Queueing Theory

Chapter 17

Why Study Queueing Theory

- Queues (waiting lines) are a part of everyday life.
- Buying a movie ticket, airport security, grocery check out, mail a package, get a cup of coffee etc.
- It is estimated that Americans wait $37,000,000,000$ hours per year waiting in queues!!!
- More generally, great inefficiencies occur because of other types of "waiting"
- Machines waiting to be repaired leads to loss of production
- Vehicles waiting to load or unload delays subsequent shipments
- Airplanes waiting to take off or land
- Delays in telecommunication transmissio.
- Queueing theory uses queueing models to represent various types of systems that involve "waiting in lines". The models investigate how the system will perform under a variety of conditions.

Basic Queueing Process

 ,

Arrivals

- Arrival time distribution
- Calling population (infinite or finite)

Queue

- Capacity (infinite or finite)
- Queueing discipline

Service

- Number of servers (one or more)
- Service time distribution
"Queueing System"

Examples and Applications

- Call centers ("help" desks, ordering goods)
- Manufacturing
- Banks
- Telecommunication networks
- Internet service
- Transportation
- Hospitals
- Restaurants
- Other examples....

Labeling Convention (Kendall-Lee)

Labeling Convention (Kendall-Lee)

Examples:

M/M/1
M/M/s
M/M/1/FCFS/ ∞ / ∞
M/M/s/FCFS/ ∞ / ∞

M/G/1
$\mathrm{M} / \mathrm{M} / \mathrm{s} / / 10 \quad \mathrm{M} / \mathrm{M} / \mathrm{s} / \mathrm{FCFS} / \mathrm{K}=10 / \infty$
M/M/1///100 M/M/1/FCFS/ $\infty / \mathrm{N}=100$
$E_{k} / G / 2 / / 10$
Erlang(k)/General/s=2/FCFS/K=10/m

Terminology and Notation

- State of the system

Number of customers in the queueing system (includes customers in service)

- Queue length

Number of customers waiting for service
= State of the system - number of customers being served

- $\mathbf{N}(\mathbf{t})=$ State of the system at time $t, t \geq 0$
- $\mathbf{P}_{\mathbf{n}}(\mathbf{t})=$ Probability that exactly n customers are in the queueing system at time t
- $\mathbf{L}=$ Expected number of customers in the system
- $\mathrm{L}_{\mathrm{q}}=$ Expected number of customers in the queue

Terminology and Notation

- $\lambda_{n}=$ Mean arrival rate (expected \# arrivals per unit time) of new customers when n customers are in the system
- $\mathbf{s}=$ Number of servers (parallel service channels)
- $\mu_{\mathrm{n}}=$ Mean service rate for overall system (expected \# customers completing service per unit time) when n customers are in the system

Note: $\quad \mu_{\mathrm{n}}$ represents the combined rate at which all busy servers (those serving customers) achieve service completion.

Terminology and Notation

- State is number of customers in the system, may be infinite
- Transitions can happen at any time, so instead of transition probabilities, as with Markov chains, we have transition rates
- Queueing analysis is based on a special case of continuous time Markov chains called birth-death processes

Example

- Arrival rate depends on the number n of customers in the system
λ_{0} : 6 customers/hour
λ_{1} : 5 customers/hour
$\lambda_{2}: 4$ customers/hour
- Service rate is the same for all n
μ_{1} : 2 customers/hour
$\mu_{2}: 2$ customers/hour
μ_{3} : 2 customers/hour

Terminology and Notation

When arrival and service rates are constant for all n,
$\lambda=$ mean arrival rate (expected \# arrivals per unit time)
$\mu=$ mean service rate for a busy server
$1 / \lambda=$ expected interarrival time
$1 / \mu=$ expected service time
$\rho=\lambda / s \mu$
$=$ utilization factor for the service facility
$=$ expected fraction of time the system's service capacity ($\mathrm{s} \mu$) is being utilized by arriving customers (λ)

