QUANTUM MODELS OF COGNITION AND DECISION

Jerome R. Busemeyer
Indiana University

Supported by AFOSR and NSF

$$
\begin{gathered}
\text { I.WHY USE } \\
\text { QUANTUM THEORY? }
\end{gathered}
$$

|. Quantum theory is a general Axiomatic theory of probability

- Human judgments and decisions are probabilistic
- These probabilities do not obey the Kolmogorov axioms
- Quantum theory provides a viable alternative

2. Non Commutativity of measurements

- Measurements change psychological states producing context effects
- Principle of complementarity was borrowed by Niels Bohr from William James

3. Vector space representation of probabilities

- Agrees with connectionist-neural network models of cognition

2. HOW DO WE USE QUANTUM THEORY?

Bruza, Busemeyer,Wang
(2015, Trends in Cognitive Science)

COMPARISON OF CLASSIC AND QUANTUM PROBABILITY THEORIES

Kolmogorov

Von Neumann

Classical

- Each unique outcome is a member of a set of points called the Sample space

Quantum

- Each unique outcome is an orthonormal vector from a set that spans a Vector space

Classical

Quantum

- Each unique outcome is a member of a set of points called the Sample space
- Each event is a subset of the sample space
- Each unique outcome is an orthonormal vector from a set that spans a Vector space
- Each event is a subspace of the vector space.

Classical

Quantum

- Each unique outcome is a member of a set of points called the Sample space
- Each event is a subset of the sample space
- State is a probability function, p, defined on subsets of the sample space.
- Each unique outcome is an orthonormal vector from a set that spans a Vector space
- Each event is a subspace of the vector space.
- State is a unit length vector, S ,

$$
p(A)=\left\|P_{A} S\right\|^{2}
$$

Classical

Quantum

- Suppose event A is observed (state reduction):

$$
p(B \mid A)=\frac{p(B \cap A)}{p(A)}
$$

- Suppose event A is observed (state reduction):

$$
p(B \mid A)=\frac{\left\|P_{B} P_{A} S\right\|^{2}}{\left\|P_{A} S\right\|^{2}}
$$

Classical

Quantum

- Suppose event A is observed (state reduction):

$$
p(B \mid A)=\frac{p(B \cap A)}{p(A)}
$$

- Suppose event A is observed (state reduction):

$$
p(B \mid A)=\frac{\left\|P_{B} P_{A} S\right\|^{2}}{\left\|P_{A} S\right\|^{2}}
$$

- Commutative Property $p(B \cap A)=p(A \cap B)$
- Non-Commutative
$\left\|P_{B} P_{A} S\right\|^{2} \neq\left\|P_{A} P_{B} S\right\|^{2}$

SIX APPLICATIONS

ORDER EFFECTS

Context effects produced by question orders reveal quantum nature of human judgments

Zheng Wang ${ }^{\text {a, } 1}$, Tyler Solloway ${ }^{\text {a }}$, Richard M. Shiffrin ${ }^{\text {b,1 }}$, and Jerome R. Busemeyer ${ }^{\text {b }}$

PNAS | July 1, 2014 | vol. 111 | no. 26 | 9431-9436

	White-black		
		By	Bn
	Wy	0.3987	0.0174
Hostility between white and black people:	Wn	0.1612	0.4227
	Black-white		
		By	Bn
BW order ($\mathrm{N}=500$ participants)	Wy	0.4012	0.1379
(A) Do you think blacks dislike whites? (Y,N)	Wn	0.0597	0.4012
(B) Do you think whites dislike blacks? (Y,N)		Context eff By	Bn
	Wy	-0.0025	-0.1205
	Wn	0.1015	0.0215
(B) Do you think whites dislike blacks? (Y,N)	(Results from Gallup Pole)		
(A) Do you think blacks dislike whites? (Y,N)			
	Test order effects$\chi^{2}(3)=73.04, p<0.001$		

