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Introduction

� Several factors influence the performance of wireless 

systems:

� Density of mobile users

� Cell size

� Moving direction and speed of users (Mobility models)

� Call rate, call duration

� Interference, etc.

� Probability, statistics theory ,traffic patterns, queueing 

theory, and simulation help make these factors tractable
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Background: Probability & Statistics



Probability Theory and Statistics Theory

� A Random Variable (RV) provides a numerical description of a trial

� Random Variables (RVs)
� Let S be the sample associated with experiment E

� X is a function that associates a real number to each s ∈S

� RVs can be of two types: Discrete or Continuous

� Discrete random variable => probability mass function (pmf)

� Continuous random variable => probability density function (pdf)
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Discrete Random Variables

� In this case, X(s) contains a finite or infinite number of values

� The possible values of X can be enumerated

� E.g., throw a 6 sided dice and calculate the probability of a particular 
number appearing.
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Discrete Random Variables

� The probability mass function (pmf) p(k) of X is defined 

as:

p(k) = p(X = k), for k = 0, 1, 2, ...

where

1. Probability of each state occurring

0 ≤ p(k) ≤ 1, for every k;

2. Sum of all states

∑ p(k) = 1, for all k.



Continuous Random Variables

� In this case, X contains an infinite number of values.

� E.g., spinning a pointer around a circle and measuring the 
angle it makes when it stops.

� E.g., height of a person in feet.

� Mathematically, X is a continuous random variable if there 
is a function f, called probability density function (pdf) of 
X that satisfies the following criteria:

1. f(x)≥ 0, for all x;

2. ∫ f(x)dx = 1.



Cumulative Distribution Function

� Applies to all random variables

� A cumulative distribution function (cdf) is defined as:

� For discrete random variables:

� For continuous random variables:

F(x) = P(X ≤ x) = ∫ f(x)dx
-∞

x

P(k) = P(X ≤ k) = ∑ P(X = k)
all ≤ k



Probability Density Function

� The pdf f(x) of a continuous random variable X is the 
derivative of the cdf F(x), i.e.,
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� Discrete Random Variables

� Expected value represented by E or average of random 

variable

� nth moment

� nth central moment

� Variance or the second central moment

Expected Value, nth Moment, nth Central 

Moment, and Variance

E[X] = ∑ kP(X = k)
all ≤ k

E[Xn] = ∑ knP(X = k)
all ≤ k

E[(X – E[X])n] = ∑ (k – E[X])nP(X = k)
all ≤ k

σ2 = Var(X) = E[(X – E[X])2] = E[X2] - (E[X])2



Expected Value, nth Moment, nth Central 

Moment, and Variance
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� Continuous Random Variable

� Expected value or mean value

� nth moment

� nth central moment

� Variance or the second central moment

Expected Value, nth Moment, nth Central 

Moment, and Variance

E[X] = ∫ xf(x)dx
+∞

-∞

E[Xn] = ∫ xnf(x)dx
+∞

-∞

E[(X – E[X])n] = ∫ (x – E[X])nf(x)dx
+∞

-∞

σ2 = Var(X) = E[(X – E[X])2] = E[X2] - (E[X])2



�A classical example of a Bernoulli experiment 
is a single toss of a coin. The coin might 
come up heads with probability p and tails 
with probability q=1-p. The experiment is 
called fair if if both possible outcomes have 
the same probability.

�The probability mass function of this 
distribution is

Some Important Discrete Random Distributions

� Bernoulli



Some Important Discrete Random Distributions

� Poisson 

� E[X] = λ, and Var(X) = λ

� Geometric

� E[X] = 1/(1-p), and Var(X) = 
p/(1-p)2

P(X = k) = p(1-p)k-1 , 

where p is success probability



Some Important Discrete Random Distributions

� Binomial

Out of n dice, exactly k dice have the same value: 
probability p k and (n-k) dice have different values: 
probability(1-p) n-k. 

