
Quantum Mechanics using Matrix Methods

� Introduction and the simple harmonic oscillator

In this notebook we study some problems in quantum  mechanics using matrix methods. We know that we can solve
quantum mechanics in any complete set of basis functions.  If we choose a particular basis, the Hamiltonian will not, in
general, be diagonal, so the task is to diagonalize it to find the eigenvalues (which are the possible results of a measure-
ment of the energy) and the eigenvectors. 

In many cases this can not be done exactly and some numerical approximation is needed. A common approach, which
is the basis of a lot of quantum chemistry is to take a finite basis set and diagonalize it numerically. The ground state
of this reduced basis set will not be  the exact ground state, but by increasing the size of the basis we can improve the
accuracy and check if the energy converges as we increase the basis size. We will apply this approach here for an
anharmonic oscillator. The reference for this material is Kinzel and Reents, p. 47-51.

We first discuss the exactly solvable case of the simple harmonic oscillator.  The Hamiltonian is given by
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where p is the momentum, x the position, m the mass and Ω the angular frequency of the classical oscillator.  x and p
satisfiy the commutation relation [x, p] = i Ñ.  The Hamiltonian can be written in dimensionless form as 
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where p0= Ñm Ω  and  x0= Ñ � Hm ΩL , are the basic momentum and length scales. From now on, we will give the
energy in units of ÑΩ,  x in units of x0, and p in units of p0, so the reduced Hamiltonian is 

H0 =

p2

2
+

x2

2
.

In these units the commutation relation is [x, p] = i.  In any textbook on quantum mechanics, it is shown that the
energy levels are given by 

En = n +

1

2
, n = 0, 1, 2, .... .

and the wavefunctions are given by

Ψn HxL = I2n n! Π M
-1�2

e-x2�2 Hn HxL ,

where Hn(x) is a Hermite polynomial.

The books also show that it is easier to determine the energy levels using operator methods rather than the Schrödinger
equation, and that is the approach that we will take here.  In this approach, one introduces so-called  raising and

lowering operators, a† and a, related to x and p by
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2
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+ aM, p =
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which have the commutation relations

A a, a†E = 1 .

and in terms of which the Hamiltonian is written



H0 = a† a +

1

2
.

Denoting eigenstates of the Hamiltonian by |n\, then one finds

a† n] = n + 1 n + 1^, a n^ = n n - 1^

and so

a† a n] = n n],

from which it follows that the energy Enis equal to (n + 1/2) as stated above.

The matrix elements of x in the basis |n\ are given by

Xnm = Xn x m\ =

1

2
m + 1 ∆n,m+1 +

1

2
m ∆n,m-1 =

1

2
n + m + 1 ∆ n-m ,1.

Hence we can conveniently define the matrix elements for x as follows:

Clear@"Global`*"D

x@n_, m_D := Sqrt@Hn + m + 1LD � 2 �; Abs@n - mD == 1

x@n_, m_D := 0 �; Abs@n - mD != 1

where we have used the symbol /; , which means "assuming that". From these we can generate a matrix for x keeping a
basis of "basissize" states:

x@basissize_D := Table@x@n, mD, 8n, 0, basissize - 1<, 8m, 0, basissize - 1< D

Let's see what we get for basissize = 4

x@4D �� MatrixForm

0
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2
0 0
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0 1 0

0 1 0
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0 0
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2
0

It is trivial to generate the Hamiltonian matrix of the simple harmonic oscillator, since it is diagonal, i.e.

h0@basissize_D := DiagonalMatrix @ Table@n + 1 � 2, 8n, 0, basissize - 1< D D

h0@4D �� MatrixForm
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� The anharmonic oscillator

Now we make the problem non-trivial  by adding an anharmonic term. We will take it to be proportional to x4, i.e.

H = H0 + Λ x4
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It is easy to generate the matrix for H using the matrix obtained above for x and the convenient "dot" notation in
Mathematica for performing matrix products:

h@basissize_, Λ_D :=

h0@basissizeD + Λ x@basissizeD . x@basissizeD . x@basissizeD . x@basissizeD

For example, with a basis size of 4 we get

h@4, ΛD �� MatrixForm
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The eigenvalues can also be obtained numerically and then sorted. Here we give a function (with delayed assignment)
for doing this:

evals@basissize_, Λ_D := Sort @ Eigenvalues @ N@ h@basissize, ΛD D D D

Now we get some numbers. First consider the trivial example of the simple harmonic oscillator, Λ = 0, and a basis size
of 10.

evals@10, 0D

80.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5<

Naturally we get the right answer, since the matrix is diagonal in this case. Next we consider the anharmonic oscillator,
Λ = 1.

evals@10, 1D

80.805462, 2.75226, 5.03691, 7.5299, 14.251, 14.6706, 46.8171, 46.913, 146.84, 146.884<

The energy levels are no longer uniformily spaced. We expect that the lowest few levels will be fairly accurate, but the
higher levels will be inaccurate because they feel more severely the truncation of the basis states.

