Query Evaluation -- Join operation

References:

- [SKS-6ed] Chapter 12.5
- [RG-3ed] Chapter 14.4

Relational Operations

- We will consider how to implement:
\square Selection (σ): Selects a subset of rows from relation.
\square Projection (π): Deletes unwanted columns from relation.
\square Join (\bowtie) : Allows us to combine two relations.
\square Set-difference (-): Tuples in relation 1, but not in relation 2.
\square Union (U): Tuples in relation 1 and in relation 2.
- Aggregation (SUM, MIN, etc.) and GROUP BY
\square Since each op returns a relation, ops can be composed! After we cover the operations, we will discuss how to optimize queries formed by composing them.

Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real) Reserves (sid: integer, bid: integer, day: dates, rname: string)

- Similar to old schema; rname added for variations.
- Sailors:

Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

- Reserves:
\square Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid = S1.sid

- In algebra: R凶 S. Common! Must be carefully optimized.
- $R \times S$ is large. So, $R \times S$ followed by a selection is inefficient.
\square We will consider more complex join conditions later.
- Cost metric: \# of I/Os. We will ignore output costs.

Join Operation

\square Several different algorithms to implement joins
\square Simple nested-loop join: iteration
\square Block nested-loop join: iteration

- Indexed nested-loop join
\square Merge-join
\square Hash-join
\square Choice based on cost estimate
\square Our examples use the following information
\square Number of records of student: 5,000 takes: 10,000
\square Number of pages of student: 100 takes: 400

Simple nested-Loop Join

\square To compute the theta join $r \bowtie_{\theta} s=\sigma_{\theta}(r \times s)$
for each tuple t_{r} in r do begin for each tuple t_{s} in s do begin
test pair $\left(t_{r}, t_{s}\right)$ to see if they satisfy the join condition θ
if they do, add $t_{r} \cdot t_{s}$ to the result.
end
end
$\square r$ is called the outer relation and s the inner relation of the join.
\square Requires no indices and can be used with any kind of join condition.

- Expensive since it examines every pair of tuples in the two relations.

Simple nested-Loop Join (Cont.)

- Given
$\square n_{r}, b_{r}$: number of tuples and pages in r
$\square n_{s}, b_{s}$: number of tuples and pages in s
\square Case 1: worst case, memory hold one page of each relation
$\square b_{r}+n_{r}{ }^{*} b_{s}$

Simple nested-Loop Join (Example)

\square Number of records of student: 5,000 takes: 10,000
\square Number of pages of student: 100 takes: 400

- Assuming worst case memory availability cost estimate is
\square with student as outer relation:
$\square 100+5000$ * $400=2,000,100$ block transfers,
\square with takes as the outer relation
- $400+10000$ * $100=1,000,400$ block transfers

Simple nested-loop Join (Cont.)

\square Case 2 (best case): enough space for both relations
\square Cost for block transfer: $b_{r}+b_{s}$
If smaller relation fits entirely in memory, use that as the inner relation.
\square Reduces cost to $b_{r}+b_{s}$ block transfers
\square If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block transfers.

Simple nested-loop Join - analysis

$\square b_{r}$ pages in r, p_{r} tuples per page
$\square b_{s}$ pages in s, p_{s} tuples per page
\square For each tuple in the outer relation R , we scan the entire inner relation S .
\square Cost: $b_{r}+\left(p_{r}{ }^{*} b_{r}\right)^{*} b_{s}$
\square Example
\square Reserves: each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
\square Sailors: each tuple is 50 bytes long, 80 tuples per page, 500 pages.
\square Cost: $1000+(100 * 1000)^{*} 500$ I/Os.

Simple nested-loop join (page-oriented)

\square Page-oriented Nested Loops join:
For each page of r,
For each page of s,
Write out matching pairs of tuples $\left\langle t_{r}, t_{s}\right\rangle$, where t_{r} is in r-page and t_{s} is in s-page.

- Cost: $b_{r}+b_{r}{ }^{*} b_{s}=1000+1000 * 500$
- If smaller relation (S) is outer, cost $=500+500 * 1000$

Simple nested-loop join (page-oriented)

\square Worst case: each page in the inner relation s is read once for each page in the outer relation
$\square b_{r}+b_{r}{ }^{*} b_{s}$ block transfers
\square Best case:
$\square b_{r}+b_{s}$ block transfers
\square Example 1: 400 pages of takes, 100 pages of students
\square Outer relation is student: $100+100 * 400=400,100$ transfer
\square Improves 2,000,100 (simple nested-loop)

- Example 2: Reserves 1000 pages, Sailor 500 pages
- Outer relation is Reserves: $1000+1000 * 500$
\square Outer relation is Sailor: $500+500 * 1000$

Simple nested-loop join (page-oriented)

- Improvements
\square If equi-join attribute forms a key on inner relation, stop inner loop on first match
\square Scan inner loop forward and backward alternatively, to make use of the blocks remaining in buffer (with LRU replacement)
\square Block nested-loop join
\square Indexed nested-loop

Block Nested Loops Join

\square Use one page as an input buffer for scanning the inner s, one page as the output buffer, and use all remaining pages to hold '`block' ' of outer r.

