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Abstract. We investigate the quantum noise properties of a weakly nonlinear
Duffing resonator in the deep quantum regime, where only a few quanta are
excited. This regime is dominated by the appearance of coherent multiphoton
resonances in the nonlinear response of the resonator to the modulation. We
determine simple expressions for the photon noise spectrum and find that the
multiphoton resonances also induce a multiple peak structure in that spectrum.
When the corresponding multiphoton Rabi oscillations are underdamped, zero-
temperature quantum fluctuations determine comparable populations of all
quasienergy states which belong to a resonant multiphoton doublet. Most
interestingly, the quantum fluctuations probe the multiphoton transitions by
inducing several peaks in the noise spectrum of the resonator observables.
In particular, the noise of the photon number contains complete information
about the multiphoton states and their stationary populations via pairs of nearly
symmetric peaks at opposite frequencies. Their widths are determined by the
damping of the Rabi oscillations and their heights are proportional to the
stationary nonequilibrium populations. A finite detuning from a multiphoton
resonance generates a quasielastic noise peak at zero frequency. In addition,
we relate the stationary populations of the quasienergy states with an effective
quantum temperature and discuss the role of a finite temperature.

3 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

New Journal of Physics 14 (2012) 093024
1367-2630/12/093024+21$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:vicente.leyton@physik.uni-hamburg.de
http://www.njp.org/
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0


2

Contents

1. Introduction 2
2. Multiphoton Rabi oscillations of the Duffing oscillator 6
3. Stationary dynamics in the deep quantum regime 7

3.1. The stationary distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. The nonlinear response of the oscillator . . . . . . . . . . . . . . . . . . . . . 9

4. The noise spectrum in the deep quantum regime 10
4.1. Definition of the noise spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2. Noise spectrum in the underdamped regime . . . . . . . . . . . . . . . . . . . 11
4.3. Photon anti-bunching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4. Line shape of the noise spectrum close to a multiphoton resonance . . . . . . . 13
4.5. Photon noise at zero frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6. Noise spectrum towards the semiclassical regime . . . . . . . . . . . . . . . . 15
4.7. Dependence of the noise spectrum on damping and temperature . . . . . . . . 18

5. Conclusions 19
Acknowledgments 20
Appendix. Numerical evaluation of the noise spectrum 20
References 20

1. Introduction

Coupling a driven quantum mechanical oscillator to environmental fluctuations allows the
oscillator dynamics to reach a stationary state. In the stationary state, energy is coherently
absorbed from the pump and leaks into the environment via random dissipative transitions,
which inevitably induce noise in the resonator. This occurs even at zero temperature where
only environmental zero-point quantum fluctuations (quantum noise) exist. The quantum noise
properties of a nonlinear oscillator determine many fundamental nonequilibrium phenomena
such as quantum heating [1–3] and quantum activation [4] (see below).

In recent years, considerable interest has been devoted to the nonequilibrium quantum
dynamics of driven nonlinear quantum oscillators because of the tremendous progress in
fabricating and thus controlling individual macroscopic quantum systems operating on the
nanoscale. This includes superconducting Josephson junctions [5–8] in different variants and
also nanomechanical devices which have been successfully realized in the deep quantum regime
only recently [9–11]. In addition, quantum transport devices on the basis of molecular junctions
have been realized where the interplay of charge transport and vibrational properties of the
molecular bridge has been studied [12, 13]. An important aspect common to all these approaches
is the fact that the nonlinear response and the noise properties of single macroscopic quantum
systems can be addressed instead of measuring an ensemble of resonators where additional
averaging is intrinsically involved.

In general, nonlinear oscillators are naturally used as basic elements for quantum state
detection or amplification. Examples of those are the Josephson bifurcation amplifier [5, 14–18]
and the cavity bifurcation amplifier [5, 19]. In this context, the noise properties of the resonator,
which is used as a detector or amplifier, determine the backaction of the measurement or
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amplification on the system itself [20–22]. Clearly, it is desirable to keep the backaction as weak
as possible, while on the other hand, a significant coupling of the amplification or measurement
device to the system can be used to achieve a sufficiently strong detection or amplification
efficiency. A fundamental lower limit for the disturbance introduced by the noisy detector into
the qubit to be detected, however, will be set by the quantum noise acting in the detector. Hence,
in order to design useful concepts for quantum state detection based on nonlinear resonators in
the deep quantum regime, their quantum noise properties have to be addressed.

The Josephson bifurcation amplifier [5, 14–18] takes advantage of the dynamically induced
bistability due to the intrinsic nonlinearity of the resonator. The eigenstates of the qubit whose
state has to be measured are mapped onto the coexisting stable states of forced vibrations
of the resonator, which have different amplitudes and phase relations relative to the phase
set by the external drive. Hence, they allow for a large discriminating power. Up to now,
these amplifying devices mostly operate in the semiclassical regime where many quanta in the
resonator are excited. This implies that pure quantum fluctuations are typically small on average.
Nevertheless, some experiments have been realized at low temperature where the relevant
fluctuations are quantum mechanical in nature [5, 18]. The regime of weak fluctuations has
been the subject of intense theoretical investigations [1–3, 23–27]. It has been shown [1–3] that
a stationary distribution over the quasienergy states of the driven oscillator at zero temperature
can be reached which has the form of an effective Boltzmann distribution with an associated
nonzero effective temperature even when the statistical temperature is set to zero. Since only
the zero-point fluctuations of the vacuum are responsible for this stationary distribution, this
has been termed as quantum heating [3]. This stationary state is reached via activation-type
transitions between discrete quasienergy states of forced vibrations which are induced by zero-
temperature quantum noise [1–3] and are therefore called quantum activation transitions [4].

Signatures of the onset of quantum fluctuations can be seen in the relative intensities of
the lines of the resonator noise spectrum [3, 23–26] and in the appearance of a fine structure in
the spectral lines of resonators with comparatively large nonlinearities and large quality factors
[3, 25]. Most importantly, it has been shown that the spectral fine structure of the noise power
spectrum of a parametrically modulated oscillator yields detailed information on the population
of the quasienergy states of the resonator in its stationary state [3, 25]. Since the noise power
spectrum is, in principle, experimentally accessible, one can directly deduce the stationary
nonequilibrium occupation distribution from this measurement signal. No other means is so
far available to achieve this. Below, we also find a spectral fine structure in the noise power
spectrum of the quantum Duffing oscillator which possesses a similar topology as the parametric
oscillator.