Quantum (Toy) Model

Do Whites dislike Blacks? (Question from Gallop Pole)

$$
\begin{gathered}
\text { Prob(Yes } \mid S=\text { initial) } \\
=.40 \\
\text { (Results from actual } \\
\text { Gallup Pole, } N=500 \text {) }
\end{gathered}
$$

Do Blacks dislike Whites?
 Change in Perspective

Toy model for Order Effects

Prob(Yes to WB and then Yes to $\mathrm{BW} \mid \mathrm{S}$)
$=.36$

Prob(Yes to BW and then Yes to WB| S)

$$
=.12
$$

GENERAL N-DIMENSIONAL QUANTUM MODEL PREDICTION

Assume: One question followed immediately by another with no information in between
$\operatorname{Pr}[A$ yes and then B no $]=p\left(A_{Y} B_{N}\right)=\left\|P_{\bar{B}} P_{A} S\right\|^{2}$
$\operatorname{Pr}[B$ no and then A yes $]=p\left(B_{N} A_{Y}\right)=\left\|P_{A} P_{\bar{B}} S\right\|^{2}$
Theorem: QQ equality

$$
q=\left\{p\left(A_{Y} B_{N}\right)+p\left(A_{N} B_{Y}\right)\right\}-\left\{p\left(B_{Y} A_{N}\right)+p\left(B_{N} A_{Y}\right)\right\}=0
$$

Results: 72 Pew Surveys over 10 years

Results: 72 Pew Surveys over 10 years

Quantile - Quantile Test of QQ Equality

Predicted Chi Sauare Deviation

2. CONJUNCTION -DISJUNCTION PROBABILITY JUDGMENT ERRORS

Tversky \& Kahneman
(I 983, Psychological Review)
Busemeyer, Pothos, Franco, Trueblood (20I I, Psychological Review)

Read the following information:

Linda was a philosophy major as a student at UC Berkeley and she was an activist in social welfare movements.

Rate the probability of the following events
Linda is a feminist (.83) Conjunction
Linda is a bank teller (.26) Fallacy
Disjunction Linda is a feminist and a bank teller (.36) Linda is a feminist or a bank teller (.60)

LAW OF TOTAL PROBABILITY

$p(B)=p(F) p(B \mid F)+p(\sim F) p(B \mid \sim F)$
$\geq p(F) p(B \mid F)$

CONJUNCTION - FALLACY VIOLATES THIS LAW

Feminist Bank Teller
Toy Model

Quantum Model Predictions

$$
\begin{aligned}
& \left\|P_{B} S\right\|^{2}=\left\|P_{B} S\right\|^{2}=\left\|P_{B}\left(P_{F}+P_{\bar{F}}\right) S\right\|^{2} \\
& =\left\|P_{B} P_{F} S+P_{B} P_{\bar{F}} S\right\|^{2} \\
& =\left\|P_{B} P_{F} S\right\|^{2}+\left\|P_{B} P_{\bar{F}} S\right\|^{2}+\text { Int } \\
& \text { Int }=\left\langle S^{\prime} P_{F}^{\prime} P_{F}^{\prime}{ }_{B} P_{\bar{F}} S\right\rangle+\left\langle S^{\prime} P_{\bar{F}} P_{B}{ }_{B} P_{F} S\right\rangle \\
& \quad \text { Int }<-\left\|P_{B} P_{\bar{F}} S\right\|^{2}
\end{aligned}
$$

ADDITIONAL PREDICTIONS

- Order Effects: $\quad p(F) p(B \mid F)=/=p(B) p(F \mid B)$
- Disjunction Fallacy co-occurs with Conjunction Fallacy
- Conjunction-Disjunction constraint: $p(F) p(B \mid F)>p(B) p(F \mid B)$
- Unequal Priors: $p(F)>p(B)$
- No double conjunction errors: $p(F)>p(F) p(B \mid F)>p(B)$
- Positive dependence: $p(B \mid F)>p(B)$
- Conditional Probability: $p(\mathrm{~B} \mid \mathrm{F})>p(\mathrm{~F}) \mathrm{p}(\mathrm{B} \mid \mathrm{F})$

