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Quantum nonlocal effects in individual and interacting
graphene nanoribbons

Iván Silveiro1, Juan Manuel Plaza Ortega1 and F Javier Garcı́a de Abajo1,2

We show that highly doped graphene ribbons can support surface plasmons at near-infrared frequencies when their width is in the

nanometer range, leading to important nonlocal and finite quantum-size corrections, such as sizable blueshifts. The magnitude of

these effects is assessed by comparing classical and quantum-mechanical models to describe graphene plasmons. More precisely, we

examine individual and interacting 6–8 nm wide zigzag and armchair ribbons doped to 0.4–1.5 eV Fermi energies. We find a strong

influence of nonlocal effects on the orientation of graphene edges, with plasmons in zigzag ribbons undergoing strong quenching when

their energy is below the Fermi level. Nonlocality is also affecting the hybridization between ribbon plasmons in dimers and arrays for

separations below a few nanometers. Remarkably, the removal of a single row of atomic bonds in a ribbon produces a strong plasmon

frequency shift, whereas the removal of bonds along an array of rows separated by several nanometers in an extended sheet causes a

dramatic increase in the absorption. Besides the fundamental interest of these results, our work supports the use of narrow ribbons to

achieve electro-optical modulation in the near infrared.
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INTRODUCTION

Collective oscillations of conduction electrons, also known as plas-

mons, find a vast number of applications in nanophotonics due to

their ability to enhance and confine optical fields far below the wave-

length scale.1 In particular, plasmons supported by noble metal nano-

structures have been extensively used for optical trapping,2 nonlinear

optics,3–5 single-molecule detection6,7 and signal processing,8 among

other feats. Recently, highly doped graphene has also been found to

sustain plasmons at infrared and lower frequencies,9–19 with the

unique advantages of possessing a large electrical tunability, long life-

times, and strong nonlinearities.20–23 The peculiar electronic structure

of this two-dimensional material24,25 allows us to substantially shift its

Fermi level (EF5h-vF

ffiffiffiffiffiffi
pn
p

, where vF<106 m s21 is the Fermi velocity)

by adding a moderate density of doping charge carriers n. Fermi ener-

gies as high as ,1 eV have been achieved through electrostatic gat-

ing.26,27 Furthermore, strong coupling of light to localized plasmons

can be realized by patterning the graphene,28,29 even reaching the limit

of complete optical absorption.30 While a classical electromagnetic

description of plasmons is sufficient to deal with large graphene struc-

tures compared with the Fermi wavelength
ffiffiffiffiffiffiffiffiffiffi
4p=n

p
,9,16,28,31–35 non-

local quantum effects play an important role in smaller islands,36

including plasmon quenching through coupling to electronic zigzag

edge states,37,38 which is reminiscence of the quenching described in

near-touching metallic nanoparticles.39,40

In this work, we study nonlocal quantum effects in individual and

interacting graphene structures. We concentrate on nanoribbons as

they are central elements in many previous theoretical28,34,37,38,41–43

and experimental10,13,14,18,43 graphene plasmon studies, and also

stimulated by the availability of new methods of synthesis with

control over the ribbon width down to the nanometer scale.44–47

Additionally, ribbons can be electrically contacted far from the

region in which plasmons are exploited, thus enabling optical tun-

ability using non-invasive electrical gating. In particular, we com-

pare classical and quantum-mechanical models for the graphene

optical response, focusing on the lowest-order dipole plasmons

and examining their role in the normal-incidence extinction

cross-section for light polarized perpendicular to the ribbon edges.

We study ribbons of ,10 nm width and different edge termina-

tions—armchair (AC) and zigzag (ZZ)—as well as their interac-

tions in closely spaced dimers and periodic arrays. Our results

provide a roadmap of plasmons in individual and interacting nar-

row ribbons, reaching near-infrared energies and exhibiting

important nonlocal effects that must be considered in the design

of potential device applications. These results also reveal the

advantage of ribbons relative to other alternative methods to

exploit near-infrared plasmons, such as gratings (they should have

similar periodicity as the ribbon widths here considered), tips and

local emitters (they generally couple non-resonantly to propagating

plasmon bands, thus resulting in broad spectral features), and

prisms (the large mismatch between light and graphene-plasmon

wavelengths requires the use of very high-index dielectrics that are

currently unavailable in the near infrared).
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MATERIALS AND METHODS

