Queuing Theory Models or Waiting Lines

Learning Objectives

After completing this chapter, we will be able to:

- 1. Describe the trade-off curves for cost-ofwaiting time and cost of service.
- 2. Understand the three parts of a queuing system: the calling population, the queue itself, and the service facility.
- 3. Describe the basic queuing system configurations.
- 4. Understand the assumptions of the common models dealt with in this chapter.
- 5. Analyze a variety of operating characteristics of waiting lines.

Chapter Outline

- Introduction
 - Waiting Line Costs
 - **Characteristics of a Queuing System**
 - Single-Channel Queuing Model with Poisson Arrivals and Exponential Service Times (*M/M/1*)

2

3

Introduction

- Queuing theory is the study of waiting lines.
- It is one of the oldest and most widely used quantitative analysis techniques.
- The three basic components of a queuing process are arrivals, service facilities, and the actual waiting line.
 - Analytical models of waiting lines can help managers evaluate the cost and effectiveness of service systems.

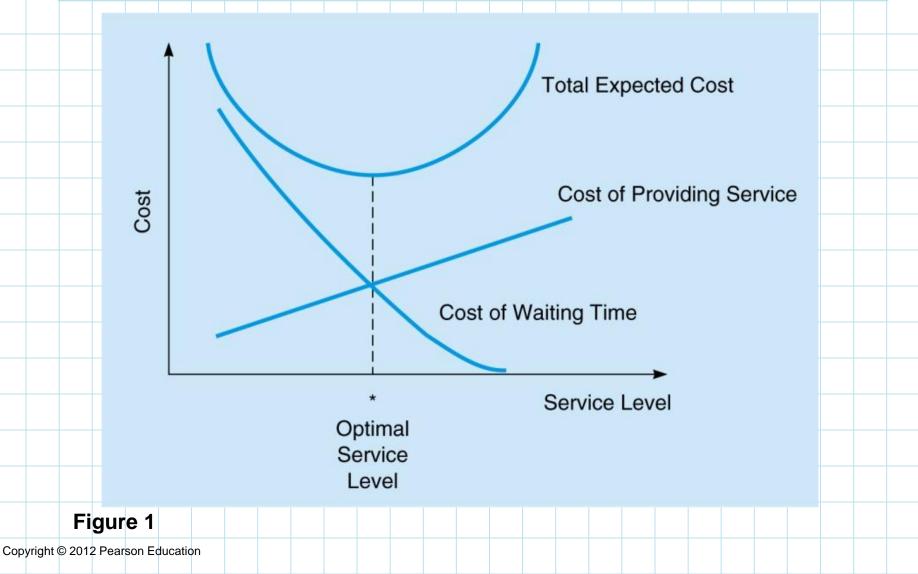
Waiting Line Costs

- Most waiting line problems are focused on finding the ideal level of service a firm should provide.
- In most cases, this service level is something management can control.
 - When an organization *does* have control, they often try to find the balance between two extremes.

Waiting Line Costs

- There is generally a trade-off between cost of providing service and cost of waiting time.
 - A large staff and many service facilities generally results in high levels of service but have high costs.
 - Having the *minimum* number of service facilities keeps service cost down but may result in dissatisfied customers.
 - Service facilities are evaluated on their *total* expected cost which is the sum of service costs and waiting costs.
 - Organizations typically want to find the service level that minimizes the total expected cost.

Queuing Costs and Service Levels



- There are three parts to a queuing system:
 - 1. The arrivals or inputs to the system (sometimes referred to as the *calling population*).
 - 2. The queue or waiting line itself.
 - 3. The service facility.
- These components have their own characteristics that must be examined before mathematical models can be developed.

Arrival Characteristics have three major characteristics: *size*, *pattern*, and *behavior*.

The size of the calling population can be either unlimited (essentially *infinite*) or limited (*finite*).

 The pattern of arrivals can arrive according to a known pattern or can arrive randomly.
Random arrivals generally follow a Poisson distribution.