Recently, it was proposed that nonlinear quantum detectors that operate in the regime
of few quanta (deep quantum regime) would offer different advantages, such as a small
backaction, a large discrimination power with an enhanced readout fidelity and a sufficiently
large measurement efficiency [27]. In the deep quantum regime, the frequency-resolved
nonlinear response of the oscillator to the external driving with frequency ωex shows a rich fine
structure [1, 2, 28–30] which is mainly generated by few-photon transitions in the resonator.
The splitting of the typical Lorentzian resonance of a harmonic oscillator into a series of
non-Lorentzian resonances and antiresonances reflects the intrinsic nonequidistance of the
energy levels En of a nonlinear oscillator. N -photon transitions with the resonance condition
EN − E0 = Nh̄ωex, N = 1, 2, . . . , and the subsequent drift down along the ladder of the few-
photon Fock states generate a pronounced nonequilibrium quasienergy distribution which is
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strongly different from the Boltzmann-type [1, 2, 29]. Peaks or dips in the nonlinear response
are a direct consequence of the nonequilibrium distribution over states with different oscillation
amplitudes and phases [1, 2, 29]. The signatures of such a characteristic non-Lorentzian line
shape of the response have been observed experimentally in a circuit quantum electrodynamics
setup [31]. When such a nonlinear quantum resonator is used as a detector [27], it is important
to understand and control its noise properties.

In this work, we investigate the quantum noise properties of modulated nonlinear
oscillators in the deep quantum regime. As the simplest example, we consider a monostable
anharmonic oscillator which has a quartic nonlinearity (quantum Duffing oscillator). Such a
device can be parametrically coupled to a qubit [27] and thus its photon noise characteristics
are of relevance when used as a parametric detector. Below, we analyse the power spectrum of
the photon number fluctuations in the quantum Duffing oscillator. In the underdamped regime,
we identify Lorentzian peaks in the power spectrum of the photon number noise which are
associated with the multiphoton transitions in the quantum Duffing oscillator. Their intensities
are determined by the stationary occupation probabilities of the quasienergy states. The latter is
directly connected to the effective quantum temperature which can be identified in the stationary
state and which is intimately connected to the quantum squeezing of the quasienergy states.
Hence, measuring the power spectrum of the photon number fluctuations provides a direct and
elegant way of determining the stationary occupation probabilities of the quasienergy states and
thus the effective quantum temperature. As shown below, the latter is directly connected to the
amount of quantum squeezing of the resobator state.

A weakly nonlinear Duffing oscillator has a remarkable symmetry: its energy levels En

with n 6 N are pairwise resonant for the same driving frequency ωex, EN−n − En = (N −

2n)h̄ωex. An example of the energy spectrum for the case N = 3 is sketched in figure 1(a). After
preparing the oscillator in its nth excited state n 6 N , it displays periodic quantum oscillations
between the nth and the (N − n)th excited states. During these oscillations, |N − 2n| photons
are being exchanged between the oscillator and the modulation field. The oscillations of the
photon number n̂ are usually referred to as multiphoton Rabi oscillations. Their characteristic
frequency, the Rabi frequency �n,N , depends on the intensity of the driving field and on the
number of photons exchanged. The Rabi frequency �0,N for the N -photon oscillations is the
smallest Rabi frequency. The multiphoton Rabi oscillations with N − n photons involved are
underdamped if their Rabi frequency�n,N exceeds the dissipative rate of photon leaking into the
environment. The latter is the oscillator relaxation rate γ . For γ ��0,N all the Rabi oscillations
are, in general, underdamped. The periodically driven resonator reaches its stationary state on
the time scale γ −1.

In the stationary state, quantum noise induces—even at zero temperature—fluctuations
in the photon number n̂. The dynamics of these fluctuations is characterized by multiphoton
oscillations which manifest themselves as peaks in the noise spectrum S(ω) of n̂, located at
plus/minus the Rabi frequencies �n,N . In the underdamped regime, the dissipative dynamics
of the driven oscillator is most appropriately described in terms of random transitions between
the oscillator quasienergy states. When the driving is resonant, the pairs of oscillator Fock states
with n- and N − n-photons are resonantly superposed. The corresponding oscillator quasienergy
states are a symmetric and an antisymmetric superposition of the two Fock states. Their splitting
in quasienergy is given by the Rabi frequency �n,N . The corresponding peak in the noise
spectrum at (−)�n,N is due to random transitions from the state with the (highest) lowest to
that with the (lowest) highest quasienergy of the doublet. The peak intensity is proportional
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Figure 1. Multiphoton Rabi transitions around the N = 3 photon resonance
δω = δω3. In panel (a) we depict a sketch of the driving-induced resonant three-
photon transitions (red arrows) in the nonlinear oscillator. Likewise, the blue
arrows indicate the noise-induced relaxation process. In panel (b), we show
the underlying quasienergy spectrum as a function of the external frequency
together with two zooms to the avoided crossings for the two- and three-photon
Rabi transitions for ν = 10−3ω0 and f = ν/10. In panel (c), we schematically
indicate the coherent multiphoton Rabi transitions (red arrow) and the dissipative
transitions (blue arrows) on the quasienergy surface which results from a
semiclassical approach, see text. The upper figure shows the less tilted case when
f = ν/10, while for the lower figure f = ν. We emphasize that relaxational
transitions at zero temperature typically occur in both directions, i.e. downwards
and upwards along the quasienergy surface, which is in striking contrast
to dissipative transitions in static potential surfaces, where only ‘downward
relaxation’ is possible. An escape due to ‘upward relaxation’ is known as
quantum activation [4].

to the stationary occupation probability of the initial quasienergy state. Therefore, the noise
spectrum offers a convenient way of directly probing the stationary distribution over all the
quasienergy states. Moreover, for weak driving and exactly zero detuning from the multiphoton
resonance, the noise spectrum of the n̂-photon transition is symmetric, i.e. S(ω)= S(−ω)
and two inelastic peaks are signatures of an oscillatory decay of the fluctuations towards
the stationary state. States belonging to a multiphoton doublet then have the same stationary
occupation probabilities. For a weakly detuned modulation or a stronger driving, the spectrum
becomes asymmetric. Besides, an additional quasielastic peak appears at zero frequency which
represents incoherent relaxation of the fluctuations towards the stationary state. These features
have some analogy to the spectral correlation function of a (static) quantum mechanical two-
level system weakly coupled to a dissipative harmonic bath [32]. There, the spin correlation
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function is a sum of three Lorentzian peaks. The two inelastic peaks are symmetrically located
at finite frequencies and their width determines the inverse of the dephasing time. In addition, the
quasielastic peak at zero frequency represents incoherent relaxation with the inverse relaxation
time given by its width. In the driven system, the appearance of a quasielastic peak depends
on the intriguing interplay between the nonlinearity, the driving strength and the dissipation
strength.

