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Abstract. Over the past several decades, developments in Quantum
Physics have provided motivation for research into representation the-
ory. In this paper, we will explain why representation theory occurs in
Quantum Physics and provide a classification of the irreducible, unitary,
finite-dimensional representations of SU(2), conditional on some key the-
orems from the representation theory of compact groups. We will then
explain of what consequence this classification is to physics, and shed
some light on the relationship between the two subjects.

1 Introduction

In Quantum Physics, states of physical systems are elements of a complex vector
space. These vector spaces come with particular choices of orthonormal bases
corresponding to measurable quantities, linear transformation between the bases,
and self-adjoint operators which are diagonal in these bases. In most introduc-
tions to Quantum Mechanics, students are introduced to many such vector spaces
example by example, told how each corresponds to particular physical systems,
and learn how to make predictions by transforming states represented in one
basis into another and computing the amplitude of the coefficients.

This approach allows them to successfully make predictions for physical sys-
tems whose quantum theory is described by the vector space constructions they
are familiar with, but leaves open as to how one obtains the vector spaces, the
corresponding bases and operators, and the transformation laws. This question is
altogether more difficult, and there are many important considerations. One an-
swer is that in situations when quantum effects are only relevant for small-scale
behaviour, the quantum theory should give predictions which are indistinguish-
able from that of the classical theory if one cannot measure very precisely. In this
case, one often says that the quantum theory should “converge” to the classical
theory in the “limit” when an important physical constant & goes to 0. Ways of
producing quantum theories from existing classical ones where such notions can
be made precise are often called methods of “quantizing” a classical theory.

However, not all quantum theories for systems found in nature can be ob-
tained in this way, and in such cases other considerations are needed to obtain
the right quantum theory. An important one is the role of physical symmetries.
Physical symmetries are transformations of the physical states which preserve
the underlying physics. For instance, physical laws are typically invariant under



orthogonal transformations of Euclidean space, since it doesn’t matter where one
puts or how one orients the coordinate axes. These symmetries take the form
a group action by a “symmetry” group on the set of states of the system. In
quantum physics, the set of states form a vector space, and so one is naturally
led to consider group actions on vector spaces, i.e., group representations.

In this paper, we will specifically look at the group SU(2). This is an infinite
group, not a finite one, so we will begin with a discussion (without proof) of which
key results from finite-dimensional representation theory hold in the infinite case.
We will then prove a classification result to classify the physically important
representations of SU(2), and conclude by connecting this result to Physics.

2 Infinite Dimensional Representation Theory

Our study of finite-dimensional representation theory made heavy use of the
theory of characters. In particular, we were able to define an inner product (-, -)
on the space of complex-valued class functions, and found that the characters
of the irreducible representations (p, V'), defined by x,(g) = Tr[p(g)], formed an
orthonormal basis for this space of class functions. This allowed us to check if
a representation was irreducible simply by deciding whether (x,, x,) = 1, and
to check if (p, V) was the same as another irreducible representation (7, W) by
deciding whether (x,, x-) = 0.

In the infinite case, we would much like to be able to replicate these results,
but we are immediately faced with a problem. In the finite case, we defined for
a group G

In the infinite case, |G| is not finite, and we cannot sum over the group elements.
The usual solutions for replacing finite summations when dealing with infinite
objects are to use either convergent sums of countably infinitely many elements,
or to use integrals. If we choose countably infinite summations, we cannot assign
a non-zero value to |G| without weighing the elements of |G| non-uniformly. A
similar problem occurs for uncountably infinite groups which are topologically
non-compact. For compact groups however, we can define an appropriate inte-
gration measure, called the Haar measure, which allows for a suitable definition
of <'7 >

Another condition that’s needed in the infinite case is the requirement that
the map p : G — GL(V) be continuous. In some ways this is not a restriction,
since in the finite case our maps p were continuous with respect to the dis-
crete topology. In physics, one can always assume that any continuous function
is smooth, since every continuous function is arbitrarily-well approximated (in
some natural sense) by a smooth function, and so non-differentiability can have
no relevance in experiments which only ever determine quantities to within some
experimental uncertainty. We will make the same assumption here. The assump-
tion that all relevant maps be smooth puts us in the context of the theory of



differentiable manifolds, which we will not use explicitly, and makes the groups
under consideration Lie groups.

A last assumption that’s needed is that our representations be unitary. For
finite groups this is automatic, but for the infinite dimensional case it needs
to be imposed. To justify this we again look to physics. We’ve mentioned that
quantum theories on a vector space H frequently come with special orthonormal
bases corresponding to measurable quantities. Suppose B is one such basis. This
means that a physical state ¢ € H can be decomposed as ¢ = >, _gapb for
coefficients a;, € C. It is a postulate of such theories that |a|? is the probability
of observing the state b when the state v is measured. This tells us that [|¢|| =
> pes low|? = 1, since probabilities must sum to 1. Furthermore, if p(g) is a linear
transformation corresponding to a representation (p, H) of some symmetry group
G, the map p(g) must preserve the norm, i.e., we must have ||p(g)y| = 1, since
the probabilities must still sum to 1 in any valid state.

