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QUEUING WITH FUTURE INFORMATION

BY JOEL SPENCER, MADHU SUDAN AND KUANG XU1

New York University, Microsoft Research New England and
Massachusetts Institute of Technology

We study an admissions control problem, where a queue with service
rate 1 − p receives incoming jobs at rate λ ∈ (1 − p,1), and the decision
maker is allowed to redirect away jobs up to a rate of p, with the objective of
minimizing the time-average queue length.

We show that the amount of information about the future has a sig-
nificant impact on system performance, in the heavy-traffic regime. When
the future is unknown, the optimal average queue length diverges at rate
∼ log1/(1−p)

1
1−λ

, as λ → 1. In sharp contrast, when all future arrival and
service times are revealed beforehand, the optimal average queue length con-
verges to a finite constant, (1 − p)/p, as λ → 1. We further show that the fi-
nite limit of (1 −p)/p can be achieved using only a finite lookahead window
starting from the current time frame, whose length scales as O(log 1

1−λ
), as

λ → 1. This leads to the conjecture of an interesting duality between queuing
delay and the amount of information about the future.

1. Introduction.

1.1. Variable, but predictable. The notion of queues has been used extensively
as a powerful abstraction in studying dynamic resource allocation systems, where
one aims to match demands that arrive over time with available resources, and a
queue is used to store currently unprocessed demands. Two important ingredients
often make the design and analysis of a queueing system difficult: the demands
and resources can be both variable and unpredictable. Variability refers to the fact
that the arrivals of demands or the availability of resources can be highly volatile
and nonuniformly distributed across the time horizon. Unpredictability means that
such nonuniformity “tomorrow” is unknown to the decision maker “today,” and
she is obliged to make allocation decisions only based on the state of the system at
the moment, and some statistical estimates of the future.

While the world will remain volatile as we know it, in many cases, the amount
of unpredictability about the future may be reduced thanks to forecasting technolo-
gies and the increasing accessibility of data. For instance:

Received January 2013; revised April 2013.
1Supported in part by a research internship at Microsoft Research New England and by NSF Grants

CMMI-0856063 and CMMI-1234062.
MSC2010 subject classifications. 60K25, 60K30, 68M20, 90B36.
Key words and phrases. Future information, queuing theory, admissions control, resource pool-

ing, random walk, online, offline, heavy-traffic asymptotics.

2091

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/13-AAP973
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2092 J. SPENCER, M. SUDAN AND K. XU

(1) advance booking in the hotel and textile industries allows for accurate fore-
casting of demands ahead of time [9];

(2) the availability of monitoring data enables traffic controllers to predict the
traffic pattern around potential bottlenecks [18];

(3) advance scheduling for elective surgeries could inform care providers sev-
eral weeks before the intended appointment [12].

In all of these examples, future demands remain exogenous and variable, yet the
decision maker is revealed with (some of) their realizations.

Is there significant performance gain to be harnessed by “looking into the fu-
ture?” In this paper we provide a largely affirmative answer, in the context of a
class of admissions control problems.

1.2. Admissions control viewed as resource allocation. We begin by infor-
mally describing our problem. Consider a single queue equipped with a server that
runs at rate 1 − p jobs per unit time, where p is a fixed constant in (0,1), as de-
picted in Figure 1. The queue receives a stream of incoming jobs, arriving at rate
λ ∈ (0,1). If λ > 1 − p, the arrival rate is greater than the server’s processing rate,
and some form of admissions control is necessary in order to keep the system sta-
ble. In particular, upon its arrival to the system, a job will either be admitted to the
queue, or redirected. In the latter case, the job does not join the queue, and, from
the perspective of the queue, disappears from the system entirely. The goal of the
decision maker is to minimize the average delay experienced by the admitted jobs,
while obeying the constraint that the average rate at which jobs are redirected does
not exceeded p.2

One can think of our problem as that of resource allocation, where a decision
maker tries to match incoming demands with two types of processing resources:
a slow local resource that corresponds to the server and a fast external resource
that can process any job redirected to it almost instantaneously. Both types of re-
sources are constrained, in the sense that their capacities (1 − p and p, resp.)
cannot change over time, by physical or contractual predispositions. The process-
ing time of a job at the fast resource is negligible compared to that at the slow

FIG. 1. An illustration of the admissions control problem, with a constraint on the a rate of redi-
rection.

2Note that as λ → 1, the minimum rate of admitted jobs, λ − p, approaches the server’s capacity
1 − p, and hence we will refer to the system’s behavior when λ → 1 as the heavy-traffic regime.
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resource, as long as the rate of redirection to the fast resource stays below p in the
long run. Under this interpretation, minimizing the average delay across all jobs is
equivalent to minimizing the average delay across just the admitted jobs, since the
jobs redirected to the fast resource can be thought of being processed immediately
and experiencing no delay at all.

For a more concrete example, consider a web service company that enters a
long-term contract with an external cloud computing provider for a fixed amount
of computation resources (e.g., virtual machine instance time) over the contract pe-
riod.3 During the contract period, any incoming request can be either served by the
in-house server (slow resource), or be redirected to the cloud (fast resource), and
in the latter case, the job does not experience congestion delay since the scalability
of cloud allows for multiple VM instance to be running in parallel (and potentially
on different physical machines). The decision maker’s constraint is that the total
amount of redirected jobs to the cloud must stay below the amount prescribed by
the contract, which, in our case, translates into a maximum redirection rate over
the contract period. Similar scenarios can also arise in other domains, where the
slow versus fast resources could, for instance, take on the forms of:

(1) an in-house manufacturing facility versus an external contractor;
(2) a slow toll booth on the freeway versus a special lane that lets a car pass

without paying the toll;
(3) hospital bed resources within a single department versus a cross-departmen-

tal central bed pool.

In a recent work [20], a mathematical model was proposed to study the benefits
of resource pooling in large scale queueing systems, which is also closely con-
nected to our problem. They consider a multi-server system where a fraction 1 −p

of a total of N units of processing resources (e.g., CPUs) is distributed among a
set of N local servers, each running at rate 1 − p, while the remaining fraction of
p is being allocated in a centralized fashion, in the form of a central server that
operates at rate pN (Figure 2). It is not difficult to see, when N is large, the central
server operates at a significantly faster speed than the local servers, so that a job
processed at the central server experiences little or no delay. In fact, the admis-
sions control problem studied in this paper is essentially the problem faced by one
of the local servers, in the regime where N is large (Figure 3). This connection is
explored in greater detail in Appendix B, where we discuss what the implications
of our results in context of resource pooling systems.

3Example. As of September 2012, Microsoft’s Windows Azure cloud services offer a 6-month
contract for $71.99 per month, where the client is entitled for up to 750 hours of virtual machine
(VM) instance time each month, and any additional usage would be charged at a 25% higher rate.
Due to the large scale of the Azure data warehouses, the speed of any single VM instance can be
treated as roughly constant and independent of the total number of instances that the client is running
concurrently.
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FIG. 2. Illustration of a model for resource pooling with distributed and centralized resources [20].

1.3. Overview of main contributions. We preview some of the main results in
this section. The formal statements will be given in Section 3.

1.3.1. Summary of the problem. We consider a continuous-time admissions
control problem, depicted in Figure 1. The problem is characterized by three pa-
rameters: λ,p and w:

(1) Jobs arrive to the system at a rate of λ jobs per unit time, with λ ∈ (0,1).
The server operates at a rate of 1 − p jobs per unit time, with p ∈ (0,1).

(2) The decision maker is allowed to decide whether an arriving job is admitted
to the queue, or redirected away, with the goal of minimizing the time-average
queue length,4 and subject to the constraint that the time-average rate of redirection
does not exceed p jobs per unit time.

(3) The decision maker has access to information about the future, which takes
the form of a lookahead window of length w ∈ R+. In particular, at any time t , the
times of arrivals and service availability within the interval [t, t + w] are revealed
to the decision maker. We will consider the following cases of w:

FIG. 3. Resource pooling using a central queue.

4By Little’s law, the average queue length is essentially the same as average delay, up to a constant
factor; see Section 2.5.
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(a) w = 0, the online problem, where no future information is available.
(b) w = ∞, the offline problem, where entire the future has been revealed.
(c) 0 < w < ∞, where future is revealed only up to a finite lookahead window.

Throughout, we will fix p ∈ (0,1), and be primarily interested in the system’s
behavior in the heavy-traffic regime of λ → 1.

1.3.2. Overview of main results. Our main contribution is to demonstrate that
the performance of a redirection policy is highly sensitive to the amount of future
information available, measured by the value of w.

Fix p ∈ (0,1), and let the arrival and service processes be Poisson. For the
online problem (w = 0), we show the optimal time-average queue length, C

opt
0 ,

approaches infinity in the heavy-traffic regime, at the rate

C
opt
0 ∼ log1/(1−p)

1

1 − λ
as λ → 1.

In sharp contrast, the optimal average queue length among offline policies
(w = ∞), C

opt∞ , converges to a constant,

C
opt∞ → 1 − p

p
as λ → 1

and this limit is achieved by a so-called no-job-left-behind policy. Figure 4 illus-
trates this difference in delay performance for a particular value of p.

Finally, we show that the no-job-left-behind policy for the offline problem can
be modified, so that the same optimal heavy-traffic limit of 1−p

p
is achieved even

FIG. 4. Comparison of optimal heavy-traffic delay scaling between online and offline policies, with
p = 0.1 and λ → 1. The value C(p,λ,π) is the resulting average queue length as a function of p, λ

and a policy π .
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with a finite lookahead window, w(λ), where

w(λ) = O
(

log
1

1 − λ

)
as λ → 1.

This is of practical importance because in any realistic application, only a finite
amount of future information can be obtained.

