
React Native Interview
Questions

To view the live version of the
page, click here.

© Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Basic Interview Questions
1. How Different is React-native from ReactJS ?

2. What is Flexbox and describe any elaborate on its most used properties?

3. Describe advantages of using React Native?

4. What are threads in General ? and explain Different Threads in ReactNative with
Use of Each ?

5. Are default props available in React Native and if yes for what are they used and
how are they used ?

6. How is user Input Handled in React Native ?

7. What is State and how is it used in React Native?

8. What is Redux in React Native and give important components of Redux used in
React Native app ?

9. Describe Timers in React Native Application ?

10. How to debug React Native Applications and Name the Tools used for it ?

11. What is Props Drilling and how can we avoid it ?

12. Describing Networking in React Native and how to make AJAX network calls in
React Native?

13. List down Key Points to integrate React Native in an existing Android mobile
application

React Native Intermediate Interview Questions
14. How is the entire React Native code processed to show the final output on a

mobile screen

15. What is a bridge and why is it used in React Native ? Explain for both android and
IOS ?

16. Name core Components in React Native and the analogy of those components
when compared with the web .

17. What is ListView and describe its use in React Native ?Page 1 © Copyright by Interviewbit

Contents

18. How can you write different code for IOS and Android in the same code base ? Is
there any module available for this ?

React Native Interview Questions

React Native Intermediate Interview
Questions (.....Continued)

19. What are Touchable components in react Native and which one to use when ?

20. Explain FlatList components, what are its key features along with a code sample
?

21. How To Use Routing with React Navigation in React Native ?

22. What are the Different Ways to style React Native Application ?

23. Explain Async Storage in React Native and also define when to use it and when to
not?

React Native Advanced Interview Questions
24. What’s the real cause behind performance issues in React Native ?

25. List down some of the steps to optimize the application.

26. Describe Memory leak Issue in React Native , how can it be detected and
resolved ?

27. Is there any out of the box way storing sensitive data in React ? If yes which and if
not how can this be achieved ?

28. What is Network Security and SSL Pinning?

29. Explain setNativeProps. Does it create Performance issues and how is it used ?

30. How to make your React Native app feel smooth on animations ?

Page 2 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native is a JavaScript-based mobile application framework, designed to create
mobile applications for iOS and Android by providing coders a tool to use React along
with the native mobile platform. The major advantage of React Native is that code
can be once written and shared between both IOS and Android. Mobile applications
that feel truly “native” in terms of both look and feel can be built with Javascript
itself. Learn More.

React Native Basic Interview Questions
1. How Different is React-native from ReactJS ?

Usage Scope
ReactJs - React is a JavaScript library for building Responsive User Interfaces for
Building Web Application.
React Native - It is a framework for creating mobile applications with a native
feel.
Syntax
Both React and React Native uses JSX (JavaScript XML) syntax but React uses
html tags like <div> <h1> <p> etc while React Native uses <view> <text> etc.
 Animation And Gestures
React uses CSS animations on a major scale to achieve animations for a web
page while The recommended way to animate a component is to use the
Animated API provided by React-Native.
Routing Mechanism
React uses a react-router for routing and does not have any inbuilt routing
capabilities but React Native has a built-in Navigator library for navigating
mobile applications.

Page 3 © Copyright by Interviewbit

Let's get Started

https://reactnative.dev/
https://www.interviewbit.com/react-interview-questions/

React Native Interview Questions

Page 4 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

REACT JS REACT NATIVE

It is used for developing
web applications.

It is used for developing mobile
applications.

It uses React-router for
navigating web pages.

It has a built-in navigator library
for navigating mobile
applications.

It uses HTML tags. It does not use HTML tags.

It provides high security. It provides low security in
comparison to ReactJS.

In this, the virtual DOM
renders the browser
code.

In this, Native uses its API to
render code for mobile
applications.

2. What is Flexbox and describe any elaborate on its most used
properties?

It is a layout model that allows elements to align and distribute space within a
container. With Flexbox when Using flexible widths and heights, all the inside the
main container can be aligned to fill a space or distribute space between elements,
which makes it a great tool to use for responsive design systems.

