
Notes 1 Quantum Physics F2005 1

Quantum Physics 2005

Notes-1
Course Information, Overview, 

The Need for Quantum Mechanics
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Contact Information: 
Peter Persans, SC1C10, x2934
email: persap @ rpi.edu
Physics Office: SC 1C25  x6310 (mailbox here)

Office hours: Thurs 2-4; M12-2 and by email 
appointment.  Please visit me! 

Home contact: 786-1524     (7-10 pm!)



Notes 1 Quantum Physics F2005 3

Topic Overview

1 Why and when do we use quantum mechanics?
2 Probability waves and the Quantum Mechanical 

State function; Wave packets and particles
3 Observables and Operators 
4 The Schrodinger Equation and some special 

problems (square well, step barrier, harmonic 
oscillator, tunneling)

5 More formal use of operators
6 The single electron atom/ angular momentum
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Intellectual overview

• The study of quantum physics includes 
several key parts:
– Learning about experimental observations of 

quantum phenomena.
– Understanding the meaning and consequences of 

a probabilistic description of physical systems
– Understanding the consequences of uncertainty
– Learning about the behavior of waves and 

applying these ideas to state functions
– Solving the Schrodinger equation and/or carrying 

out the appropriate mathematical manipulations to 
solve a problem.
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The course

• 2 lecture/studios per week T/F 12-2
• Reading quiz and exercises every class = 

15% of grade
• Homework=35%
• 2 regular exams = 30%
• Final = 20%
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Textbook

• Required: Understanding Quantum Physics by 
Michael Morrison

• Recommended: 
Fundamentals of Physics by Halliday, Resnick…
Handbook of Mathematical Formulas by Spiegel  
(Schaums Outline Series)

• References:
Introduction to the Structure of Matter, Brehm and 
Mullen
Quantum Physics, Eisberg and Resnick
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Academic Integrity

• Collaboration on homework and in-class 
exercises is encouraged. Copying is 
discouraged.

• Collaboration on quizzes and examinations is 
forbidden and will result in zero for that test 
and a letter to the Dean of Students.

• Formula sheets will be supplied for exams.  
Use of any other materials results in zero for 
the exam and a letter to the DoS.
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The class really starts now.
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Classical Mechanics
• A particle is an indivisible point of mass.
• A system is a collection of particles with 

defined forces acting on them.
• A trajectory is the position and momentum 

(r(t), p(t))of a particle as a function of time.
• If we know the trajectory and forces on a 

particle at a given time, we can calculate the 
trajectory at a later time.  By integrating 
through time, we can determine the trajectory 
of a particle at all times.
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Some compelling experiments:
The particlelike behavior of 
electromagnetic radiation 

• Simple experiments that tell us that light has 
both wavelike and particle-like behavior
– The photoelectric effect (particle)
– Double slit interference (wave)
– X-ray diffraction (wave)
– The Compton effect (particle)
– Photon counting experiments (particle)
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The photoelectric effect

• In a photoelectric experiment, we measure the 
voltage necessary to stop an electron ejected from 
a surface by incident light of known wavelength.

Krane

Krane

Krane
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Interpretation of the photoelectric 
effect experiment

Einstein introduced the idea that light carries energy in 
quantized bundles - photons.
The energy in a quantum of light is related to the frequency 
of the electromagnetic wave that characterizes the li

-34
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from Millikan’s 1916 paper
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R. A. Millikan, Phys Rev 7, 355, (1916)
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Compton scattering

• The Compton effect involves scattering 
of electromagnetic radiation from 
electrons.

• The scattered x-ray has a shifted 
wavelength (energy) that depends on 
scattered direction

(from Krane)
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Compton effect

( )

'

cos cos
'

0 sin sin
'

' 1 cos

We use energy and momentum conservation laws: 
Energy

 :  kinetic energy
Momentum

 component: 

 component:  

mass of electron; 
=rel

electronhv h K K

h hx mv

hy mv

h
mc

m

#

& ' (
$ $

& ' (
$

$ $ $ &

'

= ! =

= +

= +

! = ) = !