On the methodological end, we use a sample path-based framework to analyze
the performance of the offline and finite lookahead policies, borrowing tools from
renewal theory and the theory of random walks. We believe that our techniques
could be substantially generalized to incorporate general arrival and service pro-
cesses, diffusion approximations as well as observational noises. See Section 8 for
a more elaborate discussion.

1.4. Related work. There is an extensive body of work devoted to various
Markov (or online) admissions control problems; the reader is referred to the
survey of [19] and references therein. Typically, the problem is formulated as
an instance of a Markov decision problem (MDP), where the decision maker,
by admitting or rejecting incoming jobs, seeks to maximize a long-term average
objective consisting of rewards (e.g., throughput) minus costs (e.g., waiting time
experienced by a customer). The case where the maximization is performed sub-
ject to a constraint on some average cost has also been studied, and it has been
shown, for a family of reward and cost functions, that an optimal policy assumes a
“threshold-like” form, where the decision maker redirects the next job only if the
current queue length is great or equal to L, with possible randomization if at level
L − 1, and always admits the job if below L − 1; cf. [5]. Indeed, our problem,
where one tries to minimize average queue length (delay) subject to a lower-bound
on the throughput (i.e., a maximum redirection rate), can be shown to belong to
this category, and the online heavy-traffic scaling result is a straightforward exten-
sion following the MDP framework, albeit dealing with technicalities in extending
the threshold characterization to an infinite state space, since we are interested in
the regime of λ → 1.

However, the resource allocation interpretation of our admissions control prob-
lem as that of matching jobs with fast and slow resources, and, in particular, its
connections to resource pooling in the many-server limit, seems to be largely un-
explored. The difference in motivation perhaps explains why the optimal online
heavy-traffic delay scaling of log1/(1−p)

1
1−λ

that emerges by fixing p and taking
λ → 1 has not appeared in the literature, to the best our knowledge.

There is also an extensive literature on competitive analysis, which focuses on
the worst-case performance of an online algorithms compared to that of an opti-
mal offline version (i.e., knowing the entire input sequence). The reader is referred
to [6] for a comprehensive survey, and the references therein on packing-type prob-
lems, such as load balancing and machine scheduling [3], and call admission and
routing [2], which are more related to our problem. While our optimality result for
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the policy with a finite lookahead window is stated in terms of the average per-
formance given stochastic inputs, we believe that the analysis can be extended to
yield worst-case competitive ratios under certain input regularity conditions.

In sharp contrast to our knowledge of the online problems, significantly less is
known for settings in which information about the future is taken into considera-
tion. In [17], the author considers a variant of the flow control problem where the
decision maker knows the job size of the arriving customer, as well as the arrival
and time and job size of the next customer, with the goal of maximizing certain
discounted or average reward. A characterization of an optimal stationary policy
is derived under a standard semi-Markov decision problem framework, since the
lookahead is limited to the next arriving job. In [7], the authors consider a schedul-
ing problem with one server and M parallel queues, motivated by applications
in satellite systems where the link qualities between the server and the queues
vary over time. The authors compare the throughput performance between several
online policies with that of an offline policy, which has access to all future in-
stances of link qualities. However, the offline policy takes the form of a Viterbi-like
dynamic program, which, while being throughput-optimal by definition, provides
limited qualitative insight.

One challenge that arises as one tries to move beyond the online setting is that
policies with lookahead typically do not admit a clean Markov description, and
hence common techniques for analyzing Markov decision problems do not easily
apply. To circumvent the obstacle, we will first relax our problem to be fully offline,
which turns out to be surprisingly amenable to analysis. We then use the insights
from the optimal offline policy to construct an optimal policy with a finite look-
ahead window, in a rather straightforward manner.

In other application domains, the idea of exploiting future information or predic-
tions to improve decision making has been explored. Advance reservations (a form
of future information) have been studied in lossy networks [8, 14] and, more re-
cently, in revenue management [13]. Using simulations, [12] demonstrates that the
use of a one-week and two-week advance scheduling window for elective surg-
eries can improve the efficiency at the associated intensive care unit (ICU). The
benefits of advanced booking program for supply chains have been shown in [9] in
the form of reduced demand uncertainties. While similar in spirit, the motivations
and dynamics in these models are very different from ours.

Finally, our formulation of the slow an fast resources had been in part inspired
by the literature of resource pooling systems, where one improves overall system
performance by (partially) sharing individual resources in collective manner. The
connection of our problem to a specific multi-server model proposed by [20] is
discussed in Appendix B. For the general topic of resource pooling, interested
readers are referred to [4, 11, 15, 16] and the references therein.

1.5. Organization of the paper. The rest of the paper is organized as follows.
The mathematical model for our problem is described in Section 2. Section 3 con-
tains the statements of our main results, and introduces the no-job-leftb-behind
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policy (πNOB), which will be a central object of study for this paper. Section 4
presents two alternative descriptions of the no-job-left-behind policy that have im-
portant structural, as well as algorithmic, implications. Sections 5–7 are devoted to
the proofs for the results concerning the online, offline and finite-lookahead poli-
cies, respectively. Finally, Section 8 contains some concluding remarks and future
directions.

2. Model and setup.

2.1. Notation. We will denote by N, Z+ and R+, the set of natural num-
bers, nonnegative integers and nonnegative reals, respectively. Let f,g :R+ →R+
be two functions. We will use the following asymptotic notation throughout:
f (x) � g(x) if limx→1

f (x)
g(x)

≤ 1, f (x) � g(x) if limx→1
f (x)
g(x)

≥ 1; f (x) � g(x) if

limx→1
f (x)
g(x)

= 0 and f (x) 	 g(x) if limx→1
f (x)
g(x)

= ∞.

2.2. System dynamics. An illustration of the system setup is given in Figure 1.
The system consists of a single-server queue running in continuous time (t ∈ R+),
with an unbounded buffer that stores all unprocessed jobs. The queue is assumed
to be empty at t = 0.

Jobs arrive to the system according to a Poisson process with rate λ, λ ∈ (0,1),
so that the intervals between two adjacent arrivals are independent and exponen-
tially distributed with mean 1

λ
. We will denote by {A(t) : t ∈ R+} the cumulative

arrival process, where A(t) ∈ Z+ is the total number of arrivals to the system by
time t .

The processing of jobs by the server is modeled by a Poisson process of rate
1 − p. When the service process receives a jump at time t , we say that a service
token is generated. If the queue is not empty at time t , exactly one job “consumes”
the service token and leaves the system immediately. Otherwise, the service token
is “wasted” and has no impact on the future evolution of the system.5 We will

5When the queue is nonempty, the generation of a token can be interpreted as the completion of a
previous job, upon which the server is ready to fetch the next job. The time between two consecutive
tokens corresponds to the service time. The waste of a token can be interpreted as the server starting
to serve a “dummy job.” Roughly speaking, the service token formulation, compared to that of a
constant speed server processing jobs with exponentially distributed sizes, provides a performance
upper-bound due to the inefficiency caused by dummy jobs, but has very similar performance in the
heavy-traffic regime, in which the tokens are almost never wasted. Using such a point process to
model services is not new, and the reader is referred to [20] and the references therein.

It is, however, important to note a key assumption implicit in the service token formulation: the
processing times are intrinsic to the server, and independent of the job being processed. For instance,
the sequence of service times will not depend on the order in which the jobs in the queue are served,
so long as the server remains busy throughout the period. This distinction is of little relevance for an
M/M/1 queue, but can be important in our case, where the redirection decisions may depend on the
future. See discussion in Section 8.
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denote by {S(t) : t ∈ R+} the cumulative token generation process, where S(t) ∈
Z+ is the total number of service tokens generated by time t .

When λ > 1−p, in order to maintain the stability of the queue, a decision maker
has the option of “redirecting” a job at the moment of its arrival. Once redirected,
a job effectively “disappears,” and for this reason, we will use the word deletion
as a synonymous term for redirection throughout the rest of the paper, because it
is more intuitive to think of deleting a job in our subsequent sample-path analysis.
Finally, the decision maker is allowed to delete up to a time-average rate of p.

2.3. Initial sample path. Let {Q0(t) : t ∈ R+} be the continuous-time queue
length process, where Q0(t) ∈ Z+ is the queue length at time t if no deletion is
applied at any time. We say that an event occurs at time t if there is either an
arrival, or a generation of service token, at time t . Let Tn, n ∈ N, be the time of the
nth event in the system. Denote by {Q0[n] :n ∈ Z+} the embedded discrete-time
process of {Q0(t)}, where Q0[n] is the length of the queue sampled immediately
after the nth event,6

Q0[n] = Q0(Tn−), n ∈ N

with the initial condition Q0[0] = 0. It is well known that Q0 is a random walk
on Z+, such that for all x1, x2 ∈ Z+ and n ∈ Z+,

P
(
Q0[n + 1] = x2|Q0[n] = x1

) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ

λ + 1 − p
, x2 − x1 = 1,

1 − p

λ + 1 − p
, x2 − x1 = −1,

0, otherwise,

(2.1)

if x1 > 0 and

P
(
Q0[n + 1] = x2|Q0[n] = x1

) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ

λ + 1 − p
, x2 − x1 = 1,

1 − p

λ + 1 − p
, x2 − x1 = 0,

0, otherwise,

(2.2)

if x1 = 0. Note that, when λ > 1 − p, the random walk Q0 is transient.
The process Q0 contains all relevant information in the arrival and service pro-

cesses, and will be the main object of study of this paper. We will refer to Q0 as
the initial sample path throughout the paper, to distinguish it from sample paths
obtained after deletions have been made.

