 − k)! (j1 −m1 − k)! (j − j1 −m2 + k)!
. (G.119)

This is called “Racah’s second form” for the Clebsch-Gordan coefficients. It can be shown to be identical to
Eq. (21.196).

Exercise 92. Using relations in Appendix C, show that Eqs. (21.196) and (G.119) are identical (See Ed-
monds [4][p. 44–45]).

G.7 Generating function

Theorem 76 (Schwinger’s generating function). A generating function G(a, b) for the 3j-symbols is:

G(a, b) =
∑

all j,m

fj1,m1(a1) fj2,m2(a2) fj3,m3(a3)Fj1,j2,j3(b1, b2, b3)
(
j1 j2 j3
m1 m2 m3

)

= exp
{

( a1, a2 ) b3 + ( a2, a3 ) b1 + ( a3, a1 ) b2
}
,

(G.120)

where (ai, aj) := ai,+ aj,− − ai,− aj,+ and where fj,m(a) and Fj1,j2,j3(b1, b2, b3) are given by:

fj,m(a) =
( a+ )j+m ( a− )j−m√

(j +m)! (j −m)!
, (G.121)

Fj1,j2,j3(b1, b2, b3) =
√

(j1 + j2 + j3 + 1)!
( b1 )−j1+j2+j3 ( b2 )+j1−j2+j3 ( b3 )+j1+j2−j3

√
(−j1 + j2 + j3)! (j1 − j2 + j3)! (j1 + j2 − j3)!

. (G.122)

Proof. Following Schwinger [1], we first write the eigenvalue equation for the Bose operators as:

Aα,m | a1,+, a1,−, a2,+, a2,− ) = aα,m | a1,+, a1,−, a2,+, a2,− ) , (G.123)

where aα,m is a complex number with α = 1, 2 and m = ±. So from Eq. (G.116), the overlap of the coherent
state with the uncoupled state is given by:

( j1,m1, j2,m2 | a1,+, a1,−, a2,+, a2,− ) = N (a1)N (a2) fj1,m1(a1) fj2,m2(a2) (G.124)
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where

fj,m(a) =
( a+ )j+m ( a− )j−m√

(j +m)! (j −m)!
, N (a) = exp

{
−
∑

m

a∗m am/2
}
, (G.125)

where we have normalized the coherent states according to Eq. (G.37). Then let us note that

∑

m1,m2

| j1,m1, j2,m2 ) fj1,m1(a1) fj2,m2(a2)

=
∑

m1,m2

(
a1,+A

†
1,+

)j1+m1
(
a1,−A

†
1,−
)j1−m1

(
a2,+A

†
2,+

)j2+m2
(
a2,−A

†
2,−
)j2−m2

(j1 +m1)! (j1 −m1)! (j2 +m2)! (j2 −m2)!
| 0 )

=

(∑
m a1,mA

†
1,m

)2j1 (∑
m a2,mA

†
2,m

)2j2

(2j1)! (2j2)!
| 0 ) (G.126)

For the coupled state | (j1, j2) j3,m3 〉 from (G.115), we have:

∑

m3

| (j1, j2) j3,−m3 ) (−)j1−j2−m3 f∗j3,m3
(a3)/

√
2j3 + 1 =

√
(j3 + j1 − j2)! (j3 − j1 + j2)!

(j1 + j2 − j3)! (j1 + j2 + j3 + 1)!

×
∑

m3

j3−m3∑

n=0

j3+m3∑

n′=0

δn′−n,−m3−j1+j2 (−)j1−j2−j3
(
a∗3+

)j3+m3
(
−a∗3−

)j3−m3

×
(
A†1,+

)j3−m3−n′ (
A†2,+

)n′ (
A†1,−

)n (
A†2,−

)j3+m3−n

(j3 −m3 − n′)! (n′)! (n)! (j3 +m3 − n)!
(
A†1,+A

†
2,− −A†1,−A†2,+

)j1+j2−j3 | 0 )

= (−)−j1+j2+j3

j3+j1−j2∑

n=0

j3−j1+j2∑

n′=0

(
j3 + j1 − j2

n

)(
j3 − j1 + j2

n′

)(
A†1,+A

†
2,− −A†1,−A†2,+

)j1+j2−j3

×
(
−a∗3,−A†1,+

)j3+j1−j2−n (
a∗3,+A

†
1,−
)n (

a∗3,+A
†
2,−
)j3−j1+j2−n′(−a∗3,−A†2,+

)n′
√

(j1 + j2 + j3 + 1)! (−j1 + j2 + j3)! (j1 − j2 + j3)! (j1 + j2 − j3)!
| 0 )

=

(
−a∗3,+A†2,− + a∗3,−A

†
2,+

)−j1+j2+j3 (
a∗3,+A

†
1,− − a∗3,−A†1,+

)j1−j2+j3

√
(j1 + j2 + j3 + 1)! (−j1 + j2 + j3)! (j1 − j2 + j3)!