For any k dice out of n: 



Some Important Continuous Random 

Distributions

� Normal

� E[X] = µ, and Var(X) = σ2



Some Important Continuous Random 

Distributions

� Uniform

� E[X] = (a+b)/2, and Var(X) = (b-a)2/12



Some Important Continuous Random 

Distributions

� Exponential

� E[X] = 1/λ, and Var(X) = 1/λ2



Multiple Random Variables

� There are cases where the result of one experiment 

determines the values of several random variables

� The joint probabilities of these variables are:

� Discrete variables: 

p(x1, …, xn) = P(X1 = x1, …, Xn = xn)

� Continuous variables: 

cdf: Fx1x2…xn(x1, …, xn) = P(X1 ≤ x1, …, Xn ≤ xn)

pdf:



Independence and Conditional Probability 

� Independence: The random variables are said 

to be independent of each other when the 

occurrence of one does not affect the other. 

The pmf for discrete random variables in such 

a case is given by:

p(x1,x2,…xn)=P(X1=x1)P(X2=x2)…P(X3=x3)

and for continuous random variables as:

FX1,X2,…Xn = FX1(x1)FX2(x2)…FXn(xn)



Important Properties of Random Variables

� Sum property of the expected value 

� Expected value of the sum of random variables:

� Product property of the expected value

� Expected value of product of stochastically independent 

random variables



Important Properties of Random Variables

� Sum property of the variance

� Variance of the sum of random variables is

where cov[Xi,Xj] is the covariance of random variables Xi and Xj

and

If random variables are independent of each other, i.e., 
cov[Xi,Xj]=0, then



Important Properties of Random Variables

� For a special case Z= X+Y; If both X and Y are non negative random variables, then pdf 

is the convolution of the individual pdfs, fX(x) and fY(y).
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Central Limit Theorem

The Central Limit Theorem states that whenever a random 
sample (X1, X2,.. Xn) of size n is taken from any 
distribution with expected value E[Xi] = µ and variance 
Var(Xi) = σ 2, where i =1,2,..,n, then their arithmetic mean 
is defined by

∑
=
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n
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Central Limit Theorem

� The sample mean is approximated to a normal distribution 
with 

� E[Sn] = µ, and 

� Var(Sn) = σ 2 / n.

� The larger the value of the sample size n, the better the 
approximation to the normal.

� This is very useful when interference between signals 
needs to be considered.



Poisson Process and its Properties



Random Process

� A Random process is a sequence of events “randomly 

spaced in time”. 

� For example, customers arriving at a bank are similar to 

packets arriving at a buffer. 



Poisson Process

� A stochastic process A(t) (t > 0, A(t) >=0) is 
said to be a Poisson process with rate λ if

1. A(t) is a counting process that represents the 
total number of arrivals in [0, t]

2. The numbers of arrivals that occur in disjoint 
intervals are independent

3. The number of arrivals in any [t, t + τ] is 
Poisson distributed with parameter λτ



Properties of Poisson Process (1)

� Interarrival times τn are independent and 
exponentially distributed with parameter λ

� The mean and variance of interarrival times τn

are 1/λ and 1/λ^2, respectively



Properties of Poisson Process (2)

� If two or more independent Poisson process 
A1, ..., Ak are merged into a single process A = 
A1 + A2 + ... + Ak, the process A is Poisson
with a rate equal to the sum of the rates of its 
components

A1

Ai

Ak

A

independent Poisson processes

Poisson process

mergeλ1

λi

λk



Properties of Poisson Process (3)

� If a Poisson process A is split into two other 
processes A1 and A2 by randomly assigning 
each arrival to A1 or A2, processes A1 and A2

are Poisson

A1

A2

A

Poisson processes

Poisson process

split randomly
λ1

λ2

with probability p

with probability (1-p)



Traffic Generation -- Poisson Process

•Generate Random Inter-arrival times that are
exponentially distributed. Note that Exponentially
Distributed Inter-arrival times can be generated
from a Uniform distribution U(0,1) as follows:

Y = -(1/lambda) * ln( u(0,1) )

Y is an exponentially distributed random number
With parameter lambda.



