Queueing Theory

Basic Queuing Relationships

Resident items	General	Single Server
Waiting items	$r = \lambda T_r$ Little's formu $w = \lambda T_w$ Little's formu	
Residence time	$T_r = T_w + T_s$	
Single server Utilisation	$-\rho = \frac{\lambda T_s}{N}$	Little's formulae are the most important equation in queuing
System Utilisation	$- u = \lambda T_s = \rho N$ $r = w + N\rho$	theory

$M/G/1 \dots M/M/1 \dots M/D/1$

(a) General Service Times (M/G/1)(b) Exponential Service Times (M/M/1)(c) Constant Service Times (M/D/1)

$A = \frac{1}{2} \left[1 + \left(\frac{\sigma_{T_s}}{T_s} \right)^2 \right]_1^2$	$r = \frac{\rho}{1 - \rho} \qquad w = \frac{\rho^2}{1 - \rho}$ $T = \frac{T_s}{T_s} \qquad T = \frac{\rho T_s}{1 - \rho}$	$r = \frac{\rho^2}{2(1-\rho)} + \rho$
$r = \rho + \frac{\rho^2 A}{1 - \rho}$	$T_r = \frac{T_s}{1 - \rho} \qquad T_w = \frac{\rho T_s}{1 - \rho}$ $\sigma_r = \frac{\sqrt{\rho}}{1 - \rho} \qquad \sigma_{T_r} = \frac{T_s}{1 - \rho}$	$w = \frac{\rho^2}{2(1-\rho)}$
$w = \frac{\rho^2 A}{1 - \rho}$	$\Pr[R = N] = (1 - \rho)\rho^{N}$	$T_r = \frac{T_s(2-\rho)}{2(1-\rho)}$
$T_r = T_s + \frac{\rho T_s A}{1 - \rho}$	$\Pr[R \le N] = \sum_{i=0}^{N} (1 - \rho) \rho^{i}$ $\Pr[T_{R} \le T] = 1 - e^{-(1 - \rho) q T_{s}}$	$T_{w} = \frac{\rho T_{s}}{2(1-\rho)}$ $\frac{1}{1-\rho} = \frac{3\rho^{2}}{2\rho^{3}} + \frac{5\rho^{3}}{2\rho^{4}} + \frac{1}{2\rho^{4}}$
$T_w = \frac{\rho T_s A}{1 - \rho}$	$m_{T_r}(y) = T_r \times \ln\left(\frac{100}{100 - y}\right)$	$\sigma_r = \frac{1}{1 - \rho} \sqrt{\rho - \frac{3\rho^2}{2} + \frac{5\rho^3}{6} - \frac{\rho^4}{12}}$
	$m_{T_{w}}(y) = \frac{T_{w}}{\rho} \times \ln\left(\frac{100\rho}{100 - y}\right)$	$\sigma_{T_r} = \frac{T_s}{1-\rho} \sqrt{\frac{\rho}{3} - \frac{\rho^2}{12}}$