6The notation f (x−) denotes the right-limit of f at x: f (x−) = limy↓x f (y). In this particular

context, the values of Q0[n] are well defined, since the sample paths of Poisson processes are right-
continuous-with-left-limits (RCLL) almost surely.
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2.4. Deletion policies. Since a deletion can only take place when there is an
arrival, it suffices to define the locations of deletions with respect to the discrete-
time process {Q0[n] :n ∈ Z+}, and throughout, our analysis will focus on discrete-
time queue length processes unless otherwise specified. Let �(Q) be the locations
of all arrivals in a discrete-time queue length process Q, that is,

�(Q) = {
n ∈N :Q[n] > Q[n − 1]}

and for any M ⊂ Z+, define the counting process {I (M,n) :n ∈ N} associated
with M as7

I (M,n) = ∣∣{1, . . . , n} ∩ M
∣∣.(2.3)

DEFINITION 1 (Feasible deletion sequence). The sequence M = {mi} is said
to be a feasible deletion sequence with respect to a discrete-time queue length
process, Q0, if all of the following hold:

(1) All elements in M are unique, so that at most one deletion occurs at any
slot.

(2) M ⊂ �(Q0), so that a deletion occurs only when there is an arrival.
(3)

lim sup
n→∞

1

n
I (M,n) ≤ p

λ + (1 − p)
a.s.(2.4)

so that the time-average deletion rate is at most p.

In general, M is also allowed to be a finite set.

The denominator λ+(1−p) in equation (2.4) is due to the fact that the total rate
of events in the system is λ+(1−p).8 Analogously, the deletion rate in continuous
time is defined by

rd = (λ + 1 − p) · lim sup
n→∞

1

n
I (M,n).(2.5)

The impact of a deletion sequence to the evolution of the queue length process
is formalized in the following definition.

DEFINITION 2 (Deletion maps). Fix an initial queue length process
{Q0[n] :n ∈N} and a corresponding feasible deletion sequence M = {mi}.

(1) The point-wise deletion map DP (Q0,m) outputs the resulting process after
a deletion is made to Q0 in slot m. Let Q′ = DP (Q0,m). Then

Q′[n] =
{

Q0[n] − 1, n ≥ m and Q0[t] > 0 ∀t ∈ {m, . . . , n};
Q0[n], otherwise,

(2.6)

7|X| denotes the cardinality of X.
8This is equal to the total rate of jumps in A(·) and S(·).
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(2) the multi-point deletion map D(Q0,M) outputs the resulting process af-
ter all deletions in the set M are made to Q0. Define Qi recursively as Qi =
DP (Qi−1,mi), ∀i ∈ N. Then Q∞ = D(Q0,M) is defined as the point-wise limit

Q∞[n] = lim
i→min{|M|,∞}Q

i[n] ∀n ∈ Z+.(2.7)

The definition of the point-wise deletion map reflects the earlier assumption that
the service time of a job only depends on the speed of the server at the moment
and is independent of the job’s identity; see Section 2. Note also that the value of
Q∞[n] depends only on the total number of deletions before n [equation (2.6)],
which is at most n, and the limit in equation (2.7) is justified. Moreover, it is not
difficult to see that the order in which the deletions are made has no impact on the
resulting sample path, as stated in the lemma below. The proof is omitted.

LEMMA 1. Fix an initial sample path Q0, and let M and M̃ be two feasible
deletion sequences that contain the same elements. Then D(Q0,M) = D(Q0, M̃).

We next define the notion of a deletion policy that outputs a deletion sequence
based on the (limited) knowledge of an initial sample path Q0. Informally, a dele-
tion policy is said to be w-lookahead if it makes its deletion decisions based on the
knowledge of Q0 up to w units of time into the future (in continuous time).

DEFINITION 3 (w-lookahead deletion policies). Fix w ∈ R+ ∪ {∞}. Let Ft =
σ(Q0(s); s ≤ t) be the natural filtration induced by {Q0(t) : t ∈ R+} and F∞ =⋃

t∈Z+ Ft . A w-predictive deletion policy is a mapping, π :ZR++ →N
∞, such that:

(1) M = π(Q0) is a feasible deletion sequence a.s.;
(2) {n ∈ M} is FTn+w measurable, for all n ∈ N.

We will denote by �w the family of all w-lookahead deletion policies.

The parameter w in Definition 3 captures the amount of information that the
deletion policy has about the future:

(1) When w = 0, all deletion decisions are made solely based on the knowledge
of the system up to the current time frame. We will refer to �0 as online policies.

(2) When w = ∞, the entire sample path of Q0 is revealed to the decision
maker at t = 0. We will refer to �∞ as offline policies.

(3) We will refer to �w,0 < w < ∞, as policies with a lookahead window of
size w.
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2.5. Performance measure. Given a discrete-time queue length process Q and
n ∈ N, denote by S(Q,n) ∈ Z+ the partial sum

S(Q,n) =
n∑

k=1

Q[k].(2.8)

DEFINITION 4 (Average post-deletion queue length). Let Q0 be an initial
queue length process. Define C(p,λ,π) ∈ R+ as the expected average queue
length after applying a deletion policy π ,

C(p,λ,π) = E

(
lim sup
n→∞

1

n
S
(
Q∞

π ,n
))

,(2.9)

where Q∞
π = D(Q0, π(Q0)), and the expectation is taken over all realizations

of Q0 and the randomness used by π internally, if any.

REMARK (Delay versus queue length). By Little’s law, the long-term average
waiting time of a typical customer in the queue is equal to the long-term average
queue length divided by the arrival rate (independent of the service discipline of the
server). Therefore, if our goal is to minimize the average waiting time of the jobs
that remain after deletions, it suffices to use C(p,λ,π) as a performance metric
in order to judge the effectiveness of a deletion policy π . In particular, denote by
Tall ∈ R+ the time-average queueing delay experienced by all jobs, where deleted
jobs are assumed to have a delay of zero, then E(Tall) = 1

λ
C(p,λ,π), and hence

the average queue length and delay coincide in the heavy-traffic regime, as λ → 1.
With an identical argument, it is easy to see that the average delay among admit-
ted jobs, Tadt, satisfies E(Tadt) = 1

λ−rd
C(p,λ,π), where rd is the continuous-time

deletion rate under π . Therefore, we may use the terms “delay” and “average queue
length” interchangeably in the rest of the paper, with the understanding that they
represent essentially the same quantity up to a constant.

Finally, we define the notion of an optimal delay within a family of policies.

DEFINITION 5 (Optimal delay). Fix w ∈ R+. We call C∗
�w

(p,λ) the optimal
delay in �w , where

C∗
�w

(p,λ) = inf
π∈�w

C(p,λ,π).(2.10)

3. Summary of main results. We state the main results of this paper in this
section, whose proofs will be presented in Sections 5–7.

3.1. Optimal delay for online policies.

DEFINITION 6 (Threshold policies). We say that πL
th is an L-threshold policy,

if a job arriving at time t is deleted if and only if the queue length at time t is
greater or equal to L.
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The following theorem shows that the class of threshold policies achieves the
optimal heavy-traffic delay scaling in �0.

THEOREM 1 (Optimal online policies). Fix p ∈ (0,1), and let

L(p,λ) =
⌈

logλ/(1−p)

p

1 − λ

⌉
.

Then:

(1) π
L(p,λ)
th is feasible for all λ ∈ (1 − p,1).

(2) π
L(p,λ)
th is asymptotically optimal in �0 as λ → 1,

C
(
p,λ,π

L(p,λ)
th

) ∼ C∗
�0

(p,λ) ∼ log1/(1−p)

1

1 − λ
as λ → 1.

PROOF. See Section 5. �

3.2. Optimal delay for offline policies. Given the sample path of a random
walk Q, let U(Q,n) the number of slots till Q reaches the level Q[n] − 1 after
slot n:

U(Q,n) = inf
{
j ≥ 1 :Q[n + j ] = Q[n] − 1

}
.(3.1)

DEFINITION 7 (No-job-left-behind policy9). Given an initial sample path Q0,
the no-job-left-behind policy, denoted by πNOB, deletes all arrivals in the set � ,
where

� = {
n ∈ �

(
Q0)

:U
(
Q0, n

) = ∞}
.(3.2)

We will refer to the deletion sequence generated by πNOB as M� = {m�
i : i ∈ N},

where M� = � .

In other words, πNOB would delete a job arriving at time t if and only if the
initial queue length process never returns to below the current level in the future,
which also implies that

Q0[n] ≥ Q0[
m�

i

] ∀i ∈N, n ≥ m�
i .(3.3)

Examples of the πNOB policy being applied to a particular sample path are given
in Figures 5 and 6 (illustration), as well as in Figure 7 (simulation).

It turns out that the delay performance of πNOB is about as good as we can hope
for in heavy traffic, as is formalized in the next theorem.

9The reason for choosing this name will be made in clear in Section 4.1, using the “stack” inter-
pretation of this policy.
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FIG. 5. Illustration of applying πNOB to an initial sample path, Q0, where the deletions are marked
by bold red arrows.

FIG. 6. The solid lines depict the resulting sample path, Q̃ = D(Q0,M�), after applying πNOB
to Q0.

FIG. 7. Example sample paths of Q0 and those obtained after applying π
L(p,λ)
th and πNOB to Q0,

with p = 0.05 and λ = 0.999.
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THEOREM 2 (Optimal offline policies). Fix p ∈ (0,1).

(1) πNOB is feasible for all λ ∈ (1 − p,1) and10

C(p,λ,πNOB) = 1 − p

λ − (1 − p)
.(3.4)

(2) πNOB is asymptotically optimal in �∞ as λ → 1,

lim
λ→1

C(p,λ,πNOB) = lim
λ→1

C∗
�∞(p,λ) = 1 − p

p
.

