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1. WHY USE �
QUANTUM  THEORY?



1. Quantum theory is a general Axiomatic theory of probability


• Human judgments and decisions are probabilistic

• These probabilities do not obey the Kolmogorov axioms


• Quantum theory provides a viable alternative


2. Non Commutativity of measurements


• Measurements change psychological states producing context effects


• Principle of complementarity was borrowed by Niels Bohr from 
William James


3. Vector space representation of probabilities

• Agrees with connectionist-neural network models of cognition



2. HOW  DO  WE USE  
QUANTUM  THEORY?

Bruza, Busemeyer, Wang

(2015, Trends in Cognitive Science)



COMPARISON OF CLASSIC AND QUANTUM 
PROBABILITY  THEORIES

Kolmogorov Von Neumann



  Classical

• Each unique outcome is a 

member of a set of points 
called the Sample space 


Quantum
• Each unique outcome is an 

orthonormal vector from a 

set that spans a Vector space
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Classical

• Each unique outcome is a 

member of a set of points 
called the Sample space 


• Each event is a subset of the 
sample space


• State is a probability function, 
p, defined on subsets of the 
sample space.


Quantum
• Each unique outcome is an 

orthonormal vector from a 

set that spans a Vector space

• Each event is a subspace of 

the vector space. 


• State is a unit length vector, S,    


p(A) = PAS
2



Classical

• Suppose event A is observed 

(state reduction): 


Quantum

• Suppose event A is observed 

(state reduction): 


p(B | A) = p(B∩ A)
p(A)
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Classical

• Suppose event A is observed 

(state reduction): 


• Commutative Property 


Quantum

• Suppose event A is observed 

(state reduction): 


• Non-Commutative


p(B | A) = p(B∩ A)
p(A)

p(B | A) =
PBPAS

2

PAS
2

p(B∩ A) = p(A∩ B) PBPAS
2 ≠ PAPBS

2



SIX APPLICATIONS



1. ORDER EFFECTS



 Hostility between white and black people: 


BW order (N = 500 participants)

(A) Do you think blacks dislike whites?   (Y,N)

(B) Do you think whites dislike blacks?   (Y,N)


WB Order (N = 500 participants)

 (B) Do you think whites dislike blacks?   (Y,N)

 (A) Do you think blacks dislike whites?   (Y,N)

(Results from Gallup Pole)



Quantum (Toy) Model

Do Whites dislike Blacks? (Question from Gallop Pole)

Prob(Yes| S = initial)

= .40


(Results from actual 

Gallup Pole, N = 500)



Do Blacks dislike Whites?

Change in Perspective



Toy model for Order Effects

Prob(Yes to WB 

and then Yes to BW| S)


= .36

Prob(Yes to BW 

and then Yes to WB| S)


= .12



GENERAL N-DIMENSIONAL 

QUANTUM MODEL PREDICTION

Pr[A yes and then B no]= p(AY BN ) = PBPAS
2

Pr[B no and then A yes]= p(BNAY ) = PAPBS
2

Theorem :  QQ equality
q = {p(AY BN )+ p(ANBY )}− {p(BY AN )+ p(BNAY )} = 0

Assume: One question followed immediately by another 
with no information in between



Results: 72 Pew Surveys over 10 years



Results: 72 Pew Surveys over 10 years



2. CONJUNCTION -DISJUNCTION �
PROBABILITY JUDGMENT ERRORS 

Tversky & Kahneman

(1983, Psychological Review)


Busemeyer, Pothos, Franco, Trueblood

(2011, Psychological Review)



Linda was a philosophy major as a student at UC 
Berkeley and she was an activist in social welfare 
movements. 

Linda is a feminist (.83)	

Linda is a bank teller (.26)	

Linda is a feminist and a bank teller (.36)	

Linda is a feminist or a bank teller (.60)

Conjunction 

Fallacy Disjunction 


Fallacy

Read the following information:

Rate the probability of the following events 

Linda is a feminist	

Linda is a bank teller	

Linda is a feminist and a bank teller	

Linda is a feminist or a bank teller



LAW  OF   TOTAL  PROBABILITY 

p(B) = p(F)p(B | F)+ p(~ F)p(B |~ F)
≥ p(F)p(B | F)

CONJUNCTION - FALLACY �
VIOLATES THIS LAW



Feminist Bank Teller 

Toy Model



PBS
2 = PBIS

2 = PB(PF + PF )S
2

= PBPFS + PBPFS
2

= PBPFS
2 + PBPFS

2
+ Int

Int = S 'P 'F P 'B PFS + S 'PFP 'B PFS

Quantum Model Predictions

Int < − PBPFS
2



ADDITIONAL PREDICTIONS

• Order Effects:     p(F)p(B|F) =/= p(B)p(F|B)


• Disjunction Fallacy co-occurs with Conjunction Fallacy


• Conjunction-Disjunction constraint:  p(F)p(B|F) > p(B)p(F|B)


• Unequal Priors:  p(F)>p(B) 


• No double conjunction errors:  p(F)>p(F)p(B|F)>p(B)


• Positive dependence:   p(B|F)>p(B)


•  Conditional Probability:  p(B|F) > p(F)p(B|F)




3.  INTERFERENCE OF CATEGORIZATION �
ON DECISION

Busemeyer, Wang, Mogiliansky-Lambert 

(2009, J. of Mathematical Psychology)

Psychological version of a double slit experiment

Wang & Busemeyer

(2016, Cognition)



!
Categoriza*on,

!