Example

- A customer arrives every 10 minutes, on average
- What is the arrival rate per minute?
$\lambda=1$ customer / 10 minutes $=0.10$ customers/minute or 6 customers/hour
- Interarrival time between customers is $1 / \lambda$
- The service time takes 30 minutes on average
- What is the service rate per minute?
$\mu=1$ customer / 30 minutes $=0.0333$ customers/minute
or 2 customers/hour
- Service time is $1 / \mu$

Terminology and Notation

 Steady StateWhen the system is in steady state, then
$\mathbf{P}_{\mathrm{n}}=$ probability that exactly n customers are in the queueing system
$\mathbf{L}=$ expected number of customers in queueing system
$=\sum_{n=0}^{\infty} n P_{n}$

$\mathrm{L}_{\mathrm{q}}={ }_{\infty}$ expected queue length (excludes customers being served)
$=\sum_{n=s}^{\infty}(n-s) P_{n}$

Example: Utilization

- Suppose $\lambda=6$ customers/hour and $\mu=2$ customers/hour
- Utilization is $\rho=\lambda /(s \mu)$
- If one server, $s=1, \rho=\lambda / \mu=6 / 2=3$, utilization > 1 , so steady state will never be reached, queue length will increase to infinity in the long run
- If three servers, $\mathrm{s}=3, \rho=\lambda /(3 \mu)=1$ utilization $=1$, queue is unstable and may never reach steady state
- If four servers, $s=4, \rho=\lambda /(4 \mu)=3 / 4$ utilization <1, the queue will reach steady state and L is finite

Terminology and Notation

 Steady StateWhen the system is in steady state, then
$\omega=$ waiting time in system (includes service time) for each individual customer
$\mathbf{W}=E[\omega]=$ expected time in system
$\omega_{\mathrm{q}}=$ waiting time in queue (excludes service time) for each individual customer
$\mathbf{W}_{\mathbf{q}}=\mathrm{E}\left[\omega_{\mathrm{q}}\right]=$ expected time in queue

Little's Formula

Demonstrates the relationships between L, W, L_{q}, and W_{q}

- Assume $\lambda_{n}=\lambda$ and $\mu_{n}=\mu$ (arrival and service rates constant for all n)
- In a steady-state queue,

Expected number in system $=$
(Arrival rate) \times (Expected time in system)

$$
\begin{aligned}
& L=\lambda W \\
& L_{q}=\lambda W_{q}
\end{aligned}
$$

Expected time in system =
(Expected time in queue) +
(Expected time in service)

$$
W=W_{q}+\frac{1}{\mu}
$$

Intuitive Explanation:
1.

$\stackrel{L}{*}_{\text {* C C C C Server }}$

I have just arrived, and because the system is in steady state, I expect to wait W until I leave
2.

As I leave, the number of customers in the system is the number that arrived while I was in the system. Because the system is in steady state, I expect this number to be L.
But, if I expect to wait W, and the average arrival rate is λ, then I expect to see λW arrivals while I am in the system, so L= $\lambda \mathrm{W}$!

Little's Formula (continued)

- This relationship also holds true for λ (expected arrival rate) when λ_{n} are not equal.

$$
\begin{aligned}
& L=\bar{\lambda} W \\
& L_{q}=\bar{\lambda} W_{q} \\
& \text { where } \bar{\lambda}=\sum_{n=0}^{\infty} \lambda_{n} P_{n}
\end{aligned}
$$

Recall, P_{n} is the steady state probability of having n customers in the system

Heading toward M/M/s

- The most widely studied queueing models are of the form M/M/s ($s=1,2, \ldots$)
- What kind of arrival and service distributions does this model assume?
- Reviewing the exponential distribution....
- A picture of the probability density function for $T \sim \operatorname{exponential}(\alpha)$:

