Quantum Mechanics

Lecture 14

Quiz 3;
Quantum Hamiltonian for the EM field;
Zeeman splitting;
Aharonov-Bohm effect.

Classical electrodynamics

The classical Lorentz force law is a velocity-dependent force

$$
\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v} \times \mathbf{B}}{c}\right) \quad \text { (classical Lorentz force) }
$$

This is not a conservative force, i.e. it cannot be derived from a potential. Deriving the quantum Hamiltonian for the EM field is therefore delicate.

Recall that the B and E fields can be expressed in terms of a scalar and vector potential, ϕ and \mathbf{A} :

$$
\mathbf{B}=\nabla \times \mathbf{A} \quad \mathbf{E}=-\nabla \phi-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}
$$

The Lagrangian, from which we derive equations of motion, is given by:

$$
L=\frac{1}{2} m v^{2}-q \phi+\frac{q}{c} \mathbf{v} \cdot \mathbf{A}
$$

Classical equations of motion

The classical equations of motion are given by the Euler-Lagrange equations. The Hamiltonian formulation, with $\dot{x}_{i}=v_{i}$, has canonical momentum:

$$
p_{i}=\frac{\partial L}{\partial \dot{x}_{i}}=m v_{i}+\frac{q}{c} A_{i}
$$

Thus, canonical momentum is not just $m v$! The classical Hamiltonian is

$$
\begin{aligned}
H\left(x_{i}, p_{i}\right)=\sum_{i} p_{i} \dot{x}_{i}-L\left(x_{i}, \dot{x}_{i}\right) & =\sum_{i}\left(m v_{i}+\frac{q}{c} A_{i}\right) v_{i}-\frac{1}{2} m v^{2}+q \phi-\frac{q}{c} \mathbf{v} \cdot \mathbf{A} \\
& =\frac{1}{2} m v^{2}+q \phi \\
& =\frac{1}{2 m}\left(\mathbf{p}-\frac{q}{c} \mathbf{A}\right)^{2}+q \phi
\end{aligned}
$$

Quantum Hamiltonian

Thus we expect that the correct quantum Hamiltonian is obtained by:

$$
H=\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}(\hat{\mathbf{r}}, t)\right)^{2}+q \phi(\hat{\mathbf{r}}, t), \quad \hat{\mathbf{p}}=-i \hbar \nabla, \quad\left[\hat{x}_{j}, \hat{p}_{k}\right]=i \hbar \delta_{j k}
$$

However, in the presence of the \mathbf{B} field, velocities don't commute:

$$
m^{2}\left[v_{j}, v_{k}\right]=\left[m v_{j}, m v_{k}\right]=\left[-i \hbar \frac{\partial}{\partial x_{j}}-\frac{q}{c} A_{j},-i \hbar \frac{\partial}{\partial x_{k}}-\frac{q}{c} A_{k}\right]=\frac{i \hbar q}{c} \sum_{i} \epsilon_{i j k} B_{i}
$$

Let's expand the square:

$$
H=\frac{-\hbar^{2}}{2 m} \nabla^{2}+\frac{i \hbar q}{2 m c}(\mathbf{A} \cdot \nabla+\nabla \cdot \mathbf{A})+\frac{q^{2}}{2 m c^{2}} \mathbf{A}^{2}+q \phi
$$

Gauge transformations

We can simplify this Hamiltonian be a careful choice of gauge.

$$
H=\frac{-\hbar^{2}}{2 m} \nabla^{2}+\frac{i \hbar q}{2 m c}(\mathbf{A} \cdot \nabla+\nabla \cdot \mathbf{A})+\frac{q^{2}}{2 m c^{2}} \mathbf{A}^{2}+q \phi
$$

Any transformation on the gauge fields of the following form leaves \mathbf{B}, E alone:

Gauge transformation

$$
\begin{array}{ll}
A \rightarrow A+\nabla \Lambda & B=\nabla \times A \\
\phi \rightarrow \phi-\frac{1}{c} \frac{\partial \Lambda}{\partial t} & E=-\nabla \phi-\frac{1}{c} \frac{\partial A}{\partial t}
\end{array} \quad \text { Gauge invariant }
$$

The Coulomb gauge is a choice that sets: $\nabla \cdot \mathbf{A}=0 \Rightarrow(\nabla \cdot \mathbf{A}) f+A \cdot \nabla f=A \cdot \nabla f$ In the Coulomb gauge the Hamiltonian becomes:

$$
H=\frac{-\hbar^{2}}{2 m} \nabla^{2}+\frac{i \hbar q}{m c} \mathbf{A} \cdot \nabla+\frac{q^{2}}{2 m c^{2}} \mathbf{A}^{2}+q \phi
$$

Constant B-field (Coulomb gauge)

The result is:

$$
H=\frac{-\hbar^{2}}{2 m} \nabla^{2}+\frac{i \hbar q}{m c} \underset{\uparrow}{\text { "paramagnetic term" }} \mathbf{A} \cdot \nabla+\frac{q^{2}}{2 m c^{2}} \mathbf{A}^{2}+q \phi
$$

Let's consider an example with constant \mathbf{B}-field.
The vector potential can be expressed as: $\mathbf{A}=\frac{1}{2} \mathbf{B} \times \mathbf{r} \quad$ (check: $\nabla \times \mathbf{A}=\mathbf{B}$)