To test this, we plot the eigenvalues for a range of Λ, starting with a basis size of 15.

basissize = 15;

p1 = Plot @Evaluate@evals@basissize, ΛDD, 8Λ, 0, 1<, PlotRange -> 80, 11< ,
PlotStyle -> 8AbsoluteThickness@2D< , AxesLabel ® 8"Λ", "E"<D
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To see how accurate these are we compare the results for the size-15  basis with those for a size-10  basis.
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basissize = 10;

p2 = Plot @ Evaluate @ evals@basissize, ΛD D, 8Λ, 0, 1<, PlotRange -> 80, 10< ,
PlotStyle -> 88 AbsoluteThickness@2D, Hue@0D, Dashing@80.01, 0.02<D< <,
BaseStyle -> 8FontSize ® 14, FontWeight ® "Bold", FontColor -> Hue@0D <D;

Show@p1, p2, PlotLabel -> "basissize=15 HsolidL and 10 HdashedL"D
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The lowest levels appear to have converged well, but the higher levels have not. This is not surprising because the
highest of the plotted levels are some of the highest levels possible for the size-10  basis, and so the effects of the finite
basis size are naturally large in that region. 

Now we focus on the ground state, which is given by the first element of evals, e.g. for basis size 20 and Λ = 0.2 we
have

basissize = 20;

evals@basissize, 0.2D@@1DD

0.602405

For a given basis size, we can plot the lowest energy level versus Λ,

Plot @ evals@basissize, ΛD @@1DD , 8Λ, 0, 1<,
PlotRange ® 80.5, 0.8<, AxesLabel ® 8"Λ", "E0"<D
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We see that the energy level starts off, as it must, at the value 1/2 for Λ = 0, and then increases with increasing Λ.

Note that to plot all the eigenvalues as a function of Λ it is necessary to Evaluate the evals function inside the Plot
function, whereas to plot just the lowest eigenvalue it is important not to use Evaluate otherwise the wrong eigenvalue
is plotted (For some reason, Plot seems to ignore Sort in this case.) The details of the functioning of the Plot com-
mand, and when one should Evaluate the function to be plotted, remain rather mysterious to me. 
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We see that the energy level starts off, as it must, at the value 1/2 for Λ = 0, and then increases with increasing Λ.

Note that to plot all the eigenvalues as a function of Λ it is necessary to Evaluate the evals function inside the Plot
function, whereas to plot just the lowest eigenvalue it is important not to use Evaluate otherwise the wrong eigenvalue
is plotted (For some reason, Plot seems to ignore Sort in this case.) The details of the functioning of the Plot com-
mand, and when one should Evaluate the function to be plotted, remain rather mysterious to me. 

We really wish to check that our calculation of the ground state energy used a large enough basis size in order to be
accurate. To check this, we plot the ground state energy versus the inverse of the size of the basis set. Here are some
results for Λ = 0.2:

ListPlot@Table@81 � basissize, evals@basissize, 0.2D@@1DD<, 8basissize, 9, 30<D,
Frame ® True, Axes ® False, PlotStyle ® 8PointSize@0.02D, Hue@0D <,
Epilog ® Line@881 � 30, 0.602405<, 81 � 8, 0.602405<<D, PlotRange ® All,
FrameLabel ® 8"1�Hbasis sizeL", "E0"< , RotateLabel ® False, PlotLabel ® "Λ = 0.2"D

0.04 0.06 0.08 0.10

0.60238
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0.60242

1�Hbasis sizeL
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Λ = 0.2

We see that for basis size greater than about 16, the energy has converged well. As you might expect, and you can
verify yourself, a larger basis set is needed if Λ is larger. 

The eigenvectors can also be found, and these give the linear coefficients of the Hermite polynomials which make up
the coordinate space wavefunction. Hence the wavefunction of the anharmonic oscillator can also be obtained by this
method.

