Queueing Theory (Part 2)

M/M/1 Queueing System

- Simplest queueing system
- Assumptions:
 - Interarrival times are iid, and exponentially distributed. The arrival process is Poisson.
 - Service times are iid, and exponentially distributed.
 - There is one server
- The interarrival times are exponentially distributed with parameter,
 λ = mean arrival rate
- The service times are exponentially distributed with parameter, μ = mean service rate
- The utilization is $\rho = \lambda / \mu$

M/M/1 Queueing System and Rate Diagram

- The number of customers in the system, N(t), in an M/M/1
 queueing system satisfies the assumptions of a birth-death process
 with
 - $\lambda_n = \lambda$ for all n=0,1,2,...
 - μ_n = μ for all n=0,1,2,...
- We require $\lambda < \mu$, that is $\rho < 1$ in order to have a steady state
 - Why?
 If ρ ≥1, $\sum_{n=0}^{\infty} P_n$ won't converge, and the queue will explode (up to +∞)

Queueing Theory-3

Steady-State Probabilities

Calculate P_n , n = 0, 1, 2, ...

Rate In = Rate Out

State 0:
$$\mu P_1 = \lambda P_0 \implies P_1 = \frac{\lambda}{\mu} P_0$$

$$\left| \sum_{n=0}^{\infty} \rho^n = \frac{1}{1-\rho} \quad \text{if } |\rho| < 1 \right|$$

State 1:
$$\lambda P_0 + \mu P_2 = (\lambda + \mu) P_1 \implies P_2 = \frac{1}{\mu} \left((\lambda + \mu) \frac{\lambda}{\mu} P_0 - \frac{\mu}{\mu} \lambda P_0 \right) = \frac{\lambda^2}{\mu^2} P_0$$

State n:
$$P_n = \frac{\lambda\lambda\cdots\lambda}{\mu\mu\cdots\mu}P_0 = \left(\frac{\lambda}{\mu}\right)^n P_0 = \rho^n P_0$$

Need
$$\sum_{n=0}^{\infty} P_n = 1$$

$$\sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^{n} P_{0} = P_{0} \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^{n} = P_{0} \sum_{n=0}^{\infty} \rho^{n} = P_{0} \left(\frac{1}{1-\rho}\right) = 1$$

For M/M/1 with ρ < 1

$$|P_0| = 1 - \rho$$

$$P_0 = 1 - \rho$$

 $P_n = \rho^n (1 - \rho)$ for $n = 0,1,2,...$

 L, L_q, W, W_q

$$\frac{d\rho^n}{d\rho} = n\rho^{n-1}$$

Calculate L, L_q, W, W_q

$$L = \text{expected number in system } = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n \rho^n (1 - \rho) = \rho (1 - \rho) \sum_{n=0}^{\infty} n \rho^{n-1} \qquad \boxed{\frac{d(1 - \rho)^{-1}}{d\rho} = \frac{1}{(1 - \rho)^2}}$$

$$\frac{d(1-\rho)^{-1}}{d\rho} = -1(1-\rho)^{-2}(-1)$$

$$\frac{d(1-\rho)^{-1}}{d\rho} = \frac{1}{(1-\rho)^2}$$

$$L = \rho(1 - \rho) \sum_{n=0}^{\infty} \frac{d\rho^{n}}{d\rho} = \rho(1 - \rho) \frac{d}{d\rho} \sum_{n=0}^{\infty} \rho^{n} = \rho(1 - \rho) \frac{d\left(\frac{1}{1 - \rho}\right)}{d\rho} = \frac{\rho(1 - \rho)}{(1 - \rho)^{2}} = \frac{\rho}{1 - \rho} = \frac{\lambda/\mu}{1 - \lambda/\mu} = \frac{\lambda}{\mu - \lambda}$$

$$L_{q} = \text{expected number in queue} = \sum_{n=1}^{\infty} (n-1)P_{n} = \sum_{n=1}^{\infty} (n-1)\rho^{n}(1-\rho) = \sum_{n=1}^{\infty} n\rho^{n}(1-\rho) - \sum_{n=1}^{\infty} \rho^{n}(1-\rho)$$

$$L_q = L - (1 - P_0) = L - \rho = \frac{\rho}{1 - \rho} - \rho = \frac{\rho^2}{1 - \rho} = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

$$W = \frac{L}{\lambda} = \frac{\lambda}{(\mu - \lambda)\lambda} = \frac{1}{(\mu - \lambda)}$$

$$W_{q} = \frac{L_{q}}{\lambda} = \frac{\lambda^{2}}{\mu(\mu - \lambda)\lambda} = \frac{\lambda}{\mu(\mu - \lambda)}$$

