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Abstract. We consider a mixed-boundary-value/interface problem for the el-

liptic operator P = −
∑

ij ∂i(aij∂ju) = f on a polygonal domain Ω ⊂ R2 with

straight sides. We endowed the boundary of Ω partially with Dirichlet bound-

ary conditions u = 0 on ∂DΩ, and partially with Neumann boundary condi-
tions

∑
ij νiaij∂ju = 0 on ∂NΩ. The coefficients aij are piecewise smooth with

jump discontinuities across the interface Γ, which is allowed to have singulari-

ties and cross the boundary of Ω. In particular, we consider “triple-junctions”

and even “multiple junctions.” Our main result is to construct a sequence of
Generalized Finite Element spaces Sn that yield “hm-quasi-optimal rates of

convergence,” m ≥ 1, for the Galerkin approximations un ∈ Sn of the solution

u. More precisely, we prove that ‖u − un‖ ≤ C dim(Sn)−m/2‖f‖Hm−1(Ω),

where C depends on the data for the problem, but not on f , u, or n. and
dim(Sn) → ∞. Our construction is quite general and depends on a choice of

a good sequence of approximation spaces S′n on a certain subdomain W that
is at some distance to the vertices. In case the spaces S′n are Generalized Fi-

nite Element spaces, then the resulting spaces Sn are also Generalized Finite

Element spaces.

Introduction

The purpose of this work is to present a general construction of finite-dimensional
approximation spaces Sn that yields quasi-optimal rates of convergence for the
Galerkin approximation of the solution to an elliptic equation in a polygonal do-
main, when mixed Dirichlet-Neumann conditions are given at the boundary. The
coefficients of the equation are piecewise smooth, but may have jump discontinu-
ities across the union of a finite number of closed polygonal lines, which we call the
interface. The interface may intersect the boundary of the polygonal domain.

The construction of the Galerkin spaces Sn employs a sequence of local spaces S′n
with good approximation properties given on a subset of Ω at a positive distance
from the singular points of the domain and the interface. Once S′n are chosen,
grading towards the vertices and suitable partitions of unity are employed to define
the Galerkin spaces on the whole domain. Therefore, the construction of the spaces
Sn falls into the category of Generalized Finite Element Methods (GFEM) and do
not require any particular meshing of the domain in advance.

We next describe the problem and the geometric set-up more precisely. Let
Ω ⊂ R2 be a polygonal domain with straight sides (we will call it a straight polygonal
domain.) We assume that Ω = ∪Kk=1Ωk, where Ωk are disjoint straight polygonal
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domains. The set Γ := ∂Ωr∪Kj=1∂Ωk, that is, the part of the boundary of some Ωk
that is not contained in the boundary of Ω, will be called the interface. We then
consider the following boundary value problem:

(0.1)

 −div(A∇u) = f in Ω
ν ·A · ∇u = 0 on ∂NΩ
u = 0 on ∂DΩ,

where ∂NΩ := ∂Ω r ∂DΩ is a decomposition ∂Ω into two disjoint sets, with ∂DΩ
a finite union of closed straight segments, and ν is the unit outer normal to Ω,
defined everywhere except at the vertices. We assume that the differential operator
P := −divA∇ =

∑
ij ∂iaij∂j is uniformly strongly elliptic and that its coefficients

aij are piecewise smooth, but may jump across the interface Γ. For this reason, we
will refer to the Problem (0.1) as a mixed boundary value/interface problem on Ω.

Mixed boundary value/interface problems often appear in engineering and physics.
It is well-known that if Ω is convex, f ∈ L2(Ω), and the coefficient matrix A = [aij ]

is smooth on Ω (so there is no interface), then the solution u of (0.1) is in H2(Ω),
and we can get quasi-optimal rates of convergence for the standard Finite Element
Method (FEM) with piecewise linear polynomials and quasi-uniform meshes. When
Ω is not convex and the boundary has singularities or the matrix A is discontin-
uous, on the other hand, then u does not belong to H2(Ω) and we may obtain
decreased rates of convergence of the Finite Element approximations of u on quasi-
uniform meshes. Here and throughout the paper, we denote by Hm(Ω), m ∈ Z+,
the standard L2-based Sobolev spaces.

Finding efficient methods to treat mixed boundary value problem on straight
polygons using Generalized Finite Element Method is part of the general problem
of numerically treating singularities. If the coefficients aij are smooth on each
subdomain Ωj , then singularities arise only at the vertices of the domain Ω, at the
points where the boundary conditions change, and at the singular points of the
interface or where the interface touches the boundary. Additional singularities will
arise if some of the coefficients aij or the data f are singular at some other points.
In this paper, however, we shall assume that our coefficients are piecewise smooth
and that data is regular, i.e., f ∈ Hm−1(Ω), m ≥ 1.

The structure of corner singularities in two dimensional space is well known by
the works [17, 19] and many others. (See, for instance, [4, 10, 16, 21, 19, 26] for
more information about singularities that are especially relevant to this paper.)
Singularities in the solution in the neighborhood of a corner are determined by
the spectrum of the resulting pencil of elliptic operators obtain through the Mellin
Transform [19, 20].

The FEMs and GFEMs are examples of Galerkin-based numerical methods, a
concept we briefly recall. It is based on the weak formulation of problem (0.1), which
is discussed in Section 1. Suppose we are given a sequence of finite-dimensional
spaces Sn ⊂ H1(Ω) such that all the functions ψ ∈ Sn satisfy the essential (i.e.,
Dirichlet) boundary conditions of Equation (0.1) on ∂DΩ. For the simplicity of the
presentation, we shall assume that ∂DΩ is not empty. That is, we do not consider
the pure Neumann problem explicitly. To consider also the pure Neumann problem,
all that one needs to do in practice is to restrict to functions v ∈ Sn with zero mean.
We define, as usual, the Galerkin approximation un ∈ Sn of the variational solution
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u of Problem (0.1), to be the exact solution of the projected problem:

