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Quiz 3;

Quantum Hamiltonian for the EM field;
Zeeman splitting;

Aharonov-Bohm effect.




Classical electrodynamics

The classical Lorentz force law is a velocity-dependent force
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This is not a conservative force, i.e. it cannot be derived from a potential.
Deriving the quantum Hamiltonian for the EM field is therefore delicate.

Recall that the B and E fields can be expressed in terms of a scalar and vector
potential, ¢ and A:
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The Lagrangian, from which we derive equations of motion, is given by:
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Classical equations of motion

The classical equations of motion are given by the Euler-Lagrange equations.
The Hamiltonian formulation, with x; = v,, has canonical momentum:
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Thus, canonical momentum is not just mov! The classical Hamiltonian is
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(Quantum Hamiltonian

Thus we expect that the correct quantum Hamiltonian is obtained by:
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However, in the presence of the B field, velocities don’t commute:
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Let’s expand the square:
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Gauge transformations

We can simplify this Hamiltonian be a careful choice of gauge.
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Any transformation on the gauge fields of the following form leaves B, E alone:

A—-> A+ VA B-= N A

Gauge transformation Gauge invariant
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The Coulomb gauge is a choice thatsets: V-A=0 = (V-A)f+A-Vf=A-Vf

In the Coulomb gauge the Hamiltonian becomes:
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Constant B-field (Coulomb gauge)

The result is: —h? in .
ooy L o -
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“paramagnetic term” “diamagnetic term”

Let’s consider an example with constant B-field.

The vector potential can be expressed as: A = %B X T (check: Vx A =B)
Paramagnetic term: Diamagnetic term:
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/.eeman splitting

The ratio of the dia- and paramagnetic terms is tiny in any case where an
electron is bound to an atom and when B is less than a few Tesla.
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The paramagnetic term is small compared to the Coulomb energy scale:
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We therefore want to solve:




/.eeman splitting

Notice that L; still commutes with H, so m; is still a good quantum number:
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The new eigenstates are unchanged.
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Magnetic field leads to splitting of degeneracy of  spiitting of Sodium D lines, from
the (2/+1) states in the [ subspace. Zeeman’s original paper (1897)



(Consequences of gauge invariance

Gauge transformations change the wavefunction, but not in an observable way:
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All probabilities are invariant:
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Of course, we can have non-zero A even
if the magnetic field B is zero. Consider a

solenoid: g
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Aharonov-Bohm etfect

solenoid

Consider the following double slit experiment: ‘

With each path P, an electron will pick up a different
phase factor that depends on the vector potential:
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(note: this is a real number.)

W — exp(iyp)y |

The phase difference is observable as interference fringes on the screen!
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