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Queueing Theory 

Chapter 17 



Why Study Queueing Theory 
•  Queues (waiting lines) are a part of everyday life. 

–  Buying a movie ticket, airport security, grocery check out, mail a 
package, get a cup of coffee etc. 

–  It is estimated that Americans wait 37,000,000,000 hours per 
year waiting in queues!!! 

•  More generally, great inefficiencies occur because of other types of 
“waiting” 
–  Machines waiting to be repaired leads to loss of production 
–  Vehicles waiting to load or unload delays subsequent shipments 
–  Airplanes waiting to take off or land 
–  Delays in telecommunication transmissio. 

•  Queueing theory uses queueing models to represent various types 
of systems that involve “waiting in lines”. The models investigate 
how the system will perform under a variety of conditions. 
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Basic Queueing Process 

Arrivals  
•  Arrival time 

distribution 
•  Calling population  

(infinite or finite) 

Queue 
•  Capacity 

(infinite or finite) 
•  Queueing 

discipline 

Service 
•  Number of servers 

(one or more) 
•  Service time 

distribution 

J 

“Queueing System” 
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Examples and Applications 

•  Call centers (“help” desks, ordering goods) 
•  Manufacturing 
•  Banks 
•  Telecommunication networks 
•  Internet service 
•  Transportation 
•  Hospitals 
•  Restaurants 
•  Other examples…. 
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Labeling Convention (Kendall-Lee) 

 /  /  /  /  /   
Interarrival 

time 
distribution 

Number of 
servers 

Queueing 
discipline 

System 
capacity 

Calling 
population 

size 

Service 
time 

distribution 

M  Markovian (exponential 
interarrival times, 
Poisson number of 
arrivals) 

D  Deterministic 
Ek  Erlang with shape 

parameter k 
G  General 

FCFS  first come, 
first served 

LCFS  last come, 
first served 

SIRO  service in 
random order 

GD  general 
discipline 

Priority queues 
Round robin 

Finite 
Capacity K 
Infinite  
Capacity +∞ 

Finite 
Population N 
Infinite 
Population +∞ 
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Labeling Convention (Kendall-Lee) 

Examples: 
M/M/1   M/M/1/FCFS/∞/∞ 
M/M/s   M/M/s/FCFS/∞/∞ 
M/G/1 
M/M/s//10   M/M/s/FCFS/K=10/∞ 

 M/M/1///100  M/M/1/FCFS/∞/N=100 

 Ek/G/2//10  Erlang(k)/General/s=2/FCFS/K=10/∞ 
 



Queueing Theory-7 

Terminology and Notation 
•  State of the system  

Number of customers in the queueing system (includes customers in 
service) 

•  Queue length  
Number of customers waiting for service 
 = State of the system - number of customers being served 

•  N(t) =  State of the system at time t, t ≥ 0 
•  Pn(t) =  Probability that exactly n customers are in the queueing 

 system at time t 
•  L = Expected number of customers in the system 
•  Lq = Expected number of customers in the queue 
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Terminology and Notation 
•  λn =  Mean arrival rate (expected # arrivals per unit time)  

 of new customers when n customers are in the system 

•  s =  Number of servers (parallel service channels)  
•  µn =  Mean service rate for overall system  

 (expected # customers completing service per unit time)  
 when n customers are in the system 

  Note:  µn represents the combined rate at which all busy servers  
  (those serving customers) achieve service completion. 
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Terminology and Notation 
 
 
 
 
•  State is number of customers in the system, may be infinite 
•  Transitions can happen at any time, so instead of transition 

probabilities, as with Markov chains, we have transition rates 
•  Queueing analysis is based on a special case of continuous time 

Markov chains called birth-death processes 

0 1 2 

λ0 λ1 λ2 

µ1 µ2 µ3 

… 
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Example 
 
 
 
 
•  Arrival rate depends on the number n of customers in the system 

  λ0: 6 customers/hour 
  λ1: 5 customers/hour 
  λ2: 4 customers/hour 

•  Service rate is the same for all n 
  µ1: 2 customers/hour 
  µ2: 2 customers/hour 
  µ3: 2 customers/hour 
  