Exponential Distribution Reviewed

$\operatorname{Var}(\mathrm{T})=1 / \alpha^{2}$

Property 1

Strictly Decreasing

The pdf of exponential, $\mathrm{f}_{\mathrm{T}}(\mathrm{t})$, is a strictly decreasing function

$$
P(0 \leq T \leq \Delta t)>P(t \leq T \leq t+\Delta t)
$$

- A picture of the pdf:

Property 2
 Memoryless

The exponential distribution has lack of memory

i.e. $\mathrm{P}(T>t+s \mid T>s)=\mathrm{P}(T>t) \quad$ for all $s, t \geq 0$

Example:

$\mathrm{P}(T>15 \mathrm{~min} \mid T>5 \mathrm{~min})=\mathrm{P}(T>10 \mathrm{~min})$
For interarrival times, this means the time of the next arriving customer is independent of the time of the last arrival i.e. arrival process has no memory
This assumption is reasonable if

1. there are many potential customers
2. each customer acts independently of the others
3. each customer selects the time of arrival randomly

Ex: phone calls, emergency visits in hospital, cars (sort of)

The probability distribution has no memory of what has already occurred For service times, most of the service times are short, but occasional long service times

Property 2

Memoryless

- Prove the memoryless property for the exponential distribution

$$
\begin{aligned}
P(T>t+s \mid T>s) & =\frac{P(T>t+s \text { and } T>s)}{P(T>s)}=\frac{P(T>t+s)}{P(T>s)} \\
& =\frac{e^{-\alpha(t+s)}}{e^{-\alpha(s)}}=\frac{e^{-\alpha(t)} e^{-\alpha(s)}}{e^{-\alpha(s)}}=e^{-\alpha(t)}=P(T>t)
\end{aligned}
$$

Only exponential and geometric distributions are memoryless

- Is this assumption reasonable?
- For interarrival times
- For service times

Property 3
 Minimum of Exponentials

The minimum of several independent exponential random variables has an exponential distribution

If $T_{1}, T_{2}, \ldots, T_{n}$ are independent r.v.s. $T_{i} \sim \operatorname{expon}\left(\alpha_{i}\right)$ and $U=\min \left(T_{1}, T_{2}, \ldots, T_{n}\right)$,
$\mathrm{U} \sim \operatorname{expon}\left(\alpha=\sum_{i=1}^{n} \alpha_{i}\right)$
Example:
If there are s servers, each with exponential service times with mean μ, then $U=$ time until next service completion $\sim \operatorname{exponential}(s \mu)$

Property 4

Poisson and Exponential

Suppose the time T between events is exponential (α), let $N(t)$ be the number of events occurring by time t. Then $N(t) \sim$ Poisson (αt)

$$
\begin{aligned}
& P(N(t)=n)=\frac{(\alpha t)^{n} e^{-\alpha t}}{n!}, \quad n=0,1,2, \ldots \\
& P(N(t)=0)=\frac{(\alpha t)^{0} e^{-\alpha t}}{0!}=e^{-\alpha t} \\
& P(N(t)=1)=\frac{(\alpha t)^{1} e^{-\alpha t}}{1!}=\alpha t e^{-\alpha t} \\
& P(N(t)=2)=\frac{(\alpha t)^{2} e^{-\alpha t}}{2}
\end{aligned}
$$

Note:
$\mathrm{E}[N(t)]=\alpha \mathrm{t}$, thus the expected number of events per unit time is α

Property 5

Proportionality

For all positive values of t, and for small Δt, $P(T \leq t+\Delta t \mid T>t) \approx \alpha \Delta t$
i.e. the probability of an event in interval Δt is proportional (with factor α) to the length of that interval

Property 6
 Aggregation and Disaggregation

The process is unaffected by aggregation and disaggregation

Ex: different types of customers are arriving into 1 queue
Call center - customers from different cities, different questions
Car repairs - different types of cars, different types of problems

Disaggregation

Note: $p_{1}+p_{2}+\ldots+p_{k}=1$
Disaggregate to other queues or servers $p_{i}=$ probability of type i (fraction of type i)

