
Database Management Systems II, Huiping Cao! 1!

Query Evaluation 
-- External Sorting!

References: !
q  [RG-3ed] Chapter 13!
q  [SKS-6ed] Chapter 12.4!

2!Database Management Systems II, Huiping Cao!

Outline!

q  Why sorting?!
q  External sorting!

q  2-way sort!
q  M-way sort!

q  Other considerations!
q  Blocked I/O!
q  Double buffering!

q  Sorting using index!
q  Clustered!
q  Non-clustered!

3!Database Management Systems II, Huiping Cao!

Why Sort?!

q  A classic problem in computer science!!
q  Data requested in sorted order !

q  e.g., find students in increasing GPA order!
q  Sorting is the first step in bulk loading B+ tree index.!
q  Sorting is useful for eliminating duplicate copies in a collection

of records (Why?)!
q  Sort-merge join algorithm involves sorting.!
q  Problem: sort 1Gb of data with 1Mb of RAM.!

4!Database Management Systems II, Huiping Cao!

Sorting!

q  We may build an index on the relation, and then use the index
to read the relation in sorted order. !
q  May lead to one disk block access for each tuple.!

q  Sorting!
q  For relations that fit in memory, techniques like quicksort

can be used. !
q  For relations that do not fit in memory, external  

sort-merge is a good choice. !

5!Database Management Systems II, Huiping Cao!

Sorting in Commercial RDBMs!

q  External merge sort!
q  DB2, Informix, SQL Server, Oracle 8, Sybase ASE!
q  None of these systems uses the optimization that produces runs

larger than available memory!
q  I/O is asynchronous and prefetching!

q  In-memory!
q  Miscrost, Sybase ASE: merge sort!
q  DB2 and Sybase IQ: radix sorting!
q  Oracle: insertion sort!

6!Database Management Systems II, Huiping Cao!

Concepts!

q  Run!
q  When sorting a file, several sub-files are typically generated in

intermediate steps. Each sorted sub-file is referred to as a run. !
q  Pass!

q  Available buffer main memory: M !
q  Number of pages in the file: br!

7!Database Management Systems II, Huiping Cao!

2-Way Sort: Requires 3 Buffers!

q  Pass 1: Read a page, sort it, write it.!
q  only one buffer page is used!

q  Pass 2, 3, …, etc.:!
q  three buffer pages used.!

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk Disk

8!Database Management Systems II, Huiping Cao!

2-Way External Merge Sort!

q  Each pass we read + write
each page in file.!

q  Let br pages in the file !
q  the number of passes!

!
q  So toal cost is:!
!
 !
q  Idea: Divide and conquer:

sort sub-files and merge!

⎡ ⎤ 1log2 += rb

⎡ ⎤()1log2 2 +rr bb

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0!

PASS 1!

PASS 2!

PASS 3!

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

9!Database Management Systems II, Huiping Cao!

General External Merge Sort!

q  More than 3 buffer pages. How can we utilize them?!
q  To sort a file with br pages using M buffer pages:!

q  Pass 0: use M buffer pages. Produce sorted runs of M
pages each. !

q  Pass 2, …, etc.: merge M-1 runs. !

⎡ ⎤Mbr /

M Main memory buffers

INPUT 1

INPUT M-1

OUTPUT

Disk Disk

INPUT 2

.

10!Database Management Systems II, Huiping Cao!

External Sort-Merge!

br: total number of pages in a file!
M: memory buffer size (in pages). !

1.  Create sorted runs. !

Let i be 0 initially. !
Repeatedly do the following till to the end of the relation: 

(a) Read M blocks of relation into memory 
(b) Sort the in-memory blocks 
(c) Write sorted data to run file Ri!
!(d) Increment i!

total number of runs N1 = ⎡br/M⎤ !
2.  Merge the runs (next slide)…..!

11!Database Management Systems II, Huiping Cao!

External Sort-Merge (Cont.)!

2.  Merge the runs (⎡br/M⎤ -way merge). !
We assume (for now) that ⎡br/M⎤ < M. !
1.  Use ⎡br/M⎤ blocks of memory to buffer input runs, and 1 block

to buffer output. Read the first block of each run into its buffer
page!

2.  repeat!
1.  Select the first record (in sort order) among all buffer pages!
2.  Write the record to the output buffer. If the output buffer is

full, write it to disk.!
3.  Delete the record from its input buffer page. 

If the buffer page becomes empty then 
 read the next block (if any) of the run into the buffer. !

3.  until all input buffer pages are empty:!

12!Database Management Systems II, Huiping Cao!

External Sort-Merge (Cont.)!

q  Merge the runs. If ⎡br/M⎤ ≥ M, !
several merge passes are required.!
q In each pass, contiguous groups of M-1 runs are merged. !
q Repeated passes are performed till all runs have been
merged into one.!

q  A pass reduces the number of runs by a factor of M -1, and
creates runs longer by the same factor. !
q E.g. If M=11, and there are 90 runs after the 1st pass, one
pass reduces the number of runs to 9 (90/(M-1) = 90/10 = 9),
each 10 times the size of the initial runs!