 

0 1 2 

λ0 λ1 λ2 

µ1 µ2 µ3 

… 
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Terminology and Notation 
When arrival and service rates are constant for all n,  
λ  =  mean arrival rate  

 (expected # arrivals per unit time) 
µ  =  mean service rate for a busy server 
1/λ  =  expected interarrival time 
1/µ  =  expected service time 
ρ  =  λ/sµ  

=  utilization factor for the service facility 
=  expected fraction of time the system’s service capacity (sµ) 

 is being utilized by arriving customers (λ) 
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Example 
 
 
 
 
•  A customer arrives every 10 minutes, on average 

 - What is the arrival rate per minute? 
  λ = 1 customer / 10 minutes = 0.10 customers/minute 
   or   6 customers/hour 
 - Interarrival time between customers is 1/λ 

•  The service time takes 30 minutes on average 
 - What is the service rate per minute? 
  µ = 1 customer / 30 minutes = 0.0333 customers/minute 
     or 2 customers/hour 
 - Service time is 1/µ 

Customer 
arrives 

Customer 
arrives 

Customer 
arrives 

Customer 
arrives 
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Terminology and Notation 
Steady State 

When the system is in steady state, then 
Pn  =  probability that exactly n customers are in the queueing system 
L  =  expected number of customers in queueing system 

 =   

Lq =  expected queue length (excludes customers being served) 
 =  

!
"

=0n
nnP

!
"

=

#
sn

nPsn )(

0 1 2 

λ0 λ1 λ2 

µ2 µ3 

… 
µ1 
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Example: Utilization 

•  Suppose λ = 6 customers/hour and µ = 2 customers/hour 
•  Utilization is ρ= λ/(sµ)  
•  If one server, s=1, ρ= λ/µ = 6/2 = 3, 

 utilization > 1, so steady state will never be reached, queue length 
will increase to infinity in the long run 

   
•  If three servers, s=3, ρ= λ/(3µ) = 1 

 utilization = 1, queue is unstable and may never reach steady state 

•  If four servers, s=4, ρ= λ/(4µ) = 3/4 
 utilization < 1, the queue will reach steady state and L is finite 
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Terminology and Notation 
Steady State 

When the system is in steady state, then 
ω  =  waiting time in system (includes service time)   

 for each individual customer 
W  =  E[ω] = expected time in system 
 
ωq =  waiting time in queue (excludes service time)  

 for each individual customer 
Wq  = E[ωq] = expected time in queue 
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Little’s Formula 

•  Assume λn=λ and µn=µ  
(arrival and service rates 
constant for all n) 

•  In a steady-state queue, 

 Expected number in system = 

(Arrival rate) x (Expected time in system) 

 
 

 Expected time in system = 

(Expected time in queue) +  

 (Expected time in service) 
! 

L = "W
Lq = "Wq

Demonstrates the relationships between L, W, Lq, and Wq 
Intuitive Explanation: 
1.   *  C C C C  Server 

  
 I have just arrived, and because the 
system is in steady state, I expect to 
wait W until I leave 

2.   C C C C  Server  * 
  
 As I leave, the number of customers in 
the system is the number that arrived 
while I was in the system. Because the 
system is in steady state, I expect this 
number to be L. 
 But, if I expect to wait W, and the 
average arrival rate is λ, then I expect 
to see λW arrivals while I am in the 
system, so L= λW ! 

me 

me 

! 

W =Wq +
1
µ
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Little’s Formula (continued) 
•  This relationship also holds true for λ (expected arrival rate)  

when λn are not equal. 
!

Recall, Pn is the steady state probability of having n customers in the system 

! 

L = " W
Lq = " Wq

where  " = "nPn
n= 0

#

$
0 1 2 

λ0 λ1 λ2 

µ1 µ2 µ3 

… 
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Heading toward M/M/s 

•  The most widely studied queueing models are of the form  
M/M/s (s=1,2,…) 

•  What kind of arrival and service distributions does this model 
assume? 