2. Multiphoton Rabi oscillations of the Duffing oscillator

We consider a periodically modulated quantum oscillator with mass m, eigenfrequency ω0 and
a quartic (Kerr) nonlinearity described by the Hamiltonian

H(t)=
1

2m
p2 +

1

2
mω2

0x2 +
1

4
αx4 + Fx cos(ωext). (1)

The modulation amplitude F is assumed to be so small that it induces only weakly nonlinear
vibrations. This is guaranteed by the condition αA2

� mω2
0, with A(F) being the typical

amplitude of the nonlinear vibrations. The modulation frequency ωex is chosen to be close to
the oscillator eigenfrequency ω0 such that the detuning δω is small, i.e.

δω� ω0, δω ≡ ω0 −ωex. (2)

Our theory applies to hard as well as to soft nonlinearities α ≶ 0, but to be specific, we will
focus in the rest of the paper on the case of a hard nonlinearity, α > 0.

The quantum dynamics of the weakly detuned and weakly nonlinear-driven oscillator is
most conveniently described in terms of the oscillator ladder operators a and a†, in a rotating
frame determined by the unitary transformation

R(t)= exp[−iωexa†at]. (3)

In the rotating frame, the typical time scale of the resonator dynamics is given by δω−1, so
that terms oscillating with frequencies ±2ωex and ±4ωex average out and can be neglected
in the transformed Hamiltonian R(t)H(t)R†(t)− i h̄ R(t)Ṙ†(t). With this rotating wave
approximation (RWA), we obtain the Hamiltonian

H̃ = δωn̂ + νn̂(n̂ + 1)/2 + f (a† + a)/2, (4)

where n̂ ≡ a†a is the photon number operator, ν and f are the frequencies associated with
the Kerr nonlinearity and the external field amplitude at the quantum scale xZPF =

√
h̄/mω0,

i.e. ν = 3αx4
ZPF/4h̄ and f = FxZPF/

√
2h̄. In order to keep the notation compact we have set

h̄ = 1 in equation (4) and in the remainder of the paper. The oscillator quasienergies εn and
quasienergy states |ψn〉 are the eigenvalues and eigenvectors of the rotating wave Hamiltonian,
H̃ |ψn〉 = εn|ψn〉. For vanishing driving, the quasienergy spectrum is given by

εn = δω n + νn(n + 1)/2 for f → 0. (5)

We are primarily interested in studying the noise spectrum in the presence of multiple
multiphoton resonances EN−n − En = (N − 2n)ωex, wherein n 6 N and En are the energy
levels of the undriven nonlinear oscillator, or equivalently εN−n = εn for f → 0. From
equation (5) we find the resonant condition

δω = −ν(N + 1)/2 ≡ δωN . (6)
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Up to leading order in the driving, the quasienergy eigenstates |ψn〉 for n 6 N 6= N/2 are a
resonant superposition of the pair of oscillator Fock states |n〉 and |N − n〉, i.e.

|ψn〉 ≈ (|n〉 ± |N − n〉) /
√

2. (7)

We choose the signs − and + for n < N/2 and N/2< n 6 N , respectively. In the following,
we refer to the resonant superposition of a pair of Fock states as resonant states or multiphoton
states. The states |ψn〉 that are not involved in a multiphoton transition (n > N and n = N/2 for
N even) can be approximated as the corresponding Fock states |ψn〉 ≈ |n〉. The Rabi frequency
�n,N−n of the multiphoton oscillations within the pair of Fock states |n〉 and |N − n〉 is given by
the splitting of the corresponding levels εn and εN−n [29, 33] as

�n,N−n = |εn − εN−n| = f

(
f

ν

)N−2n−1
(N − n)!1/2

n!1/2(N − 2n − 1)!2
. (8)

The resonance condition in equation (6) is not renormalized by a finite driving within the RWA.
Only for a comparatively larger driving f ∼ ν � ω0, the multiphoton transitions have to be
reinterpreted as tunneling transitions between semiclassical states [34, 35].

As we shall detail in section 4, the multiphoton Rabi oscillations induce peaks in the
spectral densities of oscillator observables only when the Rabi frequency, �0,N , for the
multiphoton transition from the zero-photon ground state, is larger than the noise-induced level
broadening of the relevant quasienergy levels ε0 and εN . In the next section, we will pave the
wave for the calculation of the noise spectrum in this regime, by formulating the master equation
for a weakly nonlinear oscillator and by evaluating the stationary occupation populations over
the quasienergy states.

3. Stationary dynamics in the deep quantum regime

In the presence of a weak bilinear coupling to the fluctuations of a bosonic bath, the assumptions
of small detuning and weak nonlinearity that under the RWA naturally lead to a Liouville–von
Neuman quantum master equation in the Lindblad form for the density matrix ρ̂ of the weakly
damped oscillator in the rotating frame [29, 30],

˙̂ρ = Lρ̂ ≡ −i[H̃ , ρ̂] + γ (n̄ + 1)D[a]ρ̂ + γ n̄D[a†]ρ̂,

D[O]ρ̂ ≡ ([Oρ̂, O†] + [O, ρ̂O†])/2.
(9)

Here, L and D[O] are the Liouville and the Lindblad superoperators, respectively. Moreover,
γ is the oscillator damping rate for which we assume that γ � ω0. It results from a standard
Ohmic bath spectral density J (ω)= γω. In addition, n̄ is the bosonic occupation number at
frequency ω0 and temperature T and is given by n̄ = (eω0/kBT

− 1)−1.

3.1. The stationary distribution

For long times, the density matrix in the rotating frame ρ̂ relaxes to a stationary state ρ̂∞,
satisfying

Lρ̂∞
= 0. (10)

When the oscillator decay rate γ is larger than the driving, c � f , the width of the resonant
quasienergy levels en induced by the bath fluctuations is larger than the corresponding Rabi
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frequency�n,N−n of the multiphoton transitions. Then, the multiphoton resonances are smeared
out and the coherent effects associated with multiphoton oscillations are strongly suppressed.
Hence, dissipation sets a lower limit for the driving strength, f � γ , which has to be overcome
in order to observe multiphoton transitions. On the other hand, for comparatively larger driving
f ∼ ν, quantum fluctuations are significantly reduced and the oscillator is latched to a classical
attractor at asymptotic times which are much larger than the typical relaxational time scale, γ −1.
In this regime, the (quasi)stationary distribution of the population over the quasienergy states
assumes a Boltzmann form [1–3, 25, 26].

Here, we restrict our analysis to the deep quantum regime where the driving is larger
than the damping but smaller than the nonlinearity, γ � f � ν. Thereby, we have implicitly
assumed a comparatively large nonlinearity ν � γ .