The extinction cross-section, which we present normalized to the

graphene area, is obtained through the optical theorem from the rib-

bon polarizability, which we in turn calculate from the induced density

using the classical28 and quantum-mechanical38 methods described

elsewhere. In particular, the quantum description, which we term

TB-RPA model, is based upon the random-phase approximation48

(RPA) using tight-binding (TB) electronic states as input.38

However, in the classical electromagnetic model the carbon layer is

represented by a local conductivity, which is taken from the local-RPA

approximation28 and used as input to solve the Maxwell equations

with the boundary element method.49

In the quantum-mechanical calculations presented below for rib-

bon arrays, the absorbance is obtained from the effective polarizability

per unit length ~aa/L for each ribbon, which we in turn obtain from the

quantum TB-RPA model, conveniently modified to deal with infinite

ribbon arrays (see below). This model yields the non-interacting sus-

ceptibility x0
ll’, which permits writing the induced density as

rl~
P

l’ x
0
ll’wl’ in terms of the total potential wl, where l and l’ run over

the carbon sites of the graphene structure.41 The total potential is

related to the external potential wext
l through wl~wext

l z
P

l’ vll’rl’,

where vll’ is the Coulomb interaction between sites l and l’. These

expressions can be easily combined to find the induced density as

r5(12x0?v)21?x0?wext, using matrix notation. For a finite number

of ribbons, the one-dimensional periodicity of the atomic lattice is

used to reduce the calculation to a finite number of sites (l and l’

indices) within a unit cell.41 Here, for ribbon arrays, we follow this

procedure to calculate x0 for a single ribbon, but supplementing vll’

with the sum of all interactions of site l with the equivalent l’ sites in all

other ribbons. The effective polarizability per unit length is then given

by ~aa=L~
P

l xlrl=(Eextb), where the sum extends over the noted unit

cell of length b along the ribbon, xl is the distance across it, and Eext is

the external electric field (i.e., wext
l 52xlE

ext). Finally, the normal-

incidence reflection and transmission coefficients reduce to

r5(2pik/a)(~aa=L) and t511r, where a is the period of the array, and

from here, the absorption reduces to 1{jrj2{j1zrj2.35

For simplicity, we assume that the ribbons are in vacuum at 300 K

in both the classical and quantum calculations. The addition of a

substrate of permittivity s can be simply introduced through an effec-

tive permittivity eff 5 ( s11)/2 of the surrounding medium. This is a

rigorous correction in the local electrostatic limit,41 which essentially

leads to a redshift of plasmon frequencies by a factor &1
� ffiffiffiffiffiffiffi

eff
p

.

RESULTS AND DISCUSSION

Individual ribbons

We start by analyzing plasmons in individual ribbons of small width

W56 nm (Figure 1). The transverse dipole plasmon on which we

concentrate here is the lowest-energy feature in the spectra.

Remarkably, the classical calculations (insensitive to the edge config-

uration) are in excellent quantitative agreement with quantum-mech-

anical calculations for both AC and ZZ edges provided the plasmon

energy is below the Fermi level (see EF51 eV and 1.5 eV curves in

Figure 1). If this condition is not satisfied (EF50.4 eV), the plasmon is

strongly quenched in the ZZ-edge ribbons, while it is slightly shifted

and broadened in AC-edge quantum calculations in comparison with

classical theory. This behavior is fully reproducible over a large range

of Fermi energies and small ribbon widths, of which Figure 1 shows

some representative examples. The observed plasmon quenching can

be attributed to the existence of zero-energy electronic edge states, as

already shown for even narrower ribbons.37 Additionally, the plasmon

energy increases with EF, following the approximate behavior35

h-vp&4e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF=pW

p
(this expression is obtained from the Drude

model, while RPA corrections push the plasmon energy slightly down-

wards), whereas its strength grows with doping as well.

Ribbon dimers

Two doped coplanar parallel ribbons separated by a carbon-to-carbon

edge distance d interact producing significant changes in the plasmonic

spectrum of the whole structure.41 We study this configuration in

Figure 2 for ribbons of width W56 nm and Fermi energy EF50.4 eV

using both classical (upper part) and quantum TB-RPA (lower part, for

AC edges) theories. The interaction is attractive and leads to redshifts in

the dipole-active bonding plasmons here discussed.41 The sequence of

spectra shows that the discrepancy between classical and quantum cal-

culations increases as the ribbons approach each other. This is consist-

ent with the intuitive idea that nonlocal interactions gain weight at

shorter distances. As part of this behavior, the quantum calculations

do not seem to approach the plasmon of the double-width ribbon (left

dashed-curve spectrum), in contrast to the classical simulations. The

evolution of the dimer plasmon energy with separation (Figure 3)