Behavior of arrivals

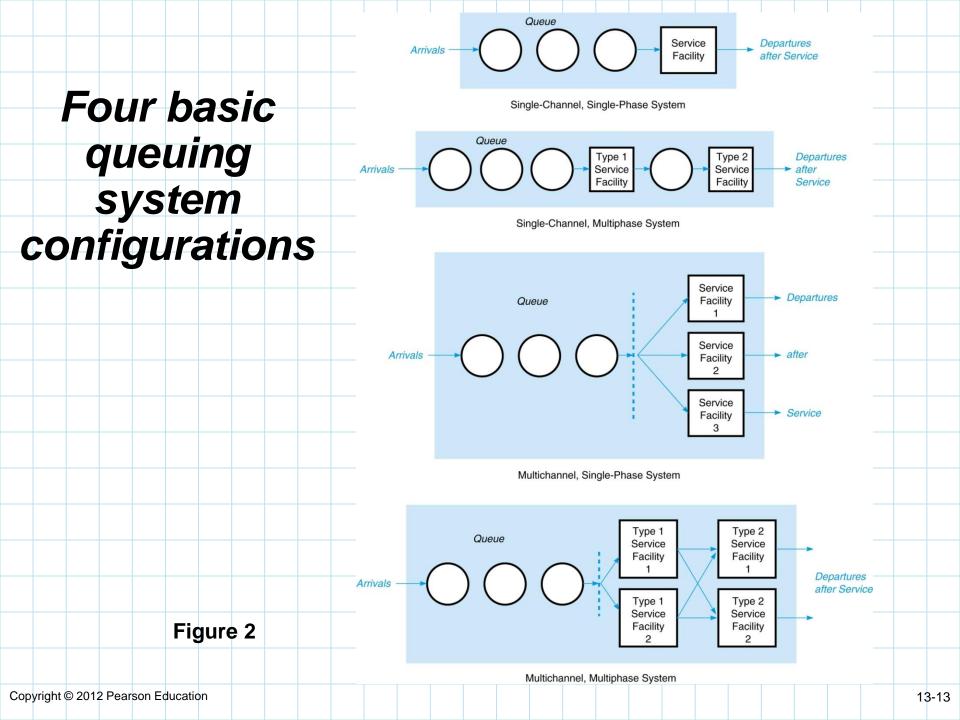
- Most queuing models assume customers are patient and will wait in the queue until they are served and do not switch lines.
- **Balking** refers to customers who refuse to join the queue.
- Reneging customers enter the queue but become impatient and leave without receiving their service.
- That these behaviors exist is a strong argument for the use of queuing theory to managing waiting lines.

Waiting Line Characteristics

- Waiting lines can be either *limited* or *unlimited*.
 - Queue discipline refers to the rule by which customers in the line receive service.
 - The most common rule is *first-in, first-out* (*FIFO*).
 - Other rules are possible and may be based on other important characteristics.
- Other rules can be applied to select which customers enter which queue, but may apply FIFO once they are in the queue.

Service Facility Characteristics

- Basic queuing system configurations:
 - Service systems are classified in terms of the number of channels, or servers, and the number of phases, or service stops.
 - A single-channel system with one server is quite common.
 - Multichannel systems exist when multiple servers are fed by one common waiting line.
 - In a single-phase system, the customer receives service form just one server.
 - In a multiphase system, the customer has to go through more than one server.



Service time distribution

- Service patterns can be either constant or random.
- Constant service times are often machine controlled.
- More often, service times are randomly distributed according to a *negative exponential probability distribution*.
- Analysts should observe, collect, and plot service time data to ensure that the observations fit the assumed distributions when applying these models.

Identifying Models Using Kendall Notation

- D. G. Kendall developed a notation for queuing models that specifies the pattern of arrival, the service time distribution, and the number of channels.
- Notation takes the form:
 - Arrival / Service time / Number of service distribution / distribution / channels open
 - Specific letters are used to represent probability distributions.
 - *M* = Poisson distribution for number of occurrences
 - *D* = constant (deterministic) rate
 - *G* = general distribution with known mean and variance

Identifying Models Using Kendall Notation

A single-channel model with Poisson arrivals and exponential service times would be represented by:

M|M/1

If a second channel is added the notation would read:

*M|M|*2

- A three-channel system with Poisson arrivals and constant service time would be *M/D/*3
- A four-channel system with Poisson arrivals and normally distributed service times would be *M/G/*4

Assumptions of the model:

- Arrivals are served on a FIFO basis.
- There is no balking or reneging.
- Arrivals are independent of each other but the arrival rate is constant over time.
- Arrivals follow a Poisson distribution.
- Service times are variable and independent but the average is known.
- Service times follow a negative exponential distribution.
- Average service rate is greater than the average arrival rate.

- When these assumptions are met, we can develop a series of equations that define the queue's operating characteristics.
- Queuing Equations:
 - λ = mean number of arrivals per time period
 - μ = mean number of customers or units served per time period
 - The arrival rate and the service rate must be defined for the same time period.