Page 5 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

Property Values Description

flexDirection ‘column’,'row'

Used to specify if
elements will be
aligned vertically or
horizontally

justifyContent

‘center’,'flex-
start','flex-
end','space-
around','space-
between'

Used to determine
how should
elements be
distributed inside
the container

alignItems
‘center’,'flex-
start','flex-
end','stretched'

Used to determine
how should
elements be
distributed inside
the container along
the secondary axis
(opposite of
flexDirection)

3. Describe advantages of using React Native?

There are multiple advantage of using React Native like,

Page 6 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

Large Community
React Native is an Open Source Framework, it is completely community driven
so any challenges can be resolved by getting online help from other developers.

Reusability
Code can be written once and can be used for both IOS and ANDROID, which
helps in maintaining and as well debugging large complex applications as no
separate teams are needed for supporting both the platforms, this also reduces
the cost to a major extent.

Live and Hot Reloading
Live reloading reloads or refreshes the entire app when a file changes. For
example, if you were four links deep into your navigation and saved a change,
live reloading would restart the app and load the app back to the initial route.
Hot reloading only refreshes the files that were changed without losing the state
of the app. For example, if you were four links deep into your navigation and
saved a change to some styling, the state would not change, but the new styles
would appear on the page without having to navigate back to the page you are
on because you would still be on the same page.

Additional Third-Party Plugins
If the existing modules do not meet the business requirement in React Native we
can also use Third Party plugins which may help to speed up the development
process.

4. What are threads in General ? and explain Different Threads
in ReactNative with Use of Each ?

Page 7 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

The single sequential flow of control within a program can be controlled by a thread.

React Native right now uses 3 threads:

MAIN/UI Thread — This is the main application thread on which your
Android/iOS app is running. The UI of the application can be changed by the
Main thread and it has access to it .

Shadow Thread — layout created using React library in React Native can be
calculated by this and it is a background thread.

JavaScript Thread — The main Javascript code is executed by this thread.

5. Are default props available in React Native and if yes for what
are they used and how are they used ?

Yes, default props available in React Native as they are for React, If for an instance we
do not pass props value, the component will use the default props value.

import React, {Component} from 'react';

Page 8 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

import {View, Text} from 'react-native';
class DefaultPropComponent extends Component {
 render() {
 return (
 <View>
 <Text>
 {this.props.name}
 </Text>
 </View>
)
 }
}
Demo.defaultProps = {
 name: 'BOB'
}

export default DefaultPropComponent;

6. How is user Input Handled in React Native ?

TextInput is a Core Component that allows the user to enter text. It has an
onChangeText prop that takes a function to be called every time the text changes,
and an onSubmitEditing prop that takes a function to be called when the text is
submitted.

Page 9 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

import React, { useState } from 'react';
import { Text, TextInput, View } from 'react-native';

const PizzaTranslator = () => {
 const [text, setText] = useState('');
 return (
 <View style={{padding: 10}}>
 <TextInput
 style={{height: 40}}
 placeholder="Type here to translate!"
 onChangeText={text => setText(text)}
 defaultValue={text}
 />
 <Text style={{padding: 10, fontSize: 42}}>
 {text.split(' ').map((word) => word && ' ').join(' ')}
 </Text>
 </View>
);
}

export default PizzaTranslator;

7. What is State and how is it used in React Native?

It is used to control the components. The variable data can be stored in the state. It is
mutable means a state can change the value at any time.

import React, {Component} from 'react';
import { Text, View } from 'react-native';
export default class App extends Component {
 state = {
myState: 'State of Text Component'
 }
updateState = () => this.setState({myState: 'The state is updated'})
render() {
return (
<View>
<Text onPress={this.updateState}> {this.state.myState} </Text>
</View>
); } }

Here we create a Text component with state data. The content of the Text
component will be updated whenever we click on it. The state is updated by event
onPress .

Page 10 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

8. What is Redux in React Native and give important
components of Redux used in React Native app ?

Redux is a predictable state container for JavaScript apps. It helps write applications
that run in different environments. This means the entire data flow of the app is
handled within a single container while persisting previous state.

Actions: are payloads of information that send data from your application to your
store. They are the only source of information for the store. This means if any state
change is necessary the change required will be dispatched through the actions.

Reducers: “Actions describe the fact that something happened, but don’t specify how
the application’s state changes in response. This is the job of reducers.” when an
action is dispatched for state change its the reducers duty to make the necessary
changes to the state and return the new state of the application.

Store: a store can be created with help of reducers which holds the entire state of the
application. The recommended way is to use a single store for the entire application
rather than having multiple stores which will violate the use of redux which only has a
single store.

Components: this is where the UI of the application is kept.

Page 11 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

9. Describe Timers in React Native Application ?

Timers are an important and integral part of any application and React Native
implements the browser timers.