clearly illustrates this effect: there is a sizeable jump in the quantum

calculation of the double-width AC plasmon when a centered row of C–

C bonds is removed (i.e., the TB hopping is set to zero in those bonds,

represented as dashed lines in the left inset of Figure 3), thus becoming a

closely spaced dimer. However, the classical calculation shows a con-

tinuous convergence of the dimer towards the double-width ribbon at

small distances. Incidentally, as ribbon edges are generally passivated

with hydrogens, and considering the C–H and H–H bond distances, we

estimate that only carbon-to-carbon edge distances .0.3 nm are phys-

ically realistic, with well-separated and non-tunneling electronic states

in each ribbon. We include smaller distances for tutorial purposes, and

in particular dmin5
ffiffiffi
3
p

a0/2 in AC ribbons in order to study the effect of

removing one row of C–C bonds, as discussed above.

Periodic ribbon arrays

A monolayer of extended undoped graphene exhibits a nearly con-

stant absorption pa<2.3%,50,51 where a<1/137 is the fine-structure
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Figure 1 Plasmons in individual graphene ribbons. We show the normal-incid-

ence extinction cross-section of self-standing graphene nanoribbons (width

W56 nm and intrinsic damping of 0.02 eV) for several values of the Fermi energy

EF, calculated using two different models: classical theory with the local-RPA

conductivity;28 and quantum-mechanical TB-RPA for ribbons with ZZ and AC

edges.38 We focus on the lowest-order dipolar mode (see induced charge density

in inset), which is excited by light polarized across the ribbon. AC, armchair; RPA,

random-phase approximation; TB, tight-binding; ZZ, zigzag.
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constant. This relatively small level of absorption can be enhanced

through patterning and doping.30 We explore this possibility in arrays

of narrow ribbons such as those of Figures 4 and 5, which show the

evolution of the plasmon energies and their associated absorption.

Here, we compare AC and ZZ ribbons in order to assess the strength

of nonlocal effects.

The resulting absorption spectra (Figure 4) exhibit again a high

sensitivity to ZZ edges when the plasmon energies are above the

Fermi level, leading to a significant reduction of absorption and

increasing plasmon broadening (cf. Figure 4a and 4c). At higher dop-

ing (Figure 4b and 4d), plasmon broadening is limited to the intrinsic

damping (0.02 eV) in both AC and ZZ ribbon arrays. Interestingly, the

inter-ribbon interaction is smaller with ZZ edges, as revealed by the

larger redshift observed in AC ribbons at close separations d. In all

cases, these shifts are larger than in dimers (cf. for example Figures 2b

and 4a). Remarkably, the maximum possible absorption of 50% is

reached with ZZ edges in Figure 4d at short separations d of the order

of the C–C bond distance, or equivalently, in a structure obtained by

removing atomic bonds along an array of parallel rows spaced by a

period of 6 nm. Full absorption can further be achieved by placing the

structure approximately a quarter wavelength away from a good mir-

ror (Salisbury screen configuration30,52,53).
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Figure 3 Separation dependence of the transverse plasmon energy in ribbon dimers. (a) We represent the plasmon peak energies extracted from Figure 2 as a

function of the carbon-to-carbon edge distance d using classical and quantum-mechanical (for AC ribbons) models. The classical calculations converge well to the

double-width-ribbon limit for d,,W, in contrast to the quantum-mechanical model, which predicts a substantial energy gap. The left inset shows the nearest

separation dmin5
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a0/2 considered for the quantum AC calculations, where a050.1421 nm is the C–C bond distance. (b) Scheme of the notation used for the

separation distance between ribbons: we take d to be the carbon–carbon spacing throughout this paper; classical calculations are performed with a separation

between electronic edges given by dcl5d2dmin. AC, armchair.
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of AC (a, b) and ZZ (c, d) ribbon arrays for two different Fermi energies (see upper

labels) and various carbon-to-carbon edge separations d (see legend, where we

use the C–C bond distance a0), as calculated from the TB-RPA model. The ribbon

width is W56 nm and the intrinsic plasmon damping is 0.02 eV in all cases. AC,

armchair; RPA, random-phase approximation; TB, tight-binding; ZZ, zigzag.
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Figure 2 Plasmons in graphene ribbon dimers. Normal-incidence classical (a)

and quantum-mechanical TB-RPA (AC edges) (b) calculations of the extinction

cross-sections of ribbon dimers (width W56 nm, Fermi energy EF50.4 eV and

intrinsic damping of 0.02 eV) for different carbon-to-carbon edge separations d

(see also Figure 3b for the relation of this parameter to the edge-to-edge distance

in the classical model). Spectra for single ribbons of widths W and 2W are shown

as dotted and dashed curves, respectively. The light polarization is across the

ribbons. AC, armchair; RPA, random-phase approximation; TB, tight-binding.

