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Motivation

In Quantum Chemistry and Material Science the objective is to derive

chemical and physical properties of complex materials (total energy, energy

derivatives respect to nuclei positions, band energy gaps, conductivity, etc..).

This goal is pursued through the investigation of the electronic structure and

its achievement can be very challenging.
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The (time-independent) Schrödinger equation
general form and properties

Ĥ ψ(x) =

(
− h̄2

2m
∇

2 +V(x)

)
ψ(x) = E ψ(x)

Ĥ = Hamiltonian of a physical system:

Hermitian operator

In stationary cases it represents the (constant) energy of the system

It is composed of a Kinetic (− h̄2

2m ∇2) and a Potential (V(x)) energy term.

ψ(x) = Wavefunction:

one-dimensional complex value function of many variables

It is interpreted as probability amplitude so that its square is a density distribution
⇒ R |ψ(x)|2dx = 1

It generally depends on a set of discrete countable numbers (for bounded
systems)
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The (time-independent) Schrödinger equation
general form and properties

Ĥ ψ(x) =

(
− h̄2

2m
∇

2 +V(x)

)
ψ(x) = E ψ(x)

E = Energy eigenvalues:

the time-independent Schrödinger equation is nothing else than an operatorial
eigenvalue equation

E as well as ψ depend generically on a set of discrete numbers (for bounded
systems)

The set of discrete numbers are called quantum numbers and are the
consequence of the so-called first quantization

[x,k] = x ·k−k ·x = ih̄ ; k = ih̄∇
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The (time-independent) Schrödinger equation
Example 1: one dimensional infinite well

V(x) =
{

∞ x < 0 and x > L
0 0≤ x≤ L

=⇒ − h̄2

2m
d2ψ(x)

dx2 = E ψ(x)

Wave equation generic solution

ψ(x) = A sin(k x)+B cos(k x)

k2 = 2m E
h̄2

ψ(0) = ψ(L) = 0

Solution after boundary
conditions

ψn(x) =
√

2
L sin

( n π x
L
)

En = n2 π2 h̄2

2m L2

1 There are an infinite countable number of solutions parametrized by n ∈N
2 Wavefunctions with different quantum numbers are othogonal

R
ψ∗mψn = δmn

3 Each ψn has n−1 nodes⇒ for n� 1 ψn oscillate very wildly
4 n = 1 solution is the the so-called ground state: most symmetric and stable
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The (time-independent) Schrödinger equation
Example 2: Hydrogen atom

V(r) =− e2

4π ε0r
⇒
− h̄2

2µ
1

r2 sinθ

[
sinθ

∂

∂r

(
r2 ∂

∂r

)
+ ∂

∂θ

(
sinθ

∂

∂θ

)
+ 1

sinθ

∂2

∂φ2

]
ψ(r,θ,φ)+

− e2

4π ε0r ψ(r,θ,φ) = E ψ(r,θ,φ)

Due to spherical potential depending only on radial coordinate the solution is separable

ψ(r,θ,φ) = R(r)Y(θ,φ)

Stability of the atom requires quantization of angular momentum =⇒ L2 = `(`+1)h̄2

Rn`(r) = r`Ln−`−1 e−
r
n ; Y`m(θ,φ) =

1√
2π

[
2`+1

2
(`−m)!
(`+m)!

] 1
2

P`m eimφ

Ln−`−1 associated Laguerre polynomials and P`m associated Legendre polynomials

En =− µ e4

8ε2
0h̄2 n2

; n = 1,2, . . . ; ` = 1,2, . . . ,n−1 ; m =−`, . . . ,0, . . . , `
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The (time-independent) Schrödinger equation
Example 2: Hydrogen atom

ψn`m(r,θ,φ) = Rn`(r)Y`m(θ,φ) are called orbitals

Orbitals with ` = 0 have spherical symmetry all the others have, at best, cylindrical
symmetry

High quantum numbers orbitals have many “lobes”→ oscillate wildly closer to r

Relativistic effects, spin-orbit interactions, etc., force E to be dependent also on `

For each orbital you can accomodate two opposite spins (Pauli’s principle): one ↑
and one ↓

Again the ground state is the most symmetric and stable state

The spin orbitals constitute an orthogonal complete set of wavefunctions

Open shells and closed shells: sistematics of orbitals (core vs valence orbitals,
s,p,d,. . . )
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The (time-independent) Schrödinger equation
Example 2: Hydrogen atom
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Intro to Many-electron problem
Full Hamiltonian (neglecting spin and relativistic terms)

Atoms, molecules and solids are composed of many interacting electrons and nuclei

Ĥtot = ∑
i

p2
i

2m
−∑

i,I

zI e2

|ri−RI |
+

1
2 ∑

i 6=j

e2

|ri− rj|
+∑

I

P2
I

2MI
+

1
2 ∑

I 6=J

zI zJ e2

|RI −RI |

First 3 terms consitutte the so-called electronic Hamiltonian – last two terms
describe nuclei dynamics