Timers

setTimeout, clearTimeout
There may be business requirements to execute a certain piece of code a�er waiting
for some time duration or a�er a delay setTimeout can be used in such cases,
clearTimeout is simply used to clear the timer that is started.

setTimeout(() => {
yourFunction();
}, 3000);

setInterval, clearInterval
setInterval is a method that calls a function or runs some code a�er specific intervals
of time, as specified through the second parameter.

Page 12 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

setInterval(() => {
console.log('Interval triggered');
}, 1000);

A function or block of code that is bound to an interval executes until it is stopped. To
stop an interval, we can use the clearInterval() method.

setImmediate, clearImmediate
Calling the function or execution as soon as possible.

var immediateID = setImmediate(function);
// The below code displays the alert dialog immediately.
var immediateId = setImmediate(
 () => { alert('Immediate Alert');
}

clearImmediate is used for Canceling the immediate actions that were set by
setImmediate().

requestAnimationFrame, cancelAnimationFrame
It is the standard way to perform animations.

Calling a function to update an animation before the next animation frame.

var requestID = requestAnimationFrame(function);
// The following code performs the animation.
var requestId = requestAnimationFrame(
 () => { // animate something}
)

cancelAnimationFrame is used for Canceling the function that was set by
requestAnimationFrame().

10. How to debug React Native Applications and Name the Tools
used for it ?

Page 13 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

In the React Native world, debugging may be done in different ways and with
different tools, since React Native is composed of different environments (iOS and
Android), which means there’s an assortment of problems and a variety of tools
needed for debugging.

The Developer Menu:

Reload: reloads the app
Debug JS Remotely: opens a channel to a JavaScript debugger
Enable Live Reload: makes the app reload automatically on clicking Save
Enable Hot Reloading: watches for changes accrued in a changed file
Toggle Inspector: toggles an inspector interface, which allows us to inspect any
UI element on the screen and its properties, and presents an interface that has
other tabs like networking, which shows us the HTTP calls, and a tab for
performance.

Page 14 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

Chrome’s DevTools:

Chrome is possibly the first tool to think of for debugging React Native. It’s
common to use Chrome’s DevTools to debug web apps, but we can also use
them to debug React Native since it’s powered by JavaScript.To use Chrome’s
DevTools with React Native, first make sure to connect to the same Wi-Fi, then
press command + R if you’re using macOS, or Ctrl + M on Windows/Linux. In the
developer menu, choose Debug Js Remotely. This will open the default JS
debugger.

React Developer Tools
For Debugging React Native using React’s Developer Tools, you need to use the
desktop app. In can installed it globally or locally in your project by just running
the following command:
yarn add react-devtools

Or npm:
npm install react-devtools --save

React’s Developer Tools may be the best tool for debugging React Native for
these two reasons:
It allows for debugging React components.
There is also a possibility to debug styles in React Native. There is also a new
version that comes with this feature that also works with the inspector in the
developer menu. Previously, it was a problem to write styles and have to wait for
the app to reload to see the changes. Now we can debug and implement style
properties and see the effect of the change instantly without reloading the app.

React Native Debugger
While using Redux in your React Native app, React Native Debugger is probably
the right debugger for you. This is a standalone desktop app that works on
macOS, Windows, and Linux. It even integrates both Redux’s DevTools and
React’s Developer Tools in one app so you don’t have to work with two separate
apps for debugging.

Page 15 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

React Native CLI

You can use the React Native CLI to do some debugging as well. It can also be used for
showing the logs of the app. Hitting react-native log-android will show you the logs of
db logcat on Android, and to view the logs in iOS you can run react-native log-ios, and
with console.log you can dispatch logs to the terminal:

console.log("some error ")

11. What is Props Drilling and how can we avoid it ?

Props Drilling (Threading) is a concept that refers to the process you pass the data
from the parent component to the exact child Component BUT in between, other
components owning the props just to pass it down the chain.