Quantum nonlocal effects in individual and interacting graphene nanoribbons
I Silveiro et al

3

doi:10.1038/lsa.2015.14 Light: Science & Applications



The plasmon energies obtained from TB-RPA in ribbon arrays are

summarized in Figure 5, where we confirm that ZZ-edge-induced

plasmon quenching does not affect plasmons of energies below the

Fermi level. This is clearly illustrated when moving from ribbons of

width W56 nm to W58 nm for constant doping (EF50.4 eV), which

causes the plasmon energy to go below EF, giving rise to very similar

plasmon energies in both AC and ZZ ribbons (Figure 5b). It should be

stressed that in the touching limit (small d), the graphene becomes an

extended sheet that presents nearly zero absorption (at photon ener-

gies below 2EF), and thus, Figure 5 shows again a discontinuity

between this limit and the configurations with ribbons separated by

an atomic distance, right after breaking inter-ribbon C–C bonds.

CONCLUSIONS

Nonlocal effects in the plasmons of doped graphene ribbons exhibit

the following general properties: (i) plasmons are quenched by ZZ

edges, unless their energies are below the Fermi level, so that they

cannot decay through excitation of electronic edge states; (ii) nonlocal

quantum effects (generally observed as blueshifts) increase with

decreasing ribbon width, although a classical electromagnetic descrip-

tion produces reasonable results for individual ribbons of widths

down to a few nanometers; (iii) nonlocal effects are important in

interacting ribbons at short separations, leading to substantial blue-

shifts in the dipole-active plasmons of closely spaced ribbon dimers, in

contrast to classical theory, which predicts a smooth convergence

towards the double-width ribbon; (iv) remarkably, the removal of a

single row of atoms produces a dramatic increase in the plasmon

energy, observed both in dimers and in ribbon arrays; (v) our realistic

quantum-mechanical calculations yield plasmon energies that are

pushed up to the near-infrared regime for ribbon widths of a few

nanometers, similar to those that can be synthesized by chemical

self-assembly.46 These results provide a solid theoretical background

for understanding the interaction between graphene nanoribbons,

which should be relevant to the design of graphene-plasmon-based

electro-optical modulators and switchers.
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13 Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F et al. Optical nano-
imaging of gate-tunable graphene plasmons. Nature 2012; 487: 77–81.

14 Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS et al. Gate-tuning of graphene
plasmons revealed by infrared nano-imaging. Nature 2012; 487: 82–85.

15 Yan H, Li X, Chandra B, Tulevski G, Wu Y et al. Tunable infrared plasmonic devices
using graphene/insulator stacks. Nat Nanotechnol 2012; 7: 330–334.

16 Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L et al. Gated tunability and
hybridization of localized plasmons in nanostructured graphene. ACS Nano 2013;
7: 2388–2395.

17 Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA. Highly confined tunable mid-
infrared plasmonics in graphene nanoresonators. Nano Lett 2013; 13: 2541–2547.

18 Yan H, Low T, Zhu WJ, Wu YQ, Freitag M et al. Damping pathways of mid-infrared
plasmons in graphene nanostructures. Nat Photonics 2013; 7: 394–399.

19 Rodin AS, Fei Z, McLeod AS, Wagner M, Castro Neto AH et al. Plasmonic hot spots in
triangular tapered graphene microcrystals. arXiv:1309.1909.

20 Mikhailov SA. Non-linear electromagnetic response of graphene. Europhys Lett 2007;
79: 27002.

21 Mikhailov SA. Electromagnetic response of electrons in graphene: non-linear effects.
Physica E 2008; 40: 2626–2629.

22 Hendry E, Hale PJ, Moger J, Savchenko AK, Mikhailov SA. Coherent nonlinear optical
response of graphene. Phys Rev Lett 2010; 105: 097401.

23 Mikhailov SA. Theory of the giant plasmon-enhanced second-harmonic generation in
graphene and semiconductor two-dimensional electron systems. Phys Rev B 2011;
84: 045432.

24 Wallace PR. The band theory of graphite. Phys Rev 1947; 71: 622–634.
25 Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic

properties of graphene. Rev Mod Phys 2009; 81: 109–162.
26 Efetov DK, Kim P. Controlling electron–phonon interactions in graphene at ultrahigh

carrier densities. Phys Rev Lett 2010; 105: 256805.
27 Chen CF, Park CH, Boudouris BW, Horng J, Geng B et al. Controlling inelastic light

scattering quantum pathways in graphene. Nature 2011; 471, 617–620.