•  Reviewing the exponential distribution…. 
•  A picture of the probability density function for  :)l(exponentia~ !T
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Exponential Distribution Reviewed 

If T ~ exponential(α), then 

!
"
#

<
$%=

%&

00
0)( t

tetf
t

T

! 

FT (t) = P(T " t) = #e$#udu
u= 0

t

% =1$ e$#t

P(T > t)=1$ 1$ e$#t( ) = e$#t

E[T] =  

Var(T) =  

!
1

2
1
!

α 

e
!

!2
1

!

1

fT(t) 

t 

1 

!

1

FT(t) 

t 

1-e-1 



Queueing Theory-20 

Property 1 
Strictly Decreasing 

The pdf of exponential, fT(t), is a strictly decreasing function 
   

•  A picture of the pdf: 
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Property 2 
Memoryless 

The exponential distribution has lack of memory 
i.e. P(T > t+s | T > s) = P(T > t)      for all s, t ≥ 0 
Example:  
P(T > 15 min | T > 5 min) = P(T > 10 min) 
For interarrival times, this means the time of the next arriving customer is independent of 
the time of the last arrival i.e. arrival process has no memory 
This assumption is reasonable if 

 1. there are many potential customers 
 2. each customer acts independently of the others 
 3. each customer selects the time of arrival randomly 

Ex: phone calls, emergency visits in hospital, cars (sort of) 

 
The probability distribution has no memory of what has already occurred 
For service times, most of the service times are short, but occasional long service times 
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Property 2 
Memoryless 

•  Prove the memoryless property for the exponential distribution 

  
 Only exponential and geometric distributions are memoryless 

•  Is this assumption reasonable? 
–  For interarrival times 

–  For service times 

! 

P T > t + s |T > s( ) =
P T > t + s and T > s( )

P T > s( )
=
P T > t + s( )
P T > s( )

                            =
e"# t+s( )

e"# s( ) =
e"# t( )e"# s( )

e"# s( ) = e"# t( ) = P T > t( )

0 s t+s 

t 
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Property 3 
Minimum of Exponentials 

The minimum of several independent exponential random 
variables has an exponential distribution 
 
If T1, T2, …, Tn are independent r.v.s, Ti ~ expon(αi) and 
U = min(T1, T2, …, Tn), 
 
U ~expon(                ) 
 
Example: 
If there are s servers, each with exponential service times with mean µ, 
then U = time until next service completion ~  
 

! 

exponential(sµ)
1 
2 

s 

µ 
µ 

µ 

X X X X X 

! 

" = " i
i=1

n

#
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Property 4 
Poisson and Exponential 

Suppose the time T between events is exponential (α), let N(t) be the 
number of events occurring by time t. Then N(t) ~ Poisson(αt) 
 
 
 
 
 
 
 
 
 
Note:   
E[N(t)] = αt, thus the expected number of events per unit time is α 

0 t 

  

! 

P N t( ) = n( ) =
"t( )n e#"t

n!
,    n = 0,1,2,…

P N t( ) = 0( ) =
"t( )0e#"t

0!
= e#"t

P N t( ) =1( ) =
"t( )1e#"t

1!
="te#"t

P N t( ) = 2( ) =
"t( )2e#"t
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Property 5 
Proportionality 

For all positive values of t, and for small Δt,  
P(T ≤ t+Δt | T > t) ≈ αΔt 
 
i.e. the probability of an event in interval Δt is proportional (with factor 
α) to the length of that interval 
 
 
 
 

t t+Δt 

αΔt 
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Property 6 
Aggregation and Disaggregation 

The process is unaffected by aggregation and disaggregation 

Aggregation 

N1 ~ Poisson(λ1) 

N2 ~ Poisson(λ2) 

Nk ~ Poisson(λk) 
λ = λ1+λ2+…+λk 

N ~ Poisson(λ) 

N1 ~ Poisson(λp1) 

N2 ~ Poisson(λp2) 

Nk ~ Poisson(λpk) 

N ~ Poisson(λ) 