Single server – queue size as function of σ

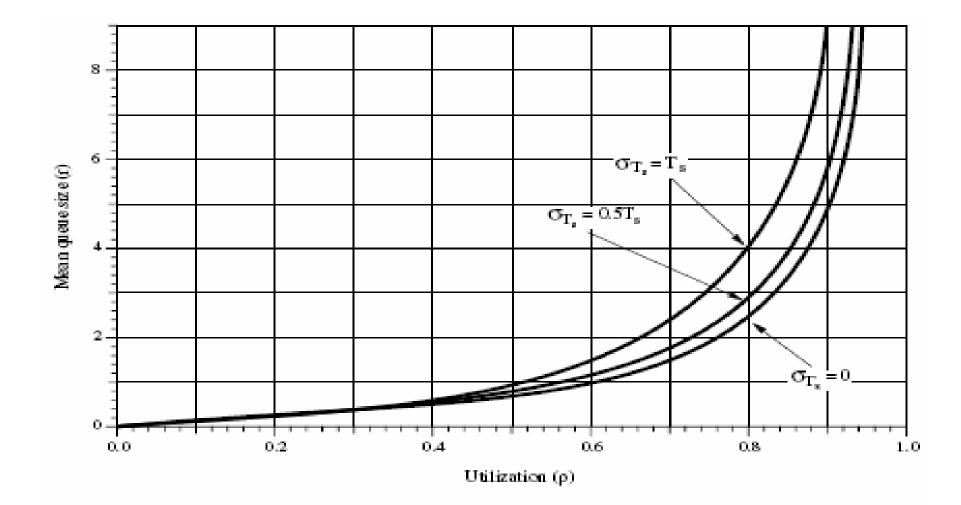


Figure 4 Mean Queue Size for Single-Server Queue

3

Single server – residency time as function of σ

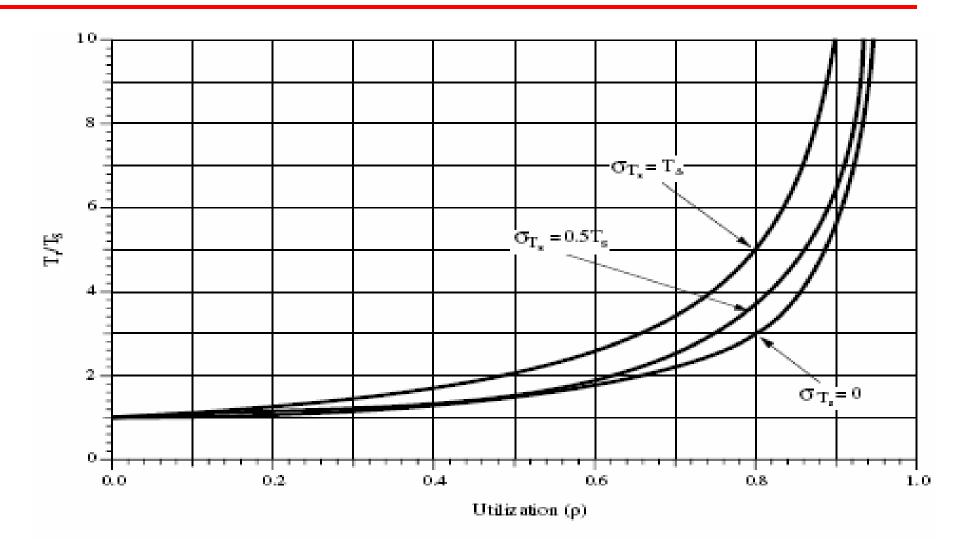


Figure 5 Mean Residence Time for Single-Server Queue

4

M/M/N Analysis

Assumptions:

- 1. Poisson arrival rate.
- 2. Exponential service times
- 3. All servers equally loaded
- 4. All servers have same mean service time
- 5. First-in, first-out dispatching
- 6. No items are discarded from the queue

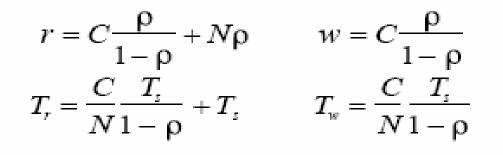
$$K = \frac{\frac{\sum_{I=0}^{N-1} (N\rho)^{I}}{I!}}{\sum_{I=0}^{N} \frac{(N\rho)^{I}}{I!}}$$

Poisson ratio function

Erlang -C function = Probability that all servers are busy = $C = \frac{1-K}{1-\rho K}$

M/M/N Analysis

 \rangle^2



$$\sigma_{r_r} = \frac{T_r}{N(1-\rho)} \sqrt{C(2-C) + N^2(1-\rho)}$$
$$\sigma_w = \frac{1}{1-\rho} \sqrt{C\rho(1+\rho-C\rho)}$$

 $\Pr[T_{\overline{w}} > t] = C e^{-N(1-\rho)t/T_s}$ $m_{T_s}(y) = \frac{T_s}{N(1-\rho)} \ln\left(\frac{100C}{100-y}\right)$ $T_d = \frac{T_s}{N(1-\rho)}$

Variability

• **Definition**: Variability is anything that causes the system to depart from regular, predictable behavior.