3. INTERFERENCE OF CATEGORIZATION ON DECISION

Psychological version of a double slit experiment

Busemeyer,Wang, Mogiliansky-Lambert (2009, J. of Mathematical Psychology)

Wang \& Busemeyer (2016, Cognition)

Participants shown pictures of faces

Categorize as "good" guy or "bad" guy Decide to act "friendly" or "aggressive"

Bad Guys Good Guys

Programmed Contingencies (Learned from Experience)

$\cdot \operatorname{Pr}($ Bad \mid Narrow $)=.60$

- $\operatorname{Pr}($ Good \mid Wide $)=.60$
- $\operatorname{Pr}($ Reward Attack | Bad $)=.70$
- $\operatorname{Pr}($ Reward Withdraw \mid Good $)=.70$

Two Conditions:

C-then-D: Categorize face first and then decide

D-alone: Decide without categorization

LAW OFTOTAL PROBABILITY

$G=\operatorname{good}$ guy, $\quad B=$ Bad guy, $\quad A=A t t a c k$
$p(A)=p(G) p(A \mid G)+p(B) p(A \mid B)$

|
D alone Condition C-then-D Condition

RESULTS

Face	$p(G)$	$p(A \mid G)$	$p(B)$	$p(A \mid B)$	$T P$	$P(A)$
Good	0.84	0.35	0.16	0.52	0.37	0.39
Bad	0.17	0.41	0.82	0.63	0.59	$\mathbf{0 . 6 9}$

Categorization -Decision Toy Model

QUANTUM INTERFERENCE

$$
\begin{aligned}
& p(A \mid D \text { alone })=\left\|P_{A} S\right\|^{2}=\left\|P_{A} \cdot I \cdot S\right\|^{2} \\
& =\left\|P_{A} \cdot\left(P_{G}+P_{B}\right) \cdot S\right\|^{2} \quad \begin{array}{l}
\text { Interference te } \\
\text { violates of Law o } \\
=
\end{array}\left\|P_{A} \cdot P_{G} \cdot S+P_{A} \cdot P_{B} \cdot S\right\|^{2} \quad \text { Probability } \\
& =\left\|P_{A} \cdot P_{G} \cdot S\right\|^{2}+\left\|P_{A} \cdot P_{B} \cdot S\right\|^{2}+\text { Int } \\
& \text { Int }=\langle S| P_{G} P_{A} P_{A} P_{B}|S\rangle+\langle S| P_{B} P_{A} P_{A} P_{G}|S\rangle \\
& \text { Finding } \rightarrow \text { Int }>0
\end{aligned}
$$

4. PRISONER DILEMMA GAME

SHAFIR \&TVERSKY (I992, COGNITIVE PSYCH)

POTHOS \& BUSEMEYER, 2009, PROCEEDINGS OFTHE ROYAL SOCIETY, B.

Examined three conditions in a prisoner dilemma task
Known Coop: Player is told other opponent will cooperate Known Defect: Player is told other opponent will defect UnKnown: Player is told nothing about the opponent

LAW OFTOTAL PROBABILITY

$p(P D)=$ probability player defects when opponent's move is unknown
$p(P D)=p(O D) p(P D \mid O D)+p(O C) p(P D \mid O C)$

Empirically we find : $p(P D \mid O D) \geq p(P D \mid O C)$

$$
\rightarrow p(P D \mid O D) \geq p(P D) \geq p(P D \mid O C)
$$

DEFECT RATE FORTWO EXPERIMENTS

Defect rate for both known conditions exceed the unknown condition

5. TWO STAGE GAMBLING PARADIGM VIOLATION OF "SURE THING" PRINCIPLE

Tversky \& Shafir (I992, Psychological Science)

Barkan \& Busemeyer (2003, J. Behavioral Decision Making)

Busemeyer, Wang, \& Shiffrin (2015, Decision)

- Participants forced to play a gamble on the first stage:
- Equal chance to win \$X or lose -\$Y
- Then asked to choose whether or not to play again? on a second stage.
- Three conditions
- Assume won first stage, play again?
- Assume lost first stage, play again?
- Play without knowing first stage?