1000/2000ms, 1000ms, 10s,

!
Decision,

!

10s,

Feedback,on,C,
and,D,

10s,

Participants shown pictures of faces


Categorize as “good” guy or “bad” guy

Decide to act “friendly” or “aggressive”

Bad Guys Good Guys



• Pr(Bad | Narrow) = .60


• Pr(Good | Wide) = .60


• Pr(Reward Attack | Bad ) = .70


• Pr(Reward Withdraw | Good) = .70

Programmed Contingencies 

( Learned from Experience)



!
Categoriza*on,

!

1000/2000ms, 1000ms, 10s,

!
Decision,

!

10s,

Feedback,on,C,
and,D,

10s,

1000/2000ms, 1000ms, 10s,

!
Decision,

!

10s,

Feedback,on,D,

C-then-D: Categorize face first and then decide 

D-alone: Decide without categorization 

Two Conditions:



LAW OF TOTAL PROBABILITY

p(A) = p(G)p(A |G)+ p(B)p(A | B)

D alone Condition C-then-D Condition

G =good guy,   B=Bad guy,    A=Attack



Face p(G) p(A|G) p(B) p(A|B) TP P(A)

Good 0.84 0.35 0.16 0.52 0.37 0.39

Bad 0.17 0.41 0.82 0.63 0.59 0.69

RESULTS  



Categorization -Decision  Toy Model



QUANTUM INTERFERENCE

p(A |D alone) = PAS
2 = PA ⋅ I ⋅S

2

= PA ⋅ PG + PB( ) ⋅S 2

= PA ⋅PG ⋅S + PA ⋅PB ⋅S
2

= PA ⋅PG ⋅S
2 + PA ⋅PB ⋅S

2 + Int

Int = S | PGPAPAPB | S + S | PBPAPAPG | S

Interference term 

violates of Law of Total 

Probability

Finding→ Int > 0



4. PRISONER DILEMMA GAME �

SHAFIR & TVERSKY (1992, COGNITIVE PSYCH) 

POTHOS & BUSEMEYER, 2009, 

PROCEEDINGS OF THE ROYAL SOCIETY, B. 



Examined three conditions in a prisoner dilemma task 


Known Coop:    Player is told other opponent will cooperate

Known Defect:  Player is told other opponent will defect

UnKnown:         Player is told nothing about the opponent


OD OC

PD O: 10

P: 10

O:5

P: 25

PC O: 25

P: 5

O:20

P: 20



LAW OF TOTAL PROBABILITY

p(PD) =  probability player defects 
when opponent's move is unknown

p(PD) = p(OD)p(PD |OD)+ p(OC)p(PD |OC)

Empirically we find : p(PD |OD) ≥ p(PD |OC)

→ p(PD |OD) ≥ p(PD) ≥ p(PD |OC)



DEFECT RATE FOR TWO EXPERIMENTS 

Study Known Defect Known Coop Unknown

Shafir Tversky 
(1992) 0.97 0.84 0.63

Matthew Busemeyer 
(2006) 0.91 0.84 0.66

Defect rate for both known conditions 

exceed the unknown condition



5.  TWO STAGE GAMBLING PARADIGM

VIOLATION OF  “SURE  THING”  PRINCIPLE

Tversky & Shafir

(1992, Psychological Science)


Barkan & Busemeyer

(2003, J. Behavioral Decision Making)


Busemeyer,  Wang, & Shiffrin

(2015, Decision)



• Participants forced to play a gamble on the first stage: 


• Equal chance to win $X or lose -$Y


• Then asked to choose whether or not to play again? on a 
second stage.


• Three conditions


• Assume won first stage, play again?


• Assume lost first stage, play again?


• Play without knowing first stage?