0.55

0.50

0.45

P
la

sm
on

 e
ne

rg
y 

(e
V

)

0.40

0.50

0.45

0.35

0.40

0.60

a

b c

0.750.500.250.00 1.00 0.750.500.250.00 1.00 0.750.500.250.00 1.00

4.53.01.50.0 6.0 4.53.01.50.0 6.0

0.9

0.8

0.7

0.6

1.0

1.0

0.8

1.2
0

0.0 0.5 1.0

3 6

6420 8

W = 6 nm

d (nm)

d / W d / W

d
W

d / W

d (nm) d (nm)

EF = 0.4 eV

W = 8 nm
EF = 0.4 eV

W = 6 nm
EF = 1 eV

W = 6 nm
EF = 1.5 eV

Figure 5 Dependence of the fundamental plasmon mode on inter-ribbon distance in arrays. We show the normal-incidence dipolar plasmon frequency in AC (red

curves) and ZZ (blue curves) ribbon arrays as a function of carbon-to-carbon edge separation d for various combinations of ribbon width W and Fermi energy EF (see

labels). The dashed lines indicate the single-ribbon limit for each type of edge, whereas the dotted black lines show the classical single-ribbon result. AC, armchair; ZZ,

zigzag.

Quantum nonlocal effects in individual and interacting graphene nanoribbons

I Silveiro et al

4

Light: Science & Applications doi:10.1038/lsa.2015.14



28 Koppens FHL, Chang DE, Garcı́a de Abajo FJ. Graphene plasmonics: a platform for
strong light–matter interactions. Nano Lett 2011; 11: 3370–3377.

29 Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM et al. Active tunable absorption
enhancement with graphene nanodisk arrays. Nano Lett 2014; 14: 299–304.

30 Thongrattanasiri S, Koppens FHL, Garcı́a de Abajo FJ. Complete optical absorption in
periodically patterned graphene. Phys Rev Lett 2012; 108: 047401.

31 Wunsch B, Stauber T, Sols F, Guinea F. Dynamical polarization of graphene at finite
doping. New J Phys 2006; 8: 318.

32 Jablan M, Buljan H, Soljac
^
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44 Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics. Chem Rev
2007; 107: 718–747.

45 Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene
nanoribbon semiconductors. Science 2008; 319: 1229–1232.

46 Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T et al. Atomically precise bottom-up
fabrication of graphene nanoribbons. Nature 2010; 466: 470–473.

47 Li B, Tahara K, Adisoejoso J, Vanderlinden W, Mali KS et al. Self-assembled air-stable
supramolecular porous networks on graphene. ACS Nano 2013; 7: 10764–10772.

48 Pines D, Nozières P. The Theory of Quantum Liquids. New York: W. A. Benjamin, Inc.;
1966.

49 Garcı́a de Abajo FJ, Howie A. Retarded field calculation of electron energy loss in
inhomogeneous dielectrics. Phys Rev B 2002; 65: 115418.

50 Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ et al. Fine structure
constant defines visual transparency of graphene. Science 2008; 320: 1308.

51 Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA et al. Measurement of the optical
conductivity of graphene. Phys Rev Lett 2008; 101: 196405.

52 Fante RL, McCormack MT. Reflection properties of the salisbury screen. IEEE Trans
Antennas Propag 1988; 36: 1443–1454.

53 Engheta N. Thin absorbing screens using metamaterial surfaces. Antennas Propag
Soc Int Symp, IEEE 2002; 2: 392–395.

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 Unported License. The images or other third

party material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in the credit line; if the material is not included under the Creative

Commons license, users will need to obtain permission from the license holder to reproduce the

material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Quantum nonlocal effects in individual and interacting graphene nanoribbons
I Silveiro et al

5

doi:10.1038/lsa.2015.14 Light: Science & Applications

http://creativecommons.org/licenses/by-nc-sa/3.0/

	Title
	Figure 1 Figure 1 Plasmons in individual graphene ribbons. We show the normal-incidence extinction cross-section of self-standi
	Figure 3 Figure 3 Separation dependence of the transverse plasmon energy in ribbon dimers. (a) We represent the plasmon peak en
	Figure 4 Figure 4 Absorbance of graphene ribbon arrays. We represent the absorbance of AC (a, b) and ZZ (c, d) ribbon arrays fo
	Figure 2 Figure 2 Plasmons in graphene ribbon dimers. Normal-incidence classical (a) and quantum-mechanical TB-RPA (AC edges) (
	References
	Figure 5 Figure 5 Dependence of the fundamental plasmon mode on inter-ribbon distance in arrays. We show the normal-incidence d