Sure Thing Principle

If you prefer to play again after a win, and
if you prefer to play again after a loss then
you should prefer to play regardless of the first gamble outcome

Total Probability: p(Play|Unknown)
$=p($ win $) p($ Play \mid win $)+p($ lose $) P($ Play \mid lose $)$

Results

Win first game: 65% chose to play again

Lose first game: 55\% chose to play again
First stage Unknown: 35% chose to play again

Violation of Total Probability

QUANTUM INTERFERENCE

$$
\begin{aligned}
& p(G)=\left\|P_{G} S\right\|^{2}=\left\|P_{G} \cdot I \cdot S\right\|^{2} \\
& =\left\|P_{G} \cdot\left(P_{W}+P_{L}\right) \cdot S\right\|^{2} \\
& =\left\|P_{G} \cdot P_{W} \cdot S+P_{G} \cdot P_{L} \cdot S\right\|^{2} \\
& =\left\|P_{G} \cdot P_{W} \cdot S\right\|^{2}+\left\|P_{G} \cdot P_{L} \cdot S\right\|^{2}+\text { Int } \\
& \text { Int }=\langle S| P_{W} P_{G} P_{G} P_{L}|S\rangle+\langle S| P_{L} P_{G} P_{G} P_{W}|S\rangle
\end{aligned}
$$

BAYESIAN MODEL COMPARISON

- Compared Quantum versus Prospect theories
- Both models used same number of parameters (four)
- Data based on Barkan \& Busemeyer (2003)
- N=I00 participants,
- 33 two-stage gambles per person,
- obtained (plan, final) choice for each person.
- Computed Bayes' Factor separately for each person

Model Comparison of Quantum Model vs. Prospect Theory-Reference Point Model

Each model used four parameters
 $\mathrm{N}=100$ participants

Bayes Factor $\mathrm{pQ} / \mathrm{pR}$

6. INTERFERENCE EFFECT OF CHOICE ON LATER CONFIDENCE

Interference effects of choice on confidence: Quantum characteristics of evidence accumulation

Peter D. Kvam ${ }^{\text {a,b,1 }}$, Timothy J. Pleskac ${ }^{\text {b,1 }}$, Shuli Yu ${ }^{\text {a }}$, and Jerome R. Busemeyer ${ }^{\text {c }}$

```
PNAS | August 25, 2015 | vol. 112 | no. 34 | 10645-10650
```


Probability Rating of Direction to Dot Motion task

Uncertain

Markov

Quantum

Interference Predictions

$R\left(t_{1}\right)$ choice at time t_{1}
$R\left(t_{2}\right)$ rating at time t_{2}

Markov (satisfies Total Probability)

$$
\operatorname{Pr}\left[R\left(t_{2}\right)=r_{2}\right]=\sum_{r_{1}} \operatorname{Pr}\left[R\left(t_{1}\right)=r_{1}\right] \cdot \operatorname{Pr}\left[R\left(t_{2}\right)=r_{2} \mid R\left(t_{1}\right)=r_{1}\right]
$$

Quantum (violates Total Probability)
$\operatorname{Pr}\left[R\left(t_{2}\right)=r_{2}\right] \neq \sum_{r_{1}} \operatorname{Pr}\left[R\left(t_{1}\right)=r_{1}\right] \cdot \operatorname{Pr}\left[R\left(t_{2}\right)=r_{2} \mid R\left(t_{1}\right)=r_{1}\right]$
Single

Double

One Participant out of Nine

SUMMARY FOR ALL 9 PARTICIPANTS

Table 1. Summary of model comparison and statistical effects
Participant
Interference*
Second-stage processing ${ }^{\dagger}$
Log Bayes factor