In another handout we calculated the lowest three energy levels of this anharmonic oscillator in a completely
different way, from the Schrodinger equation. In that approach we solve a differential equation rather than diagonal-
ize a matrix. We found the lowest three energy levels to be
         0.602405,      1.95054,      3.5363

We see that the lowest agrees very well with the ground state determined above from matrix methods. To compare
all three numbers we now compute the lowest three levels from the matrix method, still with Λ = 0.2:

In[109]:= Table@evals@30, 0.2D@@nDD, 8n, 1, 3<D

Out[109]= 80.602405, 1.95054, 3.5363<

All three energies agree with the corresponding result from Schrodinger's equation, to within the digits printed.

� Double Well Potential

Next we use matrix methods to calculate the lowest energy levels in a double well potential. The Hamiltonian is given
by

H =

p2

2
+ V HxL, where V HxL = -

x2

2
+ Λ

x4

4
.

Note that the coeficient of x2 is negative. The minima of the potential energy are at
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x0 = ±

1

Λ

, Vmin º V Hx0L = -

1

4 Λ

.

We plot the potential for the case of Λ = 0.2.

Plot@-x^2 � 2 + Λ x^4 � 4 �. Λ ® 0.2, 8x, -4, 4<D

-4 -2 2 4

-1

1

2

3

The new physics in this example is the possibility of tunneling between the two minima. The reader is referred to any
quantum mechanics book for more details on tunneling.

� Setup

To obtain the Hamiltonian, it is convenient to use the matrix elements of p, given in any quantum mechanics textbook,

(as well those of of x which we already have). (To avoid needing p we could alternatively write H = H0 - x2
+ x4 �4

where H0is the simple harmonic oscillator Hamiltonian which is diagonal).

p@j_, k_D := I Sqrt@Hj + k + 1LD � 2 �; j - k == 1

p@j_, k_D := -I Sqrt@Hj + k + 1LD � 2 �; j - k == -1

p@j_, k_D := 0 �; Abs@j - kD != 1

p@basissize_D := Table@p@n, mD, 8n, 0, basissize - 1<, 8m, 0, basissize - 1< D

h@n_, Λ_D := p@nD . p@nD � 2 - x@nD . x@nD � 2 + Λ x@nD. x@nD . x@nD . x@nD � 4

The function evals is the same as before.

� Λ = 0.2

Consider first Λ = 0.2.

We can find where the two minima are either analytically, which gives x0  =± 1 / Λ , and Emin = -1 �4 Λ, as stated
above, or use Mathematica:

FindMinimum @ -x^2 � 2 + Λ x^4 � 4 �. Λ ® 0.2, 8x, 2<D

8-1.25, 8x ® 2.23607<<

We extract the energy levels for n (the basis size) equal to 10 and 20

evals@10, 0.2D

8-0.632598, -0.58519, 0.258188, 0.718673,
1.08039, 1.58207, 2.56578, 3.13355, 5.22129, 5.78285<
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evals@20, 0.2D

8-0.632746, -0.57653, 0.254745, 0.771776, 1.55257,
2.41794, 3.37821, 4.4108, 5.52619, 6.58931, 7.1273, 7.94774, 9.32728,
10.4063, 12.9696, 13.5321, 15.883, 16.0983, 28.9545, 29.8116<

Next we plot the lowest energy level versus 1/n.  It seems to be converging.

ListPlot@
Table@81 � size, evals@size, 0.2D@@1DD < , 8size, 10, 30, 4<D ,
PlotStyle ® 8Hue@2D, PointSize@0.02D<, Axes ® False, Frame ® True,
FrameLabel ® 8"1�Hbasis sizeL", "E0"<, RotateLabel ® False,
PlotLabel ® "Λ = 0.2"D

0.04 0.05 0.06 0.07 0.08 0.09 0.10

-0.63275

-0.63270
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1�Hbasis sizeL

E0

Λ = 0.2

Now we want to plot more than one energy level for different values of n.