(0.2) B(un, vn) :=
∑
ij

∫
Ω

aij∂iun∂jvn = (f, vn), for all vn ∈ Sn ⊂ H1
D(Ω),

where H1
D(Ω) := {f ∈ H1(Ω), f = 0 on ∂DΩ} and the bilinear form B(u, v) is given

in (1.5). We want a hm-quasi-optimal rate of convergence, that is, we want to have
the following error estimate for all n

‖u− un‖H1(Ω) ≤ C dim(Sn)−m/2‖f‖Hm−1 ,

where C is independent of f and n. Up to the value of C this is the ideal rate
that can be obtained if u ∈ Hm+1(Ω) and quasi-uniform meshes are used in the
Finite Element Method. In this case, if h is the typical size of an element, then
dim(Sn) ∼ h−2 hence the name. However, in general, u /∈ Hm+1(Ω). If Ω is
concave, even u /∈ H2(Ω) in general for the standard Poisson problem. In fact, as
mentioned, singularities may lower the rate of convergence of the Finite Element
solutions of the discrete problem when using quasi-uniform meshes.

Our approach to the optimal rate of convergence is based on the weighted Sobolev
spaces for mixed boundary value and interface problems on polygonal domains,
obtained by two of the authors among others [6, 7, 5, 21], and a grading toward
each singular point. The weight is here the distance to the singular set. Our main
result is to construct a sequence Sn of the Generalized Finite Element spaces that
yields quasi-optimal rates of convergence. We are not assuming u ∈ Hm+1(Ω) and

we can relax the condition f ∈ Hm−1(Ω) to f ∈ Ĥm−1(Ω) :=
∑
Hm−1(Ωj) if an

interface is present.
As we mentioned above, we use some auxiliary, “good approximation spaces”

S′n, defined on an auxiliar, but fixed domain W away from the vertices. Together
with grading towards the singular point and partitions of unity, the spaces S′n lead
to the construction of the Galerkin spaces Sn that then yield our desired hm-quasi-
optimal rates of convergence. Many choices for the spaces S′n exist [1, 8, 9, 21],
and their definition is, for the most, part very well known, so we do not recall them
here.

We notice, however, that if the sequence S′n is a sequence of GFEM spaces, then
Sn will also be a sequence of GFEM spaces. However, if S′n consists of FEM spaces,
then Sn will not consist of FEM spaces, in general. In fact, we mention two examples
that satisfy the required approximation condition (see (2.5)). One example is that
of FEM spaces consisting of piecewise linear elements on a sequence of appropriately
graded meshes, where the grading is determined by the strength of the singularities
of the solution at the corner. When interfaces are present, the triangles in the mesh
must be aligned with the interface and the construction gives rise to FEM spaces Sn
(see [21] for a thorough discussion.) The other example is that of non-conforming
GFEM spaces based on partitions of unity and piecewise polynomials. The fact that
the sides of each Ωk are straight allows us to implement the boundary conditions and
the transmission conditions at the interface exactly (see (1.6) later in the paper).
A more general construction of GFEM spaces for curvilinear smooth domains with
smooth interfaces is given in [22]. Our main motivation was to construct a sequence
of GFEM spaces that achieves hm-quasi-optimal rates of convergens, and we achived
this. See [1, 2, 11, 12, 13, 14, 15, 18, 23, 24] for more on the definition of GFEM
spaces and their applications.
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The paper is organized as follows. In Section 1, we discuss the problem and the
geometric set up in more details. In Section 2 we construct our sequence Sn of
approximation spaces. Finally, in Section 3, using regularity in weighted Sobolev
spaces, we prove that the sequence Sn yields hm quasi-optimal rates of convergence.

1. Mixed-boundary-value/interface problems on polygonal domains

We begin by discussing in more detail problem (0.1) and the geometry of the
domain. We recall the set up of the problem from the introduction. We assume
that Ω = ∪Kk=1Ωk, where Ωk are disjoint straight polygonal domains. The set
Γ := ∂Ω r ∪Kj=1∂Ωk, that is, the part of the boundary of some Ωk that is not
contained in the boundary of Ω, will be called the interface, as before.

We let P denote the divergence form operator:

(1.1) Pu := − div(A∇u) = −
2∑

i,j=1

∂j(aij∂iu), A = [aij ],

where the coefficients are symmetric aij = aji and satisfy aij ∈ C∞(Ωk) for all
k = 1, . . . ,K, but may jump across the interface Γ. We will also assume that P is
uniformly strongly elliptic; that is, there exists a constant γ > 0 such that

(1.2)

2∑
i,j=1

aij(x)ξiξj ≥ γ|ξ|2, for all x ∈ Ω̄ and ξ = (ξ1, ξ2) ∈ R2.

We give the domain Ω a singular structure that is not entirely based on geometry,
instead it is adapted to problem (0.1). We denote by V the set of singular points
of (0.1) as the collections of points that are either vertices of some Ωk or points
where the boundary conditions change. In particular, any point where the interface
Γ meets the boundary of Ω or Γ is not smooth are included. We do not exclude
the so-called “triple junctions,” which are points where three or more subdomains
meet. At all these points the solution may have singularities. We will call all the
singular points in V vertices, regardless whether these are true geometrical vertices
of Ω or artificial vertices where the boundary conditions changes or the interface is
not smooth. The set V endows Ω with a polygonal structure, which is unique only
if problem (0.1) is specified. We denote by `min the minimum distance between
points in V. We will use `min to construct weighted Sobolev spaces later on in the
paper.

A simple example of a domain with polygonal structure is provided by the L-
shape domain of Figure 2. In this case, no interface is present, but there exists a
vertex with an interior angle greater than π. We will call such a vertex a re-entrant
vertex. It is well known that the regularity of the solution is decreased by the
presence of re-entrant vertices and finite-element approximations based on uniform
meshes may not achieve optimal rates of convergence. One of the advantages of the
GFEM is that it is not based on a mesh.

