Quantum Physics 2005

Notes-1
Course Information, Overview,
The Need for Quantum Mechanics
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Contact Information:

Peter Persans, SC1C10, x2934

email: persap @ rpi.edu

Physics Office: SC 1C25 x6310 (mailbox here)

Office hours: Thurs 2-4; M12-2 and by email
appointment. Please visit me!

Home contact: 786-1524  (7-10 pm!)

Notes 1 Quantum Physics F2005



Topic Overview

1 Why and when do we use quantum mechanics?

2 Probability waves and the Quantum Mechanical
State function; Wave packets and particles

3 Observables and Operators

4  The Schrodinger Equation and some special
problems (square well, step barrier, harmonic
oscillator, tunneling)

5 More formal use of operators
6 The single electron atom/ angular momentum
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Intellectual overview

» The study of quantum physics includes
several key parts:

— Learning about experimental observations of
guantum phenomena.

— Understanding the meaning and consequences of
a probabilistic description of physical systems

— Understanding the consequences of uncertainty

— Learning about the behavior of waves and
applying these ideas to state functions

— Solving the Schrodinger equation and/or carrying
out the appropriate mathematical manipulations to
solve a problem.
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The course

2 lecture/studios per week T/F 12-2

* Reading quiz and exercises every class =
15% of grade

« Homework=35%

» 2 regular exams = 30%
* Final = 20%
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Textbook

Required: Understanding Quantum Physics by
Michael Morrison

Recommended:
Fundamentals of Physics by Halliday, Resnick...

Handbook of Mathematical Formulas by Spiegel
(Schaums Outline Series)

References:

Introduction to the Structure of Matter, Brehm and
Mullen

Quantum Physics, Eisberg and Resnick
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Academic Integrity

 Collaboration on homework and in-class
exercises is encouraged. Copying is
discouraged.

 Collaboration on quizzes and examinations is
forbidden and will result in zero for that test
and a letter to the Dean of Students.

« Formula sheets will be supplied for exams.
Use of any other materials results in zero for
the exam and a letter to the DoS.
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The class really starts now.
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Classical Mechanics

A particle is an indivisible point of mass.

A system is a collection of particles with
defined forces acting on them.

A trajectory is the position and momentum
(r(t), p(t))of a particle as a function of time.

- If we know the trajectory and forces on a
particle at a given time, we can calculate the
trajectory at a later time. By integrating
through time, we can determine the trajectory
of a particle at all times.

d’r = -VV(7,1); *(r)=md—F

dr’ P di

Notes 1 Quantum Physics F2005

m



Some compelling experiments:
The particlelike behavior of
electromagnetic radiation

- Simple experiments that tell us that light has
both wavelike and particle-like behavior
— The photoelectric effect (particle)
— Double slit interference (wave)
— X-ray diffraction (wave)
— The Compton effect (particle)
— Photon counting experiments (particle)

Notes 1 Quantum Physics F2005
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The photoelectric effect
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FIGURE 3.10 Apparatus for ob-
serving the photoelectric effect. The
flow of electrons from the emitter to
the collector is measured by the am-
meter A as a current  in the external
circuit. A variable voltage source Vey
establishes a potential difference
between the emitter and collec-
tor, which is measured by the volt-

meter V. Krane

Krane
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FIGURE 3.11 The photoelectric
current i as a function of the potential
difference V for two different values
of the intensity of the light. When
the intensity is doubled, the current
is doubled (twice as many photoelec-
trons are emitted), but the stopping
potential V, remains the same.
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FIGURE 3.12 Millikan’s results
for the photoelectric effect in sodium.
The slope of the line is &/e; the exper-
imental determination of the slope
gives a way of determining Planck’s
constant. The intercept should give
the cutoff frequency; however, in Mil-

Krane

 In a photoelectric experiment, we measure the
voltage necessary to stop an electron ejected from
a surface by incident light of known wavelength.
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Interpretation of the photoelectric
effect experiment

Einstein introduced the idea that light carries energy in
quantized bundles - photons.