We construct evalslist, a two-dimensional  list containing all the eigenvalues for different values of n between 10 and
30,

evalslist = Table@evals@n, 0.2D, 8n, 1, 30< D;

and from this plot the two lowest levels versus 1/n (note we plot each set of data twice, once to get the points without
the lines, and once to get the lines without the points; this is done by the Joined -> {True, False, Tre, False} option.)
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ListPlot@ 8
Table@ 81 � n, evalslist@ @nDD@@1DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@1DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@2DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@2DD<, 8n, 10, 30<D<,

Axes ® False, Frame ® True, Joined ® 8True, False, True, False<, PlotStyle ®

88Thick, Red<, 8Red, PointSize@LargeD<, 8Thick, Blue<, 8Blue, PointSize@LargeD<<,
FrameLabel ® 8"1�Hbasis sizeL", "E0"<, RotateLabel ® False,
PlotLabel ® "Λ = 0.2"D
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As expected, both levels converge as the basis size increases.

� Λ = 0.1

Next we consider a smaller value, Λ = 0.1, for which the minima are deeper.

Clear@ΛD; Plot@-x^2 � 2 + Λ x^4 � 4 �. Λ ® 0.1, 8x, -4.7, 4.7<D

-4 -2 2 4
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0.5
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minpot = FindMinimum @ -x^2 � 2 + Λ x^4 � 4 �. Λ ® 0.1, 8x, 3.5<D

8-2.5, 8x ® 3.16228<<

When the potential is very deep the two the particle will only tunnel very slowly from one well to the other. The two
lowest energy levels are split by this small tunneling splitting, and the eigenstates are the symmetric and anti-symmet-
ric  combinations of the wavefunction for the particle localized in the ground state of the left well and the right well. If
we represent the potential at the bottom of each well as a parabola then the lowest energy of each of these states is
given by the simple harmonic ground state energy above Vmin, i.e.
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When the potential is very deep the two the particle will only tunnel very slowly from one well to the other. The two
lowest energy levels are split by this small tunneling splitting, and the eigenstates are the symmetric and anti-symmet-
ric  combinations of the wavefunction for the particle localized in the ground state of the left well and the right well. If
we represent the potential at the bottom of each well as a parabola then the lowest energy of each of these states is
given by the simple harmonic ground state energy above Vmin, i.e.

Ε0 = Vmin +

1

2
Ωmin

where  Ωminis classical freqency of oscillation about the minimum, i.e. Ωmin=  V '' Hx0L   = 2 . Hence

Ε0 = -

1

4 Λ

+

1

2
.

We  expect then, that for deep wells, the two lowest energy levels will be given, to a good approximation by

E1 > Ε0 -

D0

2
, E2 > Ε0 +

D0

2
Hdeep wellsL

where D0 is the (small) tunneling splitting.

For Λ = 0.1,  Ε0is given by

Ε0 =

-1

4 Λ

+

1

2

�. Λ ® 0.1

-1.79289

Now we compare this with the actual energy of the two lowest levels.

evalslist = Table@evals@n, 0.1D, 8n, 1, 30< D;

ListPlot@ 8
Table@ 81 � n, evalslist@ @nDD@@1DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@1DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@2DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@2DD<, 8n, 10, 30<D<,

Axes ® False, Frame ® True, Joined ® 8True, False, True, False<,
FrameLabel ® 8"1�Hbasis sizeL", "E0, E1"<, RotateLabel ® False,
PlotLabel ® "Λ = 0.1"D
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-1.826

-1.825

-1.824
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1�Hbasis sizeL

E0, E1

Λ = 0.1

We see that the two lowest levels are close together as expected (the difference being the tunneling splitting), and the
energies are fairly close to Ε0 = -1.793 ... , though they are not precisely equal to that value. The difference arises
because, for this value of Λ,  the wells are not deep enough to accurately  represent their behavior about the minima as
parabolas.

Now we also include the next two levels. These are also fairly close together, but not as close as the lowest two
because, having more energy, they can tunnel more easily from one well to the other. 
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We see that the two lowest levels are close together as expected (the difference being the tunneling splitting), and the
energies are fairly close to Ε0 = -1.793 ... , though they are not precisely equal to that value. The difference arises
because, for this value of Λ,  the wells are not deep enough to accurately  represent their behavior about the minima as
parabolas.

Now we also include the next two levels. These are also fairly close together, but not as close as the lowest two
because, having more energy, they can tunnel more easily from one well to the other. 