To specify the polygonal structure on Ω, we will also need to assume that

∂Ω = ∂DΩ ∪ ∂NΩ,

with ∂DΩ 6= ∅ a union of finitely many closed segments and ∂NΩ := ∂Ω r ∂DΩ. In
particular, ∂DΩ has positive measure and ∂NΩ is an open subset of the boundary
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of Ω. Let us denote by Dν the co-normal derivative associated to the operator P :

(1.3) Dνu :=
∑
i,j

νiaij∂ju± = ν ·A · ∇u.

where ν is the outer unit normal vector to Ω. We will impose homogeneous Dirichlet
boundary conditions u ≡ 0 on ∂DΩ, a union of closed sides of Ω, and homogeneous
Neumann conditions Dν ≡ 0 on ∂NΩ, a union of open sides of Ω, in trace sense.
Non-homogeneous conditions can be treated as well. We let then

(1.4) H1
D(Ω) := {f ∈ H1(Ω), f = 0 on ∂DΩ}.

We will consider problem (0.1) always in variational form, which is well defined
and yields a unique solution in H1

D(Ω) by the Lax-Milgram theorem. We introduce
the bilinear form on H1

D(Ω):

(1.5) B(u, v) :=

∫
Ω

(A∇u) · ∇v dx.

Then, the weak form of (0.1) reads:

B(u, v) = (f, v), ∀v ∈ H1
D(Ω).

When the coefficients aij have jump discontinuities at the interface Γ, the weak
formulation implies that any solution of problem (0.1) must satisfy matching and
jump conditions, the so-called transmission conditions, at the interface Γ:

(1.6) u+ = u−, Dν+u = Dν−u.

Above, we label the limits u+, u− of u at each side of the interface, and denote the
respective conormal derivatives by Dν+ and Dν−, Dν± =

∑
ij νiaij±∂ju. These

limits should be intended in trace sense on each Ωk or a.e. in a non-tangential
approach to ∂Ωk. We think of the two sides of Γ as given by the boundaries of the
various Ωk. The labeling ± is only for notational convenience and plays no role. It
refers to an arbitrary labeling of the “two sides” of the interface Γ.

2. Construction of the approximation spaces Sn

In this section, we shall present the construction of a sequence Sn ⊂ H1
D(Ω)

of finite-dimensional approximation spaces that satisfy dim(Sn) ∼ 22n and yield
quasi-optimal rates of convergence for the Galerkin approximation of the mixed-
boundary-value/interface problem (0.1). Given two sequences of (an) and (bn) of
positive numbers, we shall write an ∼ bn if both sequences an/bn and bn/an are
bounded.

We recall that by Galerkin approximation of the solution to (0.1), we mean a
sequence of functions un ∈ Sn ⊂ H1

D(Ω) such that un is the variational solution of
(0.1) when the space of test function is restricted to Sn, that is, (0.2) holds.

Definition 2.1. Let us fix m ∈ N := {1, 2, 3, . . .}. We say that a sequence Sn ⊂
H1(Ω) of finite dimensional approximation spaces yields hm-quasi-optimal rates of
convergence for the Galerkin approximation un ∈ Sn for the solution u of the mixed-
boundary-value/interface problem (0.1), with data f ∈ Hm−1(Ω), if there exists C
independent of n ∈ N and of f ∈ Hm−1(Ω) such that un satisfies

(2.1) ‖u− un‖H1(Ω) ≤ C dim(Sn)−m/2‖f‖Hm−1(Ω).
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Q1

Q2Q3

Q4 Q5

Q6
UQ1

Figure 1. A L-Shape domain with 6 vertices. The subdomain UQ
at each corner Q of Ω.

The integer m ≥ 1 is order of the approximation and will be kept fixed through-
out this paper.

Next we proceed to give explicit construction of the approximation spaces Sn in
several steps. For each vertex Q in V, we will choose a small neighborhood UQ of Q
in Ω such that for each P ∈ UQ, the open segment PQ is completely contained in
UQ (so UQ is star-shaped with respect to Q). Often it is possible to choose UQ to
be a small triangle in Ω with Q one of the vertices. In general, however, UQ need
not be convex, as in the case of vertex Q1 in Figure 2. If there are interfaces, we
apply this construction to each subdomain Ωk.

The construction we present is quite general and will be in terms of an auxiliary
family of finite-dimensional subspaces S′n ⊂ H1(W ) (with W defined below in
Equation (2.4)), exploiting grading towards each of the singular points. The grading
at each Q ∈ V will be defined in terms of a parameter κQ associated to Q, which is
determined by the strengths of the singularities of solutions at Q. For instance, for
the Poisson problem ∆u = f with Dirichlet boundary conditions, if the angle at Q
is α, we choose 0 < κQ < 2−

mα
π , where m is the order of the approximation. For

simplicity, we shall assume that the parameter κQ is the same for all Q, κQ = κ,
and hence we will drop the dependence on Q from κ. While this choice is not
optimal, the case of a uniform κQ is easily achieved by replacing the parameters
κQ with the minimum of their values. Our algorithm can easily be extended to the
case of a vertex-dependent κQ.

Below, we will call a vertex of Ω the sides of which are both endowed with
Neumann boundary conditions a Neumann-Neumann or NN vertex.

2.1. The case of no interfaces and no Neumann-Neumann corners. As
indicated above, we first must choose for each singular point Q ∈ V a neighborhood
UQ of Q such and UP ∩ UQ = ∅ for P 6= Q, P,Q ∈ V. Here we can choose this UQ
such that the distance ρ(x) from any point x ∈ UQ to Q satisfies ρ(x) ≤ `min/4.
We then extend ρ to a smooth function on Ω that is comparable to the Euclidean
distance in the complement of ∪Q∈VUQ in Ω. We then note that ρ(x) > 0 for
x 6∈ ∪Q∈VUQ.
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Q

D C

A B

FE

V Qj = δj−1
λ (UQ) \ δj+1

λ (UQ)

δj−1
λ (UQ)

δj+1
λ (UQ)

Figure 2. The subdomain Vj = V Qj = δj−1
λ (UQ) \ δj+1

λ (UQ) near

the vertex Q, Vj ∩ Vj+1 6= ∅

Next, we denote by δQλ the dilation with ratio λ > 0 and center Q. We can
assume that all the subdomains UQ ⊂ Ω are dilation invariant, in the sense that

(2.2) δλ(UQ) := δQλ (UQ) ⊂ UQ, λ ∈ (0, 1).