PROOF. See Section 6. �

REMARK 1 (Heavy-traffic “delay collapse”). It is perhaps surprising to ob-
serve that the heavy-traffic scaling essentially “collapses” under πNOB: the aver-
age queue length converges to a finite value, 1−p

p
, as λ → 1, which is in sharp

contrast with the optimal scaling of ∼ log1/(1−p)
1

1−λ
for the online policies, given

by Theorem 1; see Figure 4 for an illustration of this difference. A “stack” inter-
pretation of the no-job-left-behind policy (Section 4.1.1) will help us understand
intuitively why such a drastic discrepancy exists between the online and offline
heavy-traffic scaling behaviors.

Also, as a by-product of Theorem 2, observe that the heavy-traffic limit scales,
in p, as

lim
λ→1

C∗
�∞(p,λ) ∼ 1

p
as p → 0.(3.5)

This is consistent with an intuitive notion of “flexibility”: delay should degenerate
as the system’s ability to redirect away jobs diminishes.

REMARK 2 (Connections to branching processes and Erdős–Rényi random
graphs). Let d < 1 < c satisfy de−d = ce−c. Consider a Galton–Watson birth
process in which each node has Z children, where Z is Poisson with mean c. Con-
ditioning on the finiteness of the process gives a Galton–Watson process where Z

is Poisson with mean d . This occurs in the classical analysis of the Erdős–Rényi
random graph G(n,p) with p = c/n. There will be a giant component and the
deletion of that component gives a random graph G(m,q) with q = d/m. As a
rough analogy, πNOB deletes those nodes that would be in the giant component.

10It is easy to see that πNOB is not a very efficient deletion policy for relatively small values of λ.
In fact, C(p,λ,πNOB) is a decreasing function of λ. This problem can be fixed by injecting into the
arrival process an Poisson process of “dummy jobs” of rate 1 − λ − ε, so that the total rate of arrival
is 1− ε, where ε ≈ 0. This reasoning implies that (1−p)/p is a uniform upper-bound of C∗

�∞(p,λ)

for all λ ∈ (0,1).
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3.3. Policies with a finite lookahead window. In practice, infinite prediction
into the future is certainly too much to ask for. In this section, we show that a
natural modification of πNOB allows for the same delay to be achieved, using only
a finite lookahead window, whose length, w(λ), increases to infinity as λ → 1.11

Denote by w ∈ R+ the size of the lookahead window in continuous time, and
W(n) ∈ Z+ the window size in the discrete-time embedded process Q0, starting
from slot n. Letting Tn be the time of the nth event in the system, then

W(n) = sup{k ∈ Z+ :Tn+k ≤ Tn + w}.(3.6)

For x ∈ N, define the set of indices

U(Q,n, x) = inf
{
j ∈ {1, . . . , x} :Q[n + j ] = Q[n] − 1

}
.(3.7)

DEFINITION 8 (w-no-job-left-behind policy). Given an initial sample path Q0

and w > 0, the w-no-job-left-behind policy, denoted by πw
NOB, deletes all arrivals

in the set �w , where

�w = {
n ∈ �

(
Q0)

:U
(
Q0, n,W(n)

) = ∞}
.

It is easy to see that πw
NOB is simply πNOB applied within the confinement of a

finite window: a job at t is deleted if and only if the initial queue length process
does not return to below the current level within the next w units of time, assuming
no further deletions are made. Since the window is finite, it is clear that �w ⊃ �

for any w < ∞, and hence C(p,λ,πw
NOB) ≤ C(p,λ,πNOB) for all λ ∈ (1 − p).

The only issue now becomes that of feasibility: by making decision only based on
a finite lookahead window, we may end up deleting at a rate greater than p.

The following theorem summarizes the above observations and gives an upper
bound on the appropriate window size, w, as a function of λ.12

THEOREM 3 (Optimal delay scaling with finite lookahead). Fix p ∈ (0,1).
There exists C > 0, such that if

w(λ) = C · log
1

1 − λ
,

then π
w(λ)
NOB is feasible and

C
(
p,λ,π

w(λ)
NOB

) ≤ C(p,λ,πNOB) = 1 − p

λ − (1 − p)
.(3.8)

11In a way, this is not entirely surprising, since the πNOB leads to a deletion rate of λ − (1 − p),
and there is an additional p − [λ − (1 − p)] = 1 − λ unused deletion rate that can be exploited.

12Note that Theorem 3 implies Theorem 2 and is hence stronger.



QUEUING WITH FUTURE INFORMATION 2107

Since C∗
�w(λ)

(p,λ) ≥ C∗
�∞(p,λ) and C∗

�w(λ)
(p,λ) ≤ C(p,λ,π

w(λ)
NOB), we also have

that

lim
λ→1

C∗
�w(λ)

(p,λ) = lim
λ→1

C∗
�∞(p,λ) = 1 − p

p
.(3.9)

PROOF. See Section 7.1. �

3.3.1. Delay-information duality. Theorem 3 says that one can attain the same
heavy-traffic delay performance as the optimal offline algorithm if the size of the
lookahead window scales as O(log 1

1−λ
). Is this the minimum amount of future in-

formation necessary to achieve the same (or comparable) heavy-traffic delay limit
as the optimal offline policy? We conjecture that this is the case, in the sense that
there exists a matching lower bound, as follows.

CONJECTURE 1. Fix p ∈ (0,1). If w(λ) � log 1
1−λ

as λ → 1, then

lim sup
λ→1

C∗
�w(λ)

(p,λ) = ∞.

In other words, “delay collapse” can occur only if w(λ) = 	(log 1
1−λ

).

If the conjecture is proven, it would imply a sharp transition in the system’s
heavy-traffic delay scaling behavior, around the critical “threshold” of w(λ) =
	(log 1

1−λ
). It would also imply the existence of a symmetric dual relationship

between future information and queueing delay: 	(log 1
1−λ

) amount of informa-

tion is required to achieve a finite delay limit, and one has to suffer 	(log 1
1−λ

) in
delay, if only finite amount of future information is available.

Figure 8 summarizes the main results of this paper from the angle of the delay-
information duality. The dotted line segment marks the unknown regime and the
sharp transition at its right endpoint reflects the view of Conjecture 1.

FIG. 8. “Delay vs. Information.” Best achievable heavy traffic delay scaling as a function of the size
of the lookahead window, w. Results presented in this paper are illustrated in the solid lines and cir-
cles, and the gray dotted line depicts our conjecture of the unknown regime of 0 < w(λ)� log( 1

1−λ
).
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4. Interpretations of πNOB. We present two equivalent ways of describ-
ing the no-job-left-behind policy πNOB. The stack interpretation helps us derive
asymptotic deletion rate of πNOB in a simple manner, and illustrates the superi-
ority of πNOB compared to an online policy. Another description of πNOB using
time-reversal shows us that the set of deletions made by πNOB can be calculated
efficiently in linear time (with respect to the length of the time horizon).

4.1. Stack interpretation. Suppose that the service discipline adopted by the
server is that of last-in-first-out (LIFO), where the it always fetches a task that
has arrived the latest. In other words, the queue works as a stack. Suppose that
we first simulate the stack without any deletion. It is easy to see that, when the
arrival rate λ is greater than the service rate 1 − p, there will be a growing set of
jobs at the bottom of the stack that will never be processed. Label all such jobs as
“left-behind.” For example, Figure 5 shows the evolution of the queue over time,
where all “left-behind” jobs are colored with a blue shade. One can then verify
that the policy πNOB given in Definition 7 is equivalent to deleting all jobs that
are labeled “left-behind,” hence the namesake “No Job Left Behind.” Figure 6
illustrates applying πNOB to a sample path of Q0, where the ith job to be deleted is
precisely the ith job among all jobs that would have never been processed by the
server under a LIFO policy.

One advantage of the stack interpretation is that it makes obvious the fact that
the deletion rate induced by πNOB is equal to λ − (1 − p) < p, as illustrated in the
following lemma.

LEMMA 2. For all λ > 1 − p, the following statements hold:

(1) With probability one, there exists T < ∞, such that every service token
generated after time T is matched with some job. In other words, the server never
idles after some finite time.

(2) Let Q = D(Q0,M�). We have

lim sup
n→∞

1

n
I
(
M�,n

) ≤ λ − (1 − p)

λ + 1 − p
a.s.,(4.1)

which implies that πNOB is feasible for all p ∈ (0,1) and λ ∈ (1 − p,1).

PROOF. See Appendix A.1. �

4.1.1. “Anticipation” vs. “reaction.” Some geometric intuition from the stack
interpretation shows that the power of πNOB essentially stems from being highly
anticipatory. Looking at Figure 5, one sees that the jobs that are “left behind” at
the bottom of the stack correspond to those who arrive during the intervals where
the initial sample path Q0 is taking a consecutive “upward hike.” In other words,
πNOB begins to delete jobs when it anticipates that the arrivals are just about to get
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intense. Similarly, a job in the stack will be “served” if Q0 curves down eventu-
ally in the future, which corresponds πNOB’s stopping deleting jobs as soon as it
anticipates that the next few arrivals can be handled by the server alone. In sharp
contrast is the nature of the optimal online policy, π

L(p,λ)
th , which is by definition

“reactionary” and begins to delete only when the current queue length has already
reached a high level. The differences in the resulting sample paths are illustrated
via simulations in Figure 7. For example, as Q0 continues to increase during the
first 1000 time slots, πNOB begins deleting immediately after t = 0, while no dele-
tion is made by π

L(p,λ)
th during this period.

As a rough analogy, the offline policy starts to delete before the arrivals get
busy, but the online policy can only delete after the burst in arrival traffic has been
realized, by which point it is already “too late” to fully contain the delay. This
explains, to certain extend, why πNOB is capable of achieving “delay collapse” in
the heavy-traffic regime (i.e., a finite limit of delay as λ → 1, Theorem 2), while the
delay under even the best online policy diverges to infinity as λ → 1 (Theorem 1).

