
Query Evaluation 
-- Join operation"

References: !
•  [SKS-6ed] Chapter 12.5!
•  [RG-3ed] Chapter 14.4!

1

Relational Operations"

q  We will consider how to implement:!
q  Selection (σ): Selects a subset of rows from relation.!
q  Projection (π): Deletes unwanted columns from relation.!
q  Join (): Allows us to combine two relations.!
q  Set-difference (-): Tuples in relation 1, but not in relation 2.!
q  Union (∪): Tuples in relation 1 and in relation 2.!
q  Aggregation (SUM, MIN, etc.) and GROUP BY!

q  Since each op returns a relation, ops can be composed! After we
cover the operations, we will discuss how to optimize queries formed
by composing them.!

▹◃

2

Schema for Examples"

q  Similar to old schema; rname added for variations.!
q  Sailors:!

q  Each tuple is 50 bytes long, 80 tuples per page, 500 pages. !
q  Reserves:!

q  Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.!

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

3

Equality Joins With One Join Column"

q  In algebra: R S. Common! Must be carefully optimized. !
q  R×S is large. So, R × S followed by a selection is inefficient.!
q  We will consider more complex join conditions later.!
q  Cost metric: # of I/Os. We will ignore output costs.!

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid = S1.sid

▹◃

4

Join Operation"

q  Several different algorithms to implement joins!
q  Simple nested-loop join: iteration!
q  Block nested-loop join: iteration!
q  Indexed nested-loop join!
q  Merge-join!
q  Hash-join!

q  Choice based on cost estimate!
q  Our examples use the following information!

q  Number of records of student: 5,000 takes: 10,000!
q  Number of pages of student: 100 takes: 400!

5

Simple nested-Loop Join"

q  To compute the theta join r θ s = σ θ(r×s)!
 
for each tuple tr in r do begin 

!for each tuple ts in s do begin 
! !test pair (tr,ts) to see if they satisfy the join condition θ  
! !if they do, add tr • ts to the result. 
!end  

end!
q  r is called the outer relation and s the inner relation of the join.!
q  Requires no indices and can be used with any kind of join

condition.!
q  Expensive since it examines every pair of tuples in the two

relations. !

6

Simple nested-Loop Join (Cont.)"

q  Given!
q  nr , br : number of tuples and pages in r!
q  ns , bs : number of tuples and pages in s!

q  Case 1: worst case, memory hold one page of each relation!

q  br + nr * bs!

7

Simple nested-Loop Join (Example)"

q  Number of records of student: 5,000 takes: 10,000!
q  Number of pages of student: 100 takes: 400!

q  Assuming worst case memory availability cost estimate is!
q  with student as outer relation:!

q  100 + 5000 * 400 = 2,000,100 block transfers,!
q  with takes as the outer relation !

q  400 + 10000 * 100 = 1,000,400 block transfers !

8

Simple nested-loop Join (Cont.)"

q  Case 2 (best case): enough space for both relations!
q  Cost for block transfer: br + bs !

q  If smaller relation fits entirely in memory, use that as the inner relation.!
q  Reduces cost to br + bs block transfers!

q  If smaller relation (student) fits entirely in memory, the cost estimate
will be 500 block transfers.!

9

Simple nested-loop Join – analysis"

q  br pages in r, pr tuples per page!
q  bs pages in s, ps tuples per page!
q  For each tuple in the outer relation R, we scan the entire inner relation S. !

q  Cost: br + (pr * br) * bs!

q  Example!
q  Reserves: each tuple is 40 bytes long, 100 tuples per page, 1000 pages.!
q  Sailors: each tuple is 50 bytes long, 80 tuples per page, 500 pages. !
q  Cost: 1000 + (100*1000)*500 I/Os.!

10

Simple nested-loop join (page-oriented)"

q  Page-oriented Nested Loops join: !
For each page of r, !

!For each page of s, !
! Write out matching pairs of tuples <tr, ts >, !
! !where tr is in r-page and ts is in s-page.!

q  Cost: br + br* bs = 1000 + 1000*500!
q  If smaller relation (S) is outer, cost = 500 + 500*1000 !

11

Simple nested-loop join (page-oriented)"

q  Worst case: each page in the inner relation s is read once for
each page in the outer relation!
q  br + br * bs block transfers!

q  Best case: !
q  br + bs block transfers!

q  Example 1: 400 pages of takes, 100 pages of students!
q  Outer relation is student: 100+100*400=400,100 transfer!

q  Improves 2,000,100 (simple nested-loop)!
q  Example 2: Reserves 1000 pages, Sailor 500 pages!

q  Outer relation is Reserves: 1000 + 1000*500!
q  Outer relation is Sailor: 500 + 500*1000 !

