Quantum Physics FOR

 REVISED EDITION

by Steven Holzner

John Wiley \& Sons, Inc.

Table of Contents

Introduction 1
About This Book 1
Conventions Used in This Book 2
Foolish Assumptions 2
How This Book Is Organized 2
Part I: Small World, Huh? Essential Quantum Physics 3
Part II: Bound and Undetermined: Handling Particles in Bound States 3
Part III: Turning to Angular Momentum and Spin 3
Part IV: Multiple Dimensions: Going 3D with Quantum Physics 3
Part V: Group Dynamics: Introducing Multiple Particles 4
Part VI: The Part of Tens 4
Icons Used in This Book 4
Where to Go from Here 5
Part 1: Small World, Huh? Essential Quantum Physics 7
Chapter 1: Discoveries and Essential Quantum Physics 9
Being Discrete: The Trouble with Black-Body Radiation 10
First attempt: Wien's Formula 12
Second attempt: Rayleigh-Jeans Law 12
An intuitive (quantum) leap: Max Planck's spectrum 12
The First Pieces: Seeing Light as Particles 13
Solving the photoelectric effect 14
Scattering light off electrons: The Compton effect 16
Proof positron? Dirac and pair production 17
A Dual Identity: Looking at Particles as Waves 18
You Can't Know Everything (But You Can Figure the Odds) 20
The Heisenberg uncertainty principle 20
Rolling the dice: Quantum physics and probability 21
Chapter 2: Entering the Matrix: Welcome to State Vectors 23
Creating Your Own Vectors in Hilbert Space 24
Making Life Easier with Dirac Notation 26
Abbreviating state vectors as kets 27
Writing the Hermitian conjugate as a bra 28
Multiplying bras and kets: A probability of 1 29
Covering all your bases: Bras and kets as basis-less state vectors 30
Understanding some relationships using kets 30
Grooving with Operators 31
Hello, operator: How operators work 31
I expected that: Finding expectation values 33
Looking at linear operators 34
Going Hermitian with Hermitian Operators and Adjoints 35
Forward and Backward: Finding the Commutator 36
Commuting 37
Finding anti-Hermitian operators 37
Starting from Scratch and Ending Up with Heisenberg 38
Eigenvectors and Eigenvalues: They're Naturally Eigentastic! 42
Understanding how they work. 45
Finding eigenvectors and eigenvalues 46
Preparing for the Inversion: Simplifying with Unitary Operators 49
Comparing Matrix and Continuous Representations 51
Going continuous with calculus 52
Doing the wave 52
Part 11: Bound and Undetermined: Handling Particles in Bound States. 55
Chapter 3: Getting Stuck in Energy Wells 57
Looking into a Square Well. 57
Trapping Particles in Potential Wells 59
Binding particles in potential wells 60
Escaping from potential wells 60
Trapping Particles in Infinite Square Potential Wells 61
Finding a wave-function equation 61
Determining the energy levels 62
Normalizing the wave function 64
Adding time dependence to wave functions 65
Shifting to symmetric square well potentials 67
Limited Potential: Taking a Look at Particles and Potential Steps 68
Assuming the particle has plenty of energy 69
Assuming the particle doesn't have enough energy 74
Hitting the Wall: Particles and Potential Barriers 78
Getting through potential barriers when $\mathrm{E}>\mathrm{V}_{0}$ 79
Getting through potential barriers, even when $E<V_{0}$ 81
Particles Unbound: Solving the Schrödinger Equation for Free Particles 85
Getting a physical particle with a wave packet 87
Going through a Gaussian example 88
Chapter 4: Back and Forth with Harmonic Oscillators 91
Grappling with the Harmonic Oscillator Hamiltonians 91
Going classical with harmonic oscillation 92
Understanding total energy in quantum oscillation 93
Creation and Annihilation: Introducing the Harmonic Oscillator Operators 94
Mind your p's and q's: Getting the energy state equations. 94
Finding the Eigenstates 96
Using a and a^{\dagger} directly. 97
Finding the harmonic oscillator energy eigenstates 99
Putting in some numbers 106
Looking at Harmonic Oscillator Operators as Matrices 108
A Jolt of Java: Using Code to Solve the Schrödinger Equation
Numerically. 114
Making your approximations 114
Building the actual code 116
Running the code 123
Part 111: Turning to Angular Momentum and Spin 125
Chapter 5: Working with Angular Momentum on the Quantum Level 127
Ringing the Operators: Round and Round with Angular Momentum. 128
Finding Commutators of L_{x}, L_{y}, and L_{z} 130
Creating the Angular Momentum Eigenstates 131
Finding the Angular Momentum Eigenvalues 133
Deriving eigenstate equations with $\beta_{\text {max }}$ and $\beta_{\text {min }}$ 133
Getting rotational energy of a diatomic molecule 136
Finding the Eigenvalues of the Raising and Lowering Operators 138
Interpreting Angular Momentum with Matrices 139
Rounding It Out: Switching to the Spherical Coordinate System 146
The eigenfunctions of L_{z} in spherical coordinates 149
The eigenfunctions of $\mathrm{L}^{\frac{3}{2}}$ in spherical coordinates 150
Chapter 6: Getting Dizzy with Spin 157
The Stern-Gerlach Experiment and the Case of the Missing Spot. 157
Getting Down and Dirty with Spin and Eigenstates 159
Halves and Integers: Saying Hello to Fermions and Bosons 160
Spin Operators: Running Around with Angular Momentum 161
Working with Spin $1 / 2$ and Pauli Matrices 162
Spin $1 / 2$ matrices 163
Pauli matrices 165