1	$-0.18[-0.26,-0.11]^{\ddagger}$	$0.12[0.08,0.18]^{\ddagger}$	212
2	$-0.15[-0.23,-0.07]^{\ddagger}$	$0.08[0.03,0.14]^{\ddagger}$	41
3	$-0.15[-0.22,-0.07]^{\ddagger}$	$0.01[-0.04,0.06]$	-131
4	$-0.14[-0.23,-0.07]^{\ddagger}$	$0.10[0.04,0.15]^{\ddagger}$	190
5	$-0.11[-0.19,-0.04]^{\ddagger}$	$0.07[0.02,0.13]^{\ddagger}$	837
6	$-0.08[-0.16,-0.01]^{\ddagger}$	$0.13[0.07,0.18]^{\ddagger}$	223
7	$-0.07[-0.15,0.01]$	$-0.01[-0.07,0.05]$	-148
8	$-0.05[-0.14,0.02]$	$0.04[-0.08,0.10]$	339
9	$-0.01[-0.09,0.07]$	$-0.02[-0.06,0.04]$	150
Group level	$-0.11[-0.18,-0.04]^{\ddagger}$	$0.06[0.01,0.12]^{\ddagger}$	1,713

6 out of 9 produced credible interference effects 7 out of 9 produced BF favoring quantum over Markov

ADDITIONALAPPLICATIONS

- Order effects on inference
- Trueblood, J. S. \& Busemeyer, J. R. (201 I).A quantum probability account of order effects in inference. Cognitive Science, 35, I5 I8-I552

- Causal Reasoning

- Trueblood, J. S., Yearsley, J. M., \& Pothos, E. M. (20I7).A quantum probability framework for human probabilistic inference. Journal of Experimental Psychology: General, I46, I307-I34I
- Similarity judgments
- Pothos, E. M., Busemeyer, J. R., \& Trueblood, J. S. (20|3).A quantum geometric model of similarity. Psychological Review, I20, 679-696.
- Mere Measurement Effects
- White, L. C., Pothos, E. M., \& Busemeyer, J. R. (2014). Sometimes it does hurt to ask: the constructive role of articulating impressions. Cognition, I33, 48-64

CONCLUSIONS

- Quantum theory provides an alternative framework for developing probabilistic and dynamic models of decision making
- Provides a coherent account for puzzling violations of classical probability found in a variety of judgment and decision making studies
- Forms a new foundation for understanding widely different phenomena in decision making using a common set of axiomatic principles
"Mathematical models of cognition so often seem like mere formal exercises Quantum theory is a rare exception. Without sacrificing formal rigor, it captures deep insights about the workings of the mind with elegant simplicity. This book promises to revolutionize the way we think about thinking."

Steven Sloman

Cognitive, Linguistic, and Psychological
Sciences, Brown University
"This book is about why and how formal structures of quantum theory are essential for psychology - a breakthrough resolving long-standing problems and suggesting novel routes for future research, convincingly presented by two main experts in the field.

Harald Atmanspacher

Department of Theory and Data Analysis, Institut fuer Grenzgebiete der Psychologie und Psychohygiene e.V.
<FURTHERENDORSEMENT TO FOLLOW>

Much of our understanding of human thinking is based on probabilistic models This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modeling probabilistic-dynamic systems using two aspects of quantum theory. The first, "contextuality," is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, "quantum entanglement," allows cognitive phenomena o be modeled in non-reductionist way. Employing these principles drawn from quantum theory allows us to view human cognition and decision in a totally new light. Introducing the basic principles in an easy-to-follow way, this book does not assume physics background or a quantum brain and comes complete with a tutorial and fully worked-out applications in important areas of cognition and decision.

Jerome R. Busemeyer is a Professor in the Department of Psychological and Brain Sciences at Indiana University, Bloomington, USA.

Peter D. Bruza is a Professor in the Faculty of Science and Technology at Queensland University of Technology, Brisbane, Australia

Quantum Models of Cognition and Decision

Jerome R. Busemeyer
Peter D. Bruza