The energy in a quantum of light is related to the frequency
of the electromagnetic wave that characterizes the light.
The scaling constant can be found from the slope of

eV vs wave frequency, v. ltis found that:

stop
eV, =hv-@ =F -d

stop material

where h = 6.626x10* joule-sec

photon

For light waves in vacuum, ¢ = Av = 3x10° m/s,
SO we can also write:

eV =E—CI)

stop /1 material

A convenient (non-Sl) substitution is hc =1240 eV-nm.
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from Millikan’s 1916 paper

1. That there exists for each exciting frequency v, above a certain critical
value, a definitely determinable maximum velocity of emission of
corpuscles.

2. That there is a linear relation between V and v.

av
3. That = or the slope of the V v line is numerically equal to h/e.

4. That at the critical frequency vq at which v = o, £ = hve, i. e., that the
intercept of the Vv line on the v axis is the lowest frequency at which
the metal in question can be photoelectrically active.

5. That the contact E.M.F. between any two conductors is given by the
equation

Contact EMM.F. = hle(ve — vy) — (Vo — Vo).
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R. A. Millikan, Phys Rev 7, 355, (1916)
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FIGURE 3.19 Schematic diagram of Compton scattering appara-

| i :
tus. The wavelength A’ of the scattered X rays is measured by the % }; 1' Al % %
e e P 8 T M
g (from Krane) = 1{ N 1%
- The Compton effect involves scattering IR
of electromagnetic radiation from & |
electrons. ‘1
- The scattered x-ray has a shifted 3 z iR
wavelength (energy) that depends on T
scattered direction resils o 32y scameci
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Compton effect

We use energy and momentum conservation laws:

Energy
h'=hv-K
Momentum

. K =kinetic energy

electron

h h
x component: 7 = ICOS¢ + ymvcost

y component: 0= %sin¢ + ymyvsin @

/'L'—A=A/l=i(1—cos¢)

mc
m =mass of electron:;

y=relativistic correction to electron momentum mv

Notes 1 Quantum Physics F2005
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Conclusions from the Compton Effect

X-ray quanta of wavelength A have:

Kinetic energy: K = %

Momentum: p =%

Notes 1 Quantum Physics F2005 17



Double slit interference

Plane
wavefronts

Double
slit

Screen

Minima

(b}

FIGURE 5-10 Results from the two-slit experiment using photons.
(@) Measured photon intensity as a function of position. From M. Cagnet, Atlas of Optical
Phenomena, Springer-Verlag (1962). (b) Calculated photon intensity.

The intensity maxima in a double slit wave
interference experiment occur at:

dsinf =nA

where d is the distance between the slits.
(The width of the overall pattern depends on
the width of the slits.)

Notes 1
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X-ray diffraction

 In x-ray diffraction, x-ray waves diffracted from
electrons on one atom interfere with waves diffracted

from nearby atoms.

« Such interference is most pronounced when atoms
are arranged in a crystalline lattice.

Notes 1

X rays

FIGURE 3.5 Abeam of Xraysre-
flected from a set of crystal planes of
spacing d. The beam reflected from
the second plane travels a distance 2d
sin @ greater than the beam reflected
from the first plane.

Bragg diffraction maxima

are observed when:

2d sin @ = nA

d = the distance between adjacent
planes of atoms in the crystal.
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Laue X-ray Diffraction Pattern
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FIGURE 3.7 (Top) Apparatus for observing X-ray scat-
tering by a crystal. An interference maximum (dot) appears
on the film whenever a set of crystal planes happens to
satisfy the Bragg condition for a particular wavelength.
(Bottom) Laue pattern of NaCl crystal.

FIGURE 3.8 Laue pattern of a quartz crystal. The differ-
NOteS 1 ence in crystal structure and spacing between quartz and NaCl
makes this pattern look different from Figure 3.7.

from Krane
im Physics F2005

A Laue diffraction
pattern is observed
when x-rays of many
wavelengths are
iIncident on a crystal
and diffraction can
therefore occur from
many planes
simultaneously.

..pretty
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The bottom line on light

 In many experiments, light behaves like a
wave (c=phase velocity, v=frequency,
A=wavelength).

