Query Evaluation
-- Join operation

References:
[SKS-6ed] Chapter 12.5
[RG-3ed] Chapter 14.4

Relational Operations

O We will consider how to implement:
Selection (o): Selects a subset of rows from relation.
Projection (x): Deletes unwanted columns from relation.
Join (DX): Allows us to combine two relations.
Set-difference (-): Tuples in relation 1, but not in relation 2.
Union (U): Tuples in relation 1 and in relation 2.
Aggregation (SUM, MIN, etc.) and GROUP BY

O Since each op returns a relation, ops can be composed! After we
cover the operations, we will discuss how to optimize queries formed
by composing them.

Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Similar to old schema; rname added for variations.
Sailors:

Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Reserves:

Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid = S1.sid

O Inalgebra: RB>1 S. Common! Must be carefully optimized.
O RxSislarge. So, R x S followed by a selection is inefficient.
O We will consider more complex join conditions later.
O Cost metric: # of 1/0s. We will ignore output costs.

Join Operation

a Several different algorithms to implement joins
Simple nested-loop join: iteration
Block nested-loop join: iteration
Indexed nested-loop join
Merge-join
Hash-join
d Choice based on cost estimate
d Our examples use the following information
Number of records of student. 5,000 takes: 10,000
Number of pages of student. 100 takes: 400

Simple nested-Loop Join

O To compute the theta join r Mg S =0y(rxs)

for each tuple t,.in rdo begin
for each tuple t; in s do begin
test pair (t,t;) to see if they satisfy the join condition 6

if they do, add t, - f; to the result.
end
end

d r is called the outer relation and s the inner relation of the join.

3 Requires no indices and can be used with any kind of join
condition.

O Expensive since it examines every pair of tuples in the two
relations.

Simple nested-Loop Join (Cont.)

O Given
n., b,: number of tuples and pages in r
n., b,: number of tuples and pages in s
O Case 1: worst case, memory hold one page of each relation

*
b,+n.* b,

Simple nested-Loop Join (Example)

Number of records of student. 5,000 takes: 10,000
Number of pages of student. 100 fakes: 400

O Assuming worst case memory availability cost estimate is
with student as outer relation:
2 100 + 5000 * 400 = 2,000,100 block transfers,
with takes as the outer relation
2 400 + 10000 * 100 = 1,000,400 block transfers

Simple nested-loop Join (Cont.)

O Case 2 (best case): enough space for both relations
Cost for block transfer: b, + b,

O If smaller relation fits entirely in memory, use that as the inner relation.
Reduces cost to b, + b, block transfers

O If smaller relation (student) fits entirely in memory, the cost estimate
will be 500 block transfers.

Simple nested-loop Join — analysis

b, pages in r, p, tuples per page

b, pages in s, p, tuples per page

For each tuple in the outer relation R, we scan the entire inner relation S.
Cost: b, + (p, * b,) * by

Example
Reserves: each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
Sailors: each tuple is 50 bytes long, 80 tuples per page, 500 pages.
Cost: 1000 + (100*1000)*500 1/Os.

10

Simple nested-loop join (page-oriented)

O Page-oriented Nested Loops join:
For each page of r,
For each page of s,
Write out matching pairs of tuples <t,, t.>,
where t, is in r-page and t, is in s-page.

o Cost: b+ b,* b, =1000 + 1000*500
o If smaller relation (S) is outer, cost = 500 + 500*1000

11

Simple nested-loop join (page-oriented)

O Worst case: each page in the inner relation s is read once for
each page in the outer relation

b,+ b.* b, block transfers
O Best case:
b, + bg block transfers

O Example 1: 400 pages of takes, 100 pages of students
Outer relation is student: 100+100*400=400,100 transfer
2 Improves 2,000,100 (simple nested-loop)
O Example 2: Reserves 1000 pages, Sailor 500 pages

Outer relation is Reserves: 1000 + 1000*500
Outer relation is Sailor: 500 + 5001000

12

Simple nested-loop join (page-oriented)

d Improvements

If equi-join attribute forms a key on inner relation, stop inner
loop on first match

Scan inner loop forward and backward alternatively, to
make use of the blocks remaining in buffer (with LRU
replacement)

Block nested-loop join
Indexed nested-loop

13

Block Nested Loops Join

O Use one page as an input buffer for scanning the inner s, one page as the
output buffer, and use all remaining pages to hold ““block’” of outer .