For each block of M-2 pages of r do
For each page of s do
For all matching in-memory tuples t_{r} in r-block, t_{s} in s-page, add $<t_{r}, t_{s}>$ to result.

Analysis of Block Nested Loops

- Cost: Scan of outer + \#outer blocks * scan of inner
- \#outer blocks = \lceil \# of pages of outer relation/block size \rceil
- $M=$ memory size in blocks;
- Cost
- $b_{r}+\left\lceil b_{r} /(M-2)\right\rceil^{*} b_{s}$ block transfers

Examples of Block Nested Loops

- Sailors:
\square Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
- Reserves:
\square Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Example 1: With Reserves as outer, and 100-page block of Reserves:
- Block transfer cost: $1000+\lceil 1000 / 100\rceil^{*} 500=6000$
- 90-page block for Reserve, cost?
- $1000+\lceil 1000 / 90\rceil * 500=1000+12 * 500=7000$
\square What is the minimum number of block pages to have this cost?
- $\lceil 1000 /(\mathrm{M}-2)\rceil=12,\lceil 1000 / 12\rceil<=\mathrm{M}<=$ floor(1000/11)

Examples of Block Nested Loops

- Sailors:
\square Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
- Reserves:
\square Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Example 2: 100-page block, Sailors as outer:
- Block transfer cost: 500+(500/100)*1000 $=5500$
- 90-page block?
$\square 500+\lceil 500 / 90\rceil * 1000=500+6 * 1000=6500$
\square What is the minimum number of pages to have this cost?

Block Nested Loops Join -- improvement

■ Hash table for outer relation r

- The I/O cost does not change
- The CPU cost is much lower

Index Nested Loops Join

For each tuple t_{r} in r do
For each tuple t_{s} in s where $t_{r}==t_{s}$ do add $\left\langle t_{r}, t_{s}>\right.$ to result

- Indexed relation as the inner relation
\square Does not enumerate the cross-product of r and s

Indexed Nested-Loop Join

- Worst case: buffer has space for only one page of r, and, for each tuple in r, we perform an index lookup on s.
- Cost (in I/Os): $b_{r}+\left(\left(b_{r}{ }^{*} p_{r}\right)^{*}\right.$ cost of finding matching s tuples)
- For each r tuple, cost of probing s index is
\square about 1.2 for hash index,
- 2-4 for B+ tree
\square Cost of finding s tuples depends on clustering.
\square Clustered index: 1 I/O (typical),
\square Un-clustered: up to 1 I/O per matching s tuple.

Examples of Index Nested Loops

\square Example 1: Hash-index on sid of Sailors (as inner):
\square Scan Reserves: 1000 page I/Os

- Reserves tuples: 100*1000 tuples.
\square For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the exactly one) matching Sailors tuple.
\square Find sailor entry from index: 1.2 * $(100 * 1000)=120,000$ I/Os.
\square Find matching sailor tuple: $1^{*}(100 * 1000)=100,000$
- Total: 220,000
\square Total: $1000+220,000=221,000$ I/Os

Examples of Index Nested Loops

- Example 2: Hash-index on sid of Reserves (as inner):
- Scan Sailors: 500 page I/Os,
- \# of Sailors tuples: 80*500 tuples.
\square For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus cost of retrieving matching Reserves tuples.
\square Find Reserves entry from index: 1.2 * $(80$ * 500$)=\underline{48,000}$ I/Os.
\square Cost of retrieving matching Reserves tuples:
\square 100,000 reservations for 40,000 sailors
\square Assuming uniform distribution, 2.5 reservations per sailor (100,000/40,000).
\square Cost of retrieving reserves is $2.5 \mathrm{I} / \mathrm{Os}$ per sailor tuple.
- Cost: 2.5 * $(80 * 500)=\underline{100,000}$ (un-clustered)
\square Total: $500+48,000+100,000=148,500$ I/O

Example of Nested-Loop Join Costs

- Compute student \bowtie takes, with student as the outer relation.
- Let takes have a primary B^{+}-tree index on the attribute ID, which contains 20 entries in each index node.
- students: 100 pages, 5000 tuples
- Takes: 400 pages, 10,000 tuples
- Cost of simple nested loops join (page-oriented)
- $100+100 * 400=40,100$ block transfers
- Cost of indexed nested loops join
- Since takes has 10,000 tuples, the approximate height of the tree is 4, and one/? more access is needed to find the actual data
- $100+5000$ * $5=25,100$ block transfers and seeks.
- If indices are available on join attributes of both r and s, use the relation with fewer tuples as the outer relation.