Disaggregation 

p1 

p2 

pk … … 

Note: p1+p2+…+pk=1 
Ex: different types of customers are 
arriving into 1 queue 
Call center – customers from different 
cities, different questions 
Car repairs – different types of cars, 
different types of problems 

Disaggregate to other queues or servers 
pi = probability of type i (fraction of type i) 
 

Ex: Manufacturing – good, defective-
scrap, rework 
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Back to Queueing 
•  Remember that N(t), t ≥ 0, describes the state of the system: 

The number of customers in the queueing system at time t 

•  We wish to analyze the distribution of N(t) in steady state 

•  Find the steady state probability Pn of having n customers in the 
system with rates λ0, λ1, λ2… and µ1, µ2, µ3… 

0 1 2 

λ0 λ1 λ2 

µ1 µ2 µ3 

… 
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Birth-and-Death Processes 
•  If the queueing system is M/M/…/…/…/…, N(t) is a birth-and-death 

process  
•  A birth-and-death process either increases by 1 (birth), or 

decreases by 1 (death) 
•  General assumptions of birth-and-death processes: 

1.  Given N(t) = n, the probability distribution of the time remaining until the 
next birth is exponential with parameter λn 

2.  Given N(t) = n, the probability distribution of the time remaining until the 
next death is exponential with parameter µn 

3.  Only one birth or death can occur at a time 
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Rate Diagrams 

•  Rate diagrams indicate the states in a birth-and-death process 
and the arrows indicate the mean rates at which transitions occur 

0 1 2 

λ0 λ1 λ2 

µ1 µ2 µ3 

… n-2 n-1 n 

λn-2 λn-1 λn 

µn-1 µn µn+1 

n+1 

λn+1 

µn+2 

… 
λn-3 

µn-2 
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Steady-State Balance Equations 

•  Assume the system achieves steady state  
  (it will when utilization is strictly less than 1) 
•  Rate In = Rate Out 

  
Pn = probability of n customers in system 

0 1 2 

λ0 λ1 λ2 

µ1 µ2 µ3 

… n 

λn-1 

µn 

λn 

µn+1 
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Steady-State Balance Equations 

Pn = probability of n customers in system 

0 1 2 

λ0 λ1 λ2 

µ1 µ2 µ3 

… n 

λn-1 

µn 

λn 

µn+1 

  

! 

State 0 :  µ1P1 = "0P0   #    P1 =
"0

µ1

P0

State 1:  "0P0 + µ2P2 = "1 + µ1( )P1   #    P2 =
"1"0

µ2µ1

P0

State n :  "n -1Pn$1 + µn+1Pn+1 = "n + µn( )Pn    #    Pn+1 =
"n"n$1!"0

µn+1µn!µ1

P0

Need Pn =1
n=0

!

"

Define C0 =1

Cn =
!n#1!!0

µn!µ1

Pn =CnP0

CnP0 = P0
n=0

!

" Cn =1
n=0

!

"

P0 =
1

Cn
n=0

!

"



Recall Useful Facts 
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! 

Geometric series

infinite sum:   if x <1,   xn
n= 0

"

# =
1

1$ x

finite sum :      for any x %1,   xn
n= 0

N

# =
1$ xN +1

1$ x



Problem 17.5-5 

•  A service station has one gasoline pump 
•  Cars wanting gasoline arrive according to a Poisson 

process at a mean rate of 15 per hour 
•  However, if the pump already is being used, these 

potential customers may balk (drive on to another 
service station). In particular, if there are n cars already 
at the service station, the probability that an arriving 
potential customer will balk is n/3 for n = 1, 2, 3 

•  The time required to service a car has an exponential 
distribution with a mean of 4 minutes 
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Problem 17.5-5 

a)  Construct the rate diagram for this queuing system 
b)  Develop the balance equations 
c)  Solve these equations to find the steady-state 

probability distribution of the number of cars at the 
station. Verify that this solution is the same as that given 
by the general solution for the birth-and-death process 

d)  Find the expected waiting time (including service) for 
those cars that stay 
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