12

Simple nested-loop join (page-oriented)"

q  Improvements!
q  If equi-join attribute forms a key on inner relation, stop inner

loop on first match!
q  Scan inner loop forward and backward alternatively, to

make use of the blocks remaining in buffer (with LRU
replacement)!

q  Block nested-loop join !
q  Indexed nested-loop!

13

Block Nested Loops Join"

q  Use one page as an input buffer for scanning the inner s, one page as the
output buffer, and use all remaining pages to hold ``block’’ of outer r.!

For each block of M-2 pages of r do"
 For each page of s do"

For all matching in-memory tuples tr in r-block, ts in s-page, add
<tr, ts> to result. !

. . .

. . .

r & s

Input buffer for s" Output buffer"

. . .

Join Result

14

Analysis of Block Nested Loops"
q  Cost: Scan of outer + #outer blocks * scan of inner!

q  #outer blocks = ⎡# of pages of outer relation/block size⎤!
q  M = memory size in blocks; !
q  Cost!

q  br +⎡br /(M-2)⎤ * bs block transfers!

15

Examples of Block Nested Loops"

q  Sailors:!
q  Each tuple is 50 bytes long, 80 tuples per page, 500 pages. !

q  Reserves:!
q  Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.!

q  Example 1: With Reserves as outer, and 100-page block of Reserves:!
q  Block transfer cost: 1000 + ⎡1000/100⎤*500 =6000!
q  90-page block for Reserve, cost? !

q  1000 + ⎡1000/90⎤ *500 = 1000+ 12*500=7000!
q  What is the minimum number of block pages to have this cost?!
q  ⎡1000/(M-2)⎤=12, ⎡1000/12⎤<=M <=floor(1000/11)!

16

Examples of Block Nested Loops"

q  Sailors:!
q  Each tuple is 50 bytes long, 80 tuples per page, 500 pages. !

q  Reserves:!
q  Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.!

q  Example 2: 100-page block, Sailors as outer:!
q  Block transfer cost: 500+(500/100)*1000 = 5500!
q  90-page block?!

q  500+ ⎡500/90⎤ *1000 = 500+6*1000 = 6500!
q  What is the minimum number of pages to have this cost? !

17

Block Nested Loops Join -- improvement"

■  Hash table for outer relation r!
●  The I/O cost does not change!
●  The CPU cost is much lower!

. . .

. . .

r & s Hash table for block of r"
(k < M-1 pages)"

Input buffer for s" Output buffer"

. . .

Join Result

18

Index Nested Loops Join"

q  Indexed relation as the inner relation!
q  Does not enumerate the cross-product of r and s!

For each tuple tr in r do!
!For each tuple ts in s where tr == ts do!
! !add <tr, ts> to result!

19

Indexed Nested-Loop Join"

q  Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.!

q  Cost (in I/Os): br + ((br*pr)* cost of finding matching s tuples) !

q  For each r tuple, cost of probing s index is !
q  about 1.2 for hash index, !
q  2-4 for B+ tree !

q  Cost of finding s tuples depends on clustering.!
q  Clustered index: 1 I/O (typical), !
q  Un-clustered: up to 1 I/O per matching s tuple.!

20

Examples of Index Nested Loops"

q  Example 1: Hash-index on sid of Sailors (as inner):!
q  Scan Reserves: 1000 page I/Os!
q  Reserves tuples: 100*1000 tuples.!
q  For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O

to get (the exactly one) matching Sailors tuple. !
q  Find sailor entry from index: 1.2 * (100 *1000) = 120,000 I/Os.!
q  Find matching sailor tuple: 1*(100*1000) = 100,000!
q  Total: 220,000!

q  Total: 1000 + 220,000=221,000 I/Os!

21

Examples of Index Nested Loops"
q  Example 2: Hash-index on sid of Reserves (as inner):!

q  Scan Sailors: 500 page I/Os, !
q  # of Sailors tuples: 80*500 tuples.!
q  For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus

cost of retrieving matching Reserves tuples. !
q  Find Reserves entry from index: 1.2 * (80 * 500) = 48,000 I/Os.!

q  Cost of retrieving matching Reserves tuples:!
q  100,000 reservations for 40,000 sailors!

q Assuming uniform distribution, 2.5 reservations per sailor
(100,000/40,000). !

q Cost of retrieving reserves is 2.5 I/Os per sailor tuple.!
q  Cost: 2.5 * (80*500) = 100,000 (un-clustered)!

q  Total: 500+48,000+100,000 = 148,500 I/O!