Exercise

- Compute student \bowtie takes,.
\square Let the student relation have a primary B^{+}-tree index on the attribute $I D$, which contains 20 entries in each index node.
\square students: 100 pages, 5000 tuples
\square takes: 400 pages, 10,000 tuples
\square with "takes" as the outer relation?

Sort-Merge Join (r»i®s)

\square Sort r and s on the join column (external sort)
\square Merging step: and output result tuples.
\square Advance scan of r until current r-tuple $>=$ current s-tuple
\square Current r-tuple (Tr)
\square Then advance scan of s until current s-tuple $>=$ current r-tuple; do this until current r-tuple $=$ current s-tuple.
\square Current s-tuple (Gs)
\square At this point, all r-tuples with same value in ri (current r partition) and all S tuples with same value in $S j$ (current s partition) match;
\square For each Tr, loop using another pointer (Ts) all the s-tuples with the same value as the tuple pointed by Gs
\square Output $<t_{r}, t_{s}>$ for all pairs of such tuples.
\square After matching one Tr with all tuples in the s partition, advance Tr
\square Then resume scanning r and s.
$\square \quad r$ is scanned once; each s group is scanned once per matching r tuple. (Multiple scans of an s group are likely to find needed pages in buffer.) 25

Example of Sort-Merge Join

sid	sname	rating	age
22	dustin	7	45.0
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	$\underline{\text { bid }}$	day	rname
28	103	$12 / 4 / 96$	guppy
28	103	$11 / 3 / 96$	yuppy
31	101	$10 / 10 / 96$	dustin
31	102	$10 / 12 / 96$	lubber
31	101	$10 / 11 / 96$	lubber
58	103	$11 / 12 / 96$	dustin

Example of Sort-Merge Join

\square Cost (in I/Os): (sorting cost)+ (cost of merging)
\square The cost of merging, $b_{r}+b_{s}$, could be $b_{r}{ }^{*} b_{s}$ (very unlikely!)

- With 101 buffer pages, both Reserves (1000 pages) and Sailors(500 pages) can be sorted in 2 passes;
$\square \mathrm{M}=101$, with final result write:
\square Sort Reserves: $2^{*} 2^{*} 1000=4000$
\square Sort Sailors: 2*2*500 = 2000
\square Merge cost: $1000+500=1500$
\square Total join cost: 7500.
- How about $\mathrm{M}=35$? $\mathrm{M}=300$?
- How about BNL cost?
- 2500 to 15000 I/Os

Refinement of Sort-Merge Join

\square We can combine the merging phases in the sorting of R and S with the merging required for the join.
\square With $\mathrm{M}>\sqrt{L}$, where L is the size of the larger relation,
\square \# of runs of each relation is $<\sqrt{L}$
\square Merging: buffer size $2 \sqrt{L}$
\square Allocate 1 page per run of each relation, and "merge" while checking the join condition.
\square Cost: read and write each relation in Pass $0+$ read each relation in (only) merging pass [+ writing of result tuples].
\square In example, cost goes down from 7500 to 4500 I/Os.

Sort-Merge Join (Cont.)

\square Can be used only for equi-joins and natural joins
\square Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit in memory
\square Thus the cost of merge join is:
$\square 3^{*}\left(b_{r}+b_{s}\right)$ (best)

Example

\square Compute student \bowtie takes

- student: 100 pages, 5000 tuples
- Takes: 400 pages, 10,000 tuples
\square Already sorted on join attribute ID.
- Merge cost $=400+100=500$ block transfers
- Not sorted, M = 3
\square Sorting (write final output)
\square Takes: $\left\lceil\log _{2}[400 / 3\rceil\right\rceil=8$ merge passes; $2^{*} 400^{*}(8+1)=$ 7200 block transfers; 2* [400/3 $\rceil+8^{*}(400 / 1)^{*} 2=6668$
\square Students: ???
\square Merging
$\square 400+100=500$ block transfers

Hash-Join

- Partition both relations using hash function h : r tuples in partition i will only match s-tuples in partition i.
\square Read in a partition of r, hash it using h2 ($<>\boldsymbol{h}!$). Scan matching partition of s, search for matches.
\square Relation r is called the build input and s is called the probe input.