Gauss-Markov Mobility Model

where sn and dn are the new speed and direction of the mobile node at time interval n;

α, 0 ≤ α ≤ 1, is the tuning parameter used to vary the randomness;

S_bar, d_bar are constants representing the mean value of speed and direction

And                           are random variables from a Gaussian distribution. 

where and  
are the x and y coordinates of the mobile node’s position at the nth

and (n-1)st time intervals, respectively.

sn-1 and dn-1 are the speed and direction of the mobile node, respectively, at the (n-1)st time interval



Introduction to Queueing Theory

Based on the slides of Prof. Hiroyuki Ohsaki
Graduate School of Information Science & Technology, Osaka University, Japan



What is Queueing Theory?

� Primary methodological framework for analyzing 
network delay

� Often requires simplifying assumptions since 
realistic assumptions make meaningful analysis 
extremely difficult

� Provide a basis for adequate delay 
approximation

queue



Packet Delay

� Packet delay is the sum of delays on each 
subnet link traversed by the packet

� Link delay consists of:

�Processing delay

�Queueing delay

�Transmission delay

�Propagation delay

node

node

node

packet delay

link delay



Link Delay Components (1)

� Processing delay

�Delay between the time the packet is 
correctly received at the head node of the 
link and the time the packet is assigned to an 
outgoing link queue for transmission

head node tail node

outgoing link queue

processing delay



Link Delay Components (2)

� Queueing delay

�Delay between the time the packet is 
assigned to a queue for transmission and the 
time it starts being transmitted

head node tail node

outgoing link queue

queueing delay



Link Delay Components (3)

� Transmission delay

�Delay between the times that the first and 
last bits of the packet are transmitted

head node tail node

outgoing link queue

transmission delay



Link Delay Components (4)

� Propagation delay

�Delay between the time the last bit is 
transmitted at the head node of the link and 
the time the last bit is received at the tail 
node

head node tail node

outgoing link queue

propagation delay



Queueing System (1)

� Customers (= packets) arrive at random times 
to obtain service

� Service time (= transmission delay) is L/C

�L: Packet length in bits

�C: Link transmission capacity in bits/sec

queue

customer (= packet)

service (= packet transmission)



Queueing System (2)

� Assume that we already know:

�Customer arrival rate

�Customer service rate

� We want to know:

�Average number of customers in the system

�Average delay per customer

customer arrival rate

customer service rate

average delay

average # of customers



Queueing Networks

� Complex systems can be modeled as a 
queueing networks.

� Examples:

� Analysis of the delay performance of REST 
web services installed on web farms.

�Analysis of the delay performance of the 
Message Queuing Telemetry Transport 
(MQTT) in the context of IoT.

�Publish/Subscribe Pattern (push) vs. pull 
models.



Little’s Theorem



Definition of Symbols (1)

� pn = Steady-state probability of having n
customers in the system

� λ = Arrival rate (inverse of average interarrival 
time)

� µ = Service rate (inverse of average service 
time)

� N = Average number of customers in the 
system



Definition of Symbols (2)

� NQ = Average number of customers waiting in 
queue

� T = Average customer time in the system

� W = Average customer waiting time in queue 
(does not include service time)

� S = Average service time



Little’s Theorem

� N = Average number of customers

� λ = Arrival rate

� T = Average customer time

N = λT

� Hold for almost every queueing system that 
reaches a steady-state

� Express the natural idea that crowded systems 
(large N) are associated with long customer 
delays (large T) and reversely



Illustration of Little’s Theorem

� Assumption:

�The system is initially empty

�Customers depart from the system in the 
order they arrive

delay T1

delay T2
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Application of Little’s Theorem (1)