4.2. A linear-time algorithm for πNOB. While the offline deletion problem
serves as a nice abstraction, it is impossible to actually store information about the
infinite future in practice, even if such information is available. A natural finite-
horizon version of the offline deletion problem can be posed as follows: given the
values of Q0 over the first N slots, where N finite, one would like to compute the
set of deletions made by πNOB,

M�
N = M� ∩ {1, . . . ,N}

assuming that Q0[n] > Q0[N ] for all n ≥ N . Note that this problem also arises in
computing the sites of deletions for the πw

NOB policy, where one would replace N

with the length of the lookahead window, w.
We have the following algorithm, which identifies all slots on which a new

“minimum” (denoted by the variable S) is achieved in Q0, when viewed in the
reverse order of time.

A linear-time algorithm for πNOB

S ← Q0[N ] and M�
N ←∅

for n = N down to 1 do
if Q0[n] < S then

M�
N ← M�

N ∪ {n + 1}
S ← Q0[n]

else
M�

N ← M�
N

end if
end for
return M�

N
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It is easy to see that the running time of the above algorithm scales linearly
with respect to the length of the time horizon, N . Note that this is not the unique
linear-time algorithm. In fact, one can verify that the simulation procedure used in
describing the stack interpretation of πNOB (Section 4), which keeps track of which
jobs would eventually be served, is itself a linear-time algorithm. However, the
time-reverse version given here is arguably more intuitive and simpler to describe.

5. Optimal online policies. Starting from this section and through Section 7,
we present the proofs of the results stated in Section 3.

We begin with showing Theorem 1, by formulating the online problem as a
Markov decision problem (MDP) with an average cost constraint, which then en-
ables us to use existing results to characterize the form of optimal policies. Once
the family of threshold policies has been shown to achieve the optimal delay scal-
ing in �0 under heavy traffic, the exact form of the scaling can be obtained in
a fairly straightforward manner from the steady-state distribution of a truncated
birth–death process.

5.1. A Markov decision problem formulation. Since both the arrival and ser-
vice processes are Poisson, we can formulate the problem of finding an optimal
policy in �0 as a continuous-time Markov decision problem with an average-cost
constraint, as follows. Let {Q(t) : t ∈ R+} be the resulting continuous-time queue
length process after applying some policy in �0 to Q0. Let Tk be the kth up-
ward jump in Q and τk the length of the kth inter-jump interval, τk = Tk − Tk−1.
The task of a deletion policy, π ∈ �0, amounts to choosing, for each of the inter-
jump intervals, a deletion action, ak ∈ [0,1], where the value of ak corresponds
to the probability that the next arrival during the current inter-jump interval will
be deleted. Define R and K to be the reward and cost functions of an inter-jump
interval, respectively,

R(Qk, ak, τk) = −Qk · τk,(5.1)

K(Qk, ak, τk) = λ(1 − ak)τk,(5.2)

where Qk = Q(Tk). The corresponding MDP seeks to maximize the time-average
reward

�Rπ = lim inf
n→∞

Eπ(
∑n

k=1 R(Qk, ak, τk))

Eπ(
∑n

k=1 τk)
(5.3)

while obeying the average-cost constraint

�Cπ = lim sup
n→∞

Eπ(
∑n

k=1 K(Qk, ak, τk))

Eπ(
∑n

k=1 τk)
≤ p.(5.4)

To see why this MDP solves our deletion problem, observe that �Rπ is the negative
of the time-average queue length, and �Cπ is the time-average deletion rate.
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It is well known that the type of constrained MDP described above admits an
optimal policy that is stationary [1], which means that the action ak depends solely
on the current state, Qk , and is independent of the time index k. Therefore, it
suffices to describe π using a sequence, {bq :q ∈ Z+}, such that ak = bq whenever
Qk = q . Moreover, when the state space is finite,13 stronger characterizations of
the bq ’s have been obtained for a family of reward and cost functions under certain
regularity assumptions (Hypotheses 2.7, 3.1 and 4.1 in [5]), which ours do satisfy
[equations (5.1) and (5.2)]. Theorem 1 will be proved using the next-known result
(adapted from Theorem 4.4 in [5]):

LEMMA 3. Fix p and λ, and let the buffer size B be finite. There exists an
optimal stationary policy, {b∗

q}, of the form

b∗
q =

⎧⎪⎨⎪⎩
1, q < L∗ − 1,

ξ, q = L∗ − 1,

0, q ≥ L∗

for some L∗ ∈ Z+ and ξ ∈ [0,1].

5.2. Proof of Theorem 1. In words, Lemma 3 states that the optimal policy
admits a “quasi-threshold” form: it deletes the next arrival when Q(t) ≥ L∗, admits
when Q(t) < L∗ −1, and admits with probability ξ when Q(t) = L∗ −1. Suppose,
for the moment, that the statements of Lemma 3 also hold when the buffer size is
infinite, an assumption to be justified by the end of the proof. Denoting by π∗

p the
stationary optimal policy associated with {b∗

q}, when the constraint on the average
of deletion is p [equation (5.4)]. The evolution of Q(t) under π∗

p is that of a birth–
death process truncated at state L∗, with the transition rates given in Figure 9, and
the time-average queue length is equal to the expected queue length in steady state.
Using standard calculations involving the steady-state distribution of the induced
Markov process, it is not difficult to verify that

C
(
p,λ,πL∗−1

th

) ≤ C
(
p,λ,π∗

p

) ≤ C
(
p,λ,πL∗

th
)
,(5.5)

FIG. 9. The truncated birth–death process induced by π∗
p .

13This corresponds to a finite buffer size in our problem, where one can assume that the next arrival
is automatically deleted when the buffer is full, independent of the value of ak .
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where L∗ is defined as in Lemma 3, and C(p,λ,π) is the time-average queue
length under policy π , defined in equation (2.9).

Denote by {μL
i : i ∈ N} the steady-state probability of the queue length being

equal to i, under a threshold policy πL
th . Assuming λ �= 1−p, standard calculations

using the balancing equations yield

μL
i =

(
λ

1 − p

)i

·
(

1 − (λ/(1 − p))

1 − (λ/(1 − p))L+1

)
∀1 ≤ i ≤ L(5.6)

and μL
i = 0 for all i ≥ L + 1. The time-average queue length is given by

C
(
p,λ,πL

th
) =

L∑
i=1

i · μL
i

(5.7)

= θ

(θ − 1)(θL+1 − 1)
· [

1 − θL + LθL(θ − 1)
]
,

where θ = λ
1−p

. Note that when λ > 1 − p, μL
i is decreasing with respect to L for

all i ∈ {0,1, . . . ,L} [equation (5.6)], which implies that the time-average queue
length is monotonically increasing in L, that is,

C
(
p,λ,πL+1

th

) − C
(
p,λ,πL

th
)

= (L + 1) · μL+1
L+1 +

L∑
i=0

i · (
μL+1

i − μL
i

)

≥ (L + 1) · μL+1
L+1 + L ·

(
L∑

i=0

μL+1
i − μL

i

)
(5.8)

= (L + 1) · μL+1
L+1 + L · (

1 − μL+1
i − 1

)
= μL+1

L+1 > 0.

It is also easy to see that, fixing p, since we have that θ > 1+δ for all λ sufficiently
close to 1, where δ > 0 is a fixed constant, we have

C
(
p,λ,πL

th
) =

(
θL+1

θL+1 − 1

)
L − θ

θ − 1
· θL − 1

θL+1 − 1
∼ L as L → ∞.(5.9)

Since deletions only occur when Q(t) is in state L, from equation (5.6), the
average rate of deletions in continuous time under πL

th is given by

rd
(
p,λ,πL

th,
) = λ · πL = λ ·

(
λ

1 − p

)L

·
(

1 − (λ/(1 − p))

1 − (λ/(1 − p))L+1

)
.(5.10)

Define

L(x,λ) = min
{
L ∈ Z+ : rd

(
p,λ,πL

th,
) ≤ x

}
,(5.11)
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that is, L(x,λ) is the smallest L for which πL
th remains feasible, given a deletion

rate constraint of x. Using equations (5.10) and (5.11) to solve for L(p,λ), we
obtain, after some algebra,

L(p,λ) =
⌈

logλ/(1−p)

p

1 − λ

⌉
∼ log1/(1−p̃)

1

1 − λ
as λ → 1(5.12)

and, by combining equation (5.12) and equation (5.9) with L = L(p,λ), we have

C
(
p,λ,π

L(p,λ)
th

) ∼ L(p,λ) ∼ log1/(1−p)

1

1 − λ
as λ → 1.(5.13)

By equations (5.8) and (5.11), we know that π
L(p,λ)
th achieves the minimum

average queue length among all feasible threshold policies. By equation (5.5), we
must have that

C
(
p,λ,π

L(p,λ)−1
th

) ≤ C
(
p,λ,π∗

p

) ≤ C
(
p,λ,π

L(p,λ)
th

)
.(5.14)

Since Lemma 3 only applies when B < ∞, equation (5.14) holds whenever the
buffer size, B , is greater than L(p,λ), but finite. We next extend equation (5.14)
to the case of B = ∞. Denote by ν∗

p a stationary optimal policy, when B = ∞ and
the constraint on average deletion rate is equal to p [equation (5.4)]. The upper
bound on C(p,λ,π∗

p) in equation (5.14) automatically holds for C(p,λ, ν∗
p), since

C(p,λ,π
L(p,λ)
th ) is still feasible when B = ∞. It remains to show a lower bound

of the form

C
(
p,λ, ν∗

p

) ≥ C
(
p,λ,π

L(p,λ)−2
th

)
,(5.15)

when B = ∞, which, together with the upper bound, will have implied that the

scaling of C(p,λ,π
L(p,λ)
th ) [equation (5.13)] carries over to ν∗

p ,

C
(
p,λ, ν∗

p

) ∼ C
(
p,λ,π

L(p,λ)
th

) ∼ log1/(1−p)