Part 1U: Multiple Dimensions: Going 3D with Quantum Physics 167
Chapter 7: Rectangular Coordinates: Solving Problems in Three Dimensions 169
The Schrödinger Equation: Now in 3D! 169
Solving Three-Dimensional Free Particle Problems 172
The x, y, and z equations 173
Finding the total energy equation 174
Adding time dependence and getting a physical solution 175
Getting Squared Away with 3D Rectangular Potentials 177
Determining the energy levels 180
Normalizing the wave function 181
Using a cubic potential 183 183
Springing into 3D Harmonic Oscillators 184
Chapter 8: Solving Problems in Three Dimensions: Spherical Coordinates. 189
A New Angle: Choosing Spherical Coordinates Instead of Rectangular 190
Taking a Good Look at Central Potentials in 3D 192
Breaking down the Schrödinger equation 192
The angular part of $\psi(r, \theta, \phi)$ 193
The radial part of $\psi(r, \theta, \phi)$ 194
Handling Free Particles in 3D with Spherical Coordinates 195
The spherical Bessel and Neumann functions 196
The limits for small and large ρ 197
Handling the Spherical Square Well Potential 198
Inside the square well: $0<r<a$ 199
Outside the square well: $r>a$ 200
Getting the Goods on Isotropic Harmonic Oscillators 201
Chapter 9: Understanding Hydrogen Atoms 205
Coming to Terms: The Schrödinger Equation for the Hydrogen Atom 205
Simplifying and Splitting the Schrödinger Equation for Hydrogen 208
Solving for $\psi(\mathrm{R})$ 210
Solving for $\psi(r)$ 211
Solving the radial Schrödinger equation for small r 211
Solving the radial Schrödinger equation for large r 212
You got the power: Putting together the solution for the radial equation 212
Fixing $f(r)$ to keep it finite 215
Finding the allowed energies of the hydrogen atom 216
Getting the form of the radial solution of the Schrödinger equation 218
Some hydrogen wave functions 220
Calculating the Energy Degeneracy of the Hydrogen Atom 222
Quantum states: Adding a little spin 224
On the lines: Getting the orbitals 226
Hunting the Elusive Electron 228
Chapter 10: Handling Many Identical Particles 231
Many-Particle Systems, Generally Speaking 232
Considering wave functions and Hamiltonians 232
A Nobel opportunity: Considering multi-electron atoms 233
A Super-Powerful Tool: Interchange Symmetry 235
Order matters: Swapping particles with the exchange operator 235
Classifying symmetric and antisymmetric wave functions 237
Floating Cars: Tackling Systems of Many Distinguishable Particles 239
Juggling Many Identical Particles 242
Losing identity 242
Symmetry and antisymmetry 244
Exchange degeneracy: The steady Hamiltonian 244
Name that composite: Grooving with the symmetrization postulate 245
Building Symmetric and Antisymmetric Wave Functions 246
Working with Identical Noninteracting Particles 247
Wave functions of two-particle systems 248
Wave functions of three-or-more-particle systems 249
It's Not Come One, Come All: The Pauli Exclusion Principle 250
Figuring out the Periodic Table 251
Part U: Group Dynamics: Introducing
Multiple Particles. 253
Chapter 11: Giving Systems a Push: Perturbation Theory 255
Introducing Time-Independent Perturbation Theory 255
Working with Perturbations to Nondegenerate Hamiltonians 256
A little expansion: Perturbing the equations 257
Matching the coefficients of λ and simplifying 258
Finding the first-order corrections 259
Finding the second-order corrections 261
Perturbation Theory to the Test: Harmonic Oscillators in Electric Fields 262
Finding exact solutions 264
Applying perturbation theory 264
Working with Perturbations to Degenerate Hamiltonians 269
Testing Degenerate Perturbation Theory: Hydrogen in Electric Fields 271
Chapter 12: Wham-Blam! Scattering Theory 275
Introducing Particle Scattering and Cross Sections 275
Translating between the Center-of-Mass and Lab Frames 277
Framing the scattering discussion 277 277
Relating the scattering angles between frames 278 278
Translating cross sections between the frames 281
Trying a lab-frame example with particles of equal mass 282
Tracking the Scattering Amplitude of Spinless Particles 283 283
The incident wave function 284
The scattered wave function 285
Relating the scattering amplitude and differential cross section 285
Finding the scattering amplitude 286
The Born Approximation: Rescuing the Wave Equation 288
Exploring the far limits of the wave function 289
Using the first Born approximation 290
Putting the Born approximation to work 291
Part UI: The Part of Tens 293
Chapter 13: Ten Quantum Physics Tutorials 295
An Introduction to Quantum Mechanics 295
Quantum Mechanics Tutorial 295
Grains of Mystique: Quantum Physics for the Layman 296
Quantum Physics Online Version 2.0 296
Todd K. Timberlake's Tutorial 296
Physics 24/7's Tutorial 296
Stan Zochowski's PDF Tutorials 297
Quantum Atom Tutorial 297
College of St. Benedict's Tutorial 297
A Web-Based Quantum Mechanics Course 297
Chapter 14: Ten Quantum Physics Triumphs 299
Wave-Particle Duality 299
The Photoelectric Effect 299
Postulating Spin 300
Differences between Newton's Laws and Quantum Physics 300
Heisenberg Uncertainty Principle 300
Quantum Tunneling. 301
Discrete Spectra of Atoms 301
Harmonic Oscillator 301
Square Wells 302
Schrödinger's Cat 302