×
(
A†1,+A

†
2,− −A†1,−A†2,+

)j1+j2−j3
√

(j1 + j2 − j3)!
| 0 ) . (G.127)

The overlap between Eqs. (G.126) and (G.127) is:

∑

m1,m2,m3

fj1,m1(a1) fj2,m2(a2) fj3,m3(a3)
(
j1 j2 j3
m1 m2 m3

)
=

1√
(j1 + j2 + j3 + 1)!

× ( 0 |
(
A1,+A2,− −A1,−A2,+

)j1+j2−j3
√

(j1 + j2 − j3)!

(
a3,+A1,− − a3,−A1,+

)j1−j2+j3

√
(j1 − j2 + j3)!

(
a1,+A

†
1,+ + a1,−A

†
1,−
)2j1

(2j1)!

×
(
−a3,+A2,− + a3,−A2,+

)−j1+j2+j3

√
(−j1 + j2 + j3)!

(
a2,+A

†
2,+ + a2,−A

†
2,−
)2j2

(2j2)!
| 0 ) . (G.128)

Here, we want to move the creation operators to the left and the annihilation operators to the right. Using
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Eq. (B.3), we find:

[
(
−a3,+A2,− + a3,−A2,+

)−j1+j2+j3
,
(
a2,+A

†
2,+ + a2,−A

†
2,−
)2j2 ] | 0 )

=
(2j2)!

(j1 + j2 − j3)!
(
−a3,+ a2,− + a3,− a2,+

)−j1+j2+j3 (
a2,+A

†
2,+ + a2,−A

†
2,−
)j1+j2−j3 | 0 ) , (G.129)

and

[
(
a3,+A1,− − a3,−A1,+

)j1−j2+j3
,
(
a1,+A

†
1,+ + a1,−A

†
1,−
)2j1 ] | 0 )

=
(2j1)!

(j1 + j2 − j3)!
(
a3,+ a1,− − a3,− a1,+

)j1−j2+j3 (
a1,+A

†
1,+ + a1,−A

†
1,−
)j1+j2−j3 | 0 ) . (G.130)

Now let us define D by:
D = A1,+A2,− −A1,−A2,+ , (G.131)

and call Cα:
Cα = aα,+A

†
α,+ + aα,−A

†
α,− , α = 1, 2. (G.132)

then the remaining term we need to calculate is:

( 0 | [Dj1+j2−j3 , (C1C2 )j1+j2−j3 ] | 0 ) = (j1 + j2 − j3)!
[

( 0 | [D,C1C2 ] | 0 )
]j1+j2−j3

, (G.133)

since D | 0 ) = 0 and ( 0 |C1 = ( 0 |C2 = 0. We find

[D,C1 ] = [A1,+, C1 ]A2,− − [A1,−, C1 ]A2,+ ,

= a1,+A2,− − a1,−A2,+

[D,C2 ] = A1,+[A2,−, C2 ]−A1,−[A2,+, C2 ]

= a2,−A1,+ − a2,+A1,− ,

(G.134)

so that

[D,C1 C2 ] = [D,C1 ]C2 + C1 [D,C2 ]

=
(
a1,+A2,− − a1,−A2,+

) (
a2,+A

†
2,+ + a2,−A

†
2,−
)

+
(
a1,+A

†
1,+ + a1,−A

†
1,−
) (
a2,−A1,+ − a2,+A1,−

)
,

(G.135)

so
( 0 | [Dj1+j2−j3 , (C1C2 )j1+j2−j3 ] | 0 ) = (j1 + j2 − j3)!

(
a1,+ a2,− − a1,− a2,+

)j1+j2−j3
. (G.136)

Then Eq. (G.128) becomes:3

∑

m1,m2,m3

fj1,m1(a1) fj2,m2(a2) fj3,m3(a3)
(
j1 j2 j3
m1 m2 m3

)
=

1√
(j1 + j2 + j3 + 1)!