1st and 4th term represent the kinetic energy of electrons and nuclei respectively
(p = ih̄∇)

2nd term describes the Coulomb potential well experienced by electrons

3rd and 5th terms describe repulsion (due to same charge) between electrons and
nuclei respectively

Note: Dynamics of electrons and nuclei are somewhat separated if it wasn’t for the
presence of the Coulomb potential
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Intro to Many-electron problem
Born-Oppenheimer approximation

Consideration: Since MI � mi⇒ Ki� KI , it is possible to decouple the dynamics of
fast variables (electrons) from the one of slow variables (nuclei)

This is at the base of the so-called adiabatic procedure also known as

Born-Oppenheimer approximation (1927)
Nuclei are supposed fixed in a selected spatial configuration

Attention is only focused on electronic eigenvalues as functions of the chosen
nuclear coordinates

The approximation introduces the concept of adiabatic potential-energy surfaces

Note: Usually the main interest is in the ground adiabatic sheet. This is usually
non-degenerate and has a minimum⇒ “fixed” lattice leading to an adiabatic or
electronic Hamiltonian

Ĥel =−∑
i

h̄2
∇2

i
2m
−∑

i,I

zI e2

|ri−RI |
+

1
2 ∑

i 6=j

e2

|ri− rj|
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Intro to Many-electron problem
Approximation methods to exact solution

Electronic Schrödinger Equation

Ĥel Ψ(r1;σ1,r2;σ2, . . . ,rN ;σN) = E Ψ(r1;σ1,r2;σ2, . . . ,rN ;σN)

Ψ :
(
R

3×{± 1
2}
)N
−→ R high-dimensional anti-symmetric function.

One electron approximation:
Hartree-Fock (occupied states only)

Configuration Interaction (CI)
Coupled Clusters (CC)
etc.

←− (incl. exited states) Quantum Chemistry

Electron density:
Ground state −→ Density Functional Theory (DFT)

Nuclei dynamics −→ Molecular Dynamics (MD)
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Intro to Many-electron problem
Basic Hartree-Fock: a simple self-consistent example

Identical particles

Antisymmetry for interchange of coordinates (spin included)

Orthonormal one-particle functions base

Ψ(r1;σ1,r2;σ2, . . . ,rN ;σN) =
1√
N!

∣∣∣∣∣∣∣∣
ψ1(r1;σ1) ψ1(r2;σ2) . . . ψ1(rN ;σN)
ψ2(r1;σ1) ψ2(r2;σ2) . . . ψ2(rN ;σN)
. . . . . . . . . . . .
ψN(r1;σ1) ψN(r2;σ2) . . . ψN(rN ;σN)

∣∣∣∣∣∣∣∣
Hartree self-consistent approximation: Each electron moves in the effective field
corresponding to the Coulomb potential generated by the charge distribution of all the
other N−1 electrons

VH(r) =
Z

ρ(r′)
e2

|r− r′| ; ρ(r) =−e
(occ)

∑
j

ψ
∗
j (r)ψj(r)(= charge density)

The one-electron spin orbitals making up Ψ, satisfy the Hartree equation[
p2

2m
− z e2

|r−R| +VH(r)
]

ψi = εiψi
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Intro to Many-electron problem
Basic Hartree-Fock: ..... continued

[
p2

2m
+Vnucl(r)+VH(r)

]
ψi = εiψi; ρ(r) =−e

(occ)

∑
j6=i

ψ
∗
j (r)ψj(r); VH(r) =

Z
ρ(r′)

e2

|r− r′|

ψ1,ψ2, . . . ,ψN =⇒ ρ(r) −→ R
ρ(r′) e2

|r−r′|

↑ No ↓

END
Yes⇐= Converged? ←− ψ′1,ψ

′
2, . . . ,ψ

′
N

Cycles are repeated up to self-consistency of input and output functions and potentials

Because of the effective Hartree potential VH this system is also referred to as
“non-interacting”
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Kohn-Sham scheme and DFT
Hohenberg-Kohn theorem

We split the adiabatic Hamiltonian in internal and external terms

Ĥel = Ĥint +Vext ⇐=


Ĥint = K +Vee = ∑i

p2
i

2m + 1
2 ∑i6=j

e2

|ri−rj|

Vext = ∑i υext(r) =−∑i ∑I
zI e2

|ri−RI |

HK Theorem statement (1964)
There is one-to-one correspondence between the ground-state density n0(r) of a N
electron system and the external potential acting on it. n0(r) is then said to be
υ-representable

i) n0(r) ⇐⇒ υext(r) n0(r) is the ground state density

ii) EHK[n,υext] = FHK[n]+
R

υext(r)n(r) unique functional

iii) E0 = minn EHK[n,υext] minimum at the exact ground state density

vi) K[n]+Vee[n] = FHK[n] universal (υ-independent)
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Kohn-Sham scheme and DFT
Exact density functional theory