� NQ = Average # of customers waiting in queue

� W = Average customer waiting time in queue

NQ = λW

� X = Average service time

� ρ = Average # of packets under transmission

ρ = λX

� ρ is called the utilization factor (= the 
proportion of time that the line is busy 
transmitting a packet)



Application of Little’s Theorem (2)

� λi = Packet arrival rate at node i

� N = Average total # of packets in the network

node
1

node
n

node
i

λ1

λi

λn



Little’s Theorem: Problem

� Customers arrive at a fast-food restaurant as a 
Poisson process with an arrival rate of 5 per min

� Customers wait at a cash register to receive 
their order for an average of 5 min

� Customers eat in the restaurant with probability 
0.5 and carry out their order without eating with 
probability 0.5

� A meal requires an average of 20 min

� What is the average number of customers in the 
restaurant? (Answer: 75)



Standard Notation of Queueing 
Systems



Standard Notation of Queueing Systems 
(1)

X/Y/Z/K

� X indicates the nature of the arrival process

�M: Memoryless (= Poisson process, 
exponentially distributed interarrival times)

�G: General distribution of interarrival times

�D: Deterministic interarrival times



Standard Notation of Queueing Systems 
(2)

X/Y/Z/K

� Y indicates the probability distribution of the 
service times

�M: Exponential distribution of service times

�G: General distribution of service times

�D: Deterministic distribution of service times



Standard Notation of Queueing Systems 
(3)

X/Y/Z/K

� Z indicates the number of servers

� K (optional) indicates the limit on the number of 
customers in the system

� Examples:

�M/M/1, M/M/m, M/M/∞, M/M/m/m

�M/G/1, G/G/1

�M/D/1, M/D/1/m



Scheduling Disciplines

� First Come First Serve (FCFS or FIFO)

� Round Robin

� Work Conserving vs. non-work conserving

� Processor Sharing: clients or jobs are all served simultaneously, 
each receiving an equal fraction of the service capacity available

� Generalized Processor Sharing: weighted processor sharing

� Fair Queueing: allow multiple packet flows to fairly share the link 
capacity

� Weighted Fair Queueing: Each data flow has a 
separate FIFO queue

� Preemptive Priority Scheduling: A job in service is stopped if a 
higher priority job arrives. The preempted job may resume later 
(work conserving).

� Non-Preemptive Priority Scheduling: A job in service is always 
completed



M/M/1 Queueing System



M/M/1 Queueing System

� A single queue with a single server

� Customers arrive according to a Poisson process
with rate λ

� The probability distribution of the service time is 
exponential with mean 1/µ

Poisson arrival 
with arrival rate λ

Exponentially distributed service time
with service rate µ

single server

infinite buffer



M/M/1 Queueing System: Results (1)

� Utilization factor (proportion of time the server 
is busy)

� Probability of n customers in the system

� Average number of customers in the system



M/M/1 Queueing System: Results (2)

� Average customer time in the system

� Average number of customers in queue

� Average waiting time in queue



M/M/1 Queueing System: Problem

� Customers arrive at a fast-food restaurant as a 
Poisson process with an arrival rate of 5 per min

� Customers wait at a cash register to receive 
their order for an average of 5 minutes

� Service times to customers are independent and 
exponentially distributed

� What is the average service rate at the cash 
register? (Answer: 5.2)

� If the cash register serves 10% faster, what is 
the average waiting time of customers? 
(Answer: 1.39min)



M/M/m Queueing System



M/M/m Queueing System

� A single queue with m servers

� Customers arrive according to a Poisson process
with rate λ

� The probability distribution of the service time is 
exponential with mean 1/µ

Poisson arrival 
with arrival rate λ Exponentially

distributed
service time 
with rate µ

m servers

infinite buffer

1

m



M/M/m Queueing System: Results (1)

� Ratio of arrival rate to maximal system service 
rate

� Probability of n customers in the system



M/M/m Queueing System: Results (2)