For each block of M-2 pages of r do
For each page of s do

For all matching in-memory tuples t, in r-block, t_ in s-page, add
<t, t> to resulit.

r& s Join Result
e S
_/ Input buffer fors Output buffer _/

14

Analysis of Block Nested Loops

O Cost: Scan of outer + #outer blocks * scan of inner
#outer blocks = [# of pages of outer relation/block size]
M = memory size in blocks;
Cost
QO b, +Hb,/(M-2)] * b, block transfers

15

Examples of Block Nested Loops

O Sailors:
Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
O Reserves:
Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

O Example 1: With Reserves as outer, and 100-page block of Reserves:
Block transfer cost: 1000 + [1000/100]*500 =6000
90-page block for Reserve, cost?
2 1000 + [1000/90] *500 = 1000+ 12*500=7000
2 What is the minimum number of block pages to have this cost?
2 [1000/(M-2)]=12, [1000/12]<=M <=floor(1000/11)

16

Examples of Block Nested Loops

O Sailors:
Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
O Reserves:
Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

O Example 2: 100-page block, Sailors as outer:
Block transfer cost: 500+(500/100)*1000 = 5500
90-page block?
2 500+ [500/90] *1000 = 500+6*1000 = 6500
2 What is the minimum number of pages to have this cost?

17

Block Nested Loops Join -- improvement

m Hash table for outer relation r
o The I/O cost does not change
® The CPU cost is much lower

ré&s Hash table for block of r] oin Result

(k < M-1 pages)

Y

v. A

3
>

Input buffer fors Output buffen | ™

\ 4
VO

18

Index Nested Loops Join

For each tuple t.in rdo
For each tuple f,in swhere t. ==t do
add <t, t> to result

O Indexed relation as the inner relation
O Does not enumerate the cross-product of rand s

19

Indexed Nested-Loop Join

O Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s.

O Cost (in 1/0s): b, + ((b,"p,)* cost of finding matching s tuples)

O For each rtuple, cost of probing s index is
about 1.2 for hash index,
2-4 for B+ tree
O Cost of finding s tuples depends on clustering.
Clustered index: 1 /O (typical),
Un-clustered: up to 1 1/0O per matching s tuple.

20

Examples of Index Nested Loops

O Example 1: Hash-index on sid of Sailors (as inner):
Scan Reserves: 1000 page I/Os
Reserves tuples: 100*1000 tuples.

For each Reserves tuple: 1.2 1/Os to get data entry in index, plus 1 1/0
to get (the exactly one) matching Sailors tuple.

2 Find sailor entry from index: 1.2 * (100 *1000) = 120,000 I/Os.
2 Find matching sailor tuple: 1*(100*1000) = 100,000
0 Total: 220,000

Total: 1000 + 220,000=221,000 I/Os

21

Examples of Index Nested Loops

O Example 2: Hash-index on sid of Reserves (as inner):
Scan Sailors: 500 page 1/Os,
of Sailors tuples: 80*500 tuples.

For each Sailors tuple: 1.2 1/Os to find index page with data entries, plus
cost of retrieving matching Reserves tuples.

0 Find Reserves entry from index: 1.2 * (80 * 500) = 48,000 I/Os.
Cost of retrieving matching Reserves tuples:
2 100,000 reservations for 40,000 sailors

Assuming uniform distribution, 2.5 reservations per sailor
(100,000/40,000).

Cost of retrieving reserves is 2.5 I/Os per sailor tuple.
0 Cost: 2.5 * (80*500) = 100,000 (un-clustered)
Total: 500+48,000+100,000 = 148,500 1/0O

22

U

L

Example of Nested-Loop Join Costs

Compute studentX takes, with student as the outer relation.