Vext(r)
HK⇐= n0(r)

↓ ↑
ψi({r}) → ψ0({r})

Any property of a system of many interacting particles can be viewed as a
functional of n0(r)
The H-K proves the existence of such functionals

H-K does not provide any method to compute such functionals exactly

In many cases these are non-local functionals depending simultaneously upon
n0(r) at different positions r
Even if FHK[n] is a universal functional there is no known approach that allows to
go, for example, from density to kinetic energy

H-K theorem by itself does not provide an operative way to use density functional
theory in practical problem
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Kohn-Sham scheme and DFT
The Kohn-Sham scheme

K-S ansatz (1965)
Interactive υ-representable charge density n0(r) are also non-interactive

υ-representable.
In other words, for each interactive system described by the charge density n0(r), it

exists an auxiliary non-interactive system described by the same charge density.

Vext(r)
HK⇐= n0(r)

KS⇐⇒ n0(r)
HK0
=⇒ VKS(r)

↓ ↑ ↑ ↓
ψi({r}) → ψ0({r}) ψi=1,Ne(r) ← ψi(r)

Interacting system Non-interacting system

Vee = 1
2 ∑i 6=j

e2

|ri−rj| ⇐⇒ VH =
R

n0(r′) e2

|r−r′|
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Kohn-Sham scheme and DFT
The Kohn-Sham equations

The Kohn-Sham scheme allows for a practical application of the Hohenberg-Kohn
theorem through a set of non-linear coupled equations

Interacting system Non-interacting system

EHK[n] = FHK[n]+
R

υext([n],r)n(r) ⇐⇒ E0[n] = K0[n]+
R

υext([n],r)n(r)+EH[n]+Exc[n]

The K-S equations
1 υ0([n],r) = υext(r)+

R
υH(r,r′)n(r)+υxc([n],r)

2 ĤKSψi(r) =
(
− h̄2

2m ∇2 +υ0(r)
)

ψi(r) = εiψi(r); ε1 6 ε2 6 . . .

3 n0(r) = ∑
Ne
i |ψi(r)|2

4

 υxc([n],r) = δExc[n]
δn(r) Exchange potential

Exc[n] = FHK[n]−
(

1
2

R
n(r′)υH(r,r′)n(r)+K0[n]

)
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Kohn-Sham scheme and DFT
Ground energy and exchange-correlation potential

The kinetic energy K0[n] is now computable directly from the orbital functions
ψi(r)
The ground state energy now can be operatively computed from E0[n]

E0 = E0[n0] = ∑
Ne
i=1 εi− 1

2
R

n0(r′)υH(r,r′)n0(r)+Exc[n0]−
R

υxc([n],r)n0(r)

All the complex many-body contributions are now incorporated in an
exchange-correlation functional of the density

Exc[n] can be reasonably approximated as a local or nearly local functional of the
charge density

Many approximations - LDA, GGA, OEP, EXX, Hybrid, etc. see appendix C
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Kohn-Sham scheme and DFT
Self-consistent cycle

Conceptually similar to the self-consistent cycle of Hartree-Fock methods

Initial guess
nstart(r) =⇒

Compute KS potential
υ0([n],r) −→

Solve KS equations

ĤKSψi(r) = εiψi(r)

↑ No ↓

OUTPUT
Energy, forces, etc.

Yes⇐= Converged? ←−
Compute new density

n(r) = ∑
Ne
i |ψi(r)|2

In practice this iterative cycle is much more computationally challenging.
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Kohn-Sham scheme and DFT
Inside the cycle

1 Educated guess for nstart(r). For example in molecular or solid state systems it is
usually constructed from an opportunely tuned sum of atomic densities

nstart(r) = ∑
α

nα(r−Rα); α = nuclei index

2 Each component of υ0([n],r) is computed separately and poses a different
numerical problem.

The external potential can be a sum of atomic potentials υext(r) = ∑α υα(r−Rα).
In many cases the use of the Coulomb potential is unfeasible −→ Pseudo-potentials
Hartree potential is computed either by direct integration (atomic cases) or by solving
the associated Poisson equation

∇
2
υH(r) =−4πn(r)

The xc potential is formally a functional derivative of the Exc[n] functional. Hundreds of
approximate xc functional have appeared in the last 30 years
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Kohn-Sham scheme and DFT
Inside the cycle.... continued

3 The goal of solving the KS equations is to find the lowest Ne eigenstates of the
Hamiltonian ĤKS.

For atomistic systems it is reduced to a one-dimensional equation→ efficient
integration method
For all the other cases a basis set is used leading to the diagonalization of ĤKS. Such
an operation makes use of different methods depending on the sparsity of the
Hamiltonian as well as the size of the basis set.