ListPlot@ 8
Table@ 81 � n, evalslist@ @nDD@@1DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@1DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@2DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@2DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@3DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@3DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@4DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@4DD<, 8n, 10, 30<D<,

Axes ® False, Frame ® True,
Joined ® 8True, False, True, False, True, False, True, False<,
FrameLabel ® 8"1�Hbasis sizeL", "E0,E1,E2,E3"<, RotateLabel ® False,
FrameLabel ® "Λ = 0.1"D
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� Λ = 0.05

Finally we take  Λ to have the smaller value of  0.05, which  makes the wells deeper still:
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Clear@ΛD; Plot@-x^2 � 2 + Λ x^4 � 4 �. Λ ® 0.05, 8x, -6.5, 6.5<D
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1

We calculate Ε0for this value of Λ:

minpot = FindMinimum @ -x^2 � 2 + Λ x^4 � 4 �. Λ ® 0.05, 8x, 3.5<D

8-5., 8x ® 4.47214<<

Ε0 =

-1

4 Λ

+

1

2

�. Λ ® 0.05

-4.29289

Now we plot the lowest two levels for different basis sizes:

evalslist = Table@evals@n, 0.05D, 8n, 1, 30< D;

lw2 = ListPlot@ 8
Table@ 81 � n, evalslist@ @nDD@@1DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@1DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@2DD<, 8n, 10, 30<D,
Table@ 81 � n, evalslist@ @nDD@@2DD<, 8n, 10, 30<D<,

Axes ® False, Frame ® True, Joined ® 8True, False, True, False<,
FrameLabel ® 8"1�Hbasis sizeL", "E0, E1"<, RotateLabel ® False,
PlotLabel ® "Λ = 0.05"D;

pe0 = ListPlot@Table@ 81 � n, Ε0<, 8n, 10, 30<D, PlotStyle ®

8AbsoluteThickness@2D, Dashing@80.01, 0.02<D, Hue@0.65D<, Joined ® True D;
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Show@lw2, pe0D

0.04 0.05 0.06 0.07 0.08 0.09 0.10

-4.7

-4.6

-4.5

-4.4

-4.3

-4.2

-4.1

-4.0

1�Hbasis sizeL

E0, E1

Λ = 0.05

The dashed line is Ε0 = -4.29289(the value obtained above assuming that potential can be represented as a parobola
about each minimum and neglecting tunneling) which we see is very close to the energy of the ground state and first
excited state, as expected because the wells are very deep so the approximations made to get the value -4.29289 are
accurate.

Finally we show the lowest 8 levels. They are grouped into four pairs as expected, with each pair corresponding to a
symmetric and anti-symmetric combination of wavefunctions localized  in the left and the right well.

lw8 = ListPlot@ Flatten@8Table@
Table@ 81 � n, evalslist@ @nDD@@iDD<, 8n, 10, 30<D, 8i, 1, 8<D, Table@
Table@ 81 � n, evalslist@ @nDD@@iDD<, 8n, 10, 30<D, 8i, 1, 8<D<, 1D,

Axes ® False, Frame ® True,
Joined ® Flatten@ 8Table@True, 88<D, Table@False , 88<D<D,
FrameLabel ® 8"1�Hbasis sizeL", "E0,..,E7"<, RotateLabel ® False,
PlotLabel ® "Λ = 0.05", PlotRange ® 8-4.8, 0.5< D;

pe1 = ListPlotBTableB :1 � n, Ε0 + 2 >, 8n, 10, 30<F,

PlotStyle ® 8AbsoluteThickness@2D, Dashing@80.01, 0.02<D, Hue@0.35D<, Joined ® TrueF;

pe2 = ListPlotBTableB :1 � n, Ε0 + 2 2 >, 8n, 10, 30<F,

PlotStyle ® 8AbsoluteThickness@2D, Dashing@80.01, 0.02<D, Hue@0.85D<, Joined ® TrueF;

12   matrix_qm.nb



Show@lw8, pe0, pe1, pe2D
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For the case of a really deep well, the lowest levels would correspond to simple harmonic oscillator levels in each of
the two wells with energy

Εn = Vmin + n +

1

2
Ωmin

where here we have Vmin = -1 � H4 ΛL and Ωmin= 2 .  For each  n, tunneling causes the two degenerate levels to split
by a small amount Dn, so

E2 n+1 > Εn -

Dn

2
, E2 n+2 > Εn +

Dn

2
Hn = 0, 1, 2, ...L Hvery deep wellsL.

In the above figure, the dashed lines show Εn for n=0, 1 and 2.   We see that the lowest pair of levels HE0, E1L is close to
the expected value (Ε0), but higher pairs differ progressively more and more, indicating that the potential cannot be
accurately represented by a parabola at these energies.
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