Steps to avoid it

Page 16 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

1. React Context API.
2. Composition
3. Render props
4. HOC
5. Redux or MobX

12. Describing Networking in React Native and how to make
AJAX network calls in React Native?

React Native provides the Fetch API for networking needs.
To fetch content from an arbitrary URL, we can pass the URL to fetch:

fetch('https://mywebsite.com/endpoint/', {
 method: 'POST',
 headers: {
 Accept: 'application/json',
 'Content-Type': 'application/json'
 },
 body: JSON.stringify({
 firstParam: 'yourValue',
 secondParam: 'yourOtherValue'
 })
});

Networking is an inherently asynchronous operation. Fetch methods will return a
Promise that makes it straightforward to write code that works in an asynchronous
manner:

const getMoviesFromApi = () => {
 return fetch('https://reactnative.dev/movies.json')
 .then((response) => response.json())
 .then((json) => {
 return json.movies;
 })
 .catch((error) => {
 console.error(error);
 });
};

Page 17 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

The XMLHttpRequest API is built in to React Native Since frisbee and Axios use
XMLHttpRequest we can even use these libraries.

var request = new XMLHttpRequest();
request.onreadystatechange = (e) => {
 if (request.readyState !== 4) {
 return;
 }

 if (request.status === 200) {
 console.log('success', request.responseText);
 } else {
 console.warn('error');
 }
};

request.open('GET', 'https://mywebsite.com/endpoint/');
request.send();

13. List down Key Points to integrate React Native in an existing
Android mobile application

Primary points to note to integrating React Native components into your Android
application are to:

Set up React Native dependencies and directory structure.
Develop your React Native components in JavaScript.
Add a ReactRootView to your Android app. This view will serve as the container
for your React Native component.
Start the React Native server and run your native application.
Lastly, we need to Verify that the React Native aspect of your application works
as expected.

React Native Intermediate Interview Questions
14. How is the entire React Native code processed to show the

final output on a mobile screen

Page 18 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

At the first start of the app, the main thread starts execution and starts loading
JS bundles.
When JavaScript code has been loaded successfully, the main thread sends it to
another JS thread because when JS does some heavy calculations stuff the
thread for a while, the UI thread will not suffer at all times.
When React starts rendering, Reconciler starts “diffing”, and when it generates a
new virtual DOM(layout) it sends changes to another thread(Shadow thread).
Shadow thread calculates layout and then sends layout parameters/objects to
the main(UI) thread. (Here you may wonder why we call it “shadow”? It’s
because it generates shadow nodes)
Since only the main thread is able to render something on the screen, the
shadow thread should send the generated layout to the main thread, and only
then UI renders.

15. What is a bridge and why is it used in React Native ? Explain
for both android and IOS ?

Bridge in ReactNative is a layer or simply a connection that is responsible for gluing
together Native and JavaScript environments.

Consider Below diagram:

Page 19 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

The layer which is closest to the device on which the application runs is the
Native Layer.

The bridge is basically a transport layer which acts as a connection between
Javascript and Native modules, it does the work of transporting asynchronous
serialized batched response messages from JavaScript to Native modules.

Now for an example, there is some state change that happens, because of which
React Native will batch Update UI and send it to the Bridge. The bridge will pass
this Serialized batched response to the Native layer, which will process all
commands that it can distinguish from a serialized batched response and will
update the User Interface accordingly.

IOS Platform:

Page 20 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

 Android Platform:

16. Name core Components in React Native and the analogy of
those components when compared with the web .

The core components used in React Native are <View> , <Text> , <Image> ,
<ScrollView> , <TextInput>

And analogy when compared Web can be explained by below diagram:

Page 21 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

REACT NATIVE UI COMPONENT ANDROID VIEW IOS VIEW

<View> <ViewGroup> <UIView>

<Text> <TextView> <UITextView>

<Image> <ImageView> <UIImageView>

<ScrollView> <ScrollView> <UIScrollView>

<TextInput> <EditText> <UITextField>

Page 22 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

17. What is ListView and describe its use in React Native ?

React Native ListView is a view component that contains the list of items and displays
it in a vertically scrollable list.

18. How can you write different code for IOS and Android in the
same code base ? Is there any module available for this ?

The platform module detects the platform in which the app is running.

import { Platform, Stylesheet } from 'react-native';
const styles = Stylesheet.create({
height: Platform.OS === 'IOS' ? 200 : 400
})

Additionally Platform.select method available that takes an object containing
Platform.OS as keys and returns the value for the platform you are currently on.