4 Convergence: the two most common methods are based on the difference of total
energies or densities between iterations i and i−1∣∣∣E(i)

0 −E(i−1)
0

∣∣∣< ηE or
∣∣∣n(i)

0 −n(i−1)
0

∣∣∣< ηn

If the criterium has not been fulfilled, the cycle is started with a new density.
Usually, to avoid instabilities, it is a mix of new and old density.

Simplest scheme - linear mixing n(i+1)
0 = β n′+(1−β)n(i)

0

More sophisticated schemes use extrapolation of several iterations and more complex
methods

Edoardo Di Napoli (AICES/JSC) Quantum Theory of Materials Aachen, November the 10th 2011 25 / 71



Kohn-Sham scheme and DFT
The process of convergence

Starting
density
n0(r)

Area of converged
solution
nf(r)

Charge density
manifold

Full-data convergence process
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DFT methods overview
Three classes of methods

The different methods stem from the fact that the Kohn-Sham equations must be
“discretized” before they can be numerically solved

1 Plane Waves: uses plane wave basis expansions and a variety of different ways
to express υext[n]

2 Localized orbitals: uses specialized functions such as exponential or Gaussian
orbitals

3 Real-Space methods: does not use an explicit basis but discretizes the equations
in real space
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DFT methods overview
Plane wave expansion: Bloch theorem

Plane wave expansions of the K-S eq. take advantage of the periodicity of the crystal.

In the case of one-dimensional Schrödinger equation:

Ĥψ(x) =− h̄2

2m
d2ψ(x)
dψ2(x)

+V(x)ψ(x) = E ψ(x); V(x) =
+∞

∑
n=−∞

Vn eihnx; hn =
2πn

a

Applying the Hamiltonian to a normalized plane wave Wk(x) = 1√
L

eikx

ĤWk(x)⊂ Sk ≡ {Wk(x),Wk+h1(x),Wk−h1(x),Wk+h2(x),Wk−h2(x), . . .}

A generic wavefunction ψ(x) can be obtained diagonalizing Ĥ on the subspace Sk and
expressed as a linear combination

ψk(x) =
1√
L ∑

n
cn(k)ei(k+hn)x ; ψk(x+ma) = eikma

ψk(x)

k ∈ BZ≡
{

k :−π

a
< k ≤ π

a

}
First Brillouin Zone

Edoardo Di Napoli (AICES/JSC) Quantum Theory of Materials Aachen, November the 10th 2011 29 / 71



DFT methods overview
Plane wave expansion: Bloch theorem... cont.

ψk(x) = uk(x) eikx is a travelling wave function modulated, on the microscopic scale
by an appropriate function with lattice periodicity
in general, the energy spectrum E(k) consists of allowed regions separated by
energy gaps. These are usually referred to as Energy Bands
In one dimension it is possible to demonstrate that these bands do not cross
eachother
In solids these bands can be quite completed

Example of periodic array of quantum wells (Kronig-Penney model) Grosso and Parravicini
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DFT methods overview
Plane waves: calculating ĤKS

In 3D the Bloch theorem is easily generalized

φk(x) = eikr
∑
G

ck,ν(G) eiGr ;
G = reciprocal lattice vector
ν = energy band index

All the quantities of interest are computed in Fourier space using FFT. There are only
two parameters that need to be fine-tuned for every calculations:

The Brillouin zone sampling (using space group lattice and special points)
see appendix A

Cut-off Gmax in order to truncate the sums over reciprocal lattice vectors G

1 Density – the f (εk,ν) denotes the occupation numbers for the K-S energies εk,ν

n(G) = ∑
k,ν

∑
G′

f (εk,ν) c∗k,ν(G
′−G) ck,ν(G)

2 The Kinetic energy

K =
1
2 ∑

k,ν
∑
G

f (εk,ν)
∣∣ck,ν(G)

∣∣2 |k+G|2
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DFT methods overview
Plane waves: calculating ĤKS... continued

3 The K-S potential υ0[n]
Calculating the Hartree υH, the external potential υext and the nuclei interaction
presents some issues due the divergence of the potential at G = 0⇒ however the sum
of three divergences is a constant (Ewald)

Valence orbitals of high atomic number z atoms oscillates wildly (remember 1D case) in
the vicinity of the atomic nucleus due to orthogonalization respect to inner core orbitals
⇒ large numbers of plane waves required!

Description of atom based only on valence orbitals⇒ introduction of an effective
potential Pseudo-potential that takes into account the nuclei as well as the core
electrons. see appendix B

Finally the K-S equations become

∑G′ ĤG,G′(k) ck,ν(G′) = εk,ν ck,ν(G)

ĤG,G′(k) = 1
2 |k+G|2 δG,G′ +υ

eff
ext(k+G,k+G′)+υH(G−G′)+υxc(G−G′)

Eigenvalue equation Ax = λx where A = Ĥ, x = ck,ν, and λ = εk,ν.
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DFT methods overview
Plane waves: few comments

The Laplacian term (kinetic energy) of the Hamiltonian is represented by a
diagonal matrix

The potential υ0[n] gives rise to a dense matrix. Its computation can be a very
expensive task.