=

ativistic correction to electron momentum mv



Notes 1 Quantum Physics F2005 17

Conclusions from the Compton Effect 

 X-ray quanta of wavelength  have:

Kinetic energy: 

Momentum: 

hcK
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Double slit interference

sin

 The intensity maxima in a double slit wave 
interference experiment occur at:

where  is the distance between the slits.
(The width of the overall pattern depends on
the width of the slits.)

d n
d

( $=
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X-ray diffraction
• In x-ray diffraction, x-ray waves diffracted from 

electrons on one atom interfere with waves diffracted 
from nearby atoms.

• Such interference is most pronounced when atoms 
are arranged in a crystalline lattice.

2 sin

Bragg diffraction maxima 
are observed when:

the distance between adjacent
planes of atoms in the crystal.
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Laue X-ray Diffraction Pattern
• A Laue diffraction 

pattern is observed 
when x-rays of many 
wavelengths are 
incident on a crystal 
and diffraction can 
therefore occur from 
many planes 
simultaneously.

…pretty

from Krane
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The bottom line on light

• In many experiments, light behaves like a 
wave (c=phase velocity, #=frequency, 
$=wavelength).

• In many other experiments, light behaves like 
a quantum particle (photon) with properties:

:

energy: 

momentum: 

and thus

photon
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Some compelling experiments:
The wavelike behavior of particles

• Experiments that tell us that electrons have 
wave-like properties
– electron diffraction from crystals (waves)

• Other particles
– proton diffraction from nuclei
– neutron diffraction from crystals
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Electron diffraction from crystals

• electron diffraction patterns 
from single crystal (above) 
and polycrystals (left) [from 
Krane]
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Proton diffraction from nuclei

from Krane
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Neutron diffraction

from Krane

Diffraction of fast neutrons from Al, Cu, and Pb nuclei.
[from French, after A Bratenahl, Phys Rev 77, 597 
(1950)]
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Electron double slit interference

• Electron interference from passing through a 
double slit

from Rohlf
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Helium diffraction from LiF crystal

from French after Estermann and Stern, Z Phys 61, 95 (1930)
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Alpha scattering from niobium nuclei

Angular distribution of 40 MeV alpha particles scattered 
from niobium nuclei.
[from French after G. Igo et al., Phys Rev 101, 1508 
(1956)]
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The bottom line on particles

• In many experiments, electrons, protons, 
neutrons, and heavier things act like particles 
with mass, kinetic energy, and momentum:

2
21

2 2
 and  for non-relativistic particles pp mv K mv

m
= = =

• In many other experiments, electrons, 
protons, neutrons, and heavier things act like 
waves with :

2
h h
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The De Broglie hypothesis

hp
$

=

for everything
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Some other well-known experiments 
and observations

• optical emission spectra of atoms are 
quantized

• the emission spectrum of a hot object 
(blackbody radiation) cannot be explained 
with classical theories
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Emission spectrum of atoms
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from a random astronomy website
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Blackbody radiation

from Eisberg and Resnick
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A review of wave superposition and 
interference

Many of the neat observations of quantum 
physics can be understood in terms of the 
addition (superposition) of harmonic waves of 
different frequency and phase.
In the next several pages I review some of the 
basic relations and phenomena that are useful 
in understanding wave phenomena.
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y=A sin(k(x±vt)+*)   or   y=Asin(kx±+t+*)
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Phase and phase velocity

y=Asin(kx±+t)
(kx±+t)= phase
when change in phase=2, = repeat
Phase velocity = speed with which point of 

constant phase moves in space.
vp=+/k=$# Trave ling wave

d ista nce  (m)
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0

0.5

1
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Complex Representation of Travelling 
Waves

Doing arithmetic for waves is frequently easier 
using the complex representation using:

((( sincos iei +=

[ ])(Re),(

)cos(),(
-+.

-+.
+!=

+!=
tkxiAetx

tkxAtx
So that a harmonic wave is represented as
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Adding waves: same wavelength and 
direction, different phase
1 01 1

2 02 2

1 2 0

2 2 2
)0 01 02 01 02 1 2

01 1 02 2

01 1 02 2
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2 cos(
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Adding like-waves, in words

• Amplitude
– When two waves are in phase, the resultant 

amplitude is just the sum of the amplitudes.
– When two waves are 1800 out of phase, the 

resultant is the difference between the two.
• Phase

– The resultant phase is always between the two 
component phases. (Halfway when they are 
equal; closer to the larger wave when they are 
not.)