3.1.1. Underdamped regime. We start our discussion assuming that all Rabi oscillations are
underdamped. Put differently, we assume that the smallest Rabi frequency �0,N is larger than
the relevant level broadening. We refer to this regime as the fully underdamped regime. Then,
the off-diagonal matrix elements of ρ̂∞ projected onto the quasienergy basis |ψl〉 are negligible
and we can set them to zero, i.e. we perform a secular approximation,

ρ∞

lk ≡ 〈ψl |ρ̂
∞

|ψk〉 = 0 for l 6= k. (11)

Then, a balance equation for the stationary occupation probabilities ρ∞

ll follows from
equations (9) and (10) according to

γlρ
∞

ll −

∑
l 6=k

Wlkρ
∞

kk = 0. (12)

Here, Wlk is the transition rate from state |ψk〉 to state |ψl〉,

Wlk ≡ γ
[
(1 + n̄)|〈ψl |a|ψk〉|

2 + n̄|〈ψl |a
†
|ψk〉|

2
]
, (13)

and γl is the width of quasienergy level εl given by γl ≡
∑

k 6=l Wlk . We can now formulate more
precisely the condition for underdamped Rabi oscillations to occur within the pair forming the
narrowest resonance, which is �0,N � γ0.

The solution for stationary occupation probabilities up to leading order in the small
parameters f/ν and n̄ is given in [29]: the pair of multiphoton states |ψn〉 and |ψN−n〉 in
equation (7) have equal stationary population, i.e. ρ∞

nn = ρ∞

N−n,N−n. The pair with the narrowest
resonance has the occupation probabilities ρ∞

00 = ρ∞

N N . The occupation probability grows
algebraically with n < N/2 as

ρ∞

n+1,n+1 =
N − n

n + 1
ρ∞

n n for n < N/2. (14)

The states |ψl〉 with l > N have vanishing occupation probability, ρ∞

ll = 0. As follows from
the discussion above, the degeneracy ρ∞

00 = ρ∞

N N is approximate and is lifted for higher order
in f/ν.

3.1.2. Quasienergy distribution close to a multiphoton resonance. One can easily generalize
the above expressions to the case when the detuning δω does not exactly match the resonant
condition, δω 6= δωN . Since the Rabi frequencies for the different pairs of resonant transitions
in equation (8) are exponentially different, we can choose |δω− δωN | ��1,N−1, so that all
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the pairs of Fock states |n〉 and |N − n〉 with 1< n < N/2 are still resonantly superposed,
except for

|ψ0〉 = cos
θ

2
|0〉 − sin

θ

2
|N 〉 and |ψN 〉 = sin

θ

2
|0〉 + cos

θ

2
|N 〉, (15)

with θ = tan−1[�0,N/N (δω− δωN )]. The corresponding solution for the stationary density
matrix close to resonance is [29]

ρ∞

N N = ρ∞

00 tan4 θ

2
, ρ∞

11 = ρ∞

00 N tan2 θ

2
,

ρ∞

n+1,n+1 =
N − n

n + 1
ρ∞

n n for 16 n < N/2.

(16)

3.1.3. Partially underdamped regime. Next we consider a comparatively large relaxation rate
γ , so that the narrowest Rabi resonance is overdamped but the remaining resonances are still
underdamped, �0,N � Nγ ��1,N−1. We refer to this regime as the partially underdamped
regime. Then, incoherent multiphoton transitions from the ground state |0〉 to state |N 〉 with
a small rate �2

0,N/(Nγ ) and the subsequent emission of excitations into the bath determine a
small but finite occupation of the resonant states ρ∞

n n, n > 1. Formally, the stationary distribution
ρ̂∞ can be obtained by setting all the off-diagonal elements of ρ∞

lk to zero except for ρ∞

N0 and
ρ∞

0N and solving equation (10). Thereby, we find that

〈0|ρ̂∞
|0〉 ≈ 1, 〈N |ρ̂∞

|N 〉 ≈�2
0,N/(N

2γ 2),

ρ∞

11 =�2
0,N/(Nγ

2) for �2
0,N/(Nγ

2)� exp[−ω0/(kBT )], (17)

ρ∞

n+1,n+1 =
N − n

n + 1
ρ∞

n n for 16 n < N/2.

The crossover between this solution and the fully underdamped solution (14) is given in [29].
Both stationary nonequilibrium distributions are determined by quantum fluctuations and are
very different from the equilibrium Boltzmann-type distribution when a driven resonator is
latched to a classical attractor.

3.2. The nonlinear response of the oscillator

In the steady-state regime, t � γ −1, the oscillator state is described by the time-independent
density matrix ρ̂∞ in the rotating frame and the oscillator dynamics is embedded in the time-
dependent reference frame R(t). The mean value of an observable O is

〈O(t)〉∞ ≡ lim
t→∞

〈O(t)〉 = Tr{ρ̂∞ R†(t)O R(t)}. (18)

Therefore, the stationary oscillations of the position expectation value 〈x(t)〉∞ are sinusoidal,

〈x(t)〉∞ =
√

2xZPF cos(ωext +ϕ)|〈a〉∞|, 〈a〉∞ =

∑
lk

ρ∞

lk 〈ψl |a|ψk〉. (19)

It has been shown that the nonlinear response 〈x(t)〉∞ of the oscillator as a function of ωex

shows resonances and antiresonances in the deep quantum regime [28–30]. The response is
proportional to the transmitted amplitude in a heterodyne measurement scheme and has already
been measured for a weakly nonlinear oscillator [31]. Clearly, such a measurement scheme,
or more generally, any measurement scheme that probes stationary mean values as opposed to
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correlations does not allow one to resolve the different degenerate resonances separately. Nor
do they allow us to access the stationary distribution ρ∞

ll directly. This becomes possible only
when correlations, e.g. via noise spectra, are measured. In the next section, we show that this
can indeed be achieved by measuring the spectrum of the photon number noise.

4. The noise spectrum in the deep quantum regime

4.1. Definition of the noise spectrum

The Lindblad master equation (9), in general, also allows one to investigate transient phenomena
and correlation functions. Its formal solution for a given initial state ρ̂0 is given by ρ̂(t)=

exp[Lt] ρ̂0. Moreover, a general correlator 〈O ′(t ′)O(t)〉 can be evaluated as the mean value of
the operator O ′ at time t ′ with the virtual operator R†(t)O R(t)ρ(t) at time t . This view has
been established several decades ago by the Lax formula [36, 37] according to

〈O ′(t ′)O(t)〉 = Tr{R†(t ′)O ′ R(t ′)eL(t
′
−t)R†(t)O R(t)ρ(t)}. (20)

For long times t � γ −1, we find that

〈O(t + δt)O ′(t)〉∞ ≡ lim
t→∞

〈O(t + δt)O ′(t)〉 = Tr{R†(t + δt)O R(t + δt)eLδt R†(t)O ′ R(t)ρ∞
}.

(21)

In general, such correlators are periodic functions of the preparation time t . The noise spectrum
is defined as a double average over quantum fluctuations and the time t .