For each vector k there is an independent eigenvalue equation

Each FFT performed costs q logq operation where q is the number of plane
waves. For large q this can be costly.

The most costly operation is the diagonalization, contributing with a G3
max cost.

The plane wave expansion is quite effective for periodic systems. For nonperiodic
systems such as clusters, liquids can be combined with supercell methods that
repeat local configuration to impose periodicity.
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DFT methods overview
Localized orbitals

In this approach to each atom labeled by α is associated a set of functions which
combine radial functions with spherical harmonics

ψ
α
n`m(r) = φ

α
n`(rα) Y`m(r̂α) ; rα = r−Rα

The radial functions φα
n`(rα) are the solution of 1D equation. They can be exponentials,

Gaussians or any set of localized functions.[
−1

2
d2

dr2 −
1
r

d
dr

+
`(`+1)

2r2 +υKS

]
φ

α
n`(rα) = εn`φ

α
n`(rα)

Gaussians, for example:

yield analytical matrix elements for ĤKS provided also the potential are expanded
in terms of Gaussians

basis set size produces much smaller matrices than plane wave

requires many indices to label state, orbitals and basis set increasing dramatically
the “bookkeeping” operations

convergence is not controlled by a single parameter; if atoms in a solid are slightly
moved, the basis should be re-optimized for the new geometry
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DFT methods overview
Real Space

Functions ψkν(r) are not expanded in a basis set but just sampled on a real-space
mesh. This property overcomes many complications arising from non-periodic physical
systems

1 Kinetic energy results from the discretization of the Laplacian using a finite
M-order rule

∇
2
ψkν(r)

∣∣∣
r=(xi,yj,zk)

=
M

∑
nx=−M

Cnx ψkν(xi +nxa,yj,zk)+(same for yj and zk)+O(a2M+2)

2 The potential term υ0[n] is mostly diagonal.
When the pseudo-potential and/or a non-simple xc potential are used there is the
possibility of non-local term. In discrete form the non-local contribution becomes a
sum of rank-one updates over all atoms:

∑
α,`,m

dα,`,mUα,`,mUT
α,`,m ; Uα,`,m = sparse vectors

The υH is usually obtained by efficiently by solving Poisson eq. in Fourier space
and transforming back (or by multi-grid techniques)
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DFT methods overview
Real Space

The main advantages of the real-space methods is the simplicity and intuitiveness of
the whole procedure. There are also some drawbacks

Higher order finite differences can improve convergence

The matrix ĤKS is usually bigger than in the plane waves method but quite sparse.
Consequently the solution of the eigenvalue problem is achieved through iterative
methods.

The is no need to store the Hamiltonian explicitly as a sparse matrix

The convergence depends only on one parameter: the grid spacing

most of the implementations are not variational→ computed ground energy may
be lower than true energy

it breaks translational symmetry→ artificial lifting of some energy degeneracies
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Introduction to FLAPW
Linearized augmented plane wave (LAPW) in a Muffin Tin (MT) geometry

Lapw

ψk,ν(r) = ∑
|G+k|≤Gmax

cG
k,νφG(k,r) k Bloch vector

ν band index

φG(k,r) =

 ei(k+G)r Interstitial (I)

∑
`,m

[
aα,G
`m (k)uα

` (r)+bα,G
`m (k)u̇α

` (r)
]

Y`m(r̂α) Muffin Tin

boundary conditions
Continuity of wavefunction and its

derivative at MT boundary
⇓

aα,G
`m (k) and bα,G

`m (k)
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Introduction to FLAPW
Linearized augmented plane wave (LAPW) in a Muffin Tin (MT) geometry... cont.

The radial functions uα
` (r) are the solutions of the atomic Schrödinger equations where

the potential retains only the spherical part.

Ĥα
sphuα

` (r) =

[
− h̄2

2m
∂2

∂r2 +
h̄2

2m
`(`+1)

r2 +υ
α
sph(r)−

]
r uα

` (r) = E`uα
` (r)

where the u̇ can be determined from the energy derivative of the Schrödinger-like
equation

Ĥα
sphu̇α

` = E`u̇α
` +uα

`

E` is a parameter and it is predetermined by optimization

like the plane wave case there is a cut-off Gmax (typically ∼ 3.5−4.0)

unlike the plane waves there is also a cut-off (for open-shell atoms) on `max
(tipically ∼ 8)

unlike the plane waves this set of basis functions is overcomplete⇒ it is NOT an
orthogonal set

it is one of the most accurate implementation of ab initio methods
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Introduction to FLAPW
K-S equations