(see adding_waves.mws)
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Another useful example of added waves: 
diffraction from a slit

Let’s take the field at the view screen from an element of length on
the slit ds as Esds

Ignore effects of distance except in the path length.

s

path length difference

a
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Single slit diffraction
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Adding waves: 
traveling in opposite directions

• The resultant wave does not appear to travel 
– it oscillates in place on a harmonic pattern 

both in time and space separately
=Standing wave

0 1 2

1 2
0

(sin( ) sin( ))

2 sin( )cos
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Equal amplitudes:
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Adding waves: different wavelengths
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• The resultant wave has a quickly varying part that waves at the 
average wavelength of the two components.

• It also has an envelope part that varies at the difference 
between the component wavelengths.

BEATS
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Adding waves: group velocity

• Note that when we add two waves of differing 
+ and k to one another, the envelope travels 
with a different speed:

1
1

1

2
2

2

monochromatic wave 1: 

monochromatic wave 2: 

beat envelope: 

phase

phase
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v
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see group_velocity.mws
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Adding many waves to make a pulse

• In order to make a wave pulse of finite width, we 
have to add many waves of differing wavelengths in 
different amounts.

• The mathematical approach to finding out how much 
of each wavelength we need  is the Fourier 
transform:
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The Fourier transform of a Gaussian 
pulse

• We can think of a Gaussian pulse as a 
localized pulse, whose position we know to a 
certain accuracy )x=22x.

2 2/ 21( )
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Finding the transform

2 2 2

2

/ 2

2

( )

1/ 2

( )

I will drop overall multiplicative constants 
because I am interested in the shape of A(k)
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Transform of a Gaussian pulse:
The Heisenberg Uncertainty Principle

We can rewrite this in the standard form of a 
Gaussian in k:

2 2/ 2 2 2( ) 1/    where   kk
k xA k e 2 2 2!3 =

The result then is that 2x2k=1 for a Gaussian pulse.  You 
will find that the product of spatial and wavenumber 
widths is always equal to or greater than one.  Since the 
deBroglie hypothesis relates wavelength to momentum, 
p=h/$ we thus conclude that 2x2p>=h/2,. This is a 
statement of the Heisenberg Uncertainty Principle.



Notes 1 Quantum Physics F2005 49

The Heisenberg Uncertainty Principle

• This principle states that you cannot know both the 
position and momentum of a particle simultaneously 
to arbitrary accuracy.
– There are many approaches to this idea. Here are two.

• The act of measuring position requires that the particle 
intact with a probe, which imparts momentum to the 
particle.

• Representing the position of localized wave requires that 
many wavelengths (momenta) be added together.

• The act of measuring position by forcing a particle to 
pass through an aperture causes the particle wave to 
diffract.
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The Heisenberg Uncertainty Principle

• Position and momentum are called conjugate 
variables and specify the trajectory of a classical 
particle.  We have found that if one wants to specify 
the position of a Gaussian wave packet, then:

x p) ) = h

• Similarly, angular frequency and time are conjugate 
variables in wave analysis.  (They appear with one 
another in the phase of a harmonic wave.)

• Since energy and frequency are related Planck 
constant we have, for a Gaussian packet:

1t+) ) =

E t) ) = h
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The next stages

• We have seen through experiment that particles 
behave like waves with wavelength relationship: 
p=h/$.

• The next stage is to figure out the relationship 
between whatever waves and observable quantities 
like position, momentum, energy, mass…

• The stage after that is to come up with a differential 
equation that describes the wavy thing and predicts 
its behavior.

• There is still a lot more we can do before actually 
addressing the wave equation.
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Addendum – Energy and momentum
The notation for energy, momentum, and wavelength
in Morrison is somewhat confusing because he does not always clearly
distinguish between total relativistic energy (which includes mass energy), 
and kin

2
2

0
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2 2 2 2 4
0

2
0

1
2 2

.

etic energy (which does not.)
Here goes my version:

1) Classical kinetic energy-momentum relation:  

2) Relativistic total energy-momentum relationship: 
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Addendum – comparing classical and relativistic 
formulas for wavelength
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1) Classical:    

2) Relativistic: 

To compare the two expressions, let's Taylor expand eq. 2 in :
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Addendum – comparing classical and relativistic 
formulas for wavelength
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1) Classical:    

2) Relativistic: 

To find the difference between the two forms, let's keep all the terms in :
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