Given κ > 0 to be determined later, we introduce the domains V Qj

(2.3) V Qj := δj−1
κ (UQ) \ δj+1

κ (UQ),

j = 1, 2, . . ., obtained by repeated applications of the dilation operator δλ with

λ = κ. In particular, UQ = ∪∞j=1V
Q
j . We also take the remainder set W of the form

(2.4) W := Ω \ (∪Qδ2
κ(UQ)),

so that for example V Q1 ⊂W for all Q ∈ V.
We choose now a sequence of finite dimensional spaces S′j ⊂ H1(W ) j =

0, . . . , n, . . ., with dim(S′j) v 22j that have good approximation properties in the
sense that

(2.5) inf
v∈S′j
‖u−v‖Hs ≤ Cdim(S′j)

−(t−s)/2‖u‖Ht ≤ C2−j(t−s)‖u‖Ht , 0 ≤ s < t,

for a constant C > 0 that is independent of j or u ∈ Ht(W ). Examples of spaces
S′n satisfying the condition of Equation (2.5) can be found in many works, e.g.
[1, 8, 9, 21]. A typical example is that of spaces of continuous piecewise polynomials
of degree m on a quasi-uniform sequence of meshes. Another example is that of non-
conforming GFEM spaces based on partitions of unity and piecewise polynomials
(see [22] for the case of smooth domains with smooth interfaces.)

In either the classical case of Finite Element spaces defined using piecewise poly-
nomials on a quasi-uniform sequence of meshes, or the case of Generalized Finite
Element spaces defined using a partition of unity subordinated to a suitable se-
quence of coverings, the typical size of the elements or of the covering patches, hj ,

is of order 2−j , hj ∼ 2−j . Then the factor 2−j(t−s) in (2.5) can be replaced by
the more familiar factor ht−sj . In this paper, we shall use the above approximation

property (2.5) only in the variational space H1 of Ω or Ωk, that is , for s = 1.
In order to introduce the global approximation spaces Sn ⊂ H1(Ω), we shall

need the following construction. First, we choose smooth enough functions ηQj ≥ 0,
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j = 1, 2, . . . , around each vertex Q such that ηQj has support in V Qj and the sequence

of functions ηQj is compatible with dilations in the following sense:

ηQj+1(δjκ(x)) = ηQ1 (x), supp(ηQj+1) ⊂ V Qj+1.

We complete the set of functions ηQj with η0 = 1 −
∑
Q,j η

Q
j on W . Then, we

can assume that {ηQj }∞j=0 is an infinite partition of unity on Ω. The function η0

will have a large “flap top,” being equal to one on almost all of Ωk except in a
neighborhood of each vertex.

Next, we introduce the notation for each j ≥ 1,

η̃j :=
∑
Q

ηQj ,

where Q ∈ V ranges over all singular points of Ω, and

η̃kS
′
j := {η̃kφ, φ ∈ S′j}.

We observe that any function φ ∈ η̃1S
′
n−j has support in the union of the disjoint

open sets V Q1 over all vertices Q ∈ V. We can therefore write φ =
∑
Q φQ, where

each φQ has support in V Q1 . We then set:

δjκ(φ) =
∑
Q

φQ ◦ (δQκ )−j ,

noticing that φQ ◦ (δQκ )−j has support in V Qj+1. Finally we define inductively:

(2.6)

S0 = η0S
′
0,

Sn := η0S
′
n +

n∑
j=1

η̃jδ
j−1
κ (S′n−j) = η0S

′
n +

n∑
j=1

δj−1
κ (η̃1S

′
n−j).

We continue with some remarks on the definition and properties of the spaces
Sn, before considering the more complex case when interface or Neumann-Neumann
vertices are present. The approximation spaces will be denoted S̃n there to distin-
guish these special case.

Remark 2.2. Since the support of none of the functions ηj contain any of the points
of V, the functions in Sn are equal to 0 in a neighborhood of each Q ∈ V. This
property, however, does not hold at the NN vertices and at the non-smooth points
of the interface. Close to these points the approximation functions will be non-zero
constant instead to account for the non-trivial kernel of the differentially operator
locally near these points.

Remark 2.3. The definition of the approximation spaces Sn is quite general. How-
ever, if the initial spaces {S′j}nj=0 are local GFEM spaces, then Sn are also GFEM
spaces.

Remark 2.4. The condition that
∑n
j=1 η

Q
j = 1 on all V Qj , j = 2, 3, . . . can be

achieved by choosing ηQ1 to be positive with large enough support, then defining

the functions ηQj to be compatible with dilations, and finally by using a Shepard

procedure to make the ηQj be a partition of unity on ∪Q,j≥2V
Q
j .
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To close, the basic idea of the construction of the GFEM space Sn is the following.
Choose U = ∪UQ as in Section 2.1 and define W ⊂ Ω at some distance to the
vertices, as in (2.4), so that the solution u will be smooth on W . In the subdomain
W , construct a sequence of spaces {S′j}nj=0 ⊂ Hk(W ), satisfying the approximation
property. Then extend S′n towards the vertices using the dilations δλ. Finally,

define Sn by glueing the spaces δj−1
λ (S′n−j) using a partition of unity.

In the following section, we prove that the spaces Sn defined by Equation (2.6)
yield hm-quasi-optimal rates of convergence for the Galerkin method on polygons,
provided that the initial spaces S′n satisfy the condition of Equation (2.5).

Next, we introduce the approximation spaces S̃n for the general case.

2.2. Construction of the approximation spaces when there are interfaces
and Neumann-Neumann vertices. In this case, the approximation spaces will
be given by a slight modification of (2.6). The change is in the approximation
condition (2.5). Due to jumps in the coefficients, the solution is not in Hm+1, not
even locally near the interface, although it is still in the variational space H1(Ω).