The Kohn-Sham equations receive contributes from the Interstitial as well as the
Muffin-Tin regions. These can be treated separately

ĤMT
GG′ + ĤI

GG′

Both the density and the K-S potential are expanded in the same fashion as the wave
functions

υKS(r) =


∑G υG

I eiGr

∑
`m

υ
`m
MT(r)Y`m(r̂α)

n(r) =


∑G nG

I eiGr Interstitial

∑
`m

n`m
MT(r)Y`m(r̂α) MT

1 Kinetic energy for Interstitial and MT give diagonal matrix entries

2 The spherical part of the potential, inside MT, are also diagonal by construction.
The non-spherical part (like υH) are more complicate to compute (Pseudo-charge
method) and in general result in a dense matrix. see appendix D
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Introduction to FLAPW
Generalized eigenvalue equations

3 In the FLAPW framework the Kohn-Sham equations translate to generalized
eigenvalue equations.

Inserting the LAPW expansion in the equations

φ
∗
G(k,r)∑

G′
ĤKS cG′

k,ν φG′(k,r) = λkν φ
∗
G(k,r)∑

G′
cG′

k,ν φG′(k,r),

defining the matrix entries for the left and right hand side respectively as
Hamiltonian A(k) and overlap matrices B(k)

{A(k),B(k)}= ∑
α

Z
φ
∗
G(k,r){ĤKS, 1̂}φG′(k,r)

and remebering that the basis set is overcomplete (⇒ B 6= diag)

∑
G′

AGG′(k) cG′
kν

= λkν ∑
G′

BGG′(k)cG′
kν
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Introduction to FLAPW
Convergence and mixing

4 The started density is constructed from a superposition of atomic densities. The
process of minimization of the energy functional E0 determines a fix-point map

E0 = min
n

EKS[n,υext] =⇒ n(i+1) = F{n(i)}

In order to find the fixed point of F several methods can be used
linear mixing→ linear convergence
Newton-Rapshon methods→ quadratic convergence, Jocobian computationally
demanding
Quasi-Newton methods→ superlinear convergence, local Jacobian
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FLAPW self-consistent cycle

Initialization:
non-interacting

spherical vextsph(r)

Calculation of
full-potential

vKS[n](r)

<5%
time
usage

Charge density
for next cycle

n(r)

Basis functions
generation
φG(k, r)

∼5–10%
time
usage

Calculation of
ground state energy

E0 ← n(r)

Matrices generation

A(k) =< φ(k)|Ĥ|φ′(k) >

B(k) =< φ(k)|Ŝ|φ′(k) >

∼ 40%
time
usage

Generalized
eigenproblems

A(k)x = λB(k)x

Pseudo-charge method.
FFT

Schrödinger-like
equations solved for a

set of k

Eigenproblems:
distribution and setup

Eigenpairs selection

Convergence check.
Iteration setup
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Computational science
Traditional approach

The “self-made man” approach
Mathematical Model =⇒ Algorithmic Structure =⇒ Simulations =⇒ Physics

1 Math⇒ Algorithm – Often a sort of “mechanical” one-way process with little
room for optimization;

2 Algorithm⇒ Sim – The simulation is considered an end product, the successful
translation of an algorithm into a series of machine accessible operations resulting
in the computation of meaningful physical quantities;

3 Math⇒ Sim – The mathematical model and the simulation are considered as
practically disjoint.
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Reverse Simulation
A different approach

Simulations =⇒

 Mathematical model

Algorithmic structure

FLAPW
Paradigm

Mathematical
Model

Algorithmic
Structure

SIM SIM

... SIM . . .

. . . SIM

SIM SIM

Feedback from analysis of
correlated eigenproblems {Pi}

An Example: Sequences of eigenproblems in Density Functional Theory
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A (mostly) converging process
The traditional approach

Initialization: At every iteration of the cycle all numerical quantities are entirely
re-computed

A new set of basis functions is assembled at each iteration cycle (Math : Sim)

The entries of the matrices A and B are re-initialized at each iteration cycle
(Algorithm : Sim)

Eigenproblems: Each eigenproblem P(i) : A(i)x = λB(i)x at iteration i is solved in total
independence from the eigenproblem P(i−1) of the previous iteration (Algorithm : Sim)

Convergence: Starting with a electron density close enough to the one minimizing the
energy E0 it is likely to reach convergence within few tens of iterations. Unfortunately
there is no general theorem establishing the converging conditions

# of steps is still uncertain. They depend on the material and the initial guess
(area of convergence) (Math : Sim)

|n′(r)−n(r)| undergo relatively small decreasing oscillations (Math : Sim)
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Reverse simulation: an ALGORITHM ⇐ SIM case

Sequences of eigenproblems

Consider the set of generalized eigenproblems P(1) . . .P(i)P(i+1) . . .P(N) 6= (P)N

Could this sequence
{

P(i)
}

of eigenproblems evolve following a convergence
pattern in line with the convergence of n(r)?