• Sources of Variability:

- setups
- machine failures
- materials shortages
- yield loss
- rework
- operator unavailability

- workpace variation
- differential skill levels
- engineering change orders
- customer orders
- product differentiation
- material handling

Measuring Process Variability

t = mean

 σ = standard deviation

 $c = \frac{\sigma}{t}$ = coefficient of variation, CV

 $c^2 = \frac{\sigma^2}{t^2}$ = squared coefficient of variation, SCV

Kendall's Classification

Characterization of a queueing station

A / B / m / bBA: arrival processAB: service processAm: number of machinesb: maximum number of jobsthat can be in the system

M: exponential (Markovian) distributionG: completely general distributionD: constant (deterministic) distribution.

m

Queueing Parameters

- r_a = the rate of arrivals in customers (jobs) per unit time
- $t_a = 1/r_a$ = the average time between arrivals.
- c_a = the CV of inter-arrival times.
- m = the number of machines.

b = buffer size (i.e., maximum number of jobs allowed in system.)

- t_e = mean effective process time.
- r_e = the rate of the station in jobs per unit time = m/t_e .
- c_e = the CV of effective process times.
- u = utilization of station $= r_a/r_e$.

Queueing Measures

- Measures:
 - T_q = the expected waiting time spent in queue.
 - T = the expected time spent at the process center, i.e., queue time plus process time.
 - N = the average jobs at the station.
 - N_q = the expected jobs in queue.
- Relationships:
 - $\begin{aligned} \mathbf{T} &= \mathbf{T}_q + t_e \\ \mathbf{N} &= r_a \times \mathbf{T} \\ \mathbf{N}_q &= r_a \times \mathbf{T}_q \end{aligned}$
- **Result**: If we know T_q , we can compute N, N_q , T.

The G/G/1 Queue

• Formula:

$$\mathbf{T}_{q} \approx \left(\frac{c_{a}^{2} + c_{e}^{2}}{2}\right) \left(\frac{u}{1 - u}\right) t_{e} = \left(\frac{c_{a}^{2} + c_{e}^{2}}{2}\right) \mathbf{T}_{q} \left(\frac{M/M}{1}\right)$$

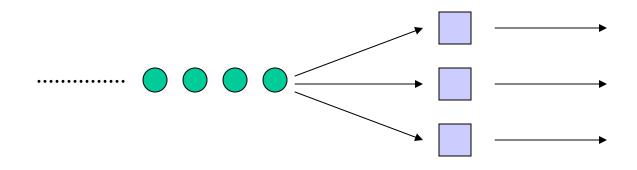
• Observations:

- Refer to as Kingman's equation or VUT equation.
- Separate terms for variability, utilization, process time.
- T_q (and other measures) increase with c_a^2 and c_e^2 .
- Variability causes congestion!

The *M/M/m* Queue

- Systems with multiple machines in parallel.
- All jobs wait in a single queue for the next available machine.

$$T_q(M/M/m) \approx \frac{u^{\sqrt{2(m+1)}-1}}{m(1-u)} t_e$$



The *G/G/m* Queue

• Formula:

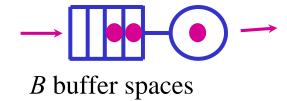
$$\mathbf{T}_{q} \approx \left(\frac{c_{a}^{2} + c_{e}^{2}}{2}\right) \left(\frac{u^{\sqrt{2(m+1)}-1}}{m(1-u)}\right) t_{e} = \left(\frac{c_{a}^{2} + c_{e}^{2}}{2}\right) \mathbf{T}_{q} (M/M/m)$$

- Observations:
 - Useful model of multi-machine workstations
 - *Extremely* general.
 - Fast and accurate.
 - Easily implemented in a spreadsheet (or packages).

Effects of Blocking

- *VUT* Equation:
 - characterizes stations with infinite space for queueing
 - useful for seeing what will happen to N, T without restrictions
- But real world systems often constrain N:
 - physical constraints
 - logical constraints
- Blocking Models:
 - estimate N and r_a for given set of rates, buffer sizes
 - much more complex than non-blocking (open) models, often require simulation to evaluate realistic systems

The *M/M/1/b* Queue



Variability Pooling

- Variability pooling: combine multiple sources of variability.
- Basic idea: the CV of a sum of independent random variables decreases with the number of random variables.
- Example:
 - Batch processing
 - Safety stock aggregation
 - Queue sharing

Conclusions

- Variability is a fact of life.
- There are many sources of variability in manufacturing systems.
- The coefficient of variation is a key measure of item variability.
- Variability propagates.
- Waiting time is frequently the largest component of the total time in the system.
- Limiting buffers reduces total time in the system at the cost of decreasing throughput.
- Variability pooling reduces the effect of variability.