The above discussion tells us that our representations must be norm pre-
serving, a condition that is equivalent to (p, H) being a unitary representation.
Taking all these assumptions at once, we now get the following theorem.

Theorem: We can define an inner-product (-,-) on the space of complex-
valued class functions such that for irreducible unitary representations (p, V')
and (p’, V") of a compact Lie Group G, we have

(Xps Xp') = Op,pr-

For a proof, see [2].

The requirement that our representations be unitary also has an additional
benefit, which comes from a general result called the Peter-Weyl Theorem. We
have

Peter-Weyl Theorem (Part II): If (p,H) is a unitary representation
of a compact group G, then (p,H) is a direct sum of irreducible finite-
dimensional unitary representations.

For a source, see [6].

With all this in mind, we can follow the same programme for studying rep-
resentation theory of SU(2) as for the finite-dimensional case — classify the
finite-dimensional irreducible representations, and form the others as all possi-
ble direct sums of these. We pursue this programme in the next section.



3 The Representation Theory of SU(2)
3.1 The Group SU(2)

In general, the group SU(n) is the group of n x n unitary complex matrices with

)

unitarity condition tells us that U* = U~!. The standard formula for the inverse
of a 2 x 2 matrix and the condition det(U) = 1 gives us that

O Y\ s =1 0 =B
5 3)-r-r=(50)

This tells us that § = @, and that v = —f3, so SU(2) takes the form

determinant 1. Let’s consider a matrix U := (: ﬂ) for our case n = 2. The

sv@ = { (% 7) em©): o + 192 - 1)
-8 @
This formulation immediately suggests an identification of SU(2) with S3,
since if a = @1 +ixe and B = x3 + izy for & = (21, 72,23, 74) € R*, we have
|a|? + |B]? = 1 if and only if ||x|| = 1. Because the standard topology on SU(2)
corresponds to the standard topology on S inherited from R*, this shows that
SU(2) is a compact group, which is a fact we will need in the next section.

We would also like to classify the conjugacy classes of SU(2), as this informa-
tion will be important for understanding its character theory. Since A € SU(2)
is unitary, we have AA* = I = A*A, and so A is normal (i.e., AA* = A*A).
The spectral theorem then tells us that A must be diagonalizable by a unitary
matrix U, so A = UDU! for some diagonal matrix D. The condition that

i
1 = det(A) = det(D) tells us that D = <e

0 e
eral, we may have that U ¢ SU(2). But since U is unitary, we know det(U) = ei®
for some « € [0, 27). This lets us choose U’ = e~*/2U and get that

Oi9> for some 6 € [0,27). In gen-

U'(U')" = (e PU) (U™ =UU* =1  U'DU"'=UDU"' = A.

We also then have that det(U’) = 1, so we see that every A € SU(2) is conju-

gate to a matrix of the form D. Since conjugate matrices must have the same

eigenvalues, we conclude that each conjugacy class in SU(2) is specified by a
i0

parameter 6 € [0,27), and generated by a matrix Dy = <60 60i6>'

3.2 Some Irreducible Representations of SU(2)

To begin with, we will give an explicit construction of some irreducible rep-
resentations of SU(2). We will eventually see that, up to isomorphism, such
representations exhaust our search.



Take V;,, for n € Z>( to be the n41 dimensional vector space of homogeneous
polynomials in two variables, z; and zo, over C. That is, each f € V,, is of the
form

f(z1,22) = apz] + alz?flzg + -+ an71212371 + anzy,

where a; € C for 0 < j < n. We then define the representation (m,, V;,) of SU(2)

on A= (_aﬂ g) € SU(2) by

Z1
Z2

T

(7 (A) /)(z1,22) = f (A_l ( )) = f(@z — P22, Bz1 + az2)

If A, A’ € SU(2), we easily see that 7, (AA")f = m,(A) (7 (A") f). The fact that
each m,(A) is linear is also easily checked. We also need to check that the result
is again a homogenous polynomial in z; and 2o, but this is a consequence of
the fact that when we expand (@z; — B22)*(B21 + az2)" % we will only ever get
terms of total degree n. Thus, we have a well-defined representation.