22

Example of Nested-Loop Join Costs"

q  Compute student takes, with student as the outer relation.!
q  Let takes have a primary B+-tree index on the attribute ID, which contains

20 entries in each index node.!
q  students: 100 pages, 5000 tuples!
q  Takes: 400 pages, 10,000 tuples!

q  Cost of simple nested loops join (page-oriented)!
q  100 +100*400 = 40,100 block transfers!

q  Cost of indexed nested loops join!
q  Since takes has 10,000 tuples, the approximate height of the tree is

4, and one/? more access is needed to find the actual data!

q  100 + 5000 * 5 = 25,100 block transfers and seeks.!

q  If indices are available on join attributes of both r and s, 
use the relation with fewer tuples as the outer relation.!

23

Exercise"

q  Compute student takes,.!
q  Let the student relation have a primary B+-tree index on the attribute

ID, which contains 20 entries in each index node.!

q  students: 100 pages, 5000 tuples!
q  takes: 400 pages, 10,000 tuples!

q  with “takes” as the outer relation? !

24

Sort-Merge Join (r s)"

q  Sort r and s on the join column (external sort)!
q  Merging step: and output result tuples.!

q  Advance scan of r until current r-tuple >= current s-tuple!
q  Current r-tuple (Tr)!

q  Then advance scan of s until current s-tuple >= current r-tuple; do this
until current r-tuple = current s-tuple.!
q  Current s-tuple (Gs)!

q  At this point, all r-tuples with same value in ri (current r partition) and all S
tuples with same value in Sj (current s partition) match; !
q  For each Tr, loop using another pointer (Ts) all the s-tuples with the

same value as the tuple pointed by Gs!
q  Output <tr, ts> for all pairs of such tuples.!
q  After matching one Tr with all tuples in the s partition, advance Tr!

q  Then resume scanning r and s. !
q  r is scanned once; each s group is scanned once per matching r tuple.

(Multiple scans of an s group are likely to find needed pages in buffer.)!

▹◃i=j

25

Example of Sort-Merge Join"

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

26

Example of Sort-Merge Join"
q  Cost (in I/Os): (sorting cost)+ (cost of merging)!

q  The cost of merging, br+bs, could be br*bs (very unlikely!)!
q  With 101 buffer pages, both Reserves (1000 pages) and Sailors(500

pages) can be sorted in 2 passes; !
q  M=101, with final result write: !

q Sort Reserves: 2*2*1000= 4000!
q Sort Sailors: 2*2*500 = 2000!
q Merge cost: 1000 + 500 = 1500!
q Total join cost: 7500. !

q  How about M=35? M=300?!
q  How about BNL cost?!

q  2500 to 15000 I/Os!

27

Refinement of Sort-Merge Join"

q We can combine the merging phases in the sorting of R
and S with the merging required for the join.!
q With M > , where L is the size of the larger relation, !
q # of runs of each relation is <!
q Merging: buffer size 2 !

q Allocate 1 page per run of each relation, and
“merge” while checking the join condition.!

q Cost: read and write each relation in Pass 0 + read
each relation in (only) merging pass [+ writing of result
tuples].!

q  In example, cost goes down from 7500 to 4500 I/Os.!

L
L

28

L

Sort-Merge Join (Cont.)"

q Can be used only for equi-joins and natural joins!
q Each block needs to be read only once (assuming all

tuples for any given value of the join attributes fit in
memory!

q  Thus the cost of merge join is: !
q 3*(br + bs) (best)!

29

Example"

q  Compute student takes!
q  student: 100 pages, 5000 tuples!
q  Takes: 400 pages, 10,000 tuples!

q  Already sorted on join attribute ID. !
q  Merge cost = 400+100 = 500 block transfers!

q  Not sorted, M = 3!
q  Sorting (write final output)!

q Takes: ⎡log2⎡400/3⎤⎤ = 8 merge passes; 2*400*(8+1) =
7200 block transfers; 2* ⎡400/3 ⎤ + 8*(400/1)*2 =6668!

q Students: ???!
q  Merging!

q 400+100 = 500 block transfers!
30

Hash-Join"

q  Partition both relations
using hash function h: r-
tuples in partition i will
only match s-tuples in
partition i.!

q  Read in a partition of r,
hash it using h2 (<> h!).
Scan matching partition
of s, search for matches.!

q  Relation r is called the
build input and s is
called the probe input.!