13!Database Management Systems II, Huiping Cao!

Example: External Sorting Using Sort-Merge!

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

•  br = 12 (each record uses one
page. !

•  M = 3!

14!Database Management Systems II, Huiping Cao!

External Merge Sort (Cont.)!

q  Cost analysis:!
q  # of initial runs N1 = ⎡br/M⎤!
q  # of merge passes = ⎡logM–1N1⎤!
q  # of passes (include initial pass) = ⎡logM–1N1⎤ +1!
q  Block transfers for initial run creation as well as in each pass is 2br!

! for final pass, we do not count write cost !
–  If ignore final write cost for all operations !

»  This may happen when the output of an operation is sent
to the parent operation without being written to disk!

»  Thus total number of block transfers for external sorting: 
! !br (2*(# of merge passes) + 1)!

–  If include the final write cost: br (2 * # of passes)!

15!Database Management Systems II, Huiping Cao!

Example: External Sorting Using Sort-Merge!

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

16!Database Management Systems II, Huiping Cao!

Example: External Sorting Using Sort-Merge!

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

•  br = 12 (each record uses one page. !
•  M = 3!
•  bb=1!

•  # of initial runs N1 = 12/3 = 4!
•  # of merge passes: log24 = 2!
•  # of passes: 2+1 = 3!

•  Transfer cost (without final writing)!
 12*(2*2+1) = 12 * 5 = 60!

•  Transfer cost (with final writing)!
12*(2*3) = 72!

17!Database Management Systems II, Huiping Cao!

Cost of External Merge Sort!

q  # of passes: 1+ ⎡logM-1⎡br/M⎤⎤!
q  Transferring Cost = 2br * (# of passes)!
q  E.g., with 5 buffer pages, to sort 108 page file:!

q  Pass 0: ⎡108/5⎤ = 22 sorted runs of 5 pages each (last run
contains only 3 pages) !

q  Pass 1: ⎡22/4⎤ = 6 sorted runs of 20 pages each (last run
contains only 8 pages)!

q  Pass 2: 2 (= ⎡6/4⎤) sorted runs, 80 pages and 28 pages!
q  Pass 3: Sorted file of 108 pages!

q  # of passes = 1 + log422 = 1 + 3 = 4!
q  Cost = 108*(4*2) =864 (with final write)!

18!Database Management Systems II, Huiping Cao!

Number of Passes of External Sort!
 br M=3 M=5 M=9 M=17 M=129 M=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

•  br = 100, M=3 ! !N1 = ⎡100/3⎤=34, ! !1 + log234 = 1 + 6 = 7!
•  br = 100,000, M=9 !N1 = ⎡100,000/9⎤=11112 !1 + log811112 = 1 + 5 = 6!

19!Database Management Systems II, Huiping Cao!

Exercise!
q  Suppose you have a file with 10,000 pages and you have three buffer

pages. !
q  Answer the following questions!

q  Q1: How many runs will you produce in the first pass!
q  Q2: How many passes will it take to sort the file completely!
q  Q3: What is the total I/O cost of sorting the file (with final write)? !
q  Q4: How many buffer pages do you need to sort the file

completely in just two passes? !

20!Database Management Systems II, Huiping Cao!

Exercise!
q  Suppose you have a file with 10,000 pages and you have three buffer

pages. !
q  Answer the following questions!

q  Q1: How many runs will you produce in the first pass!
q  Q2: How many passes will it take to sort the file completely!
q  Q3: What is the total I/O cost of sorting the file (with final write)? !
q  Q4: How many buffer pages do you need to sort the file

completely in just two passes? !

q  br = 10,000; M = 3!
q  Q1: # of initial runs = ⎡br/M⎤ = 3334!
q  Q2: 1 + ⎡log23334⎤ = 1+12 = 13 passes!
q  Q3:10000 * (2*13) = 260,000!
q  Q4: Pass 0 ⎡br/M⎤; pass 1 need to finish the merging, thus M-1 >=

⎡br/M⎤ , what is the minimum M? M = 101!

21!Database Management Systems II, Huiping Cao!

Exercise !

q  Suppose you have a file with 100,000 pages and you have five buffer
pages. !

q  Answer the following questions!
q  Q1: How many runs will you produce in the first pass!
q  Q2: How many passes will it take to sort the file completely!
q  Q3: What is the total I/O cost of sorting the file? !
q  Q4: How many buffer pages do you need to sort the file

completely in just two passes? !

22!Database Management Systems II, Huiping Cao!

External Merge Sort – blocked I/O (S.S.)!

q  Cost (include writing final results)!
q  br (2 * # of passes) = 2*br*(⎡logM–1N1⎤ +1)!

q  Minimize cost à minimize the number of passes à maximize the fan-
in merging!

q  Blocked access: read a block of pages sequentially!!
q  Each time: read and write a block of b pages!
q  Output block pages: b!
q  Input block pages: M-b!