Paramagnetic term:

$$
\begin{aligned}
\frac{i \hbar q}{m c} \mathbf{A} \cdot \nabla & =\frac{i \hbar q}{2 m c}(\mathbf{B} \times \mathbf{r}) \cdot \nabla \\
& =\frac{i \hbar q}{2 m c}(\mathbf{r} \times \nabla) \cdot \mathbf{B} \\
& =\frac{-q}{2 m c} \mathbf{L} \cdot \mathbf{B}
\end{aligned}
$$

AM coupled to B field

Diamagnetic term:

$$
\begin{aligned}
\frac{q^{2}}{2 m c^{2}} \mathbf{A}^{2} & =\frac{q^{2}}{8 m c^{2}}\left(r^{2} B^{2}-(\mathbf{r} \cdot \mathbf{B})^{2}\right) \\
& \rightarrow \frac{q^{2} B^{2}}{8 m c^{2}}\left(x^{2}+y^{2}\right) \\
& \text { If } \mathrm{B} \text { field is along } \mathrm{z} \text {-axis. }
\end{aligned}
$$

Zeeman splitting

The ratio of the dia- and paramagnetic terms is tiny in any case where an electron is bound to an atom and when B is less than a few Tesla.

$$
\left\langle x^{2}+y^{2}\right\rangle \sim a_{0}^{2}, \quad\left\langle L_{z}\right\rangle \sim \hbar \quad \frac{\frac{q^{2} B^{2}}{8 m c^{2}}\left\langle x^{2}+y^{2}\right\rangle}{\frac{q}{2 m c} B\left\langle L_{z}\right\rangle}=\frac{e a_{0}^{2} B^{2}}{4 c \hbar B}=10^{-6} B / T
$$

The paramagnetic term is small compared to the Coulomb energy scale:

$$
V \sim \frac{e^{2}}{\langle r\rangle}, \quad\langle r\rangle \sim a_{0} \quad \frac{e \hbar B / 2 m c}{e^{2 / a_{0}}}=10^{-5} B / T
$$

We therefore want to solve:

$$
H=H_{0}+H_{1}, \quad H_{0}=\frac{\hat{\mathbf{p}}^{2}}{2 m}-\frac{e^{2}}{|\hat{\mathbf{r}}|}, \quad H_{1}=\frac{e B}{2 m c} L_{z}
$$

Zeeman splitting

Notice that L_{z} still commutes with H, so m_{l} is still a good quantum number:

$$
H=\frac{\hat{\mathbf{p}}^{2}}{2 m}-\frac{e^{2}}{|\hat{\mathbf{r}}|}+\frac{e B}{2 m c} L_{z}
$$

The new eigenstates are unchanged.

$$
\begin{gathered}
\left\langle n, l, m_{l}\right| \frac{e B}{2 m c} L_{z}\left|n, l, m_{l}\right\rangle=\frac{e B m_{l} \hbar}{2 m c}=\hbar \omega_{L} m_{l} \\
\omega_{L}=\frac{e B}{2 m c} \quad \text { Larmor frequency }
\end{gathered}
$$

Magnetic field leads to splitting of degeneracy of the $(2 l+1)$ states in the l subspace.

Splitting of Sodium D lines, from Zeeman's original paper (1897)

Consequences of gauge invariance

Gauge transformations change the wavefunction, but not in an observable way:

$$
\begin{aligned}
& A^{\prime}=A+\nabla \Lambda \\
& \phi^{\prime}=\phi-\frac{1}{c} \frac{\partial \Lambda}{\partial t}
\end{aligned}
$$

$$
\psi^{\prime}(\mathbf{r}, t)=\exp \left(i \frac{q}{\hbar c} \Lambda(\mathbf{r}, t)\right) \psi(\mathbf{r}, t)
$$

All probabilities are invariant:

$$
\left|\psi^{\prime}(\mathbf{r}, t)\right|^{2}=|\psi(\mathbf{r}, t)|^{2}
$$

Of course, we can have non-zero \mathbf{A} even if the magnetic field \mathbf{B} is zero. Consider a solenoid:

$$
\mathbf{B}(\mathbf{r})= \begin{cases}B \hat{\mathbf{z}} & \text { if } r<R \\ 0 & \text { if } r>R\end{cases}
$$

Aharonov-Bohm effect

Consider the following double slit experiment: With each path P, an electron will pick up a different phase factor that depends on the vector potential:

$$
\gamma_{P}=\frac{e}{\hbar c} \int_{P} \mathbf{A} \cdot \mathrm{~d} \mathbf{r} \quad \psi \rightarrow \exp \left(i \gamma_{P}\right) \psi
$$

(note: this is a real number.)
electron source

screen

The phase difference is observable as interference fringes on the screen!

$$
\Delta \gamma=\frac{e}{\hbar c} \int_{P_{1}} \mathbf{A} \cdot \mathrm{~d} \mathbf{r}-\frac{e}{\hbar c} \int_{P_{2}} \mathbf{A} \cdot \mathrm{~d} \mathbf{r}=\frac{e}{\hbar c} \oint_{P_{1}-P_{2}} \mathbf{A} \cdot \mathrm{~d} \mathbf{r}=\frac{e}{\hbar c} \int_{\mathrm{A}(P)} \mathbf{B} \cdot \mathrm{d}^{2} \mathbf{r}
$$

$\Rightarrow \Delta \gamma=\frac{e}{\hbar c} \Phi \quad$ Phase shift depends on the flux Φ through the area enclosed by the paths.