Suppose we have some SU (2)-invariant subspace W of V,, which contains a
non-zero f. Then g,(z1,22) = f(az,a"t2z) for |a] = 1 is also in W, as are
linear combinations of elements of this form. Each g, is equal to f but with each
term apzf 23 F s ara®* 728207 Choosing the a such that o?*~" = —1, we
can find g, such that f + g, has one less term than f. Inductively, we can find
an element of W which has but a single term, which by choosing « to cancel the

coeflicient we can suppose is a monomial of the form zfz;“k

Now consider A = <Z§ zj) where 7,5 € R and 72 + §2 = 1. We have that

A € SU(2), and acting on 220" we get

k n—k
wzl—wzgk(—iazlﬂ@)"-k:( vi<—z’6>k-iziz§"> > (ig)Iyr Ry
=0

Jj=0

Z Z (Z'(S)k-l-j—i,_yn—k—j—i-i lezgfl

0 \itj=l

l
(ia)k,yn—k (Z(i(s)l—%,y%—l) lezgfl

1=0

n
=

n

=0

Consider the situation when v — 1. The coefficient of the 2 2% ~! term approaches

l l Lo\ —2 s\ —2(14+1
(i(S)k (Z-(S)l—% — (ié)k+l Z(ié)_% — (z'(s)k'H (26) : __((;g))Q(l+ ).
i=0 =0

7

This is non-zero for 6 # 0 and away from =£1, so there is some value of (v, )
in a neighbourhood of (1,0) € S* C R? such that none of the coefficients of
Tn(A)(2F257%) are zero. This shows that there is an element of W all of whose



terms are non-zero. By applying the cancellation procedure we used to turn f
into a monomial, we can thus obtain any monomial in W. This shows that W
contains all the monomials, and thus we must have W = V,,. Since W was an
arbitrary SU(2)-invariant subspace of V,,, we have proved:

Proposition: The representation (m,,V,) of SU(2) is irreducible for all
n e Zzo.

We make one final observation about the representations (m,,, V;,). We showed
earlier that the conjugacy classes of SU(2) are indexed by 6 € [0,27) and gen-

62’0

0

as our basis for Vj,, we can see that 7, (Dg)(2F2z87%) = ¢0k=n) 2k 1=k "and so
the eigenvalues of 7, (Dy) are {?2*=™)17_ " and the character for 7, takes the
form

n—k

erated by elements of the form Dy = ( e_w). Taking the monomials 2% 2}

Xn(A) = xa(B(A4)) = Y G, (1)
k=0

where §(A) is the associated 6-value for the conjugacy class of A.

3.3 The Classification Theorem

We now prove our main theorem.

Theorem: Every finite-dimensional irreducible unitary representation of
SU(2) is isomorphic to (m,,V;,) for some n € Z>o.

Proof: Suppose that (p,V) is a finite (n + 1)-dimensional irreducible unitary
representation of SU(2). Consider the group H := {Dy : 6 € [0,27)} 2 U(1) C
SU(2). We can restrict (p,V) to a representation of H, which we can denote
by (p|m,V). We know that H is abelian, so its irreducible representations are
1-dimensional. This lets us write

(p|H>V) = (pl‘H’(c) @"'@(pn+1|ch)a

where each v € V is written as v = v1 @ -+ @ v,41 and for each Dy € H we
know that (p;|m(Dg))v; = e®*i%0; for some constant k;. Because we require our
representations to be continuous, we must have %% — 1 when 6 — 27, which
tells us that k; € Z.

We can then extend py, | to act on all of SU(2) by simply defining it to agree
with p on v; and act as the zero map on each v; for i # j. We then get that
p=p1@---Dppt1. Because the character of a representation is defined on each
conjugacy class of the group, it suffices to consider (p|,V’) to determine .
This tells us that x, = x1 + - - + Xn41, where x; is the character for (p;|m,C).



As the characters are just the sum of the eigenvalues, we have for A € SU(2)
that

n+1 n+1
Xp(e) = XP(DG(A)) — Z elkje — Z(eze)kj. (2)
j=1 j=1

Since x, acts on conjugacy classes, its action should be invariant under conju-

gation by P = (_01 (1)) We have that

(0 1\ [e? 0 0 -1\ (e 0\
PDoP (—1 0)(0 e )1 0)= o e)=P0

which tells us that x,(6) is symmetric under the interchange § — —6.

Our goal now is to show that x, is not orthogonal to all of the characters
of the form given in (1). To do this, it suffices to show that x, is a linear
combination of such characters. Both the expressions (1) and (2) can be regarded
as Laurent polynomials in w := ¢*®. Furthermore, looking at (1) and considering
the symmetry of (2) about 6, we can see that they are both symmetric Laurent
polynomials which are unchanged under the map w + w~!. Call the degree of
such a polynomial the magnitude of the largest (or smallest) exponent d. The
set of symmetric Laurent polynomials of degree at most d forms a vector space
under the usual operations we can label L;. We have that

CZLQCL1CLQC"'CLdCLd_HC"'

The dimension of L4 is d + 1. In Section 3.2, we exhibited the irreducible
representations (Vp, mo), (V1,m1), -+, (Vg,mq) which have characters which are
polynomials in Lg. The fact that these are distinct irreducible representations
shows that the set of these polynomials is orthonormal, and so those characters
form a basis for L4. Then since x,(8) is also of this form, it cannot be orthogonal
to the characters of the representations exhibited in Section 3.2. This shows
that (V, ) is not distinct from the representations we have already seen, and
completes the proof.