! Number of input blocks ⎣(M-b)/b⎦!
q  Merge at most ⎣(M-b)/b⎦ runs in each pass!

! E.g., M=10, one-page input/output block: fan-in = M-1 = 9!
! 2-page input/output block: fan-in = (10-2)/2 = 4!

q  # of page I/Os trade off per-page I/O cost!

23!Database Management Systems II, Huiping Cao!

External Merge Sort – blocked I/O (S.S.)!

q  In fact, suggests we should make each buffer (input/output) be a block
of pages.!
q  But this will reduce fan-in during merge passes!!

q  In practice, most files can be sorted in just two passes, even using
blocked I/O.!

q  First pass, !
q  generate # of runs N1 = ⎡br/M⎤!

q  Fan-in factor: F = ⎣M/b⎦-1!
q  # of passes: 1 + ⎡logFN1⎤!

24!Database Management Systems II, Huiping Cao!

Number of Passes of Optimized Sort (S.S.)!

q  Block size b = 32, initial pass produces runs of size M!
q  M=1000, br = 10,000 pages !!
q  M=5000, br = 10,000,000!

M! F!

1000! ⎣1000/32)⎦-1 = 30!

5000! ⎣5000/32)⎦-1 = 155!

10000! ⎣5000/32)⎦-1 = 311!

25!Database Management Systems II, Huiping Cao!

Number of Passes of Optimized Sort (S.S.)!

M=1000, br = 10,000 pages !N1 = ⎡br/M)⎤ = 10, ! !# of passes = 1 + ⎡log3010⎤ = 2!
M=5000, br = 10,000,000 !N2 = ⎡br/M)⎤ = 2000! !# of passes = 1 + ⎡log1552000⎤ = 3!
!
 !

M! F!

1000! ⎣1000/32)⎦-1 = 30!

5000! ⎣5000/32)⎦-1 = 155!

10000! ⎣5000/32)⎦-1 = 311!

q  Block size b = 32, initial pass produces runs of size M!
q  M=1000, br = 10,000 pages !!
q  M=5000, br = 10,000,000!

26!Database Management Systems II, Huiping Cao!

Exercise (S.S.)!

q  M = 5000! b! F!

1! ???!

32! ???!

64! ???!

27!Database Management Systems II, Huiping Cao!

External sort - Double Buffering (S.S.)!

q  To reduce wait time for I/O request to complete, can prefetch into
`shadow block’. !
q  Potentially, more passes; in practice, most files still sorted in 2-3

passes.!

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

28!Database Management Systems II, Huiping Cao!

Using B+ Trees for Sorting!

q  Scenario: Table to be sorted has B+ tree index on sorting column(s).!
q  Idea: Can retrieve records in order by traversing leaf pages.!
q  Is this a good idea?!
q  Cases to consider:!

q  B+ tree is clustered! !Good idea!!
q  B+ tree is not clustered !Could be a very bad idea!!

29!Database Management Systems II, Huiping Cao!

Clustered B+ Tree Used for Sorting!

q  Cost: !
q  root to the left-most leaf (<4)!
q  retrieve all leaf pages!

q  If <key, rid> pair is used in the
index? !
q  Additional cost of retrieving

data records: each page
fetched just once.!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")!

30!Database Management Systems II, Huiping Cao!

Unclustered B+ Tree Used for Sorting!

q  <key, rid> pair is used for data entries; each data entry contains rid of a
data record. In general, one I/O per data record!!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")!

31!Database Management Systems II, Huiping Cao!

Unclustered B+ Tree Used for Sorting!

q  p: average number of records per data page!
q  Bigger than 10!

q  br: data pages!
q  f: (the size of a data entry)/ (size of a data record)!

q  Usually 0.1!

q  Cost!
q  # of data records: p*br!
q  Approximate number of leaf pages: f*br!
q  Total cost: (f+p)*br !
q  Approximation: p*br!

32!Database Management Systems II, Huiping Cao!

External Sorting vs. Unclustered Index (S.S.)!

br Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

q  p: # of records per page
q  M=1,000 and block size b=32 for sorting
q  p=100 is the more realistic value

q  Cost of unclustered index appr.: p*br
q  Cost of sorting: calculate F, then N1 or N2, then cost

33!Database Management Systems II, Huiping Cao!

Summary!

q  External sorting is important; DBMS may dedicate part of buffer pool for
sorting!!

q  External merge sort minimizes disk I/O cost:!
q  Pass 0: Produces sorted runs of size M (# buffer pages). !
q  Later passes: merge runs.!
q  # of runs merged at a time depends on M, and block size.!
q  In practice, # of runs is rarely more than 2 or 3.!

q  The best sorts are wildly fast:!
q  Despite 40+ years of research, we’re still improving!!

q  Clustered B+ tree is good for sorting; !
q  Unclustered tree is usually very bad.!