As shown in [21], in case interfaces are present, the approximation property holds

in what we call the broken Sobolev spaces K̂m+1
a+1 (Ω), which we will introduce in the

next section as they are used to prove the quasi-optimal rates of convergence.
We content ourselves for now to define the broken spaces away from the vertices,

that is, on W . No weight is required here. We refer to [22] for further discussion.
We recall again from the Introduction that Ω = ∪Kk=1Ωk, where Ωk are disjoint

straight polygonal domains. The broken Sobolev spaces Ĥk(W ), W ⊂ Ω open, are
defined as follows

Ĥm(W ) = {u : Ω→ R, u|W∩Ωk ∈ Hm(Ωk ∩W ), for all k}.
As in the case when there were no interfaces present, we choose a sequence of

finite dimensional spaces S′j ⊂ Ĥk(W ) ∩ H1(W ) j = 0, . . . , n, . . ., k ≥ 1, with

dim(S′j) v 22j that have good approximation properties in the sense that

(2.7) inf
v∈S′j
‖u− v‖Hs ≤ Cdim(S′j)

−(t−s)/2(‖u‖Ĥt + ‖u‖H1), s = 0, 1,

for a constant C > 0 independent of u ∈ Ĥt(W ) ∩H1(W ) and j.
We remark that the definition of the broken spaces depends on the choice of Ωk,

even though we do not explicitly display this dependence in the notation.
Examples of spaces S′n satisfying the condition of Equation (2.5) can be con-

structed using the results in [1, 8, 9]. The most typical example is that of con-
tinuous piecewise polynomials of degree m on a quasi-uniform sequence of meshes,
provided that the meshes are aligned with the interface.

Let us notice that condition (2.7) is not the direct analog of condition (2.5),

since we only allow s ≤ 1 and we require u ∈ Ĥt(W ) ∩ H1(W ), the intersection
of a broken Sobolev space and a regular Sobolev space. On the other hand, the
error is given in a regular Sobolev space for this case as well. The restriction s ≤ 1
is reasonable since we are only studying second order differential equations. In
particular, the form of the approximation condition (2.7) would not be appropriate
for higher order equations in the presence of interfaces. In general, much less is
known on transmission problems for higher-order operators.

To complete the definition of the approximation spaces S̃n in the case of interfaces
and Neumann-Neumann corners, we proceed as follows. For each singular point
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P ∈ V, we pick a function χP ≥ 0 that is equal to 1 in a small neighborhood of
P and satisfies DνχP = 0 on the whole boundary. We may assume that all the
supports of the functions χP are disjoint and disjoint from the boundary of Ω,
unless P is on ∂Ω. We denote by W the set of P ∈ V such that χP satisfies the
boundary conditions for problem (0.1). It easy to see that χP satisfies the boundary
conditions in one of the following mutually exclusive cases: P is a vertex separating
two edges endowed with Neumann boundary conditions, P is an interior point of a
side endowed with Neumann boundary conditions where the interface touches the
boundary, P is a non-smooth point of the interface (this includes ”triple junctions”.)
We then defineWs be the linear span of the functions χP that satisfy the boundary
conditions, thus

(2.8) Ws :=
{ ∑
P∈W

aPχP , aP ∈ R
}
.

Then we change the definition of the space Sn as follows:

(2.9) S̃n := Sn +Ws = η0S
′
n +

n∑
j=1

η̃jδ
j−1
κ (S′n−j) +Ws

= η0S
′
n +

n∑
k=1

δj−1
κ (η̃1S

′
n−j) +Ws.

The only difference with respect to equation (2.6) is therefore than the Sn’s are
complemented with the spaceWs. We remark that we can choose, for each P ∈ W,

χP =
∑
n≥2

ηPn .

We will implicitly make this assumption throughout the rest of the paper.

3. Optimal Rates of Convergence

This section is devoted to proving our main result, that is, we will prove that
hm-quasi-optimal rates of convergence hold for the Galerkin approximation of the
solution in the spaces Sn.

By Céa’s Lemma, it will be sufficient to construct an approximation of the solu-
tion u for which estimate (2.1) holds. One difficulty is the lack of elliptic regularity
for problem (0.1) when singular points are present, so that the Hm−1 norm of f
does not control the Hm+1 norm of the solution, which has only limited regular-
ity in standard Sobolev spaces even if f and the coefficient of the operator P are
smooth on Ω. Elliptic regularity is restored if weighted Sobolev spaces are used
instead. We now briefly recall the definition and main properties of these spaces.
For brevity, we consider only domains in the plane. For the higher-dimensional case
and more details, we refer to [5, 6, 7].

3.1. Weighted Sobolev Spaces. We begin by recalling the notion of regularized
distance function, which is the basis for the construction of the weight. We have
denoted with ρ : Ω → [0, 1] a continuous function that is smooth except at the
points of V, satisfies ρ−1(0) = V, and, most importantly, has the property that
ρ(x) is the distance from x to V, whenever x is close to V.

We define the weighted Sobolev space Kma (Ω) with m ∈ Z+, as follows:

(3.1) Kma (Ω) = {u : Ω→ R, ρ|α|−a∂αu ∈ L2(Ω), for all |α| ≤ m },
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where α = (α1, α2) is a multi-index. This space will be endowed with the induced
Hilbert space norm. As already stated, for simplicity we restrict to isotropic spaces,
that is, we assume a uniform weight for all the vertices, though this is not the opti-
mal choice. In practice, one can easily implement the case of different parameters
κQ.

We immediately have from the definition that

K0
0(Ω) = L2(Ω) and ρbKma (Ω) = Kma+b(Ω),

where ρbKma = {ρbv, for any v ∈ Kma }.
When interfaces are present, that is, when we are given a decomposition Ω =

∪kΩk, the needed regularity results will be expressed in terms of the broken weighted
Sobolev spaces:

K̂ma (Ω) = {u : Ω→ R, u|Ωk ∈ Kma (Ωk), for all k }.
If G ⊂ Ω is an open subset, we shall use the same function ρ used to define Kma (Ω)
in Equation (3.1) to define

(3.2) Kma (G) = {u : G→ R, ρ|α|−a∂αu ∈ L2(G), for all |α| ≤ m } .
We shall need the following three lemmas. We refer to [6, 7] for a detailed proof.