Page 23 © Copyright by Interviewbit

export default class MyListComponent extends Component {
constructor() {
super();
const ds = new ListView.DataSource({rowHasChanged: (r1, r2) => r1 !== r2});
this.state = {
dataSource: ds.cloneWithRows(['Android','iOS', 'Java','Php', 'Hadoop', 'Sap', 'Python',
};
}
render() {
return (
<ListView
dataSource={this.state.dataSource}
renderRow={
(rowData) =>
<Text style={{fontSize: 30}}>{rowData}</Text>} />
); }
}

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

import { Platform, StyleSheet } from 'react-native';
const styles = StyleSheet.create({
 container: {
flex: 1,
 ...Platform.select({
 ios: {
 backgroundColor: 'red',
 },
 android: {
 backgroundColor: 'green',
 },
 default: {
 // other platforms, web for example
 backgroundColor: 'blue',
 }, }),
},
});

19. What are Touchable components in react Native and which
one to use when ?

Tapping gestures can be captured by Touchable components and can display
feedback when a gesture is recognized.

Depending on what kind of feedback you want to provide we choose Touchable
Components.

Generally, we use TouchableHighlight anywhere you would use a button or link on
the web. The background of the view will be darkened when the user presses down
on the button.

We can use TouchableNativeFeedback on Android to display ink surface reaction
ripples that respond to the user's touch.

TouchableOpacity can be used to provide feedback by reducing the opacity of the
button, allowing the background to be seen through while the user is pressing down.

If we need to handle a tap gesture but you don't want any feedback to be displayed,
use TouchableWithoutFeedback.

Page 24 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

20. Explain FlatList components, what are its key features along
with a code sample ?

The FlatList component displays similarly structured data in a scrollable list. It works
well for large lists of data where the number of list items might change over time.

Key Feature:

The FlatList shows only those rendered elements which are currently displaying on
the screen, not all the elements of the list at once.

Page 25 © Copyright by Interviewbit

import React, { Component } from 'react';
import { Platform, StyleSheet, Text, TouchableHighlight, TouchableOpacity, TouchableNat
export default class Touchables extends Component {
_onPressButton() {
 alert('You tapped the button!') }
 _onLongPressButton() {
 alert('You long-pressed the button!')
 }
render() {
return (
<View style={styles.container}>
<TouchableHighlight onPress={this._onPressButton} underlayColor="white">
<View style={styles.button}>
<Text style={styles.buttonText}>TouchableHighlight</Text>
</View>
</TouchableHighlight>
);}
}

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

21. How To Use Routing with React Navigation in React Native ?

One of the popular libraries for routing and navigation in a React Native application is
React Navigation.

Page 26 © Copyright by Interviewbit

import React, { Component } from 'react';
import { AppRegistry, FlatList,
 StyleSheet, Text, View,Alert } from 'react-native';

export default class FlatListBasics extends Component {

 renderSeparator = () => {
 return (
 <View
 style={{
 height: 1,
 width: "100%",
 backgroundColor: "#000",
 }}
 />
);
 };
 //handling onPress action
 getListViewItem = (item) => {
 Alert.alert(item.key);
 }

 render() {
 return (
 <View style={styles.container}>
 <FlatList
 data={[
 {key: 'Android'},{key: 'iOS'}, {key: 'Java'},{key: 'Swift'},
 {key: 'Php'},{key: 'Hadoop'},{key: 'Sap'},
]}
 renderItem={({item}) =>
 <Text style={styles.item}
 onPress={this.getListViewItem.bind(this, item)}>{item.key}
 ItemSeparatorComponent={this.renderSeparator}
 />
 </View>
);
 }
}
AppRegistry.registerComponent('AwesomeProject', () => FlatListBasics);

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

This library helps solve the problem of navigating between multiple screens and
sharing data between them.

import * as React from 'react';
import { NavigationContainer } from '@react-navigation/native';
import { createStackNavigator } from '@react-navigation/stack';

const Stack = createStackNavigator();

const MyStack = () => {
 return (
 <NavigationContainer>
 <Stack.Navigator>
 <Stack.Screen
 name="Home"
 component={HomeScreen}
 options={{ title: 'Welcome' }}
 />
 <Stack.Screen name="Profile" component={ProfileScreen} />
 </Stack.Navigator>
 </NavigationContainer>
);
};

22. What are the Different Ways to style React Native
Application ?

React Native give us two powerful ways by default to style our application :

1) Style props

You can add styling to your component using style props. You simply add style props
to your element and it accepts an object of properties.