Here, we are specifically interested in the noise spectrum S(ω) of the autocorrelator of the
photon number n̂, 〈n̂(t + δt)n̂(t)〉∞. From equations (3) and (21), we find that

〈n̂(t + δt)n̂(t)〉∞ = Tr{n̂eLδt n̂ρ∞
}. (22)

Since this correlator does not depend on the initial time t as a consequence of the RWA, we can
define the noise spectrum in terms of a single average over quantum fluctuations according to

S(ω)= 2 Re
∫

∞

0
dt eiωt

〈n̂(t)n̂(0)〉∞. (23)

It is useful to separate the contributions to S(ω) into those coming from the expectation value
of n̂, and those from its fluctuations, i.e.

S(ω)= 〈n̂〉
2
∞
δ(ω)+ δS(ω),

δS(ω)≡ 2 Re
∫

∞

0
dt eiωt

〈δn̂(t)δn̂(0)〉∞.
(24)

Here, δn̂ is the operator for the photon number fluctuations, i.e. δn = n̂ − 〈n̂〉∞.
Our path to compute the noise spectrum consists of three steps. (i) We express the

virtual preparation n̂ρ̂∞ in terms of right eigenvectors of the superoperator L. (ii) We plug
the resulting decomposition into equation (22). Then, each term decays exponentially with a
different exponent which is given by the corresponding eigenvalue of L. (iii) We compute the
Fourier integral in equation (23), which thereby yields a sum over (overlapping) Lorentzian
peaks.

The general expression, which is useful for a concrete numerical evaluation, for the noise
spectrum given in terms of the eigenvectors and the eigenvalues of L is derived in the appendix.
In the next section, we consider the special case of underdamped multiphoton Rabi oscillations.
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4.2. Noise spectrum in the underdamped regime

When all the multiphoton Rabi oscillations are underdamped, �N ,0 � 0N , the coherences
|ψN−n〉〈ψn| and |ψn〉〈ψN−n| are approximate eigenvectors of the Liouvillian L. Then,

L|ψn〉〈ψN−n| = −(0n − i�n,N−n)|ψn〉〈ψN−n| for n < N/2,

L|ψN−n〉〈ψn| = −(0n + i�n,N−n)|ψN−n〉〈ψn| for n < N/2
(25)

with the level widths being given as 0n = γn = γ (n̄ + 1/2)N + γ n̄ for n < (N − 1)/2. For N
odd, 0(N−1)/2 = γ (1 + 2n̄)(5N + 1)/8 + γ n̄. Up to leading order in f/ν, the decomposition of
the virtual preparation n̂ρ̂∞ in terms of right eigenvectors of L has the simple expression

n̂ρ̂∞
≈ (N/2) ρ̂∞

−

∑
n<N/2

(N/2 − n)ρ∞

n n (|ψn〉〈ψN−n| + |ψN−n〉〈ψn|) . (26)

Clearly, each term of the above decomposition yields a Lorentzian peak in the noise spectrum
S(ω). The first term yields the contribution to S(ω) from the expectation value of n̂,
(N/2)2δ(ω). The remaining terms yield inelastic peaks associated with random transitions
between quasienergy states belonging to the same multiphoton doublet. Since the populations
ρ∞

n n and ρ∞

N−n,N−n are approximately equal, peaks at opposite frequency have approximately
equal intensity. By putting together equations (22), (23), (25) and (26), we find that S(ω)=

(N/2)2δ(ω)+ δS(ω) with

δS(ω)≈

∑
n<N/2

Sn(ω)+ SN−n(ω), (27)

Sn(ω)= SN−n(−ω)=
20nρ

∞

n n(N/2 − n)2

(ω−�n,N−n)2 +02
n

. (28)

Hence, the Lorentzian peaks are centred at the multiphoton Rabi frequencies �n,N−n and have a
resonance width of 0n. The factor (N − 2n)2/4 is the leading order expression for the squared
matrix element |〈ψn|n̂|ψN−n〉|

2. Remarkably, the line intensities depend only weakly on the
driving f and on the temperature through the stationary distribution ρ∞

n n. Up to leading order,
the driving f enters only in the splitting of the lines through the Rabi frequencies. Note that
equation (27) is valid only in the vicinity of a multiphoton peak since terms of order γ are not
taken into account. In order to evaluate the tails of the peaks more precisely, one has to take into
account the contribution stemming from all eigenvectors of L, see the appendix.

In the left and right panels of figure 2, we show the noise spectrum S(ω) for the cases
N = 2 and 3, respectively. The noise spectrum for N = 2 shows a pair of symmetric peaks which
correspond to the transitions |ψ0〉 ↔ |ψ2〉. Likewise, the noise spectrum for N = 3 displays two
pairs of symmetric peaks corresponding to the transitions |ψ0〉 ↔ |ψ3〉 and |ψ1〉 ↔ |ψ2〉. The
green dashed lines mark the results from our approximate analytical formula in equation (27)
while the yellow solid lines show the data obtained by numerically evaluating the expression in
equation (A.2). Excellent agreement is found.

In figure 2(a), additional smaller side peaks of the order of f/ν are also visible, see the
grey lines representing a tenfold zoom. They are not associated with any resonant transition
between multiphoton states and are thus not captured by the leading order expression given
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Figure 2. Photon noise spectra at the N = 2 and 3 photon resonances are shown
in panels (a) and (b), respectively, for ν = 10−3ω0, f = ν/10, γ =�0,2/10 in
(a) and γ =�0,3/10 in (b). Shown are the approximate results obtained with
equation (27) (dashed green lines), and the results from a full numerical solution
of the general expression for the spectrum derived in the appendix (orange solid
lines). The grey lines in panel (a) mark a zoom of the subleading off-resonant
transitions.

in equation (27). The particular subleading peaks in figure 2(a) belong to the transitions
|ψ0〉 ↔ |1〉.

These features show a direct analogy to the spectral correlation function of a static quantum
mechanical two-level system which is weakly coupled to a dissipative harmonic bath [32]. For
a general biased two-state system with anticrossing energy levels, the pair correlation function
is a sum of three Lorentzian peaks. The two inelastic peaks are symmetrically located at finite
frequencies and their width determines the inverse of the dephasing time. For a biased static two-
level system away from resonance, an additional quasielastic peak at zero frequency appears
which represents incoherent relaxation with the inverse relaxation time given by its width. Since
we consider here the case strictly at resonance (in the RWA), no zero-frequency peak is present.