Lemma 3.1. Let m ∈ Z+ and a ∈ R. Let G ⊂ Ω be an open subset such that
ρ(x) ≤ λ for x ∈ G. Then, if u ∈ Kma (G),

‖u‖Km′
a′ (G) ≤ λ

a−a′‖u‖Kma (G)

for all m′, a′ such that m ≥ m′ and a ≥ a′.

Proof. The proof is a direct verification from the definition of Kma . �

The following lemma states that the Hm and Km
a -norms are equivalent on

Hm(G) for any region G for which the function ρ is bounded from below away
from zero.

Lemma 3.2. Let G ⊂ be an open proper subset of Ω such that the distance ρ ≥ γ
on G, for some positive constant γ. Then

‖u‖Hm(G) ≤M1‖u‖Kma (G) and ‖u‖Kma (G) ≤M2‖u‖Hm(G)

for any u ∈ Hm(G), where M1 and M2 may depend on γ and m, but not on u.

Proof. The result follows directly from the definition of the Hm and Kma -norms,
given that ρ is smooth and bounded away from zero. �

Lemma 3.3. Let Ω be a polygonal domain. Assume that there are no Neumann-
Neumann corners, no interfaces, and that ∂DΩ 6= ∅. Then the H1(Ω)-norm, the
K1

1-norm, and the seminorm | · |H1(Ω) are equivalent on H1
D(Ω). In particular,

K1
1(Ω) ∩ {u = 0, on ∂DΩ } = H1

D(Ω),

We observe that by definition it is always true that K1
1(Ω) ⊂ H1(Ω) with

equivalent seminorms.
We shall also need the following well-known dilation invariance property, which

is one of the main reasons weighted Sobolev spaces are more convenient than the

usual Sobolev spaces in dealing with corner singularities. Recall that δQλ : UQ → UQ
denotes the dilation with center Q and ratio λ ∈ [0, 1]. Here UQ is the distinguished
neighborhood of Q in Ω that we fixed throughout the paper.
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Lemma 3.4. Let 0 < λ < 1 and let G ⊂ UQ. Set Gλ = δQλ (G) = {δQλ x, x ∈ G},
and set uλ(x) = u(δQλ x). Then, for any u ∈ Kma (Gλ), we have

‖uλ‖Kma (G) = λa−1‖u‖Kma (Gλ).

Next, we state well-posedness and regularity results for problem (0.1) in weighted
spaces for certain ranges of the weight. The spaces are augmented by appropriate
“singular functions” in the case of Neumann-Neumann vertices and non-smooth
interfaces. These results were established in [6, 19, 21], in various degrees of gener-
ality. We state the results for the case of problem (0.1), although non-homogeneous

boundary data gD ∈ Km+1/2
a+1/2 (∂DΩ) and gN ∈ Km−1/2

a−1/2 (∂NΩ) can be considered as

well.

Theorem 3.5. Let Ω ∈ R2 be a bounded polygonal domain and m ∈ Z. Assume the
differential operator P is uniformly strongly elliptic with coefficients that are smooth
on Ω. Assume in addition that no two adjacent sides of Ω are given Neumann
boundary conditions. Then there exists η > 0 with the following property: for any
|a| < η, the boundary value problem (0.1) has a unique solution u ∈ Km+1

a+1 (Ω) ∩
H1
D(Ω) for any f ∈ Km−1

a−1 (Ω). This solution depends continuously on f .

When Neumann-Neumann vertices or interfaces are present, well-posedness is
achieved instead in the broken Sobolev spaces, augmented with Ws, provided that
a > 0. The space Ws is given in (2.8).

As before, by abuse of notation, we shall denote also by ‖ ‖K̂m+1
a+1

the norm

‖u0 +
∑
P

aPχP ‖K̂m+1
a+1

:=

K∑
k=1

‖u0‖Km+1
a+1 (Ωk) +

∑
P∈W

|aP |

on the space K̂m+1
a+1 (Ω) +Ws. We similarly extend the norm ‖ ‖K1

a+1
from the space

K1
a+1(Ω) to K1

a+1(Ω) +Ws.

Theorem 3.6. Consider an interface problem Pu = f on the bounded polygonal
domain Ω ∈ R2, Ω = ∪Kk=1Ωk and let m ∈ Z. Assume the Dirichlet part of the
boundary is non-empty. Then there exists η > 0 with the following property: for
any 0 < a < η, the interface/boundary value problem (0.1) has a unique solution

u ∈
(
K̂m+1
a+1 (Ω) ∩ K1

a+1(Ω) +Ws

)
∩ H1

D(Ω), for any f ∈ K̂m−1
a−1 (Ω). This solution

depends continuously on f :

‖u‖K1
a+1(Ω) + ‖u‖K̂m+1

a+1 (Ω) ≤ C
K∑
k=1

‖f‖Km−1
a−1 (Ωk) .

In the case of the pure Neumann problem, uniqueness holds only up to constant
functions on Ω̄, assuming Ω is connected. Otherwise the result is similar.

3.2. Approximation away from the vertices. We start by discussing the sim-
pler approximation of the solution u away from the singular points. For simplicity,
we shall deal first with the case when there are no interfaces and no Neumann-
Neumann vertices, and then indicate what are the changes needed to deal with the
case when there are interfaces. So, we assume in this and next subsection that
there are no interfaces and there are no Neumann-Neumann vertices.

We recall that we have denoted V Qj := δj−1
λ (UQ) \ δj+1

λ (UQ), j ≥ 1, and W :=

Ω \ (∪Qδ2
κ(UQ)), so that V Q1 ⊂W for all Q ∈ V.
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Recall that, since the distance function ρ is bounded away from zero on W by
construction, S′n ⊂ K1

1(W ). Let us denote by un,W the K1
1(W ) projection of u onto

the space S′n. The equivalence of Hm+1(W ) and Km+1
a+1 (W )-norms on functions

defined on W , Lemma 3.2, together with Equation (2.5) then gives

(3.3) ‖u− un,W ‖K1
1(W ) ≤ inf

v∈S′n
‖u− v‖K1

1(W )

≤ C inf
v∈S′n

‖u− v‖H1(W ) ≤ C2−nm‖u‖Hm+1(W ).