Page 27 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

 2) Using StyleSheet

For an extremely large codebase or you want to set many properties to your
elements, writing our styling rules directly inside style props will make our code more
complex that’s why React Native give us another way that let us write a concise code
using the StyleSheet method:

Page 28 © Copyright by Interviewbit

import React, {Component} from 'react';
import {Platform, StyleSheet, Text, View} from 'react-native';
export default class App extends Component<Props> {
render() {
return (
<View style={{flex:1,justifyContent:"center",backgroundColor:"#fff", alignItems:"center
<View style={{width:200,height:150,backgroundColor:"red",padding:10}}>
<Text style={{fontSize:20, color:"#666"}}>Styled with style props</Text>
</View>
</View>
);
}
}

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

import { StyleSheet} from 'react-native';
const styles = StyleSheet.create({
container: {
flex:1,
justifyContent:"center",
backgroundColor:"#fff",
alignItems:"stretch"
},
title: {
fontSize:20,
color:"#fff"
},
item1: {
backgroundColor:"orange",
flex:1
},
item2: {
backgroundColor:"purple",
flex:1
},
item3: {
backgroundColor:"yellow",
flex:1
},

});

 We then pass the styles object to our component via the style props:

<View style={styles.container}>
<View style={styles.item1}>
<Text style={{fontSize:20, color:"#fff"}}>Item number 1</Text>
</View>
<View style={styles.item2}>
<Text style={{fontSize:20, color:"#fff"}}>Item number 1</Text>
</View>
<View style={styles.item3}>
<Text style={{fontSize:20, color:"#fff"}}>Item number 1</Text>
</View>
<View style={styles.item4}>
<Text style={{fontSize:20, color:"#fff"}}>Item number 1</Text>
</View>
</View>

3) styled-components in React Native

Page 29 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

We can also use styled-components with React native so you can write your styles in
React Native as you write normal CSS. It is very easy to include it in your project and it
doesn’t need any linking just run this following command inside the root directory of
your app to install it:

yarn add styled-components

Page 30 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

import React, {Component} from 'react';
import { StyleSheet,Text, View} from 'react-native';
import styled from 'styled-components'
const Container=styled.View`
 flex:1;
 padding:50px 0;
 justify-content:center;
 background-color:#f4f4f4;
 align-items:center
`
const Title=styled.Text`
font-size:20px;
text-align:center;
color:red;
`
const Item=styled.View`
flex:1;
border:1px solid #ccc;
margin:2px 0;
border-radius:10px;
box-shadow:0 0 10px #ccc;
background-color:#fff;
width:80%;
padding:10px;

`

export default class App extends Component {
 render() {
 return (
 <Container>
 <Item >
 <Title >Item number 1</Title>
 </Item>
 <Item >
 <Title >Item number 2</Title>
 </Item>
 <Item >
 <Title >Item number 3</Title>
 </Item>
 <Item >
 <Title >Item number 4</Title>
 </Item>
 </Container>
);
 }

Page 31 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

23. Explain Async Storage in React Native and also define when
to use it and when to not?

Async Storage is the React Native equivalent of Local Storage from the web.
Async Storage is a community-maintained module for React Native that
provides an asynchronous, unencrypted, key-value store. Async Storage is not
shared between apps: every app has its own sandbox environment and has no
access to data from other apps.

DO USE ASYNC STORAGE WHEN.. DON'T USE ASYNC STORAGE FOR..

Persisting non-sensitive data
across app runs

Token storage

Persisting Redux state Secrets

Persisting GraphQL state

Storing global app-wide variables

React Native Advanced Interview Questions
24. What’s the real cause behind performance issues in React

Native ?

The real cause behind React Native performance issues is that each thread (i.e Native
and JS thread) is blazingly fast. The performance bottleneck in React Native app
occurs when you’re passing the components from one thread to another
unnecessarily or more than required. A major thumb rule to avoid any kind of
performance-related issue in React Native is to keep the passes over the bridge to a
minimum.

Page 32 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

Native thread built for running Java/ Kotlin, Swi�/ Objective C
Javascript thread is the primary thread that runs everything from javascript-
based animations to other UI components
The bridge as the name suggests acts as an intermediate communication point
for the native and JS thread

25. List down some of the steps to optimize the application.

Use Proguard to minimize the application size.(It does this by stripping parts of
the React Native Java bytecode (and its dependencies) that your app is not
using)
Create reduced-sized APK files for specific CPU architectures. When you do that,
your app users will automatically get the relevant APK file for their specific
phone’s architecture. This eliminates the need to keep JSCore binaries that
support multiple architectures and consequently reduces the app size.
Compress images and other graphic elements. Another option to reduce image
size is using file types like APNG in place of PNG files.
Don’t store raw JSON data, eIther we need to Compress it or convert it into
static object IDs.
Optimize native libraries.
Optimize the number of state operations and remember to use pure and
memoized components when needed
Use Global State wisely for example worst-case scenario is when state change of
single control like TextInput or CheckBox propagates render of the whole
application. Use libraries like Redux or Overmind.js to handle your state
management in a more optimized way.
Use key attribute on list items, it helps React Native to pick which list to update
when rendering a long list of data
Use VirtualizedList, FlatList, and SectionList for large data sets.
Clear all the active timers which may lead to heavy memory leakage issues.