* In many other experiments, light behaves like
a quantum particle (photon) with properties:

energy: E =hv = he

photon /1

h
momentum: p = 7

and thus: E = pc
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Some compelling experiments:
The wavelike behavior of particles

« Experiments that tell us that electrons have
wave-like properties
— electron diffraction from crystals (waves)
 Other particles
— proton diffraction from nuclei
— neutron diffraction from crystals

Notes 1 Quantum Physics F2005 22



Electron diffraction from crystals

URE 4.3 Comparison of X-ray diffraction and electron
iction. The upper half of the figure shows the result of

tering of 0.071 nm X rays by an aluminum foil, and the ° electron dlffraCtlon patterns

er half shows the result of scattering of 600 eV electrons

uminum. (The wavelengths are different so the scales of from Slngle CryStal (above)

two halves have been adjusted.)

and polycrystals (left) [from
Krane]
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Proton diffraction from
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FIGURE 4.8 Diffraction of 1 GeV protons by oxygen nuclei. The
rattern of maxima and minima is similar to that of single-slit diffrac-
aon of light waves.

from Krane
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Neutron diffraction
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FIGURE 4.7 Diffraction of neu- 1
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Diffraction of fast neutrons from Al, Cu, and Pb nuclei.
[from French, after A Bratenahl, Phys Rev 77, 597
(1950)]
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Electron double slit interference

 Electron interference from passing through a
double slit

I(x)

(h) X

from Rohlf

FIGURE 5-11 Results from the two-slit experiment using electrons.
(a) Measured electron intensity as a function of position. From C. Jénsson, Zeit. Phys. 161, 454

11961). (b) Calculated electron intensity.
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Helium diffraction from LiF crystal

—
X
-

| LiF crystal
Collimating

Beam Detector

of
~elium
atoms

Intensity

—20° —10° 0° 100 20°
Detector setting ¢
(a) (b)

Fig.2-16 (a) Experimental arrangement used by Stern
etal. to investigate crystal diffraction of neutral helium
atoms. (b) Experimental results showing central reflec-
tion peak (¢ = 0°), plus first-order diffraction peaks

(b = 11°). In the experiment, 8 = 18.5°.

from French after Estermann and Stern, Z Phys 61, 95 (1930)
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Alpha scattering from niobium nuclei

Notes 1

0.001 L

! 1 1 1 1 %)
20 40 60 80
Scattering angle (degrees)

Angular distribution of 40 MeV alpha particles scattered
from niobium nuclei.

[from French after G. Igo et al., Phys Rev 101, 1508
(1956)]
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The bottom line on particles

* In many experiments, electrons, protons,
neutrons, and heavier things act like particles
with mass, kinetic energy, and momentum:

1 ’ N .
p=mv and K = Emvz = % for non-relativistic particles
m

 In many other experiments, electrons,
protons, neutrons, and heavier things act like
waves with :

Notes 1 Quantum Physics F2005 29



The De Broglie hypothesis

P 3

for everything

Quantum Physics F2005
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Some other well-known experiments
and observations

- optical emission spectra of atoms are
guantized

 the emission spectrum of a hot object
(blackbody radiation) cannot be explained
with classical theories

Notes 1 Quantum Physics F2005 31



Notes 1

Emission spectrum of ato

Continuous Spectrum

Emission Spectrum

msS

Istronomy website

from a random ¢
For hydrogen:
hy—= —13.66"/( 12 — lzw
n, n )

Quantum Physics F2005
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Blackbody radiation

3= T T T . I I~ 7
i (D dA 8rhe d/
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% l
0 0.5 L. 10 15
A(I0OA)

Figure 1-12 Planck's energy density ot blackbody radiation at various temperatures as a

function of wavelength. Note that the wavelength at which the curve is a maximum de-
creases as the temperature increases.

from Eisberg and Resnick
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A review of wave superposition and
interference

Many of the neat observations of quantum
physics can be understood in terms of the
addition (superposition) of harmonic waves of
different frequency and phase.