If you prefer to play again after a win, 

and 

if you prefer to play again after a loss
then

you should prefer to play regardless of the first 
gamble outcome


Total Probability:

p(Play|Unknown) 


= p(win)p(Play|win) + p(lose)P(Play|lose)

Sure Thing Principle



Win first game:  65% chose to play again

Lose first game:  55% chose to play again

First stage Unknown:  35% chose to play again

Violation of Total Probability

Results



QUANTUM INTERFERENCE

p(G)= PGS
2
= PG ⋅I ⋅S

2

= PG ⋅ PW +PL( )⋅S 2

= PG ⋅PW ⋅S +PG ⋅PL ⋅S
2

= PG ⋅PW ⋅S
2
+ PG ⋅PL ⋅S

2
+ Int

Int = S |PWPGPGPL |S + S |PLPGPGPW |S



BAYESIAN MODEL COMPARISON

• Compared Quantum versus Prospect theories


• Both models used same number of parameters (four)


• Data based on Barkan & Busemeyer (2003)


• N=100 participants, 


• 33 two-stage gambles per person, 


• obtained (plan, final) choice for each person.


• Computed Bayes’ Factor separately for each person



Model Comparison of Quantum Model vs. 

Prospect Theory-Reference Point Model

N=100 participants

Each model used four parameters



6. INTERFERENCE EFFECT OF CHOICE ON 
LATER CONFIDENCE



Certain Left Certain Right

Uncertain

Probability Rating of Direction to Dot Motion task





Markov Quantum



Interference Predictions

R(t1)	choice	at	time	t1
R(t2)	rating	at	time	t2

Markov 	(satisfies	Total	Probability)
Pr[R(t2)= r2]= Pr[R(t1)= r1]

r1

∑ ⋅Pr[R(t2)= r2 |R(t1)= r1]

Quantum	(violates	Total	Probability)
Pr[R(t2)= r2]≠ Pr[R(t1)= r1]

r1

∑ ⋅Pr[R(t2)= r2 |R(t1)= r1]

Single Double



One Participant out of  Nine 



6 out of  9 produced credible interference effects

7 out of  9 produced BF favoring quantum over Markov

Summary for All 9 Participants



ADDITIONAL APPLICATIONS
• Order effects on inference


• Trueblood, J. S. & Busemeyer, J. R. (2011). A quantum probability account of order effects in 
inference. Cognitive Science, 35, 1518-1552


• Causal Reasoning


• Trueblood, J. S., Yearsley, J. M., & Pothos, E. M. (2017). A quantum probability framework for 
human probabilistic inference. Journal of Experimental Psychology: General, 146, 1307-1341


• Similarity judgments


•  Pothos, E. M., Busemeyer, J. R., & Trueblood, J. S.  (2013). A quantum geometric model of 
similarity. Psychological Review, 120, 679-696.  


•  Mere Measurement Effects


• White, L. C., Pothos, E. M., & Busemeyer, J. R. (2014). Sometimes it does hurt to ask: the 
constructive role of articulating impressions. Cognition, 133, 48-64



CONCLUSIONS
• Quantum theory provides an alternative framework for 

developing probabilistic and dynamic models of decision 
making


• Provides a coherent account for puzzling violations of 
classical probability found in a variety of judgment and 
decision making studies


• Forms a new foundation for understanding widely different 
phenomena in decision making using a common set of 
axiomatic principles
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“Mathematical models of cognition so 
often seem like mere formal exercises. 
Quantum theory is a rare exception. 
Without sacrificing formal rigor, it captures 
deep insights about the workings of the 
mind with elegant simplicity.  This book 
promises to revolutionize the way we think 
about thinking.”

Steven Sloman
Cognitive, Linguistic, and Psychological 
Sciences, Brown University

“This book is about why and how formal 
structures of quantum theory are 
essential for psychology - a breakthrough 
resolving long-standing problems 
and suggesting novel routes for future 
research, convincingly presented by two 
main experts in the field.”

Harald Atmanspacher
Department of Theory and Data Analysis, 
Institut fuer Grenzgebiete der Psychologie 
und Psychohygiene e.V.

<FURTHER ENDORSEMENT TO 
FOLLOW>

Much of our understanding of human  
thinking is based on probabilistic models. 
This innovative book by Jerome R. Busemeyer 
and Peter D. Bruza argues that, actually, 
the underlying mathematical structures 
from quantum theory provide a much better 
account of human thinking than traditional 
models. They introduce the foundations 
for modeling probabilistic-dynamic 
systems using two aspects of quantum 
theory. The first, “contextuality,” is a way to 
understand interference effects found with 
inferences and decisions under conditions 
of uncertainty. The second, “quantum 
entanglement,” allows cognitive phenomena 
to be modeled in non-reductionist way. 
Employing these principles drawn from 
quantum theory allows us to view human 
cognition and decision in a totally new light. 
Introducing the basic principles in an easy-
to-follow way, this book does not assume 
a physics background or a quantum brain 
and comes complete with a tutorial and fully 
worked-out applications in important areas  
of cognition and decision.

Jerome R. Busemeyer is a Professor in 
the Department of Psychological and Brain 
Sciences at Indiana University, Bloomington, 
USA. 

Peter D. Bruza is a Professor in the Faculty 
of Science and Technology at Queensland 
University of Technology, Brisbane, Australia.
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