4.3. Photon anti-bunching

In general, the photon emission characteristics of a quantum mechanical resonator can show
peculiar nonclassical features. For instance, counterintuitive correlation phenomena such has
photon antibunching can occur, where the photon number correlation function for short delay
times is smaller than that for classical, uncorrelated photons. This implies that the probability
for photons to arrive in pairs is suppressed [38]. Our approach provides a natural framework
to investigate possible non-Poissonian statistics of the multiphoton events in the nonlinear
resonator. Therefore, we consider the normalized photon number correlation function or second-
order coherence function defined as

g(2)(τ )=
〈a†(t)a†(t + τ)a(t + τ)a(t)〉∞

〈a†(t)a(t)〉∞〈a†(t + τ)a(t + τ)〉∞

. (29)
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For long delay times τ , the counts of two photons with a delay time τ are statistically
independent events, g(2)(τ → ∞)= 1. For vanishing delay times, we have

g(2)(τ → 0)= 1 +
〈n̂2

〉∞ − 〈n̂〉
2
∞

− 〈n̂〉∞

〈n〉2
∞

. (30)

Photon antibunching corresponds to the case g(2)(τ = 0) < 1. For the fully underdamped case,
we find the expression

g(2)(τ = 0)=
2N (N − 1)+ 4

∑N−1
1 n(n − N )ρn n

N 2
= 1 −

1

N
, (31)

which represents the known result of the second-order correlation function of the
electromagnetic field [38]. Hence, the oscillator displays photon antibunching close to a
multiphoton transition. The second-order coherence of the stationary state of the quantum
Duffing oscillator at the N th multiphoton resonance has the same value as the second-order
coherence for an oscillator prepared in the single Fock state |N 〉, in spite of its fluctuations over
the quasienergy states.

4.4. Line shape of the noise spectrum close to a multiphoton resonance

In the presence of a small detuning from the multiphoton resonance, δω− δωN ∼�0,N , the
states |ψ0〉 and |ψN 〉 are no longer a resonant superposition of the Fock states |0〉 and
|N 〉. Hence, the corresponding stationary occupation probabilities ρ00 and ρN N , given in
equation (16), become significantly different. In turn, the pair of peaks S0(ω) and SN (ω),
which are associated with the transitions |ψ0〉 ↔ |ψN 〉, become asymmetric such that S0(ω) 6=

SN (−ω). This behaviour is shown in figure 3(a) for the case around the three-photon resonance.
The peak line shapes can readily be evaluated and we find that

S0(ω)=
200ρ

∞

00 N 2(sin θ cos θ)2

(ω− εN + ε0)2 +02
0

= ρ∞

00

(
N 2�0,N (δω− δωN )

|εN − ε0|
2

)2 200

(ω− εN + ε0)2 +02
0

, (32a)

SN (ω)=
20Nρ

∞

N N N 2(sin θ cos θ)2

(ω− ε0 + εN )2 +02
N

= ρ∞

N N

(
N 2�0,N (δω− δωN )

|εN − ε0|
2

)2 20N

(ω− ε0 + εN )2 +02
N

. (32b)

Their distance increases with the quasienergy splitting, εN − ε0 = sgn(δω− δωN )(�
2
0,N +

N 2
|δω− δωN |

2)1/2, whereas the peak width does not change close to the multiphoton resonance,
δω− δωN ∼�0,N . The asymmetry is determined by the stationary occupation probabilities ρ∞

00
and ρ∞

N N . From equation (16), we find that

S0(ω)

SN (−ω)
=
ρ∞

00

ρ∞

N N

= cot4 θ

2
=

[
�0,N

|εN − ε0| − N (δω− δωN )

]4

. (33)

The above expression is valid for ω close to the centre of the largest peak, ω ∼ εN − ε0, and
|δω− δωN | not too large such that S(±ω)� γ .

In addition to the peaks at finite frequencies (which induce decaying coherent multiphoton
Rabi oscillations), a zero-frequency peak also appears. This quasielastic peak is associated with
incoherent relaxational decay of the multiphoton Rabi oscillations and is also known for the
noise correlation function of a static biased quantum two-level system [32].
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Figure 3. (a) Asymmetric structure of the photon noise spectrum at frequency
δω = δω3 + δ, i.e. out of resonance for a detuning δ = 1.6 × 10−4ν for the same
parameters used in figure 2(b) (orange solid line). In addition, we show in the
background the symmetric photon noise at the resonant frequency δω3 (grey
shadowed area). Moreover, we depict the inverted case δ → −δ, which shows a
symmetric behaviour under the reflection ω→ −ω (green solid line). (b) Noise
asymmetry via the logarithm of equation (33) for the same parameters as in (a).
(c) Height of the photon noise peak for the transition |ψ0〉 → |ψ3〉 (orange solid
line) and |ψ3〉 → |ψ0〉 (green solid line) as a function of the external frequency.
The peak maximum is located at δω3 ± δ.

In figure 3(b), we show the logarithm of the asymmetry ratio given in equation (33). The
asymmetry shows a clear maximum at approximately ε3 − ε0.

To further illustrate the asymmetry in the peak heights, we show in figure 3(c) the
peak maxima associated with the transitions |ψ0〉 → |ψ3〉 and |ψ3〉 → |ψ0〉. At the three-
photon resonance (black dashed vertical line), both peaks are equal in height (symmetric noise
spectrum). Away from the resonance, the low (high-)-frequency branch acquires more spectral
weight for negative (positive) detuning.

4.5. Photon noise at zero frequency

Fluctuations of an oscillator (quasi)energy induce a broad (with width ∝ γ ) zero-frequency peak
in the noise spectrum of an observable whose mean value depends on the (quasi)energy [39].
For weak driving f � ν and at a resonance |δω− δωN | ��0,N , the quasienergy states of
the Duffing oscillator have large fluctuations as several quasienergy states have comparable
occupation probabilities even at T = 0. However, the mean value of n̂ becomes independent of
the quasienergy, 〈ψn|n̂|ψn〉 ≈ N/2 for n 6 N . As a consequence, the contribution to the noise
spectrum of n̂ coming from fluctuations δS(ω) does not have a peak at zero frequency since
δS(0)∝ γ . Close to resonance, when |δω− δωN | ∼�0,N , two dynamical effects compete: on
the one hand, the quasienergy fluctuations quickly decrease for increasing detuning, i.e. moving
away from resonance as the occupation probability of the state |ψ0〉 approaches one. On the
other hand, the mean value of n̂ becomes strongly dependent on the quasienergy. As a result of
this competition, the intensity of the zero-frequency noise plotted as a function of δω has two
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Figure 4. Photon noise at zero probe frequency as a function of the external
frequency for the parameter set used in figure 2(a) evaluated around the second
multiphoton resonance, δω ∼ −3ν/2. The approach equation (34) shown as a
green dashed line is compared with the numerical simulation shown as an orange
solid line.

maxima at the two opposite sides of the resonant value δωN . In figure 4, we show the zero-
frequency noise for the special case N = 2. The yellow solid line represents the intensity at zero
frequency computed numerically, while the green dashed line is the leading order contribution
(in f/ν)

δS(ω = 0)≈ sin2(2θ)/4γ. (34)