Let takes have a primary B*-tree index on the attribute /D, which contains
20 entries in each index node.

students: 100 pages, 5000 tuples
Takes: 400 pages, 10,000 tuples

Cost of simple nested loops join (page-oriented)
100 +100*400 = 40,100 block transfers
Cost of indexed nested loops join

Since takes has 10,000 tuples, the approximate height of the tree is
4, and one/? more access is heeded to find the actual data

100 + 5000 * 5 = 25,100 block transfers and seeks.

If indices are available on join attributes of both rand s,
use the relation with fewer tuples as the outer relation.

23

U

U

Exercise

Compute student [X| takes,.

Let the student relation have a primary B*-tree index on the attribute
ID, which contains 20 entries in each index node.

students: 100 pages, 5000 tuples
takes: 400 pages, 10,000 tuples

with “takes” as the outer relation?

24

Sort-Merge Join (r[>i$s)

O Sort r and s on the join column (external sort)
O Merging step: and output result tuples.
Advance scan of runtil current r-tuple >= current s-tuple
2 Current r-tuple (Tr)

Then advance scan of s until current s-tuple >= current r-tuple; do this
until current r-tuple = current s-tuple.

0 Current s-tuple (Gs)

At this point, all r-tuples with same value in ri (current r partition) and all S
tuples with same value in Sj (current s partition) match;

0 For each Tr, loop using another pointer (Ts) all the s-tuples with the
same value as the tuple pointed by Gs

0 Output <t, t> for all pairs of such tuples.
0 After matching one Tr with all tuples in the s partition, advance Tr
Then resume scanning r and s.

QO ris scanned once; each s group is scanned once per matching r tuple.
(Multiple scans of an s group are likely to find needed pages in buffer.) -5

Example of Sort-Merge Join

sid

bid

day

mame

sid |sname |rating |age
22 |dustin | 7 45.0
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 \guppy | S 35.0
58 |rusty 10 |35.0

28
28
31
31
31
58

103
103
101
102
101
103

12/4/96
11/3/96
10/10/96
10/12/96
10/11/96
11/12/96

guppy

yuppy
dustin

lubber
lubber
dustin

26

Example of Sort-Merge Join

d Cost (in 1/0s): (sorting cost)+ (cost of merging)
The cost of merging, b,+b,, could be b,*b, (very unlikely!)

O With 101 buffer pages, both Reserves (1000 pages) and Sailors(500
pages) can be sorted in 2 passes;

M=101, with final result write:
2 Sort Reserves: 2*2*1000= 4000
0 Sort Sailors: 2*2*500 = 2000
2 Merge cost: 1000 + 500 = 1500
0 Total join cost: 7500.
ad How about M=357 M=3007?
0 How about BNL cost?
2500 to 15000 1/Os

27

Refinement of Sort-Merge Join

ad We can combine the merging phases in the sorting of R
and S with the merging required for the join.

With M >,/ , where L is the size of the larger relation,
of runs of each relation is <./,
Merging: buffer size 2L

2 Allocate 1 page per run of each relation, and
“merge” while checking the join condition.

Cost: read and write each relation in Pass O + read
each relation in (only) merging pass [+ writing of result
tuples].

In example, cost goes down from 7500 to 4500 [/Os.

28

Sort-Merge Join (Cont.)

d Can be used only for equi-joins and natural joins

d Each block needs to be read only once (assuming all
tuples for any given value of the join attributes fit in
memory

d Thus the cost of merge join is:
3*(b, + b,) (best)

29

Example

O Compute student x| takes
d student: 100 pages, 5000 tuples
ad Takes: 400 pages, 10,000 tuples

d Already sorted on join attribute ID.