Partitions"
of R & S"

Input buffer"
for Si"

Hash table for partition"
Ri (k < M-1 pages)"

M main memory buffers"Disk"

Output "
 buffer"

Disk"

Join Result"

hash"
fn"
h2"

h2"

M main memory buffers" Disk"Disk"

Original "
Relation" OUTPUT"

2"INPUT"

1"

hash"function"
h" M-1"

Partitions"

1"

2"

M-1"
. . .

Observations on Hash-Join"
q  #partitions k <= M-1 (one input buffer), M-1 output buffers!
q  M-2 > size of largest partition to be held in memory. !
q  One partition fits in the memory, good.!
q  Assuming uniformly sized partitions, and maximizing k, we get:!

q  k= M-1 (maximum)!
q  If br/(M-1) < M-2, then M > !
q  If we build an in-memory hash table to speed up the matching of tuples, a

little more memory is needed. Typically k is chosen as ⎡bbuild/M⎤ * f where
f is a “fudge factor”, typically around 1.2!
q  M>!
q  More specifically, f*br/(M-1) < M-2 !

q  The probe relation partitions need not fit in memory!
q  If the hash function does not partition uniformly, one or more r partitions may

not fit in memory. Can apply hash-join technique recursively to do the join of
this r-partition with corresponding s-partition.!

rb

32

f •br

Cost of Hash-Join"

q  In partitioning phase, R+W both relations ; 2(br + bs). !
q  In matching phase, read both relations; br + bs I/Os. !
q  In our running example, this is a total of 4500 I/Os.!
q Sort-Merge Join vs. Hash Join:!

q Given a minimum amount of memory (what is this, for
each?) both have a cost of 3(br + bs) I/Os. !

q Hash Join is superior if relation sizes differ greatly. !
q Hash Join has shown to be highly parallelizable.!
q Sort-Merge is less sensitive to data skew; result is

sorted.!

33

Cost of Hash-Join"

q  If recursive partitioning is not required: cost of hash
join is 3(br + bs) block transfers!

q  If the entire build input can be kept in main memory
no partitioning is required!
q Cost estimate goes down to br + bs.!

34

Example of Cost of Hash-Join"
q  Compute student takes!
q  student: 100 pages, 5000 tuples!
q  takes: 400 pages, 10,000 tuples!

q  Given M = 22 pages!
q  student is to be used as build input. Partition it into 5 partitions,

each of size 20 pages (=M-2). This partitioning can be done in
one pass. !

q  Similarly, partition takes into 5 partitions, each of size 80. This
is also done in one pass.!

q  Total cost: !
q  3(100 + 400) = 1500 block transfers!

q  Always ignore cost of writing partially filled blocks!
q  Problem???!

35

Complex Joins"

q  Join with a conjunctive condition:!
! r θ1∧ θ 2∧... ∧ θ n s!
q  Either use nested loops/block nested loops, or!
q  Compute the result of one of the simpler joins r θi s!

q  final result comprises those tuples in the intermediate results that
satisfy the remaining conditions!

!θ1 ∧ . . . ∧ θi –1 ∧ θi +1 ∧ . . . ∧ θn!
q  Join with a disjunctive condition !

!r θ1 ∨ θ2 ∨... ∨ θn s !
q  Either use nested loops/block nested loops, or!
q ! Compute as the union of the records in individual joins r θ i s:!
 !(r θ1 s) ∪ (r θ2 s) ∪ . . . ∪ (r θn s) !
!

36

General Join Conditions"

q  Equalities over several attributes (e.g., R.sid=S.sid AND R.rname=S.sname):!
q  For Index NL, build index on <R.sid, R.sname> (if R is inner); or use

existing indexes on sid or sname.!
q  For Sort-Merge and Hash Join, sort/partition on combination of the two join

columns.!
q  Inequality conditions (e.g., R.rname < S.sname):!

q  For Index NL, need (clustered!) B+ tree index.!
q  Range probes on inner; !
q  The # of matches is likely to be much higher than that for equality joins.!

q  Hash Join, Sort-Merge Join is not applicable.!
q  Block NL is quite likely to be the best join method here.!

37

Summary"

q  No one join algorithm is uniformly superior to the others.!
q  The choice of a good algorithm!

q  Sizes of the relations being joined!
q  Available access methods!
q  Size of the buffer pool!

38