Investigating evidence of evolution
(a) Eigenvectors transformation from one iteration to the

next

(b) Distance between successive Hamiltonian matrices Ak
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Eigenvectors properties

∑
G′

[AGG′(k)−λkνBGG′(k)]cG′
kν

= 0

Reminder:
the eigenvectors x, solving for each problem P, are vectors of coefficents cG

kν

expressing orbital wave functions ψk,ν(r) as a linear combination of basis wave
functions φG(k,r)→ eigenvectors are seemingly uncorrelated across iterations

# of k= 1:10-100 ; # of i = 1:20-50 ; size of A: 1,000 - 20,000

Actions:
study the evolutions of the angles b/w eigenvectors of successive iterations

develop a method that establishes systematically a one-to-one correspondence
b/w eigenvectors

collect data on eigenvectors deviation angles

Analysis:
1 i and λ fixed⇒ distribution among ks
2 fix k⇒ multi-plot on evolution for all λs
3 fix λ⇒ multi-plot on evolution for all ks
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Eigenvectors evolution - Histograms
fixed λ and i

Cu bulk
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Considerations:

1 Distribution of deviation angles peaked on lowest end of the interval with small tail
2 “Democratic” contribution of eigenvectors to convergence process
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Eigenvectors evolution - Multiplot
fixed k

Cu bulk
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Considerations:

1 Angles decrease monotonically with some oscillation (excess of localized charge)
2 Majority of angles are small after the first few iterations
3 “Universal” behaviour
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Eigenvectors evolution - Multiplot
fixed λ

Cu bulk
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Considerations:

1 some k-points contribute slightly more −→ Help identify sensitive areas of the
reciprocal lattice

2 In line with the “democratic” principle
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Correlation

There is a strong correlation between eigenvectors of successive
eigenproblems x(i−1) and x(i)

It validates the importance of looking at the set of eigenproblems as a
sequence

{
P(i)
}

Can we exploit this result?

Use an iterative solver where the eigenvectors of P(i−1) are fed to solve P(i)

Exploratory study using SLEPc framework:
1 Subspace Iteration Method
2 Implicit Restarted Arnoldi Method
3 Krylov-Schur Method
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A case study: CaFe2As2

Molecule: an example of high-T superconducting material
Matrix size: 2628
Num of fixed-point iterations: 32
Num of k-points: 27

B ill-conditioned
B is in general almost singular. Ex:
size(A) = 50→ κ(A)≈ 104 size(A) = 500→ κ(A)≈ 107

We used the standard form for the problem
Ax = λBx −→ A′y = λy with A′ = L−1AL−T and y = LT x

TOL: ‖Ax−λx‖
‖λx‖ = 1e−07

Nev = Number of searched eigenpairs Nvc = size of subspace

Nvc≥max[2×Nev,Nev+15] for random vectors
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Subspace Iteration Method

This method is based on

Inner loop V←− A′V

A refinement loop using a Rayleigh-Ritz quotient

It can accept, as initial guess, the entire set of vectors V

Iter cycle
Nev=5, Nvc=20

random
Nev=5, Nvc=20

feed-in
Nev=10, Nvc=25

random
Nev=10, Nvc=20

feed-in
10 75.43 s 52.31 s 114.60 s 80.17 s
20 74.89 s 50.74 s 113.05 s 82.64 s
30 74.93 s 51.56 s 112.15 s 79.49 s

Considerations:

1 30% speed-up independently from Nev search space
2 Nvc for the feed-in can be adjusted for better exploitation
3 Still very slow and not competitive with the other methods
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IRAM and Krylov-Schur

They can accept, as initial guess, only one vector (we chose the dominant one)

Iter cycle
Nev=4, Nvc=20
IRAM random

Nev=4, Nvc=20
IRAM feed-in

Nev=10, Nvc=25
(K-S) random

Nev=10, Nvc=25
(K-S) feed-in

10 5.37 s 3.37 s 3.37 s 2.54 s
20 5.37 s 3.34 s 3.39 s 2.51 s
30 5.37 s 3.36 s 3.39 s 2.55 s

Considerations:

1 between 25% and 35% speed-up
2 Results depend on the Nev (speed up decreases as Nev increase)
3 Convergence in IRAM-random seems to be influenced by the clustering of

eigenvalues
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Recapping

1 Feeding eigenvectors:
All methods experience between 25% and 35% speed-up
Due to the different number of eigenvectors that can be “seeded”, the speed up for
IRAM and K-S is limited to few sought after eigenpairs
Subspace Iteration does not have limits but it is still not competitive

2 Direct vs Iterative:
Preliminary results, using IRAM, show that iterative methods for dense matrices can be
competitive if a portion 10% or lower of the spectrum is sought after
Iterative methods become competitive for large systems (size > 10000)
When GPUs are factored in, iterative methods may be competitive even for higher
portion of the spectrum.

