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Quiz 3;
Quantum Hamiltonian for the EM field;
Zeeman splitting;
Aharonov-Bohm effect.



Classical electrodynamics
The classical Lorentz force law is a velocity-dependent force

F = q (E + v × B
c )

This is not a conservative force, i.e. it cannot be derived from a potential. 
Deriving the quantum Hamiltonian for the EM field is therefore delicate.

B = ∇ × A E = − ∇ϕ − 1
c

∂A
∂t

(classical Lorentz force)

Recall that the B and E fields can be expressed in terms of a scalar and vector 
potential, φ and A:

The Lagrangian, from which we derive equations of motion, is given by:

L = 1
2 mv2 − qϕ + q

c v ⋅ A



Classical equations of motion
The classical equations of motion are given by the Euler-Lagrange equations. 
The Hamiltonian formulation, with           , has canonical momentum:

H(xi, pi) = ∑
i

pi
·xi − L(xi, ·xi) = ∑

i
(mvi +

q
c

Ai) vi −
1
2

mv2 + qϕ −
q
c

v ⋅ A

=
1
2

mv2 + qϕ

=
1

2m (p −
q
c

A)
2

+ qϕ

Thus, canonical momentum is not just mv! The classical Hamiltonian is

·xi = vi

pi =
∂L
∂ ·xi

= mvi +
q
c

Ai



Quantum Hamiltonian
Thus we expect that the correct quantum Hamiltonian is obtained by:

H =
1

2m (p̂ −
q
c

A( ̂r, t))
2

+ qϕ( ̂r, t) , p̂ = − iℏ∇ , [ ̂xj, ̂pk] = iℏδjk

However, in the presence of the B field, velocities don’t commute:

m2[vj, vk] = [mvj, mvk] = [−iℏ
∂

∂xj
−

q
c

Aj, − iℏ
∂

∂xk
−

q
c

Ak] =
iℏq
c ∑

i

ϵijkBi

H =
−ℏ2

2m
∇2 +

iℏq
2mc (A ⋅ ∇ + ∇ ⋅ A) +

q2

2mc2
A2 + qϕ

Let’s expand the square:



Gauge transformations
We can simplify this Hamiltonian be a careful choice of gauge.

B = ∇ × A
E = − ∇ϕ− 1

c
∂A
∂t

H =
−ℏ2

2m
∇2 +

iℏq
2mc (A ⋅ ∇ + ∇ ⋅ A) +

q2

2mc2
A2 + qϕ

Any transformation on the gauge fields of the following form leaves B, E alone:
A → A + ∇Λ
ϕ → ϕ− 1

c
∂Λ
∂t

Gauge transformation Gauge invariant

The Coulomb gauge is a choice that sets: ∇ ⋅ A = 0 ⇒ (∇ ⋅ A)f + A ⋅ ∇f = A ⋅ ∇f

In the Coulomb gauge the Hamiltonian becomes:

H =
−ℏ2

2m
∇2 +

iℏq
mc

A ⋅ ∇ +
q2

2mc2
A2 + qϕ



Constant B-field (Coulomb gauge)
The result is:

Let’s consider an example with constant B-field.

H =
−ℏ2

2m
∇2 +

iℏq
mc

A ⋅ ∇ +
q2

2mc2
A2 + qϕ

“paramagnetic term” “diamagnetic term”

The vector potential can be expressed as:                             (check:                   )A = 1
2 B × r ∇ × A = B

iℏq
mc

A ⋅ ∇ =
iℏq
2mc

(B × r) ⋅ ∇

=
iℏq
2mc

(r × ∇) ⋅ B

=
−q
2mc

L ⋅ B

Paramagnetic term: Diamagnetic term:

q2

2mc2
A2 =

q2

8mc2 (r2B2 − (r ⋅ B)2)

→
q2B2

8mc2 (x2 + y2)
AM coupled to B field If B field is along z-axis.



Zeeman splitting
The ratio of the dia- and paramagnetic terms is tiny in any case where an 
electron is bound to an atom and when B is less than a few Tesla.

q2B2

8mc2 ⟨x2 + y2⟩
q

2mc B⟨Lz⟩
=

ea2
0B2

4cℏB
= 10−6B/T⟨x2 + y2⟩ ∼ a2

0 , ⟨Lz⟩ ∼ ℏ

The paramagnetic term is small compared to the Coulomb energy scale:

eℏB/2mc
e2/a0

= 10−5B/TV ∼
e2

⟨r⟩
, ⟨r⟩ ∼ a0

We therefore want to solve:

H = H0 + H1 , H0 =
p̂2

2m
−

e2

| ̂r |
, H1 =

eB
2mc

Lz



Zeeman splitting
Notice that Lz still commutes with H, so ml is still a good quantum number:

The new eigenstates are unchanged. 

H =
p̂2

2m
−

e2

| ̂r |
+

eB
2mc

Lz

⟨n, l, ml |
eB

2mc
Lz |n, l, ml⟩ =

eBmlℏ
2mc

= ℏωLml

Larmor frequencyωL =
eB

2mc

Splitting of Sodium D lines, from 
Zeeman’s original paper (1897)

Magnetic field leads to splitting of degeneracy of 
the (2l+1) states in the l subspace.



Consequences of gauge invariance
Gauge transformations change the wavefunction, but not in an observable way:

ψ′�(r, t) = exp(i q
ℏc

Λ(r, t))ψ(r, t)A′� = A + ∇Λ
ϕ′� = ϕ− 1

c
∂Λ
∂t Overall phase

All probabilities are invariant:

|ψ′�(r, t) |2 = |ψ(r, t) |2

Of course, we can have non-zero A even 
if the magnetic field B is zero. Consider a 
solenoid:

B(r) = {B ̂z if r < R
0 if r > R

A(r) =
Br
2 ϕ̂ if r < R

BR2

2r ϕ̂ if r > R

R



Aharonov-Bohm effect

electron 
source

screen

solenoid

path 1

path 2

Consider the following double slit experiment:
With each path P, an electron will pick up a different 
phase factor that depends on the vector potential:

γP =
e

ℏc ∫P
A ⋅ dr ψ → exp(iγP)ψ

(note: this is a real number.)

The phase difference is observable as interference fringes on the screen!

Δγ =
e

ℏc ∫P1

A ⋅ dr −
e

ℏc ∫P2

A ⋅ dr =
e

ℏc ∮P1−P2

A ⋅ dr =
e

ℏc ∫A(P)
B ⋅ d2r

⇒ Δγ =
e

ℏc
Φ Phase shift depends on the flux Φ through the area enclosed by the paths.


