

by Steven Holzner

Table of Contents

.

Introduction	. 1
About This Book	1
Conventions Used in This Book	2
Foolish Assumptions	2
How This Book Is Organized	
Part I: Small World, Huh? Essential Quantum Physics	
Part II: Bound and Undetermined: Handling Particles	
in Bound States	3
Part III: Turning to Angular Momentum and Spin	3
Part IV: Multiple Dimensions: Going 3D with Quantum Physics.	
Part V: Group Dynamics: Introducing Multiple Particles	
Part VI: The Part of Tens	
Icons Used in This Book	4
Where to Go from Here	

Part 1: Small World, Huh? Essential Quantum Physics..... 7

9
10
12
12
12
13
14
16
17
18
20
20
21
23
24
26
27
28
29
-

Covering all your bases: Bras and kets as basis-less	
state vectors	30
Understanding some relationships using kets	30
Grooving with Operators	
Hello, operator: How operators work	
I expected that: Finding expectation values	
Looking at linear operators	
Going Hermitian with Hermitian Operators and Adjoints	
Forward and Backward: Finding the Commutator	
Commuting	
Finding anti-Hermitian operators	
Starting from Scratch and Ending Up with Heisenberg	
Eigenvectors and Eigenvalues: They're Naturally Eigentastic!	
Understanding how they work	
Finding eigenvectors and eigenvalues	
Preparing for the Inversion: Simplifying with Unitary Operators	
Comparing Matrix and Continuous Representations	
Going continuous with calculus	
Doing the wave	

Chapter 3: Getting Stuck in Energy Wells	57
Looking into a Square Well	
Trapping Particles in Potential Wells	59
Binding particles in potential wells	60
Escaping from potential wells	60
Trapping Particles in Infinite Square Potential Wells	61
Finding a wave-function equation	61
Determining the energy levels	62
Normalizing the wave function	64
Adding time dependence to wave functions	
Shifting to symmetric square well potentials	
Limited Potential: Taking a Look at Particles and Potential Steps	68
Assuming the particle has plenty of energy	69
Assuming the particle doesn't have enough energy	74
Hitting the Wall: Particles and Potential Barriers	
Getting through potential barriers when E > V ₀	79
Getting through potential barriers, even when E < V _o	81
Particles Unbound: Solving the Schrödinger Equation	
for Free Particles	
Getting a physical particle with a wave packet	87
Going through a Gaussian example	88

Chapter 4: Back and Forth with Harmonic Oscillators	91
Grappling with the Harmonic Oscillator Hamiltonians	91
Going classical with harmonic oscillation	92
Understanding total energy in quantum oscillation	
Creation and Annihilation: Introducing the Harmonic Oscillator	
Operators	94
Mind your p's and q's: Getting the energy state equations	94
Finding the Eigenstates	96
Using a and a [†] directly	97
Finding the harmonic oscillator energy eigenstates	99
Putting in some numbers	106
Looking at Harmonic Oscillator Operators as Matrices	108
A Jolt of Java: Using Code to Solve the Schrödinger Equation	
Numerically	114
Making your approximations	114
Building the actual code	116
Running the code	123

Part 111: Turning to Angular Momentum and Spin...... 125

Chapter 5: Working with Angular Momentum	
on the Quantum Level	127
Ringing the Operators: Round and Round with Angular Momentum	128
Finding Commutators of L _x , L _y , and L _z	
Creating the Angular Momentum Eigenstates	131
Finding the Angular Momentum Eigenvalues	
Deriving eigenstate equations with β_{max} and β_{min}	133
Getting rotational energy of a diatomic molecule	136
Finding the Eigenvalues of the Raising and Lowering Operators	
Interpreting Angular Momentum with Matrices	139
Rounding It Out: Switching to the Spherical Coordinate System	146
The eigenfunctions of L _z in spherical coordinates	149
The eigenfunctions of L^2 in spherical coordinates	150
Chapter 6: Getting Dizzy with Spin	157
The Stern-Gerlach Experiment and the Case of the Missing Spot	157
Getting Down and Dirty with Spin and Eigenstates	
Halves and Integers: Saying Hello to Fermions and Bosons	
Spin Operators: Running Around with Angular Momentum	
Working with Spin 1/2 and Pauli Matrices	
Spin 1/2 matrices	
Pauli matrices	