� Probability that an arriving customer has to wait 
in queue (m customers or more in the system)

� Average waiting time in queue of a customer

� Average number of customers in queue



M/M/m Queueing System: Results (3)

� Average customer time in the system

� Average number of customers in the system



M/M/m Queueing System: Problem

� A mail-order company receives calls at a 
Poisson rate of 1 per 2 min

� The duration of the calls is exponentially 
distributed with mean 2 min

� A caller who finds all telephone operators busy 
patiently waits until one becomes available

� The number of operators is 2 on weekdays or 3 
on weekend

� What is the average waiting time of customers 
in queue? (Answer: 0.67min and 0.09min)



M/M/m/m Queueing System



M/M/m/m Queueing System

� A single queue with m servers (buffer size m)

� Customers arrive according to a Poisson process
with rate λ

� The probability distribution of the service time is 
exponential with mean 1/µ

Poisson arrival 
with arrival rate λ Exponentially

distributed
service time 
with rate µ

m servers

buffer size m

1

m



M/M/m/m Queueing System: Results

� Probability of m customers in the system

� Probability that an arriving customer is lost
(Erlang B Formula)



M/M/m/m Queueing System: Problem

� A telephone company establishes a direct 
connection between two cities expecting 
Poisson traffic with rate 0.5 calls/min

� The durations of calls are independent and 
exponentially distributed with mean 2 min

� Interarrival times are independent of call 
durations

� How many circuits should the company provide 
to ensure that an attempted call is blocked with 
probability less than 0.1? (Answer: 3)



M/G/1 Queueing System



M/G/1 Queueing System

� A single queue with a single server

� Customers arrive according to a Poisson process
with rate λ

� The mean and second moment of the service 
time are 1/µ and X2

Poisson arrival 
with arrival rate λ

Generally distributed service time
with service rate µ

single server

infinite buffer



M/G/1 Queueing System: Results (1)

� Utilization factor

� Mean residual service time



M/G/1 Queueing System: Results

� Pollaczek-Khinchin formula



Simulation



The System evaluation spectrum

numerical

models

simulation

emulation

prototype

operational
system



What is simulation?

system under study
(has deterministic rules 
governing its behavior)

External inputs
to system

(the environment)

system boundary

observer

“real” life

computer program
simulates deterministic 
rules governing behavior

psuedo random inputs
to system

(models environment)

program boundary

observer

“simulated” life



Why Simulation?

� goal: study system performance, operation

� real-system not available, is complex/costly or 
dangerous (eg: space simulations, flight simulations)

� quickly evaluate design alternatives (eg: different 
system configurations)

� evaluate complex functions for which closed form 
formulas or numerical techniques  not available



Programming a simulation

What ‘s in a simulation program?

� simulated time: internal (to simulation program) variable that 
keeps track of simulated time

� system “state”: variables maintained by simulation program define 
system “state”

� e.g., may track number (possibly order) of packets in queue, 
current value of retransmission timer

� events: points in time when system changes state

� each event has associated event time

� e.g., arrival of packet to queue, departure from 
queue

� precisely at these points in time that simulation 
must take action (change state and may cause 
new future events)

� model for time between events (probabilistic) caused by 
external environment



Discrete Event Simulation

� simulation program maintains and updates list of future 
events: event list

� simulator structure:
initialize EVENT LIST

get next (nearest future)
event from EVENT LIST

time = event time

process event (EVENT HANDLING ROUTINE):
change state values, add/delete 
future events from EVENT LIST

update statistics

done?
n

Need:

� well defined set of 
events

� for each event: 
simulated system 
action, updating of 
event list

y



Conclusion

� Queueing models provide qualitative insights on 
the performance of computer networks, and 
quantitative predictions of average packet delay

� To obtain tractable queueing models for 
computer networks, it is frequently necessary to 
make simplifying assumptions

� A more accurate alternative is simulation, which, 
however, can be slow, expensive, and lacking in 
insight