4.6. Noise spectrum towards the semiclassical regime

Next, we investigate the noise spectrum for larger driving strengths, f . ν. In order to illustrate
how the noise spectrum changes with increasing driving, we show the intensities of the brightest
peaks as a function of the driving strength for the N = 5 photon resonance; see figure 5(a). In
figure 5(b), we also show the quasienergy spectrum, and the noise spectrum for a comparatively
large value of the driving amplitude f = ν is shown in figure 5(c). A peak in the noise spectrum
at frequency ω = εl − εk is associated with a single transition |ψk〉 → |ψl〉 and is given by

S(ω)=

∑
lk

2ρ∞

ll |〈ψl |a†a|ψk〉|
2(γ (al − ak)

2 +0l +0k)

(ω + εl − εk)2 + (γ (al − ak)2 +0l +0k)2
. (35)

Hence, the relative intensities of a pair of peaks at opposite frequencies are still related to
the occupation probability of the corresponding initial states through S(εl − εk)/S(εk − εl)=

ρkk/ρll .
For weak driving, we have three pairs of approximately symmetric peaks as described

by equation (27). Each peak corresponds to a transition between two states belonging to a
multiphoton doublet of quasidegenerate states: |ψ0〉 ↔ |ψ5〉, |ψ1〉 ↔ |ψ4〉 and |ψ2〉 ↔ |ψ3〉. For
increasing driving, the spectrum becomes increasingly asymmetric. For moderate values of
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Figure 5. (a) The height of the photon noise peaks corresponding to the
transitions within the pair |ψn〉 ↔ |ψm〉 as a function of the driving strength f .
Each pair is marked by a solid and a dashed line in the same colour. In addition,
we depict the increase of the zero-frequency peak (black solid line) as the driving
strength increases. The black horizontal lines indicate the expected values of
the noise level evaluated up to leading order in f/ν by using equation (27).
The parameters are ν = 10−3ω0, δω = δω5. In panel (b), we show for the same
parameters the quasienergy spectrum as a function of the driving strength f . In
panel (c), the photon noise spectrum as a function of the probe frequency ω is
shown for a large driving strength f = ν.

the driving, the noise spectrum undergoes two major qualitative changes: (i) the peak at zero
frequency becomes clearly visible; and (ii) a pair of peaks corresponding to the transitions
|ψ1〉 ↔ |ψ3〉 acquires a significant intensity. For f = ν, the peak associated with the transition
|ψ3〉 → |ψ1〉 is even the second brightest peak.

These qualitative changes can be explained in terms of a semiclassical description valid
beyond the weak driving limit. The RWA Hamiltonian in equation (4) can be rewritten in
terms of rotating quadratures and interpreted as a quasienergy surface in phase space [34, 35].
It has the shape of a tilted Mexican hat and is sketched in figure 1(c) for two values of f .
The larger the f , the stronger the induced tilt. The local maximum and the minimum of the
quasienergy surface are the classical attractors. In the static frame, they describe stationary
oscillations with a small and a large amplitude, respectively. In the vicinity of the attractors,
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the vibration amplitude and the slow part of the oscillation phase display slow vibrations
with frequency ∝ δω. In the absence of resonant transitions, each quasienergy state can be
associated with a quantized quasiclassical orbit which lies on the internal surface around the
local maximum, on the external surface or along the quasienergy well around the minimum. For
very weak driving, f � ν/

√
2(N + 1), the quantum mechanical Fock states |n〉 with n < N/2

are associated with quasiclassical trajectories on the internal surface around the local maximum,
whereas the Fock states with photon number n larger than N/2 are associated with semiclassical
orbits on the external surface. Within this representation, the multiphoton transitions can then
be reinterpreted as tunneling transitions between the internal and the external part of the
surface [34, 35]. For comparatively larger driving, the zero-point quasienergy associated with
the slow vibrations around the minimum (∝ δω) becomes smaller than the dynamical barrier
height. Then, quasienergy states appear which are localized in the quasienergy well. In turn, the
noise spectrum becomes qualitatively different from that for weak driving. The small quantum
fluctuations around the minimum of the quasienergy surface can be described in terms of an
effective auxiliary oscillator with ladder operators b and b† and are given by

a = ah + b cosh r∗

h − b† sinh r∗

h . (36)

Here, ah is the amplitude of the stationary oscillations rescaled by
√

2xZPF [25, 26]. They can
be mimicked by a local effective quantum temperature Te = (2kB ln coth r∗

h )
−1 which depends

on the squeezing factor r∗

h [1, 2, 25, 26]. For f = ν, the states |ψ2〉, |ψ3〉 and |ψ1〉 can be
identified with the ground state and the first two excited states of the auxiliary oscillator (but in
the remainder of this discussion we keep the same labels for the states as in the weak driving
limit). The level spacing ε3 − ε2 is of the order of the frequency of the slow classical oscillations
of the amplitude and slow part of the phase.

Such oscillations appear in the noise spectral density of a classical oscillator as a pair of
peaks. In a nonlinear quantum oscillator whose quasienergy levels are not equidistant and their
distance exceeds the damping strength, the classical peaks have a ‘quantum’ fine structure [3].
In the present case of the Duffing oscillator, the classical noise peak is split into two peaks
associated with nearest-neighbour transitions between the ground state and the first excited state,
and the first and the second excited state, |ψ2〉 ↔ |ψ3〉 and |ψ3〉 ↔ |ψ1〉, respectively. Their peak
height is proportional to the square of the rescaled vibration amplitude ah and to the occupation
of the initial state ρ∞

n n. The latter, in particular, is governed by the quantum temperature Te. For
the ratio of the peak heights, we find that [3]

S(ε3 − ε2)

S(ε2 − ε3)
≈
ρ∞

22

ρ∞

33

≈ coth2 r∗

h ≈
ρ∞

33

ρ∞

11

≈
S(ε1 − ε3)

S(ε3 − ε1)
. (37)

Next-nearest-neighbour transitions can also yield peaks in the noise spectra of a Duffing
oscillator [26]. In the present case, the transitions |ψ2〉 ↔ |ψ1〉 yield a pair of dimmer peaks,
but located at frequencies outside of the frequency range shown in figure 5.

In the weak damping, weak driving regime discussed so far, the quasienergy well around
the minimum is still very shallow, and the oscillator can escape from the small amplitude
attractor via tunneling. Therefore, the oscillator is not latched to any of the attractors and
the noise spectral density also has peaks which are associated with intra-well transitions. In
particular, the pair of peaks with the smallest splitting describes coherent tunneling oscillations
between the internal and the external part of the quasienergy surface (coherent dynamical
tunneling or multiphoton Rabi oscillations).
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Figure 6. Photon noise at the third multiphoton resonance, δω = δω3, as a
function of the probe frequency. In panel (a), we show the behaviour when going
from the coherent to the incoherent regime by increasing the damping constant
from γ0 ��0,3 to γ3 =�0,3 (at T = 0). In panel (b), we fix the damping constant
at γ =�0,3/10 and show the noise temperatures increasing from zero (T = 0) up
to finite temperatures (T � ω0). The remaining parameters are ν = 10−3ω0 and
f = ν/10.