Let

1. The average number of customers or units in the system, L_S :

 $L_{S} = \frac{\lambda}{\mu - \lambda}$

2. The average time a customer spends in the system, W_s : $W_s = \frac{1}{\mu - \lambda}$

3. The average number of customers in the queue, L_a :

$$\mu = \frac{\lambda}{\mu(\mu - \lambda)}$$

12

4. The average time a customer spends waiting in the queue, W_q :

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)}$$

5. The *utilization factor* for the system, ρ , the probability the service facility is being used:

$$\rho = \frac{\lambda}{\mu}$$

6. The percent idle time, P_0 , or the probability no one is in the system:

$$P_0 = 1 - \frac{\pi}{11}$$

7. The probability that there are *n* number of customers in the system :

$$P_n = \rho^n (1 - \rho)$$

8. The probability that the number of customers in the system is greater than k, $P_{n>k}$:

$$P_{n>k} = \left(\frac{\lambda}{\mu}\right)^{k+1}$$

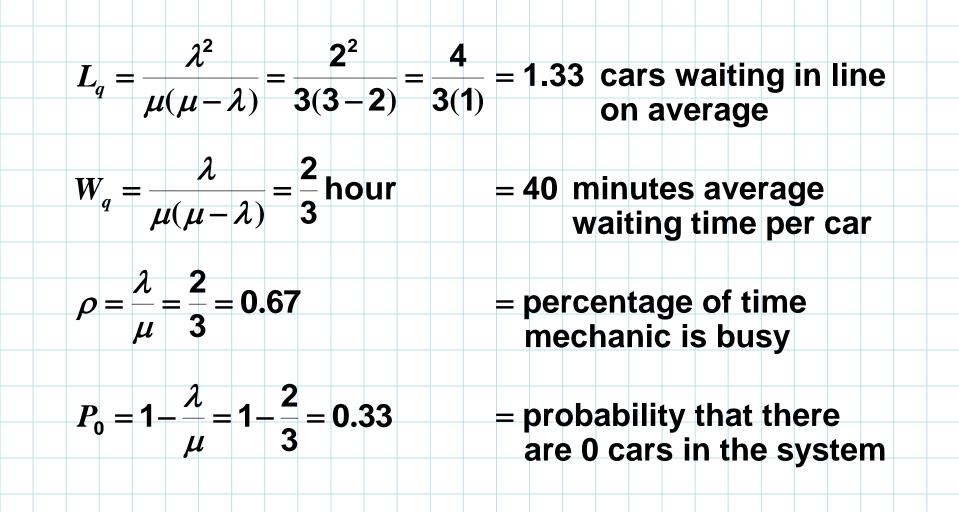
Arnold's Muffler Shop

- Arnold's mechanic can install mufflers at a rate of 3 per hour.
- Customers arrive at a rate of 2 per hour.
- So:

 λ = 2 cars arriving per hour

- μ = 3 cars serviced per hour
- $L = \frac{\lambda}{\mu \lambda} = \frac{2}{3 2} = \frac{2}{1} = 2 \text{ cars in the system}$ on average
- $W = \frac{1}{\mu \lambda} = \frac{1}{3 2} = 1$ hour that an average car spends in the system

Arnold's Muffler Shop



Arnold's Muffler Shop

Probability of more than k cars in the system

k	$P_{n>k} = (2/_3)^{k+1}$				
0	0.667	— Note that this	is is equal to	$1 - P_0 = 1 - 0.5$	33 = 0.667
1	0.444				
2	0.296				
3	0.198			8% chance th	at more
		than 3 cars a	are in the sys	tem	
4	0.132				
5	0.088				
6	0.058				
7	0.039				

Assumptions of the model:

- Arrivals are served on a FIFO basis.
- There is no balking or reneging.
- Arrivals are independent of each other but the arrival rate is constant over time.
- Arrivals follow a Poisson distribution.
- Service times are variable and independent but the average is known.
- Service times follow a negative exponential distribution.
- Average service rate is greater than the average arrival rate.
 - Capacity of system is limited to N customers

1. The average number of customers or units in the system, L_s :

$$L_{\rm S} = \sum_{n=1}^{N} n P_n = \frac{\rho}{1-\rho} - \frac{(N+1)\rho^{N+1}}{1-\rho^{N+1}}$$

2. The average time a customer spends in the system, W_s :

$$W_{S} = \frac{L_{S}}{\lambda(1 - P_{N})}$$

3. The average number of customers in the queue, L_q :

$$L_q = L_S - \rho$$

 $W_q = \frac{L_q}{\lambda(1-P)}$

4. The average time a customer spends waiting in the queue, W_q :

5. The *utilization factor* for the system, ρ , the probability the service facility is being used:

$$\rho = \frac{\lambda}{\mu}$$

6. The percent idle time, P_0 , or the probability no one is in the system:

$$P_0 = \frac{1 \rho}{1 - \rho^{N+1}}$$

7. The probability that there are *n* number of customers in the system :

$$P_n = \frac{(1-\rho)\rho^n}{1-\rho^{N+1}} = P_0\rho^n$$

7. The probability that the number of customers in the system is greater than k, $P_{n>k}$:

$$P_{n>k} = \left(\frac{\lambda}{\mu}\right)^{k+1}$$