We can then take un,W as approximation on W . When interfaces are present, we
apply the same construction on each Ωk, k = 1, . . . ,K, and replace the Hm norm
on the right hand side of (3.3) with the norm in the space Ĥm(Ω) ∩H1(Ω).

In order to define the approximation near a vertex Q, we need to give it first on

V Q1 . Then we will use dilations to define the approximation on the set V Qj .

Proposition 3.7. Given any vertex Q of Ω, there exists a constant CQ > 0 with

the following property. For any u ∈ Km+1
a+1 (V Q1 ) and any n, there exists un,Q ∈ S′n

such that

‖u− un,Q‖K1
1(V Q1 ) ≤ CQ2−nm‖u‖Km+1

a+1 (V Q1 ).

Proof. We define un,Q ∈ S′n to be the K1
1(V Q1 ) projection of u onto S′n. Let E be

the extension map

E : Km+1
a+1 (V Q1 )→ Km+1

a+1 (W ),

which is a bounded operator by classical results for Sobolev spaces on Lipschitz
domains [25], and (Eu)n,W denotes the K1

1(W ) projection of Eu onto the space S′n.
Equation (3.3) and Lemma 3.2 then give

‖u− uQ,n‖K1
1(V Q1 ) ≤ ‖u− (Eu)n,W,E‖K1

1(V Q1 ) ≤ ‖Eu− (Eu)n,W,E‖K1
1(W )

≤ C2−nm‖Eu‖Km+1
a+1 (W ) ≤ C2−nm‖u‖Km+1

a+1 (V Q1 ),

This completes the proof. �

3.3. Approximation near the vertices. Recall that in this subsection we con-
tinue to assume there are no interfaces or NN vertices. We will use grading to define
the approximation of u near the vertices of Ω. To do so, we extend Proposition 3.7

to the sets V Qj = δj−1
κ (V Q1 ), given in Equation (2.3), for j = 2, · · · , n+ 1.

Throughout, we fix Q and hence write Vj for V Qj and δλ for δQλ for notational
ease, but we still indicate the dependence on Q for the approximation of the solution
u near Q. It will be convenient to write S′n(V1) for the set of restrictions to V1 of
the functions in S′n, which are functions on the whole W . Recall that the sets Vj are

defined by repeated applications of the dilation δκ, Vj = δj−1
κ (V1), with κ ≤ 2−m/a.

Thus we can define

S′n(Vj) = δj−1
κ (S′n(V1)).

Proposition 3.8. Let CQ > 0 be the constant of Proposition 3.7. Then, given any

1 ≤ j ≤ n and any u ∈ Km+1
a+1 (Vj), there exists uQ,n,j ∈ S′n−j(Vj) = δj−1

κ (S′n−j(V1))
such that

‖u− uQ,n,j‖K1
1(Vj) ≤ CQ2−nm‖u‖Km+1

a+1 (Vj)
.
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Proof. For j = 1 the statement has been proved in Proposition 3.7 with uQ,n,1 =
uQ,n. We then define uQ,n,j ∈ S′n−j(Vj) = δj−1

κ S′n−j(Vj) as the K1
1(Vj) projection of

u onto S′n−j(Vj). Using the behavior of the sets and function spaces under dilations,

we will reduce the proof to an application of Proposition 3.7. We let v ∈ Km+1
a+1 (V1)

be given by

v(x) := u(δj−1
κ x), x ∈ V1,

and let vQ ∈ S′n−j(V1) be the K1
1(V1) projection of v. Then uQ,n,j is obtained from

vQ by dilation, and Lemma 3.4 gives that ‖u− uQ,n,j‖K1
1(Vj) = ‖v − vQ‖K1

1(V1).
Finally Proposition 3.7 implies that

‖u− uQ,n,j‖K1
1(Vj) = ‖v − vQ‖K1

1(V1) ≤ CQ2−(n−j)m‖v‖Km+1
a+1 (V1)

≤ CQ2−(n−j)mκa(j−1)‖u‖Km+1
a+1 (Vj)

≤ CQ2−nm‖u‖Km+1
a+1 (Vj)

,

since κ ≤ 2−m/a. This completes the proof. �

We now prove a similar error estimate for the region

Ṽn = UQ \
(
∪n−1
j=1 Vj)

)
,

which is the region closest to the vertex in our grading. We remark that, by
construction, Sn consists of functions that are zero on Ṽj for j > n, in case there
are no interfaces and no Neumann-Neumann vertices. Otherwise, it consists of
functions that are constant on Ṽj , j > n. The error estimate follows from the
regularity properties of u in weighted spaces.

Proposition 3.9. There exists a constant CQ > 0 such that, for any n and any

u ∈ Km+1
a+1 (Vn), we have

‖u‖K1
1(Ṽn) ≤ CQ2−nm‖u‖Km+1

a+1 (Ṽn).

Proof. We first notice that

λ := sup
x∈Ṽn

ρ(x) ≤ Cκn ≤ C(2−m/a)n = C2−mn/a,

where C is a constant that depends only on the initial mesh refinement. We then
use Lemma 3.1 for this value of λ to obtain

(3.4) ‖u‖K1
1(Vn) ≤ (C2−mn/a)a‖u‖K1

1+a(Vn) ≤ CQ2−nm‖u‖Km+1
a+1 (Vn).

�

Recall the functions ηk used to define the spaces Sn (Equations 2.2 and 2.6).
Given a sufficiently regular function φ on Ω, we also denote

(3.5) ‖φ‖k := max
i
‖ρk∂ix1

∂k−ix2
φ‖L∞(Ω)

We shall need the following estimate for the norms ‖ ‖k.