Distribution of Time in System

 ω = waiting time in system Expected waiting time in system:

$$W = E[\omega] = \frac{1}{\mu - \lambda}$$

Probability that waiting time in system exceeds *t*:

$$P(\omega > t) = e^{-\mu(1-\rho)t}$$
 for $t \ge 0$

 ω_a =waiting time in queue

Expected waiting time in queue:

$$W_q = E[\omega_q] = \frac{\lambda}{\mu(\mu - \lambda)}$$

Probability that waiting time in queue exceeds *t*:

$$P(\omega_q > t) = \rho P(\omega_q > t) = \rho e^{-\mu(1-\rho)t}$$
 for $t \ge 0$

M/M/1 Example: ER

- Emergency cases arrive independently at random
- Assume arrivals follow a Poisson input process (exponential interarrival times) and that the time spent with the ER doctor is exponentially distributed
- Average arrival rate = 1 patient every ½ hour
 λ= 2 patients / hour
- Average service time = 20 minutes to treat each patient
 μ= 1 patient / 20 minutes = 3 patients / hour
- Utilization $\rho = \lambda/\mu = 2/3$
- Does this M/M/1 queue reach steady state?
 Yes! ρ<1

M/M/1 Example: ER Questions

In steady state, what is the...

- 1. probability that the doctor is idle?
- 2. probability that there are n patients?
- 3. expected number of patients in the ER?
- 4. expected number of patients waiting for the doctor?

M/M/1 Example: ER Questions

In steady state, what is the...

- 5. expected time in the ER?
- 6. expected waiting time?

7. probability that there are at least two patients waiting to see the doctor?

8. probability that a patient waits to see the doctor more than 30 minutes?

Car Wash Example

- Consider the following 3 car washes
- Suppose cars arrive according to a Poisson input process and service follows an exponential distribution
- Fill in the following table

	λ	μ	ρ	L	L_q	W	$\mathbf{W}_{\mathbf{q}}$	P_0
Car Wash A	0.1 car/min	0.5 car/min						
Car Wash B	0.1 car/min	0.11 car/min						
Car Wash C	0.1 car/min	0.1 car/min						

What conclusions can you draw from your results?

Car Wash Example

- Consider the following 3 car washes
- Suppose cars arrive according to a Poisson input process and service follows an exponential distribution
- Fill in the following table

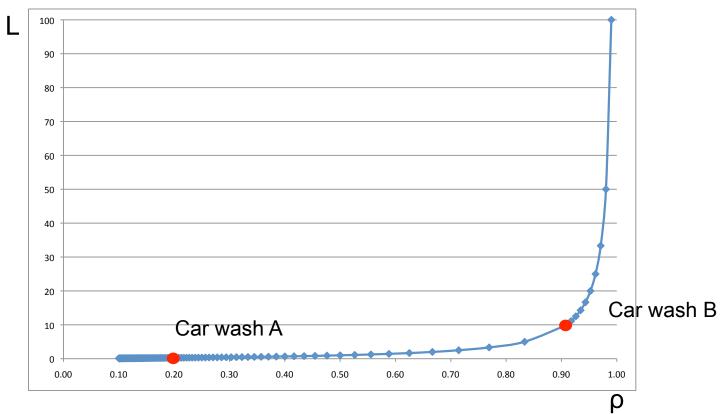
	λ	μ	ρ	L	L_q	W	$\mathbf{W}_{\mathbf{q}}$	P_0
Car Wash A	0.1	0.5	0.1/0.5	(0.1)/(0.5-0.1)	$(0.1)^2/(0.5)(0.4)$	0.25/0.1	0.5/0.1	0.4/0.5
	car/min	car/min	= 0.2	= 0.25	= 0.05	= 2.5 min	= 0.5 min	= 0.8
Car Wash B	0.1	0.11	0.1/1.1	(0.1)/(0.11-0.1)	$(0.1)^2/(0.11)(0.1)$	10/0.1	9.09/0.1	0.01/11
	car/min	car/min	= 0.909	= 10	= 9.09	= 100 min	= 90.9 min	= 0.09
Car Wash C	0.1 car/min	0.1 car/min	0.1/0.1 = 1	0.1/(0.1-0.1) = + ∞ Not steady state	+∞	+∞	+∞	0/0.1 = 0

What conclusions can you draw from your results?

As
$$\rho \rightarrow 1$$
, then L, L_q, W, W_q $\rightarrow \infty$ and P₀ $\rightarrow 0$

Car Wash Example

- M/M/1 with λ =0.1 car/min
- ρ=λ/μ
- L= $\lambda/(\mu-\lambda) = \rho/(1-\rho)$



Rule of thumb: never exceed ρ = 0.8, 80% utilization