Original Relation

Disk

Partitions

 of R \& S

Disk

M main memory buffers Disk

Observations on Hash-Join

\# \#partitions $\mathrm{k}<=\mathrm{M}-1$ (one input buffer), $\mathrm{M}-1$ output buffers
$\square \mathrm{M}-2>$ size of largest partition to be held in memory.
\square One partition fits in the memory, good.
\square Assuming uniformly sized partitions, and maximizing k, we get:
$\square \mathrm{k}=\mathrm{M}-1$ (maximum)

- If $\mathrm{b}_{\mathrm{r}} /(\mathrm{M}-1)<\mathrm{M}-2$, then $\mathrm{M}>\sqrt{b_{r}}$
\square If we build an in-memory hash table to speed up the matching of tuples, a little more memory is needed. Typically k is chosen as $\left\lceil b_{\text {build }} / M\right\rceil$ * f where f is a "fudge factor", typically around 1.2
$\square \mathrm{M}>\sqrt{f \bullet b_{r}}$
\square More specifically, $f^{*} b_{r} /(M-1)<M-2$
\square The probe relation partitions need not fit in memory
\square If the hash function does not partition uniformly, one or more r partitions may not fit in memory. Can apply hash-join technique recursively to do the join of this r-partition with corresponding s-partition.

Cost of Hash-Join

\square In partitioning phase, $\mathrm{R}+\mathrm{W}$ both relations ; $2\left(b_{r}+b_{s}\right)$.
\square In matching phase, read both relations; $b_{r}+b_{s}$ I/Os.
\square In our running example, this is a total of $4500 \mathrm{I} / \mathrm{Os}$.
\square Sort-Merge Join vs. Hash Join:
\square Given a minimum amount of memory (what is this, for each?) both have a cost of $3\left(b_{r}+b_{s}\right)$ I/Os.
\square Hash Join is superior if relation sizes differ greatly.
\square Hash Join has shown to be highly parallelizable.
\square Sort-Merge is less sensitive to data skew; result is sorted.

Cost of Hash-Join

\square If recursive partitioning is not required: cost of hash join is $3\left(b_{r}+b_{s}\right)$ block transfers
\square If the entire build input can be kept in main memory no partitioning is required
\square Cost estimate goes down to $b_{r}+b_{s}$.

Example of Cost of Hash-Join

\square Compute student \bowtie takes

- student: 100 pages, 5000 tuples
- takes: 400 pages, 10,000 tuples
- Given $\mathrm{M}=22$ pages
- student is to be used as build input. Partition it into 5 partitions, each of size 20 pages (=M-2). This partitioning can be done in one pass.
\square Similarly, partition takes into 5 partitions, each of size 80. This is also done in one pass.
\square Total cost:
$\square 3(100+400)=1500$ block transfers
\square Always ignore cost of writing partially filled blocks
- Problem???

Complex Joins

- Join with a conjunctive condition:

$$
r \bowtie_{\theta 1 \wedge \theta 2 \wedge \ldots \wedge \theta n} s
$$

- Either use nested loops/block nested loops, or
\square Compute the result of one of the simpler joins $r \bowtie_{\theta i} s$
\square final result comprises those tuples in the intermediate results that satisfy the remaining conditions

$$
\theta_{1} \wedge \ldots \wedge \theta_{i-1} \wedge \theta_{i+1} \wedge \ldots \wedge \theta_{n}
$$

\square Join with a disjunctive condition

$$
r \bowtie_{\theta 1 v \theta 2 v \ldots v \ln } s
$$

\square Either use nested loops/block nested loops, or
\square Compute as the union of the records in individual joins $r \bowtie_{\theta i} s$:

$$
\left(r \bowtie_{\theta 1} s\right) \cup\left(r \bowtie_{\theta 2} s\right) \cup \ldots \cup\left(r \bowtie_{\theta n} s\right)
$$

General Join Conditions

- Equalities over several attributes (e.g., R.sid=S.sid AND R.rname=S.sname):
\square For Index NL, build index on $<$ R.sid, R.sname> (if R is inner); or use existing indexes on sid or sname.
For Sort-Merge and Hash Join, sort/partition on combination of the two join columns.
- Inequality conditions (e.g., R.rname < S.sname):
\square For Index NL, need (clustered!) B+ tree index.
\square Range probes on inner;
\square The \# of matches is likely to be much higher than that for equality joins.
- Hash Join, Sort-Merge Join is not applicable.
\square Block NL is quite likely to be the best join method here.

Summary

- No one join algorithm is uniformly superior to the others.
- The choice of a good algorithm
\square Sizes of the relations being joined
\square Available access methods
\square Size of the buffer pool