1

1 − λ
as λ → 1,(5.16)

thus proving Theorem 1.
To show equation (5.15), we will use a straightforward truncation argument that

relates the performance of an optimal policy under B = ∞ to the case of B < ∞.
Denote by {b∗

q} the deletion probabilities of a stationary optimal policy, ν∗
p , and by

{b∗
q(B ′)} the deletion probabilities for a truncated version, ν∗

p(B ′), with

b∗
q

(
B ′) = I

(
q ≤ B ′) · b∗

q

for all q ≥ 0. Since ν∗
p is optimal and yields the minimum average queue length, it

is without loss of generality to assume that the Markov process for Q(t) induced
by ν∗

p is positive recurrent. Denoting by {μ∗
i } and {μ∗

i (B
′)} the steady-state proba-

bility of queue length being equal to i under ν∗
p and ν∗

p(B ′), respectively, it follows
from the positive recurrence of Q(t) under νp and some algebra, that

lim
B ′→∞μ∗

i

(
B ′) = μ∗

i(5.17)
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for all i ∈ Z+ and

lim
B ′→∞C

(
p,λ, ν∗

p

(
B ′)) = C

(
p,λ, ν∗

p

)
.(5.18)

By equation (5.17) and the fact that b∗
i (B

′) = b∗
i for all 0 ≤ i ≤ B ′, we have that14

lim
B ′→∞ rd

(
p,λ, ν∗

p

(
B ′)) = lim

B ′→∞λ

∞∑
i=0

μ∗
i

(
B ′) · (

1 − b∗
i

(
B ′))

= rd
(
p,λ, ν∗

p

)
(5.19)

≤ p.

It is not difficult to verify, from the definition of L(p,λ) [equation (5.11)], that

lim
δ→0

L(p + δ, λ) ≥ L(p,λ) − 1,

for all p,λ. For all δ > 0, choose B ′ to be sufficiently large, so that

C
(
p,λ, ν∗

p

(
B ′)) ≤ C

(
p,λ, ν∗

p

) + δ,(5.20)

L
(
λ, rd

(
p,λ, ν∗

p

(
B ′))) ≥ L(p,λ) − 1.(5.21)

Let p′ = rd(p,λ, ν∗
p(B ′)). Since b∗

i (B
′) = 0 for all i ≥ B ′ + 1, by equa-

tion (5.21) we have

C
(
p,λ, ν∗

p

(
B ′)) ≥ C

(
p,λ,π∗

p′
)
,(5.22)

where π∗
p is the optimal stationary policy given in Lemma 3 under any the finite

buffer size B > B ′. We have

C
(
p,λ, ν∗

p

) + δ

(a)≥ C
(
p,λ, ν∗

p

(
B ′))

(b)≥ C
(
p,λ,π∗

p′
)

(5.23)

(c)≥ C
(
p,λ,π

L(p′,λ)−1
th

)
(d)≥ C

(
p,λ,π

L(p,λ)−2
th

)
,

where the inequalities (a) through (d) follow from equations (5.20), (5.22), (5.14)
and (5.21), respectively. Since equation (5.23) holds for all δ > 0, we have proven
equation (5.15). This completes the proof of Theorem 1.

14Note that, in general, rd (p,λ, ν∗
p(B ′)) could be greater than p, for any finite B ′.
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6. Optimal offline policies. We prove Theorem 2 in this section, which is
completed in two parts. In the first part (Section 6.2), we give a full characterization
of the sample path resulted by applying πNOB (Proposition 1), which turns out to
be a recurrent random walk. This allows us to obtain the steady-state distribution
of the queue length under πNOB in closed-form. From this, the expected queue
length, which is equal to the time-average queue length, C(p,λ,πNOB), can be
easily derived and is shown to be 1−p

λ−(1−p)
. Several side results we obtain along

this path will also be used in subsequent sections.
The second part of the proof (Section 6.3) focuses on showing the heavy-traffic

optimality of πNOB among the class of all feasible offline policies, namely, that
limλ→1 C(p,λ,πNOB) = limλ→1 C∗

�∞(p,λ), which, together with the first part,
proves Theorem 2 (Section 6.4). The optimality result is proved using a sample-
path-based analysis, by relating the resulting queue length sample path of πNOB to
that of a greedy deletion rule, which has an optimal deletion performance over a
finite time horizon, {1, . . . ,N}, given any initial sample path. We then show that
the discrepancy between πNOB and the greedy policy, in terms of the resulting
time-average queue length after deletion, diminishes almost surely as N → ∞ and
λ → 1 (with the two limits taken in this order). This establishes the heavy-traffic
optimality of πNOB.

6.1. Additional notation. Define Q̃ as the resulting queue length process after
applying πNOB

Q̃ = D
(
Q0,M�)

and Q as the shifted version of Q̃, so that Q starts from the first deletion in Q̃,

Q[n] = Q̃
[
n + m�

1
]
, n ∈ Z+.(6.1)

We say that B = {l, . . . , u} ⊂ N is a busy period of Q if

Q[l − 1] = Q[u] = 0 and Q[n] > 0 for all n ∈ {l, . . . , u − 1}.(6.2)

We may write Bj = {lj , . . . , uj } to mean the j th busy period of Q. An example of
a busy period is illustrated in Figure 6.

Finally, we will refer to the set of slots between two adjacent deletions in Q

(note the offset of m1),

Ei = {
m�

i − m�
1 ,m�

i + 1 − m�
1 , . . . ,m�

i+1 − 1 − m�
1

}
(6.3)

as the ith deletion epoch.

6.2. Performance of the no-job-left-behind policy. For simplicity of notation,
throughout this section, we will denote by M = {mi : i ∈ N} the deletion sequence
generated by applying πNOB to Q0, when there is no ambiguity (as opposed to
using M� and m�

i ). The following lemma summarizes some important properties
of Q which will be used repeatedly.
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LEMMA 4. Suppose 1 > λ > 1 − p > 0. The following hold with probability
one:

(1) For all n ∈ N, we have Q[n] = Q0[n + m1] − I (M,n + m1).
(2) For all i ∈ N, we have n = mi − m1, if and only if

Q[n] = Q[n − 1] = 0(6.4)

with the convention that Q[−1] = 0. In other words, the appearance of two con-
secutive zeros in Q is equivalent to having a deletion on the second zero.

(3) Q[n] ∈ Z+ for all n ∈ Z+.

PROOF. See Appendix A.2 �

The next proposition is the main result of this subsection. It specifies the prob-
ability law that governs the evolution of Q.

PROPOSITION 1. {Q[n] :n ∈ Z+} is a random walk on Z+, with Q[0] = 0,
and, for all n ∈ N and x1, x2 ∈ Z+,

P
(
Q[n + 1] = x2|Q[n] = x2

) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − p

λ + 1 − p
, x2 − x1 = 1,

λ

λ + 1 − p
, x2 − x1 = −1,

0, otherwise,
if x1 > 0 and

P
(
Q[n + 1] = x2|Q[n] = x1

) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − p

λ + 1 − p
, x2 − x1 = 1,

λ

λ + 1 − p
, x2 − x1 = 0,

0, otherwise,
if x1 = 0.

PROOF. For a sequence {X[n] :n ∈ N} and s, t ∈ N, s ≤ t , we will use the
shorthand

Xt
s = {

X[s], . . . ,X[t]}.
Fix n ∈ N , and a sequence (q1, . . . , qn) ⊂ Z

n+. We have

P
(
Q[n] = q[n]|Qn−1

1 = qn−1
1

)
=

n∑
k=1

∑
t1,...,tk,

tk≤n−1+t1

P
(
Q[n] = q[n]|Qn−1

1 = qn−1
1 ,mk

1 = tk1 ,mk+1 ≥ n + t1
)

(6.5)

× P
(
mk

1 = tk1 ,mk+1 ≥ n + t1|Qn−1
1 = qn−1

1

)
.
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Restricting to the values of ti ’s and q[i]’s under which the summand is nonzero,
the first factor in the summand can be written as

P
(
Q[n] = q[n]|Qn−1

1 = qn−1
1 ,mk

1 = tk1 ,mk+1 ≥ n + t1
)

= P
(
Q̃[n + m1] = q[n]|Q̃m1+n−1

m1+1 = qn−1
1 ,mk

1 = tk1 ,mk+1 ≥ n + t1
)

(a)= P

(
Q0[n + t1] = q[n] + k|Q0[s + t1] = q[s] + I

({ti}ki=1, s + t1
)
,

(6.6)
∀1 ≤ s ≤ n − 1 and min

r≥n+t1
Q0[r] ≥ k

)
(b)= P

(
Q0[n + t1] = q[n] + k|Q0[n − 1 + t1] = q[n − 1] + k

and min
r≥n+t1

Q0[r] ≥ k
)
,

where Q̃ was defined in equation (6.1). Step (a) follows from Lemma 4 and the
fact that tk ≤ n − 1 + t1, and (b) from the Markov property of Q0 and the fact that
the events {minr≥n+t1 Q0[r] ≥ k}, {Q0[n + t1] = q[n] + k} and their intersection,
depend only on the values of {Q0[s] : s ≥ n + t1}, and are hence independent of
{Q0[s] : 1 ≤ s ≤ n − 2 + t1} conditional on the value of Q0[t1 + n − 1].