Ex: Manufacturing - good, defectivescrap, rework

Queueing Theory-26

Back to Queueing

- Remember that $N(t), t \geq 0$, describes the state of the system: The number of customers in the queueing system at time t
- We wish to analyze the distribution of $\mathrm{N}(\mathrm{t})$ in steady state
- Find the steady state probability P_{n} of having n customers in the system with rates $\lambda_{0}, \lambda_{1}, \lambda_{2} \ldots$ and $\mu_{1}, \mu_{2}, \mu_{3} \ldots$

Birth-and-Death Processes

- If the queueing system is $\mathrm{M} / \mathrm{M} / \ldots / . . . / . . . / \ldots, \mathrm{N}(\mathrm{t})$ is a birth-and-death process
- A birth-and-death process either increases by 1 (birth), or decreases by 1 (death)
- General assumptions of birth-and-death processes:

1. Given $N(t)=n$, the probability distribution of the time remaining until the next birth is exponential with parameter λ_{n}
2. Given $\mathrm{N}(\mathrm{t})=\mathrm{n}$, the probability distribution of the time remaining until the next death is exponential with parameter μ_{n}
3. Only one birth or death can occur at a time

Rate Diagrams

- Rate diagrams indicate the states in a birth-and-death process and the arrows indicate the mean rates at which transitions occur

Steady-State Balance Equations

- Assume the system achieves steady state
(it will when utilization is strictly less than 1)
- Rate In = Rate Out
$P_{n}=$ probability of n customers in system

Steady-State Balance Equations

$P_{n}=$ probability of n customers in system

Need $\sum_{n=0}^{\infty} P_{n}=1$
Define $C_{0}=1$

$$
C_{n}=\frac{\lambda_{n-1} \cdots \lambda_{0}}{\mu_{n} \cdots \mu_{1}}
$$

$$
P_{n}=C_{n} P_{0}
$$

State 0: $\mu_{1} P_{1}=\lambda_{0} P_{0} \quad \Rightarrow \quad P_{1}=\frac{\lambda_{0}}{\mu_{1}} P_{0}$

$$
\sum_{n=0}^{\infty} C_{n} P_{0}=P_{0} \sum_{n=0}^{\infty} C_{n}=1
$$

State 1: $\lambda_{0} P_{0}+\mu_{2} P_{2}=\left(\lambda_{1}+\mu_{1}\right) P_{1} \Rightarrow P_{2}=\frac{\lambda_{1} \lambda_{0}}{\mu_{2} \mu_{1}} P_{0}$
State n: $\lambda_{n-1} P_{n-1}+\mu_{n+1} P_{n+1}=\left(\lambda_{\mathrm{n}}+\mu_{n}\right) P_{n} \quad \Rightarrow \quad P_{n+1}=\frac{\lambda_{n} \lambda_{n-1} \cdots \lambda_{0}}{\mu_{n+1} \mu_{n} \cdots \mu_{1}} P_{0}$ $P_{0}=\frac{1}{\sum_{n=0}^{\infty} C_{n}}$

Recall Useful Facts

Geometric series
infinite sum: if $|x|<1, \sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$
finite sum: for any $x \neq 1, \quad \sum_{n=0}^{N} x^{n}=\frac{1-x^{N+1}}{1-x}$

Problem 17.5-5

- A service station has one gasoline pump
- Cars wanting gasoline arrive according to a Poisson process at a mean rate of 15 per hour
- However, if the pump already is being used, these potential customers may balk (drive on to another service station). In particular, if there are n cars already at the service station, the probability that an arriving potential customer will balk is $n / 3$ for $n=1,2,3$
- The time required to service a car has an exponential distribution with a mean of 4 minutes

Problem 17.5-5

a) Construct the rate diagram for this queuing system
b) Develop the balance equations
c) Solve these equations to find the steady-state probability distribution of the number of cars at the station. Verify that this solution is the same as that given by the general solution for the birth-and-death process
d) Find the expected waiting time (including service) for those cars that stay