Lemma 3.10. There exist constants Cm, m ≥ 1, such that

(i) ‖φu‖Kma ≤ Cm‖φ‖m‖u‖Kma , for any φ ∈ Cm(Ω) and u ∈ Kma ,

(ii) ‖ηQn ‖m ≤ Cm for any n,
(iii) if rQ,n :=

∑
k≥n+1 η

Q
n , then ‖rQ,n‖m ≤ Cm for any n.
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Proof. Estimate (i) follows by a direct calculation. We only need to consider what
happens fro functions localized near the vertices. We observe that the dilated
function uλ, 0 < λ < 1, satisfies ‖uλ‖k = ‖u‖k provided that both u and its uλ
have support in a neighborhood UQ for some Q ∈ V. Then the bound (ii) follows
from the dilation invariance of the family of functions ηk (Equation 2.2) by taking
Cm := ‖η1‖m. Lastly estimate (iii) is proved in a similar way. �

The following standard lemma (see for instance [3] will be useful.)

Lemma 3.11. Given a space X, assume that for any point x ∈ X, at most M of
the values fk(x) of a sequence of functions fk ∈ L2(X), k = 1, 2, . . ., are not zero.
Then, ‖

∑
k fk‖2 ≤M

∑
k ‖fk‖2.

We are now ready to state a global approximation result. Recall that we still
assume that there are no interfaces and no Neumann-Neumann vertices in this
subsection. Then, the solution of problem (0.1) belongs to Km+1

a+1 provided f ∈
Km−1
a−1 , so we state the result for functions with this regularity.

Theorem 3.12. There exists a constant C > 0 such that for any n and for any
u ∈ Km+1

a+1 (Ω) ∩H1
D(Ω), there exists uI,n ∈ Sn such that

‖u− uI,n‖K1
1(Ω) ≤ C2−nm‖u‖Km+1

a+1 (Ω).

The constant C may depend on m and a, but not on n and u.

Proof. For each vertex Q ∈ V, recall that we defined S′n−j(V
Q
j ) = δj−1

κ S′n−j(V
Q
1 ).

Let uQ,n,j ∈ S′n−j(V
Q
j ) be as in Proposition 3.8. Also, let uW ∈ S′n be the K1

1(W )

projection of u onto S′n. Then we define

uI = η0uW +
∑
Q

n∑
j=1

ηQj uQ,n,j ∈ Sn,

Since 1 = η0 +
∑
Q(rQ,n +

∑n
j=1 η

Q
j ) by construction, we have that

u− uI,n = η0(u− uW ) +
∑
Q

(
rQ,nu+

n∑
j=1

ηQj (u− uQ,n,j)
)
.

We next notice that the functions η0(u−uW ), rQ,nu, and ηQj (u−uQ,n,j) satisfy the

assumption of Lemma 3.11 for M = 2 as 1 ≤ j ≤ n and n vary. (We have M = 2

because any point belongs to at most two of the sets V Qj and W .)
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Let C1 be the constant provided by Lemma 3.10 with m = 1, and set C̃1 :=
max(C1, ‖η0‖1). Propositions 3.7, 3.8, and 3.9 then imply that

‖u− uI,n‖2K1
1(Ω)

≤ 2
(
‖η0(u− uW )‖2K1

1(Ω) +
∑
Q

(
‖rQ,nu‖2K1

1(Ω) +

n∑
j=1

‖ηQj (u− uQ,n,j)‖2K1
1(Ω)

))
≤ C̃1

(
‖u− uW ‖2K1

1(W ) +
∑
Q

(
‖u‖2K1

1(Ṽn)
+

n∑
j=1

‖u− uQ,n,j‖2K1
1(V Qj )

))
≤ 2C̃1CQ2−nm

(
‖u‖2Km+1

a+1 (W )
+
∑
Q

(
‖u‖2Km+1

a+1 (Ṽn)
+

n∑
j=1

‖u‖2Km+1
a+1 (V Qj )

))
≤ 4C̃1CQ2−nm‖u‖2Km+1

a+1 (Ω)
.

The proof is complete. �

3.4. The case of interfaces and Neumann-Neumann vertices. When inter-
faces and Neumann-Neumann vertices are present, regularity for the solution u to
problem (0.1) must be measured in the space K̂m+1

a+1 (Ω) +Ws. We also need to use
Equation (2.7) instead of Equation (2.5) and the definition of Sn spaces Equation
(2.9) instead of Equation (2.6). We consequently state an approximation result for
this case. The proof is identical to that of Theorem 3.12.

Theorem 3.13. There exists a constant C > 0 such that for any n and for any
u ∈

(
K̂m+1
a+1 (Ω) +Ws

)
∩H1

D(Ω), there exists uI,n ∈ S̃n := Sn +Ws on Ω such that

‖u− uI,n‖H1(Ω) ≤ C2−nm‖u‖K̂m+1
a+1 (Ω).

3.5. Optimal rates of convergence. Now we are ready to prove our main result:
the quasi-optimal rates of convergence, stated in (2.1), for the Galerkin approxima-
tions of the mixed-boundary-value/interface problem (0.1). Let η be the constant
of Theorem 3.6. As before, by abuse of notation, we shall denote also by ‖ ‖K̂m+1

a+1

the norm on the space K̂m+1
a+1 (Ω) +Ws.

Theorem 3.14. Let m ≥ 1 and a ∈ (0, η). Then there exists a constant C > 0

such that for any n and for any f ∈ K̂m−1
a−1 (Ω), the solution u ∈ K̂m+1

a+1 (Ω) +Ws of

(0.1) and its Galerkin approximation un ∈ S̃n = Sn +Ws satisfy

‖u− un‖H1(Ω) ≤ C2−nm‖f‖Km−1
a−1 (Ω),

where C may depend on m and a, but not on n and f .

Proof. This result is an immediate consequence of Theorems 3.6 and 3.13 and of
Céa’s Lemma. �

Estimate (2.1) then follows easily from the fact that if f ∈ Hm−1(Ω), then
f ∈ Km−1

a−1 for the given range of weight a:

‖u− un‖H1(Ω) ≤ C dim(Sn)−m/2‖f‖Hm−1(Ω),

recalling that dim(Sn) ∼ 22n.
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