In the next several pages | review some of the
basic relations and phenomena that are useful
iIn understanding wave phenomena.
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Notes 1

Harmonic waves

y=A sin(k(xzvt)+@) or y=Asin(kxzwt+g)

sin(x)

A =wavelength; k = 27”
T = period; w= 27” = 27TV

Quantum Physics F2005
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Phase and phase velocity

y=Asin(kxzxawt)
(kxzawt)= phase
when change in phase=2n = repeat

Phase velocity = speed with which point of
constant phase moves in space.

V= alk=Av

Traveling wave

".‘-la!

N 5
N
=0
oo | F
o A
istance

d (m)

Notes 1 Quantum Physics F2005
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Complex Representation of Travelling
Waves

Doing arithmetic for waves is frequently easier

using the complex representation using:

¢'? =cos +isin®

So that a harmonic wave is represented as
Y(x,t) = Acos(kx — wrt + €)

I/J(X,t) _ Re[Aei(kX—a)f+8)]
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Adding waves: same wavelength and

direction, different phase
Y, =y, sin(kx + wt + ¢,)
Y, =Y, sin(kx + wt + ¢, )
taking the form:

Ye =Y, +Y, =9, sin(kx + wt + @)
we find:

‘1//02‘ = 2//021 '”//022 + 24 W, cOS(@ — P,)
and:

Yo, SINQG +1, Sin g,
W COSP +1, COSP,

Notes 1 Quantum Physics F2005 38
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Adding like-waves, in words

- Amplitude

— When two waves are in phase, the resultant
amplitude is just the sum of the amplitudes.

— When two waves are 180° out of phase, the
resultant is the difference between the two.

 Phase

— The resultant phase is always between the two
component phases. (Halfway when they are
equal; closer to the larger wave when they are
not.)

(see
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Another useful example of added waves:
diffraction from a slit

path length difference

Let’s take the field at the view screen from an element of length on
the slit ds as E_ds

Ignore effects of distance except in the path length.

o
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Single slit diffraction
dw = Re(y ' " ds)

z2(s) =2z, +ssinf

. al2
1//(6) =T/jsez(kzo—a)t) J‘ ezkssmﬁds

-al?2
= wsei(kzo _a)t)a Sin /))
p
where
P = %Sin 0 0 E - 5T

2 - . 2 A
. 2 First zero at f=x, SO sinf =—=—
v =0 L ak
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Adding waves:
traveling in opposite directions
Equal amplitudes:

Y, =Y, Sin(kx —wt + £) +sin(kx + wt + £,))

Y, =24, sin(kx + d ; °2) cos ot

« The resultant wave does not appear to travel
— it oscillates in place on a harmonic pattern
both in time and space separately

=Standing wave

Notes 1 Quantum Physics F2005 42



Adding waves: different wavelengths

Y, =4, cos(k,x —at)

T %2 = %o cos(kyx — ayt)
A

It AL v =2 cos [ (k) x-(@ + o)

xcosa[(k k) ( wz)t}

-l
A

5% k diff

Ak Aw
BEATS

=1, COS [kx a)t] COS {7 X — 7;

- The resultant wave has a quickly varying part that waves at the
average wavelength of the two components.

It also has an envelope part that varies at the difference
between the component wavelengths.
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Adding waves: group velocity

- Note that when we add two waves of differing

w and k to one another, the envelope travels

with a different speed:

. 0)1
monochromatic wave 1: v phase; = k_
1
. a)2
monochromatic wave 2: Y ohaser = k_
2
Aw
beat envelope: v, =—
Ak

See

Notes 1 Quantum Physics F2005
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Adding many waves to make a pulse

 In order to make a wave pulse of finite width, we
have to add many waves of differing wavelengths in
different amounts.

- The mathematical approach to finding out how much
of each wavelength we need is the Fourier

transform:

Notes 1

f(x)= 1 [A(k)cos kxdk + [B(k)sin kxdk
1o 0
where :

A(k) = If(x) cos kxdx

—00

B(k) = o}f(x) sin kxdx

— 00
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The Fourier transform of a Gaussian
pulse

- We can think of a Gaussian pulse as a
localized pulse, whose position we know to a
certain accuracy AX=2g;.

a.