3 Future work:
Using block Krylov-Schur methods will allow “seeding” the eigensolver with more
eigenvectors. This should provide extra speed-up
Experiments on large parallel architectures need to be performed
Evolution of the sequence still to be factored in
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Distance between Hamiltonians
Matrix entries

Hamiltonians A(i) across iterations are completely re-computed. If there is correlation
among eigenvectors, the Hamiltonian may not be completely independent across
iterations.
A simple comparison through entry subtraction can be used

Ã(i)
k =

|A(i+1)
k −A(i)

k |
δ(i) ; δ

(i) = max(|A(i+1)
k −A(i)

k |)
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Distance between Hamiltonians
Threshold map

each entry of Ã(i)
k is a map onto the [0,1] interval. Measuring the threshold as a fraction

of δi, one can look at the percentage of entries that vary as a functions the cut-off
value, pt
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the lower the cut-off value pt, the greater the number of non-zero entries of Ã is.
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Conclusions and what’s next

Conclusions on ALGORITHM ⇐ SIM

Feeding eigenvectors of P(i−1) speed-ups the iterative solver for P(i)

Iterative methods seem to be competitive than direct methods for medium/large
problems

The algorithmic structure of FLAPW need to be re-thought to take into
consideration these results

Future scientific directions
Analysis on the structure of the entries of A and B across adjacent iteration seems
to suggest quite a bit of computational time can be spared in initializing the
matrices (ALGORITHM ⇐ SIM)

An ongoing study on mixed overlap matrices B̃ may show that there is no need to
re-calculate all the basis wave functions at each new iteration cycle (MATH ⇐ SIM)

A complete study on convergence is still missing. A great deal of increase in
efficiency of the simulation can be reached if the convergence process is
optimized (MATH ⇐ SIM)
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Structure of crystals
Reciprocal lattice and Brillouin zone

The crystal structure of a periodic solid is given by:
the positions of the nuclei in one repeat unit (primitive cell) through a so-called
basis. T(n) = n1a1 +n2a2 +n3a3

the rules that describe the translations of the points in a primitive cell, called
Bravais lattice

The reciprocal lattice is defined by a set of vectors {b1,b2,b3} that are “reciprocal” to
the basis vectors: bi ·aj = δij. The Brillouin zone corresponds to the Wigner-Sitz cell of
the reciprocal lattice. In other words the set of points that are closer to the central
reciprocal lattice point than any other reciprocal lattice point.

Return
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Pseudo-potentials

The simplest atomic pseudo-potential was introduced by Fermi and re-proposed by
Hellman in 1935

υ(r) =−1
r

+
2.74

r
e−1.16r

for a valence atom of Potassium (K).
The generic concept is based on the substitution the interaction of valence electrons
with nuclei and core electrons with a function that smoots away the strong oscillation of
the valence wavefunctions close to the nuclei core. The result is an energy dependent
potential that is generically represented as

υPK(E) = υ0−∑
c

(Ec−E)|ψc〉〈ψc| ; Ec = energy of core orbitals

At a certain distance from the core υPK(E) becomes υ0 due to the decay of the core
orbitals wavefunctions. The second term in the equation represents a repulsive effect,
making the potential much weaker than the true potential in the vicinity of the core
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Exchange-correlation potentials

The first and most simple exchange-correlation potential is the Local Density
Approximation (LDA)

ELDA
xc [n] =

Z
d3r n(r)εhom

xc (n(r))

where εhom
xc is the exchange-correlation energy density of an homogeneous electron

gas with density n(r) at each point (that can be found analytically).

The Generalized Gradient Approximation (GGA) introduces in εxc a dependence on the
gradient of the charge density ∇n(r).

Advanced Hybrid functional have been recently introduced, that mix parametrically
(λ ∈ [0,1]) HF with LDA or GGA

Exc = λEHF
xc +(1−λ)EDFA

xc

They are computationally challenging having non-local contributions. They can be very
useful in helping to predict excitation energies. Return
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Introduction to FLAPW
Full-potential

No shape approximations

υext(r) =


∑G υG

I eiGr Interstitial warped potential

∑
`m

υ
`m
MT(r)Y`m(r̂α) MT (includ. non spherical terms)

Pseudocharge method (Weinert 1981)

nMT(rα) =⇒ ql,m (multiple moments) & nI(r) =⇒ υI(r) (interstitial potential)

nMT(rα) subs with−→ ñMT(rα)
rapidly convergent

same ql,m =⇒ υI(r) = ∑G6=0
4πn(G)

G2 eiGr

υI(r)|∂MT@α
=⇒ υMT(r̂α) Green’s function method

return
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