26. Describe Memory leak Issue in React Native , how can it be
detected and resolved ?

Page 33 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

In JavaScript memory is managed automatically by Garbage Collector (GC). In short,
Garbage Collector is a background process that periodically traverses the graph of
allocated objects and their references. If it happens to encounter a part of the graph
that is not being referenced directly or indirectly from root objects (e.g., variables on
the stack or a global object like window or navigator) that whole part can be
deallocated from the memory.

In React Native world each JS module scope is attached to a root object. Many
modules, including React Native core ones, declare variables that are kept in the
main scope (e.g., when you define an object outside of a class or function in your JS
module). Such variables may retain other objects and hence prevent them from
being garbage collected.

Some Causes of Memory Leak:

Unreleased timers/listeners added in componentDidMount
Closure scope leaks

Page 34 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

Detecting memory leaks for IOS:

In Xcode,

Go to XCode → Product → Profile (⌘ + i)

A�er that shows you all templates choose leaks.

Detecting memory leaks for Android :

Run React Native app normally (react-native run-android)
Run Android Studio

On the menu,
click Tools → Android → Enable ADB Integration
Click Tools → Android → Android Device Monitor
When Android Device Monitor shows up, click Monitor → Preferences

There is also one more way in Android
Perf Monitor (Performance Monitor) is a good choice to use for android leak
monitoring.

Import PerfMonitor from 'react-native/Libraries/Performance/RCTRenderingPerf';
PerfMonitor.toggle();
PerfMonitor.start();
setTimeout(() => {
 PerfMonitor.stop();
}, 20000);
}, 5000);

27. Is there any out of the box way storing sensitive data in
React ? If yes which and if not how can this be achieved ?

React Native does not come bundled with any way of storing sensitive data. However,
there are pre-existing solutions for Android and iOS platforms.

Page 35 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

iOS - Keychain Services
Keychain Services allows you to securely store small chunks of sensitive info for the
user. This is an ideal place to store certificates, tokens, passwords, and any other
sensitive information that doesn’t belong in Async Storage.

Android - Secure Shared Preferences#
Shared Preferences is the Android equivalent for a persistent key-value data store.
Data in Shared Preferences is not encrypted by default, but Encrypted Shared
Preferences wraps the Shared Preferences class for Android, and automatically
encrypts keys and values.

Android - Keystore
The Android Keystore system lets you store cryptographic keys in a container to
make it more difficult to extract from the device. In order to use iOS Keychain
services or Android Secure Shared Preferences, you can either write a bridge yourself
or use a library that wraps them for you and provides a unified API at your own risk.
Some libraries to consider:

Expo-secure-store
React-native-keychain
react-native-sensitive-info - secure for iOS, but uses Android Shared Preferences
for Android (which is not secure by default). There is however a branch that uses
Android Keystore.

28. What is Network Security and SSL Pinning?

Understanding of SSL:

Page 36 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

SSL (Secure Sockets Layer) and its successor, TLS (Transport Layer Security), are
protocols for establishing authenticated and encrypted links between networked
computers.
SSL/TLS works by binding the identities of entities such as websites and companies
to cryptographic key pairs via digital documents known as X.509 certificates. Each
key pair consists of a private key and a public key. The private key is kept secure, and
the public key can be widely distributed via a certificate.

Understanding of pinning
Pinning is an optional mechanism that can be used to improve the security of a
service or site that relies on SSL Certificates. Pinning allows specifying a
cryptographic identity that should be accepted by users visiting site/app

Why do we need SSL pinning?

One of the inherent risks to the SSL ecosystem is mis-issuance. This is when an
unauthorized certificate is issued for a domain/host you control. This can happen
with both public and private PKIs (Public Key Infrastructure)

How is SSL pinning used in Mobile applications?
When mobile applications communicate with the server, they typically use SSL to
protect the transmitted data against tampering. By default SSL implementations
used, apps trust any server with a certificate trusted by the Operating systems trust
store, This store is a list of certificate authorities that are shipped with the operating
system.