Notes 1 Quantum Physics F2005
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Notes 1

Finding the transform

| will drop overall multiplicative constants
because | am interested in the shape of A(k)

1207 ik e ik
A(k) < [e e Mdx= [ e e dx

where a=1/20"
(solving by completing the square:)
__ik jz—k2/4a

A(k) oC oj‘e—axze—ikde — Oj'e_(x ¢ 2\a

—00

dx

ik

N

1 2 2 2
q(k) oC e—k /4a J‘e—ﬁ d/)) —k /4a e -k“o; /2
\/—

Quantum Physics F2005
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Transform of a Gaussian pulse:
The Heisenberg Uncertainty Principle

We can rewrite this in the standard form of a
Gaussian in k:

A(k) x e*?%  where o’ =1/0>

The result then is that o,0,=1 for a Gaussian pulse. You
will find that the product of spatial and wavenumber
widths is always equal to or greater than one. Since the
deBroglie hypothesis relates wavelength to momentum,
p=h/A we thus conclude that o,0,>=h/2x. This is a
statement of the Heisenberg Uncertainty Principle.
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The Heisenberg Uncertainty Principle

- This principle states that you cannot know both the
position and momentum of a particle simultaneously
to arbitrary accuracy.

— There are many approaches to this idea. Here are two.

Notes 1

« The act of measuring position requires that the particle

intact with a probe, which imparts momentum to the
particle.

* Representing the position of localized wave requires that

many wavelengths (momenta) be added together.

- The act of measuring position by forcing a particle to

pass through an aperture causes the particle wave to
diffract.
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The Heisenberg Uncertainty Principle

Position and momentum are called conjugate
variables and specify the trajectory of a classical
particle. We have found that if one wants to specify
the position of a Gaussian wave packet, then:

AxAp =1
- Similarly, angular frequency and time are conjugate
variables in wave analysis. (They appear with one
another in the phase of a harmonic wave.)
AwAt =1

« Since energy and frequency are related Planck
constant we have, for a Gaussian packet:

AEAt =1

Notes 1 Quantum Physics F2005 50



The next stages

We have seen through experiment that particles
behave like waves with wavelength relationship:
p=h/A.

The next stage is to figure out the relationship
between whatever waves and observable quantities
like position, momentum, energy, mass...

The stage after that is to come up with a differential
equation that describes the wavy thing and predicts
its behavior.

There is still a lot more we can do before actually
addressing the wave equation.
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Addendum — Energy and momentum

The notation for energy, momentum, and wavelength

in Morrison is somewhat confusing because he does not always clearly
distinguish between total relativistic energy (which includes mass energy),
and kinetic energy (which does not.)

Here goes my version:
2

p
2m,

1) Classical kinetic energy-momentum relation: T = lmov2 =

2) Relativistic total energy-momentum relationship: E* = p*c? + m ¢*

with E =T + m,c”.
When you want to find the wavelength from classical kinetic energy, use 1 and p = %:

R h he
= > = A= =
2m,  2myA J2m T [2myc*T

When you want to find the wavelength for a relativistic particle use 2 and p =%:

I hel E _ hc/(T+m0c2)

mc2 2 s 2
1+( 0 j 1+ m,¢
E (T+mocz)
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Addendum — comparing classical and relativistic
formulas for wavelength

A< h _ he
\/ 2m,T \/ 2m,c’T

he /(T + mc?
2) Relativistic: A = (7 +mc’) _ he _ he

Hot] T~ T

To compare the two expressions, let's Taylor expand eq. 2 in

1) Classical:

m,c

i he _ he hc

? T Jomer
T 2 2 \/mOC
mocz\/[mc2 +lj -1 moc\/ "’
0

They become the same at small T'!
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Addendum — comparing classical and relativistic
formulas for wavelength

P h _ hc
\/2m()T \/2m0C2T
he

2
m,c’ \/[ mT02 + 1] -1
0

To find the difference between the two forms, let's keep all the terms in

1) Classical:

2) Relativistic: A =

-
m,c

A= he _ hc _ he

2 2
T
myc’ T2+1 -1 myc? r +2 r +1[-1 2Tmyc’ 7|+
m,c myc’ m,c’ 2myc
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