4 SU(2) in Quantum Physics

The fact that the representation theory of SU(2) is of importance in Physics may
seem surprising. We argued in Section 1 that we can expect that the representa-
tion theory of groups which represent symmetries of physical systems to occur
in Quantum Physics, but what kind of physical situation is symmetric under
action by SU(2)? One can easily imagine that physical systems could be sym-
metric under the action of SO(n) for n = 2 or n = 3; there are many examples
of rotationally symmetric systems in physics. But while SU(2) does correspond
to a kind of norm-preserving rotation, the matrix elements are complex-valued,
making it difficult to imagine how it could play a role in physical theories where
measurable quantities are required to be real.



The key observation is that SU(2) is isomorphic to another group, commonly
called Spin(3). Spin(3) is what’s known as a “double cover” of SO(3) — a larger
group where each element of SO(3) is associated to two distinct elements of
Spin(3) in a way that behaves smoothly with the differential structure on both.
If one imagines moving through Spin(3) embedded in some external space, then
the structure of the group dictates that you have to “go around twice” to get
back to where you started, whereas one full rotation suffices with SO(3).

The map & : Spin(3) — SO(3) which projects back onto SO(3) is a group
homomorphism, called a covering map. If we have a representation (p,V’) of
SO(3), the composition p o k gives us a representation of Spin(3) = SU(2). So
by classifying representations of SU(2), we have in fact also given a classification
of representations of SO(3). In particular, it turns out that the representations
(7, Vi) for even values of n are also irreducible representations of SO(3).

But if the goal is representations of SO(3), why bother with SU(2)? Well,
remarkably, the representations (7, V;,) for odd n, which are “genuine” represen-
tations only of SU(2) = Spin(3), are also physically realized. Physicists typically
define a parameter s := %, called the “spin” of the representation, which gives
the SO(3) representations an integer value and gives the Spin(3) representations
“half-integer” values. This quantity is also associated to all particles in nature.
Protons, neutrons and electrons have spin s = %; photons, particles of light,
carry s = 1; the Higgs particle, recently discovered at the LHC, has spin 0; the
hypothesized graviton particle is believed to have s = 2, and composite particles
can have arbitrarily large values of s, in principle. The value of s defines the
theory of angular momentum of the particle under consideration — if a parti-
cle has spin s, its vector space of angular momentum states will be isomorphic
to the representation (mas, Vas). As distinct observable quantities in quantum
physics are typically associated to orthonormal basis elements, the dimension-
ality of the space dictates the number of spin values we can measure. For the
electron, dim Vo, = 2s + 1 = 2, so the spin of an electron can take two distinct
values, commonly called “up” and “down”. For large macroscopic objects, the
value of s is enormous, which is said to explain why macroscopic objects appear
to have a continuous range of possible angular momenta despite the constituent
particles only taking on angular momenta from a finite set of discrete values.

One of the most remarkable consequences of the relationship between repre-
sentations of SU(2) = Spin(3) and angular momentum is that for half-integer
values of s the difference between the two “halves” of Spin(3) are physically real-
ized. Since the state spaces for half-integer spin particles are not representations
of SO(3), acting by a full 27-rotation does not return the system to its original
state. Rather, it requires a 4m-rotation, two ordinary full rotations, to return the
system back to its starting point. In some sense, electrons, protons and neutrons
must be rotated by 720 degrees to return to their original form — 360 degrees is
not enough.

Far from a mathematical oddity, this effect has experimental consequences. In

two celebrated 1975 experiments, researchers directed two beams of of identically
prepared neutrons through an apparatus which created an interference pattern.



A magnetic field was then used to rotate just one of the beams by a full 27
rotation, which changed the result [4][5].

5 Conclusion

We have seen that the representation theory of SU(2) plays an important role
in Physics. We also saw how the tools developed in the representation theory
of finite groups have generalizations to compact groups, in particular a class of
compact groups known as compact Lie groups. Although the theory in these
cases is relatively well understood, there are many open problems in the repre-
sentation theory of non-compact Lie groups, and of infinite groups in general.
Moreover, many of the symmetries observed in physics, such those described by
the Lorentz and Poincare groups, correspond to non-compact infinite groups.
Their representations are also important in physics, particularly in Quantum
Field Theory. Thus, we can expect that Physics will continue to motivate re-
search in representation theory in the years to come.
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