Merge cost = 400+100 = 500 block transfers
3 Not sorted, M =3

Sorting (write final output)

Takes: [log,[400/3]] = 8 merge passes; 2*400*(8+1) =
7200 block transfers; 2* [400/3 | + 8*(400/1)*2 =6668

Students: ???
Merging
400+100 = 500 block transfers

30

Hash-Join

Original
Relation OUTPUT Partitions
S 1 S
O Partition both relations 1
: - INPUT 2
using hash function h: r- hash | 2
tuples in partition i will -[] function o
only match s-tuples in ° oo M-1 0o
partition 1. | M-1
0 Read in a partition of r, ﬁ M main memorv buffer ~—
hash it using h2 (< h!). Is y butiers — Disk
Scan matching partton -~~~ "~~~ "~""~"~"~"“""~~"7=7=°7=7=7=7=7=7=7=====~
of s, search for matches. Partitions .
_ _ of R&S Join Result
O Relation ris called the —— Hash table for partition
build input and s is hash| Ri (k <M-1 pages) ——
called the probe input. fn
h2 . o 0 ¢
ha
Input bu_ffer Output
U for Si buffer U,

Disk M main memory buffers Disk

Observations on Hash-Join

O #partitions k <= M-1 (one input buffer), M-1 output buffers

O M-2 > size of largest partition to be held in memory.

d One partition fits in the memory, good.

O Assuming uniformly sized partitions, and maximizing k, we get:
k= M-1 (maximum)
If b/(M-1) < M-2, then M x/b,

If we build an in-memory hash table to speed up the matching of tuples, a
little more memory is needed. Typically k is chosen as [b, /M| * f where
fis a “fudge factor”, typically around 1.2

AM> /reb
0 More specifically, f*b/(M-1) < M-2
The probe relation partitions need not fit in memory

O If the hash function does not partition uniformly, one or more r partitions may
not fit in memory. Can apply hash-join technique recursively to do the join of
this r-partition with corresponding s-partition.

32

Cost of Hash-Join

4 In partitioning phase, R+W both relations ; 2(b, + b,).
d In matching phase, read both relations; b, + b, 1/Os.
3 In our running example, this is a total of 4500 1/Os.
a Sort-Merge Join vs. Hash Join:

Given a minimum amount of memory (what is this, for
each?) both have a cost of 3(b, + b,) 1/Os.

Hash Join is superior if relation sizes differ greatly.
Hash Join has shown to be highly parallelizable.

Sort-Merge is less sensitive to data skew; result is
sorted.

33

Cost of Hash-Join

3 If recursive partitioning is not required: cost of hash
joinis 3(b, + b,) block transfers

3 If the entire build input can be kept in main memory
no partitioning is required

Cost estimate goes down to b, + b..

34

O

U

U

Example of Cost of Hash-Join

Compute student X takes
student: 100 pages, 5000 tuples
takes: 400 pages, 10,000 tuples

Given M = 22 pages

student is to be used as build input. Partition it into 5 partitions,
each of size 20 pages (=M-2). This partitioning can be done in
one pass.

Similarly, partition takes into 5 partitions, each of size 80. This
IS also done in one pass.

Total cost:
3(100 + 400) = 1500 block transfers
Always ignore cost of writing partially filled blocks

Problem???

35

Complex Joins

O Join with a conjunctive condition:
r M(ﬂ/\ 02A...A0nN S
Either use nested loops/block nested loops, or
Compute the result of one of the simpler joins r x|, S

final result comprises those tuples in the intermediate results that
satisfy the remaining conditions

O4A...AD_;AB;yA...AD,
a Join with a disjunctive condition
r¥o1vo2v.. vonS
Either use nested loops/block nested loops, or
Compute as the union of the records in individual joins rX; s:

(riXlg;8) U (rXg, s)U ... U (X, s)

36

General Join Conditions

O Equalities over several attributes (e.g., R.sid=S.sid AND R.rname=S.sname):

For Index NL, build index on <R.sid, R.sname> (if R is inner); or use
existing indexes on sid or sname.

For Sort-Merge and Hash Join, sort/partition on combination of the two join
columns.

O Inequality conditions (e.g., R.rname < S.sname):
For Index NL, need (clustered!) B+ tree index.
0 Range probes on inner;
0 The # of matches is likely to be much higher than that for equality joins.
Hash Join, Sort-Merge Join is not applicable.
Block NL is quite likely to be the best join method here.

37

Summary

O No one join algorithm is uniformly superior to the others.
O The choice of a good algorithm

Sizes of the relations being joined

Available access methods

Size of the buffer pool

38