×
(
a1,+ a2,− − a1,− a2,+

)j1+j2−j3 (
a2,+ a3,− − a2,− a3,+

)−j1+j2+j3 (
a3,+ a1,− − a3,− a1,+

)j1−j2+j3

√
(j1 + j2 − j3)! (−j1 + j2 + j3)! (j1 − j2 + j3)!

.

(G.137)

Multiplying this equation on both sides by Fj1,j2,j3(b1, b2, b3) and summing over j1, j2, and j3 gives the result
quoted for the generator in Eq. (G.120), which was what we were trying to prove.

Theorem 76 provides an easy way to find all the symmetry properties of the 3j-symbols.
3Help! There seems to be a extra factor of (j1 + j2 − j3)! left over. What happened?
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G.8 Bose tensor operators

We have already seen one example of a tensor operator in our calculation of the D-functions using Bose
operators. We showed in Eq. (G.52) that the Bose operators Aq are tensor operators of rank k = 1/2 and
transform according to:

U†(R)Aq U(R) =
+1/2∑

q′=−1/2

D
(1/2)
q,q′ (R)Aq′ , and U†(R)A†q U(R) =

+1/2∑

q′=−1/2

A†q′ D
(1/2)
q′,q (R−1) . (G.138)

So T (1/2, q) = A†q is a tensor operator. Aq transforms as an adjoint tensor operator. It is not a Hermitian
tensor operator as defined in either Eq. (21.249) or (21.250). The number operator N = A†A =

∑
q A
†
qAq is

an invariant under rotations:

U†(R)N U(R) = U†(R)
{∑

q

A†q Aq
}
U(R)

=
∑

q,q′,q′′

A†q′ D
(1/2)
q′,q (R−1)D(1/2)

q,q′′ (R)Aq′′ =
∑

q′

A†q′ Aq′ = N .
(G.139)

However the more general tensor product N(S,M) defined by:

N(S,M) =
∑

m,m′

〈 1/2,m, 1/2,m′ | (1/2, 1/2)S,M 〉A†mAm′ , (G.140)

and transforms in a different way. [Work this out...]
We can construct tensor operators for the coupling of two commuting angular momenta also. Following

our definitions in Section G.6, let A†1,m and A†2,m be two commuting sets of creation operators, m = ±,
obeying the algebra:

[Aα,m, A
†
β,m′ ] = δm,m′δα,β , [Aα,m, Aβ,m′ ] = [A†α,m, A

†
β,m′ ] = 0 , (G.141)

with α, β = (1, 2), and describing the two angular momentum system by the Jordan-Schwinger maps:

J1 =
~
2
A†1 σA1 , J2 =

~
2
A†2 σA2 . (G.142)

Then the total angular momentum operator in occupation number space is given by

J = J1 + J2 =
~
2
A†1 σA1 +

~
2
A†2 σA2 . (G.143)

So let us define the tensor product A†[(1/2, 1/2)S,M ] by:

A†1,2[(1/2, 1/2)S,M ] =
∑

q1,q2

〈 1/2, q1, 1/2, q2 | (1/2, 1/2)S,M 〉A†1 q1 A
†
2 q2

. (G.144)

Dropping the 1/2 notation, this is:

A†1,2(S,M) =





(
A†1 +A

†
2− −A†1−A†2 +

)
/
√

2 , for S = M = 0,
A†1 +A

†
2 + , for S = 1, M = +1,(

A†1 +A
†
2− +A†1−A

†
2 +

)
/
√

2 , for S = 1, M = 0,
A†1−A

†
2− , for S = 1, M = −1.

(G.145)

Note that A†1,2(0, 0) = det[A† ]/
√

2. We can also define a mixed tensor R1,2[(1/2, 1/2)S,M ] by:

R1,2[(1/2, 1/2)S,M ] =
∑

q1,q2

〈 1/2, q1, 1/2, q2 | (1/2, 1/2)S,M 〉A†1 q1 A2 q2
. (G.146)
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Again dropping the 1/2 notation, this is:

R1,2(S,M) =





(
A†1 +A2− −A†1−A2 +

)
/
√

2 , for S = M = 0,
A†1 +A2 + , for S = 1, M = +1,(
A†1 +A2− +A†1−A2 +

)
/
√

2 , for S = 1, M = 0,
A†1−A2− , for S = 1, M = −1.

(G.147)

We can also define the adjoints of both of these operators, so there are a total of four mixed tensor operators
of rank one for the Bose operator representation of angular momentum. In general, these Bose tensor
operators are not Hermitian.

Where am I going here and what am I trying to do? Is this section necessary?
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