Before closing this section, we mention that for the stronger driving f = ν, a zero-
frequency peak also appears in the noise spectrum, see figure 5(c), although the frequency
detuning has been fixed at the five-photon resonance δω = δω5. However, as discussed above,
this resonance condition is only valid for small f � ν, which is obviously not fulfilled. So the
larger driving induces an effective small detuning away from the exact avoided quasienergy
level crossing and generates an effective bias. Then, a relaxation pole appears in the relevant
self-energy [32] which corresponds to a quasielastic relaxation peak at zero frequency.

4.7. Dependence of the noise spectrum on damping and temperature

So far, we have analysed the case of zero temperature and small damping, n̄ � 1 and γ ��0,N .
In this section, we briefly address how the noise spectrum is modified for larger damping and
finite temperature by presenting the numerical results of the spectrum in a broad parameter
range.

In figure 6(a), we show S(ω) for different values of the damping for the three-photon
resonance where δω = δω3. As expected, the peaks in the noise spectrum get broader for
increased damping. Outside the fully underdamped regime, the two peaks of the pair associated
with the transitions |ψ0〉 ↔ |ψ3〉 start to overlap and eventually merge into a single peak at zero
frequency. Thereby, the zero-frequency noise is no longer suppressed S(ω ≈ 0)∝ γ −1, since
incoherent relaxation prevails over coherent decay for large damping. The peaks associated
with the underdamped transitions |ψ1〉 ↔ |ψ2〉 are still described by equation (27) even when
the spectrum has a peak at zero frequency. The decrease in peak intensities reflects the decrease
of the populations ρ∞

11 and ρ∞

22 in the partially underdamped regime.
The dependence of the noise spectrum on temperature is shown in figure 6(b) and

behaves qualitatively similarly. For small temperatures n̄ � 1, the spectrum is described by
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equation (27). The temperature dependence enters the line widths of the quasienergy levels as
well as in the stationary distribution ρ∞

n n. For higher temperatures, the two low-frequency peaks
merge into a single peak at zero frequency and the side peaks become increasingly broader as
expected.

5. Conclusions

In recent years, the rich phenomenology of driven and damped nonlinear quantum oscillators
has been impressively consolidated, including their nonlinear response behaviour in the form
of resonant and antiresonant amplification, quantum coherent multiphoton Rabi oscillations,
quantum activation and quantum heating. Gradually, the nontrivial effects visible in noise
correlation functions have also moved to the focus of interest. These become relevant whenever
a nonlinear quantum oscillator is used as a central element in an amplifier or quantum
measurement device. In this work, we have analysed the quantum noise properties of the
quantum Duffing oscillator in the regime where only a few quanta are excited. Then, the
nonlinear response shows pronounced multiphoton peaks which are associated with resonant
multiphoton Rabi oscillations. The noise properties of these multiphoton transitions show a
rich phenomenology with a fine structure of the noise power spectrum. To obtain the noise
spectrum by analytic means, we invoke the Lax formula for the autocorrelation function of the
photon number at different times and calculate its Fourier transform. Exactly at a multiphoton
resonance, the noise spectrum consists of a collection of pairs of related resonances which are
located at opposite frequencies and which are equal in height. Each pair is associated with a
multiphoton doublet. In spite of large fluctuations over the oscillator quasienergy, no quasielastic
peak occurs at zero frequency. This is a consequence of a special symmetry of the quantum
Duffing oscillator: all quasienergy states that are associated with a multiphoton doublet have the
same mean value of the photon number n̂.

Slightly away from a multiphoton resonance, the noise spectrum becomes asymmetric and
the two resonances are no longer equal in height. In addition, as the mean values of n̂ become
different for quasienergy states with comparable occupations, the quasielastic peak emerges.
Since the quasienergy fluctuations are suppressed away from a multiphoton resonance, the
intensity of the quasielastic peak as a function of the detuning displays a maximum at the two
opposite sides of the resonant value δωN .

We have shown that the amplitudes of the resonances of the photon noise power spectrum
can be used to directly determine the asymptotic occupation probabilities of the quasienergy
states of the quantum Duffing resonator. Similar results have been obtained for the parametric
oscillator [3]. No other scheme has been proposed for this task up to now. Once these
populations are measured via the noise power spectrum, the quantum temperature as well as the
amount of quantum squeezing of the resonator state (including its nonclassical photon statistics)
follow immediately in the semiclassical regime by increasing the photon number by a larger
driving amplitude. Then, a quasiclassical quasipotential landscape in phase space is a convenient
tool for understanding the stationary nonequilibrium dynamics. This view directly leads to the
quantum mechanical squeezed states that exist close to the local minimum of the quasienergy
landscape. A harmonic expansion allows us to characterize the quantum fluctuations via an
effective quantum temperature. At larger (real) temperature and damping strengths, all these
quantum coherent features are washed out.
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Although the time-resolved detection of noise properties of quantum observables of
driven resonators requires considerably more experimental effort, we are confident that future
experiments will soon elucidate the importance of quantum noise in these systems.
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Appendix. Numerical evaluation of the noise spectrum

In order to numerically compute the noise spectrum S(ω), we diagonalize the Liouvillian
superoperator L,

Lk̂R = λk k̂R, k̂LL= λk k̂L. (A.1)

Here, {k̂L} and {k̂R} are the sets of the left and right eigenvectors of L, respectively. They
constitute a biorthogonal system implying that Tr{k̂†

Lk̂ ′

R} = δkk′ . The corresponding eigenvalues
kk are, in general, complex. The stationary density matrix ρ̂∞ is the only eigenvector with zero
eigenvalue. All other eigenvectors represent transient dissipative processes. The corresponding
eigenvalues have a negative real part. Note that we have implicitly assumed that L admits a
spectral decomposition. Put differently, we have ruled out that any Jordan block has a dimension
larger than one.

With this at hand, the noise spectrum in equation (23) can be rewritten in terms of k̂L, k̂R

and λk as a sum of partial spectra characterized by Lorentzian peaks according to

S(ω)=
2

∑
k(Tr{n̂k̂R}Tr{k̂†

Ln̂ρ̂∞
})Re λk

(ω− Im λk)2 + (Re λk)2
. (A.2)

The sum extends over those eigenvectors k̂R that belong to nonzero eigenvalues λk . Thereby, we
have not included the elastic Rayleigh peak 〈n̂〉

2
∞
δ(ω) which trivially comes from the stationary

state k̂R = ρ̂∞.
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