Since the process Q lives in Z+ (Lemma 4), it suffices to consider the case of
q[n] = q[n − 1] + 1, and show that

P

(
Q0[n + t1] = q[n − 1] + 1 + k|Q0[n − 1 + t1] = q[n − 1] + k

and min
r≥n+t1

Q0[r] ≥ k
)

(6.7)

= 1 − p

λ + 1 − p

for all q[n − 1] ∈ Z+. Since Q[mi − m1] = Q[mi − 1 − m1] = 0 for all i

(Lemma 4), the fact that q[n] = q[n − 1] + 1 > 0 implies that

n < mk+1 − 1 + m1.(6.8)

Moreover, since Q0[mk+1 − 1] = k and n < mk+1 − 1 + m1, we have that

q[n] > 0 implies Q0[t] = k for some t ≥ n + 1 + m1.(6.9)

We consider two cases, depending on the value of q[n − 1].
Case 1: q[n − 1] > 0. Using the same argument that led to equation (6.9), we

have that

q[n − 1] > 0 implies Q0[t] = k for some t ≥ n + m1.(6.10)
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It is important to note that, despite the similarity of their conclusions, equa-
tions (6.9) and (6.10) are different in their assumptions (i.e., q[n] versus q[n− 1]).
We have

P

(
Q0[n + t1] = q[n − 1] + 1 + k|Q0[n − 1 + t1] = q[n − 1] + k

and min
r≥n+t1

Q0[r] ≥ k
)

(a)= P

(
Q0[n + t1] = q[n − 1] + 1 + k|Q0[n − 1 + t1] = q[n − 1] + k

(6.11)
and min

r≥n+t1
Q0[r] = k

)
(b)= P

(
Q0[2] = q[n − 1] + 1|Q0[1] = q[n − 1] and min

r≥2
Q0[r] = 0

)
(c)= 1 − p

λ + 1 − p
,

where (a) follows from equation (6.10), (b) from the stationary and space-
homogeneity of the Markov chain Q0 and (c) from the following well-known
property of a transient random walk conditional to returning to zero:

LEMMA 5. Let {X[n] :n ∈ N} be a random walk on Z+, such that for all
x1, x2 ∈ Z+ and n ∈ N,

P
(
X[n + 1] = x2|X[n] = x2

) =
⎧⎪⎨⎪⎩

q, x2 − x1 = 1,

1 − q, x2 − x1 = −1,

0, otherwise,

if x1 > 0 and

P
(
X[n + 1] = x2|X[n] = x1

) =
⎧⎪⎨⎪⎩

q, x2 − x1 = 1,

1 − q, x2 − x1 = 0,

0, otherwise,

if x1 = 0, where q ∈ (1
2 ,1). Then for all x1, x2 ∈ Z+ and n ∈N,

P

(
X[n + 1] = x2|X[n] = x1, min

r≥n+1
X[r] = 0

)
=

⎧⎪⎨⎪⎩
1 − q, x2 − x1 = 1,

q, x2 − x1 = −1,

0, otherwise,

if x1 > 0 and

P

(
X[n + 1] = x2|X[n] = x1, min

r≥n+1
X[r] = 0

)
=

⎧⎪⎨⎪⎩
1 − q, x2 − x1 = 1,

q, x2 − x1 = 0,

0, otherwise,
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if x1 = 0. In other words, conditional on the eventual return to 0 and before it
happens, a transient random walk obeys the same probability law as a random
walk with the reversed one-step transition probability.

PROOF. See Appendix A.3. �

Case 2: q[n − 1] = 0 We have

P

(
Q0[n + t1] = q[n − 1] + 1 + k|Q0[n − 1 + t1] = q[n − 1] + k

and min
r≥n+t1

Q0[r] ≥ k
)

(a)= P

(
Q0[n + t1] = 1 + k and min

r>n+t1
Q0[r] = k|Q0[n − 1 + t1] = k

(6.12)
and min

r≥n+t1
Q0[r] ≥ k

)
(b)= P

(
Q0[2] = 2 and min

r>2
Q0[r] = 1|Q0[1] = 1 and min

r≥2
Q0[r] ≥ 1

)
,

�= x,

where (a) follows from equation (6.9) [note its difference with equation (6.10)],
and (b) from the stationarity and space-homogeneity of Q0, and the assumption
that k ≥ 1 [equation (6.5)].

Since equations (6.11) and (6.12) hold for all x1, k ∈ Z+ and n ≥ m1 + 1, by
equation (6.5), we have that

P
(
Q[n] = q[n]|Qn−1

1 = qn−1
1

)
(6.13)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − p

λ + 1 − p
, q[n] − q[n − 1] = 1,

λ

λ + 1 − p
, q[n] − q[n − 1] = −1,

0, otherwise,

if q[n − 1] > 0 and

P
(
Q[n] = q[n]|Qn−1

1 = qn−1
1

) =
⎧⎪⎨⎪⎩

x, q[n] − q[n − 1] = 1,

1 − x, q[n] − q[n − 1] = 0,

0, otherwise,

(6.14)

if q[n − 1] = 0, where x represents the value of the probability in equation (6.12).
Clearly, Q[0] = Q0[m1] = 0. We next show that x is indeed equal to 1−p

λ+1−p
, which

will have proven Proposition 1.
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One can in principle obtain the value of x by directly computing the probability
in line (b) of equation (6.12), which can be quite difficult to do. Instead, we will
use an indirect approach that turns out to be computationally much simpler: we
will relate x to the rate of deletion of πNOB using renewal theory, and then solve
for x. As a by-product of this approach, we will also get a better understanding
of an important regenerative structure of πNOB [equation (6.20)], which will be
useful for the analysis in subsequent sections.

By equations (6.13) and (6.14), Q is a positive recurrent Markov chain, and
Q[n] converges to a well-defined steady-state distribution, Q[∞], as n → ∞. Let-
ting πi = P(Q[∞] = i), it is easy to verify via the balancing equations that

πi = π0
x(λ + 1 − p)

λ
·
(

1 − p

λ

)i−1

∀i ≥ 1(6.15)

and since
∑

i≥0 πi = 1, we obtain

π0 = 1

1 + x · (λ + 1 − p)/(λ − (1 − p))
.(6.16)

Since the chain Q is also irreducible, the limiting fraction of time that Q spends
in state 0 is therefore equal to π0,

lim
n→∞

1

n

n∑
t=1

I
(
Q[t] = 0

) = π0 = 1

1 + x · (λ + 1 − p)/(λ − (1 − p))
.(6.17)

Next, we would like to know many of these visits to state 0 correspond to a
deletion. Recall the notion of a busy period and deletion epoch, defined in equa-
tions (6.2) and (6.3), respectively. By Lemma 4, n corresponds to a deletion if any
only if Q[n] = Q[n − 1] = 0. Consider a deletion in slot mi . If Q[mi + 1] = 0,
then mi + 1 also corresponds to a deletion, that is, mi + 1 = mi+1. If instead
Q[mi + 1] = 1, which happens with probability x, the fact that Q[mi+1 − 1] = 0
implies that there exists at least one busy period, {l, . . . , u}, between mi and mi+1,
with l = mi and u ≤ mi+1 − 1. At the end of this period, a new busy period starts
with probability x and so on. In summary, a deletion epoch Ei consists of the slot
mi − m1, plus Ni busy periods, where the Ni are i.i.d., with15

N1
d= Geo(1 − x) − 1(6.18)

and hence

|Ei | = 1 +
Ni∑

j=1

Bi,j ,(6.19)

where {Bi,j : i, j ∈ N} are i.i.d. random variables, and Bi,j corresponds to the
length of the j th busy period in the ith epoch.

15Geo(p) denotes a geometric random variable with mean 1
p .
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Define W [t] = (Q[t],Q[t + 1]), t ∈ Z+. Since Q is Markov, W [t] is also a
Markov chain, taking values in Z

2+. Since a deletion occurs in slot t if and only if
Q[t] = Q[t −1] = 0 (Lemma 4), |Ei | corresponds to excursion times between two
adjacent visits of W to the state (0,0), and hence are i.i.d. Using the elementary
renewal theorem, we have

lim
n→∞

1

n
I (M,n) = 1

E(|E1|) a.s.(6.20)

and by viewing each visit of W to (0,0) as a renewal event and using the fact that
exactly one deletion occurs within a deletion epoch. Denoting by Ri the number of
visits to the state 0 within Ei , we have that Ri = 1 +Ni . Treating Ri as the reward
associated with the renewal interval Ei , we have, by the time-average of a renewal
reward process (cf. Theorem 6, Chapter 3, [10]), that

lim
n→∞

1

n

n∑
t=1

I
(
Q[t] = 0

) = E(R1)

E(|E1|) = E(N1) + 1

E(|E1|) a.s.(6.21)

by treating each visit of Q to (0,0) as a renewal event. From equations
(6.20) and (6.21), we have

limn→∞(1/n)I (M,n)

limn→∞(1/n)
∑n

t=1 I(Q[t] = 0)
= 1

E(N1)
= 1 − x.(6.22)

Combining equations (4.1), (6.17) and (6.22), and the fact that E(N1) = E(Geo(1−
x)) − 1 = 1

1−x
− 1, we have

λ − (1 − p)

λ + 1 − p
·
[
1 + x · λ + 1 − p

λ − (1 − p)

]
= 1 − x,(6.23)

which yields

x = 1 − p

λ + 1 − p
.(6.24)

This completes the proof of Proposition 1. �

We summarize some of the key consequences of Proposition 1 below, most
of which are easy to derive using renewal theory and well-known properties of
positive-recurrent random walks.

PROPOSITION 2. Suppose that 1 > λ > 1 − p > 0, and denote by Q[∞] the
steady-state distribution of Q.