Page 37 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

With SSL pinning, however, the application is configured to reject all but one or few
predefined certificates, whenever the application connects to a server, it compares
the server certificate with the pinned certificate(s) , if and only if they match the
server is trusted and SSL connection is established.

29. Explain setNativeProps. Does it create Performance issues
and how is it used ?

Page 38 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

React Native Interview Questions

It is sometimes necessary to make changes directly to a component without using
state/props to trigger a re-render of the entire subtree. When using React in the
browser, for example, you sometimes need to directly modify a DOM node, and the
same is true for views in mobile apps. setNativeProps is the React Native equivalent
to setting properties directly on a DOM node.
Use setNativeProps when frequent re-rendering creates a performance bottleneck.

Direct manipulation will not be a tool that you reach for frequently; you will typically
only be using it for creating continuous animations to avoid the overhead of
rendering the component hierarchy and reconciling many views. setNativeProps is
imperative and stores state in the native layer (DOM, UIView, etc.) and not within your
React components, which makes your code more difficult to reason about. Before
you use it, try to solve your problem with setState and shouldComponentUpdate.

30. How to make your React Native app feel smooth on
animations ?

The primary reason and an important one why well-built native apps feel so smooth
are by avoiding expensive operations during interactions and animations. React
Native has a limitation that there is only a single JS execution thread, but you can
use InteractionManager to make sure long-running work is scheduled to start a�er
any interactions/animations have completed.

Applications can schedule tasks to run a�er interactions with the following:

InteractionManager.runAfterInteractions(() => {
 // ...long-running synchronous task...
});

Page 39 © Copyright by Interviewbit

https://www.interviewbit.com/react-native-interview-questions/

C Interview Questions Php Interview Questions C Sharp Interview Questions

Web Api Interview
Questions

Hibernate Interview
Questions

Node Js Interview Questions

Cpp Interview Questions Oops Interview Questions Devops Interview Questions

Machine Learning Interview
Questions

Docker Interview Questions Mysql Interview Questions

Css Interview Questions Laravel Interview Questions Asp Net Interview Questions

Django Interview Questions Dot Net Interview Questions Kubernetes Interview
Questions

Operating System Interview
Questions

React Native Interview
Questions

Aws Interview Questions

Git Interview Questions Java 8 Interview Questions Mongodb Interview
Questions

Dbms Interview Questions Spring Boot Interview
Questions

Power Bi Interview Questions

Pl Sql Interview Questions Tableau Interview
Questions

Linux Interview Questions

Ansible Interview Questions Java Interview Questions Jenkins Interview Questions

Page 40 © Copyright by Interviewbit

Links to More Interview
Questions

https://www.interviewbit.com/c-interview-questions
https://www.interviewbit.com/php-interview-questions
https://www.interviewbit.com/c-sharp-interview-questions
https://www.interviewbit.com/web-api-interview-questions
https://www.interviewbit.com/hibernate-interview-questions
https://www.interviewbit.com/node-js-interview-questions
https://www.interviewbit.com/cpp-interview-questions
https://www.interviewbit.com/oops-interview-questions
https://www.interviewbit.com/devops-interview-questions
https://www.interviewbit.com/machine-learning-interview-questions
https://www.interviewbit.com/docker-interview-questions
https://www.interviewbit.com/mysql-interview-questions
https://www.interviewbit.com/css-interview-questions
https://www.interviewbit.com/laravel-interview-questions
https://www.interviewbit.com/asp-net-interview-questions
https://www.interviewbit.com/django-interview-questions
https://www.interviewbit.com/dot-net-interview-questions
https://www.interviewbit.com/kubernetes-interview-questions
https://www.interviewbit.com/operating-system-interview-questions
https://www.interviewbit.com/react-native-interview-questions
https://www.interviewbit.com/aws-interview-questions
https://www.interviewbit.com/git-interview-questions
https://www.interviewbit.com/java-8-interview-questions
https://www.interviewbit.com/mongodb-interview-questions
https://www.interviewbit.com/dbms-interview-questions
https://www.interviewbit.com/spring-boot-interview-questions
https://www.interviewbit.com/power-bi-interview-questions
https://www.interviewbit.com/pl-sql-interview-questions
https://www.interviewbit.com/tableau-interview-questions
https://www.interviewbit.com/linux-interview-questions
https://www.interviewbit.com/ansible-interview-questions
https://www.interviewbit.com/java-interview-questions
https://www.interviewbit.com/jenkins-interview-questions