rt IV: Multiple Dimensions: Going 3D th Quantum Physics	167
Chapter 7: Rectangular Coordinates: Solving Problems	100
in Three Dimensions	
The Schrödinger Equation: Now in 3D!	169
Solving Three-Dimensional Free Particle Problems	172
The x, y, and z equations	173
Finding the total energy equation	174
Adding time dependence and getting a physical solution	1() 177
Getting Squared Away with 3D Rectangular Potentials	<i>۱۱۱</i> ۱۹۸
Determining the energy levels	100 101
Normalizing the wave function	וסו 109
Using a cubic potential	103 19 <i>1</i>
Springing into 3D Harmonic Oscillators	104
Chapter 8: Solving Problems in Three Dimensions:	189
Spherical Coordinates	
A New Angle: Choosing Spherical Coordinates	100
Instead of Rectangular	190 102
Taking a Good Look at Central Potentials in 3D	192 109
Breaking down the Schrödinger equation	192 102
The angular part of $\psi(\mathbf{r}, \theta, \phi)$	193 104
The radial part of $\psi(\mathbf{r}, \theta, \phi)$.	194 105
Handling Free Particles in 3D with Spherical Coordinates	195 106
The spherical Bessel and Neumann functions	
The limits for small and large ρ Handling the Spherical Square Well Potential	109 109
Handling the Spherical Square well Potential	190 100
Inside the square well: $0 < r < a$	200
Outside the square well: r > a Getting the Goods on Isotropic Harmonic Oscillators	
-	
Chapter 9: Understanding Hydrogen Atoms	205
Coming to Terms: The Schrödinger Equation	
for the Hydrogen Atom	
Simplifying and Splitting the Schrödinger Equation for Hydrogen	
Solving for $\psi(R)$	
Solving for $\psi(\mathbf{r})$	
Solving the radial Schrödinger equation for small r	
Solving the radial Schrödinger equation for large r	
You got the power: Putting together the solution for	010
the radial equation	
Fixing f(r) to keep it finite	
Finding the allowed energies of the hydrogen atom Getting the form of the radial solution of the Schrödinger	
equation	218
Some hydrogen wave functions	220

_____ Table of Contents

Calculating the Energy Degeneracy of the Hydrogen Atom	222
Quantum states: Adding a little spin	224
On the lines: Getting the orbitals	
Hunting the Elusive Electron	
Chapter 10: Handling Many Identical Particles	.231
Many-Particle Systems, Generally Speaking	232
Considering wave functions and Hamiltonians	232
A Nobel opportunity: Considering multi-electron atoms	
A Super-Powerful Tool: Interchange Symmetry	
Order matters: Swapping particles with	
the exchange operator	235
Classifying symmetric and antisymmetric wave functions	237
Floating Cars: Tackling Systems of Many Distinguishable Particles	239
Juggling Many Identical Particles	242
Losing identity	242
Symmetry and antisymmetry	244
Exchange degeneracy: The steady Hamiltonian	244
Name that composite: Grooving with the symmetrization	
postulate	245
Building Symmetric and Antisymmetric Wave Functions	246
Working with Identical Noninteracting Particles	247
Wave functions of two-particle systems	
Wave functions of three-or-more-particle systems	249
It's Not Come One, Come All: The Pauli Exclusion Principle	
Figuring out the Periodic Table	

Chapter 11: Giving Systems a Push: Perturbation Theory Introducing Time-Independent Perturbation Theory	
Working with Perturbations to Nondegenerate Hamiltonians	
A little expansion: Perturbing the equations	
Matching the coefficients of λ and simplifying	
Finding the first-order corrections	
Finding the second-order corrections	
Perturbation Theory to the Test: Harmonic Oscillators	
in Electric Fields	
Finding exact solutions	
Applying perturbation theory	
Working with Perturbations to Degenerate Hamiltonians	
Testing Degenerate Perturbation Theory:	
Hydrogen in Electric Fields	271
hapter 12: Wham-Blam! Scattering Theory	275
Introducing Particle Scattering and Cross Sections	

Translating between the Center-of-Mass and Lab Frames	
Framing the scattering discussion	
Framing the scattering discussion	
Relating the scattering angles between frames	
Translating cross sections between the frames	
Trying a lab-frame example with particles of equal mass	
Tracking the Scattering Amplitude of Spinless Particles	
Tracking the Scattering Amplitude of Spinless Furthered minimum	
The incident wave function	
The scattered wave function	
Relating the scattering amplitude and differential	
cross section	
Finding the scattering amplitude	
The Born Approximation: Rescuing the Wave Equation	
Exploring the far limits of the wave function	
Using the first Born approximation	
D ut the Developmention to work	
Putting the Born approximation to work	

Part VI: The Part of Tens...... 293

Chapter 13: Ten Quantum Physics Tutorials	
An Introduction to Quantum Mechanics	
Quantum Mechanics Tutorial	
Grains of Mystique: Quantum Physics for the Layman	<u>29</u> 6
Quantum Physics Online Version 2.0	
Todd K. Timberlake's Tutorial	
Physics 24/7's Tutorial	
Stan Zochowski's PDF Tutorials	
Ouantum Atom Tutorial	
College of St. Benedict's Tutorial	
A Web-Based Quantum Mechanics Course	
Chapter 14: Ten Quantum Physics Triumphs	
Wave-Particle Duality	
The Photoelectric Effect	
Postulating Spin	
Differences between Newton's Laws and Quantum Physics	
Heisenberg Uncertainty Principle	
Quantum Tunneling	
Discrete Spectra of Atoms	
Harmonic Oscillator	
Square Wells	
Schrödinger's Cat	
Glossary	

309

4	4		
	Index	 ***************	**********