(1) For all i ∈ Z+,

P
(
Q[∞] = i

) =
(

1 − 1 − p

λ

)
·
(

1 − p

λ

)i

.(6.25)
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(2) Almost surely, we have that

lim
n→∞

1

n

n∑
i=1

Q[i] = E
(
Q[∞]) = 1 − p

λ − (1 − p)
.(6.26)

(3) Let Ei = {m�
i ,m�

i + 1, . . . ,m�
i+1 − 1,m�

i+1}. Then the |Ei | are i.i.d., with

E
(|E1|) = 1

limn→∞(1/n)I (M�,n)
= λ + 1 − p

λ − (1 − p)
(6.27)

and there exists a, b > 0 such that for all x ∈ R+

P
(|E1| ≥ x

) ≤ a · exp(−b · x).(6.28)

(4) Almost surely, we have that

m�
i ∼ 1

E(|E1|) · i = λ − (1 − p)

λ + 1 − p
· i(6.29)

as i → ∞.

PROOF. Claim 1 follows from the well-known steady-state distribution of a
random walk, or equivalently, the fact that Q[∞] has the same distribution as the
steady-state number of jobs in an M/M/1 queue with traffic intensity ρ = 1−p

λ
.

For Claim 2, since Q is an irreducible Markov chain that is positive recurrent, it
follows that its time-average coincides with E(Q[∞]) almost surely.

The fact that Ei ’s are i.i.d. was shown in the discussion preceding equa-
tion (6.20) in the proof of Proposition 1. The value of E(|E1|) follows by com-
bining equations (4.1) and (6.20).

Let Bi,j be the length of the j th busy period [defined in equation (6.2)] in Ei .
By definition, B1,1 is distributed as the time till the random walk Q reaches state
0, starting from state 1. We have

P(B1,1 ≥ x) ≤ P

( �x�∑
j=1

Xj ≤ −1

)
,

where the Xj ’s are i.i.d., with P(X1 = 1) = 1−p
λ+1−p

and P(X1 = −1) = λ
λ+1−p

,
which, by the Chernoff bound, implies an exponential tail bound for P(B1,1 ≥ x),
and in particular,

lim
θ↓0

GB1,1(θ) = 1.(6.30)
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By equation (6.19), the moment generating function for |E1| is given by

G|E1|(ε) = E
(
exp

(
ε · |E1|))

= E

(
exp

(
ε ·

(
1 +

N1∑
j=1

B1,j

)))
(6.31)

(a)= E
(
eε) ·E(

exp
(
N1 · GB1,1(ε)

))
= E

(
eε) · GN1

(
ln

(
GB1,1(ε)

))
,

where (a) follows from the fact that {N1}∪{B1,j : j ∈N} are mutually independent,

and GN1(x) = E(exp(x · N1)). Since N1
d= Geo(1 − x) − 1, limx↓0 GN1(x) = 1,

and by equation (6.30), we have that limε↓0 G|E1|(ε) = 1, which implies equa-
tion (6.28).

Finally, equation (6.29) follows from the third claim and the elementary renewal
theorem. �

6.3. Optimality of the no-job-left-behind policy in heavy traffic. This section
is devoted to proving the optimality of πNOB as λ → 1, stated in the second claim
of Theorem 2, which we isolate here in the form of the following proposition.

PROPOSITION 3. Fix p ∈ (0,1). We have that

lim
λ→1

C(p,λ,πNOB) = lim
λ→1

C∗
�∞(p,λ).

The proof is given at the end of this section, and we do so by showing the
following:

(1) Over a finite horizon N and given a fixed number of deletions to be made,
a greedy deletion rule is optimal in minimizing the post-deletion area under Q over
{1, . . . ,N}.

(2) Any point of deletion chosen by πNOB will also be chosen by the greedy
policy, as N → ∞.

(3) The fraction of points chosen by the greedy policy but not by πNOB dimin-
ishes as λ → 1, and hence the delay produced by πNOB is the best possible, as
λ → 1.

Fix N ∈ N. Let S(Q,N) be the partial sum S(Q,N) = ∑N
n=1 Q[n]. For any

sample path Q, denote by �(Q,n) the marginal decrease of area under Q over the
horizon {1, . . . ,N} by applying a deletion at slot n, that is,

�P (Q,N,n) = S(Q,N) − S
(
DP (Q,n),N

)
and, analogously,

�
(
Q,N,M ′) = S(Q,N) − S

(
D

(
Q,M ′),N)

,
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where M ′ is a deletion sequence.
We next define the notion of a greedy deletion rule, which constructs a dele-

tion sequence by recursively adding the slot that leads to the maximum marginal
decrease in S(Q,N).

DEFINITION 9 (Greedy deletion rule). Fix an initial sample path Q0 and
K,N ∈ N. The greedy deletion rule is a mapping, G(Q0,N,K), which outputs
a finite deletion sequence MG = {mG

i : 1 ≤ i ≤ K}, given by

mG
1 ∈ arg max

m∈�(Q0,N)
�P

(
Q0,N,m

)
,

mG
k ∈ arg max

m∈�(Qk−1,N)
�P

(
Qk−1

MG ,N,m
)
, 2 ≤ k ≤ K,

where �(Q,N) = �(Q) ∩ {1, . . . ,N} is the set of all locations in Q in the first
N slots that can be deleted, and Qk

MG = D(Q0, {mG
i : 1 ≤ i ≤ k}). Note that

we will allow mG
k = ∞, if there is no more entry to delete [i.e., �(Qk−1) ∩

{1, . . . ,N} =∅].

We now state a key lemma that will be used in proving Theorem 2. It shows that
over a finite horizon and for a finite number of deletions, the greedy deletion rule
yields the maximum reduction in the area under the sample path.

LEMMA 6 (Dominance of greedy policy). Fix an initial sample path Q0, hori-
zon N ∈ N and number of deletions K ∈ N. Let M ′ be any deletion sequence with
I (M ′,N) = K . Then

S
(
D

(
Q0,M ′),N) ≥ S

(
D

(
Q0,MG)

,N
)
,

where MG = G(Q0,N,K) is the deletion sequence generated by the greedy pol-
icy.

PROOF. By Lemma 1, it suffices to show that, for any sample path {Q[n] ∈
Z+ :n ∈ N} with |Q[n+1]−Q[n]| = 1 if Q[n] > 0 and |Q[n+1]−Q[n]| ∈ {0,1}
if Q[n] = 0, we have

S
(
D

(
Q,M ′),N)

(6.32)
≥ �P

(
Q,N,mG

1
) + min

|M̃|=k−1,

M̃⊂�(D(Q,mG
1 ),N)

S
(
D

(
Q1

MG, M̃
)
,N

)
.

By induction, this would imply that we should use the greedy rule at every step of
deletion up to K . The following lemma states a simple monotonicity property. The
proof is elementary, and is omitted.
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LEMMA 7 (Monotonicity in deletions). Let Q and Q′ be two sample paths
such that

Q[n] ≤ Q′[n] ∀n ∈ {1, . . . ,N}.
Then, for any K ≥ 1,

min|M|=K,

M⊂�(Q,N)

S
(
D(Q,M),N

) ≤ min|M|=K,

M⊂�(Q′,N)

S
(
D

(
Q′,M

)
,N

)
(6.33)

and, for any finite deletion sequence M ′ ⊂ �(Q,N),

�
(
Q,N,M ′) ≥ �

(
Q′,N,M ′).(6.34)

Recall the definition of a busy period in equation (6.2). Let J (Q,N) be the
total number of busy periods in {Q[n] : 1 ≤ n ≤ N}, with the additional convention

Q[N +1] �= 0 so that the last busy period always ends on N . Let Bj = {lj , . . . , uj }
be the j th busy period. It can be verified that a deletion in location n leads to a
decrease in the value of S(Q,N) that is no more than the width of the busy period
to which n belongs; cf. Figure 6. Therefore, by definition, a greedy policy always
seeks to delete in each step the first arriving job during a longest busy period in the
current sample path, and hence

�
(
Q,N,G(Q,N,1)

) = max
1≤j≤J (Q,N)

|Bj |.(6.35)

Let

J ∗(Q,N) = arg max
1≤j≤J (Q,N)

|Bj |.

We consider the following cases, depending on whether M ′ chooses to delete any
job in the busy periods in J ∗(Q,N).

Case 1: M ′ ∩ (
⋃

j∈J ∗(Q,N) Bj ) �= ∅. If lj∗ ∈ M ′ for some j∗ ∈ J ∗, by equa-
tion (6.35), we can set mG

1 to lj∗ . Since mG
1 ∈ M ′ and the order of deletions does

not impact the final resulting delay (Lemma 1), we have that equation (6.32) holds,
and we are done. Otherwise, choose m∗ ∈ M ′ ∩Bj∗ for some j∗ ∈ J ∗, and we have
m∗ > lj∗ . Let

Q′ = DP

(
Q,m∗)

and Q̂ = DP (Q, lj∗).

Since Q[n] > 0, ∀n ∈ {lj∗, . . . , uj∗ − 1}, we have Q̂[n] = Q[n] − 1 ≤ Q′[n],
∀n ∈ {lj∗, . . . , uj∗ − 1} and Q′[n] = Q[n] = Q̂[n], ∀n /∈ {lj∗, . . . , uj∗ − 1}, which
implies that

Q̂[n] ≤ Q′[n] ∀n ∈ {1, . . . ,N}.(6.36)

Equation (6.32) holds by combining equation (6.36) and equation (6.33) in
Lemma 7, with K = k − 1.
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Case 2: M ′ ∩ (
⋃

j∈J ∗(Q,N) Bj ) = ∅. Let m∗ be any element in M ′ and Q′ =
DP (Q,m∗). Clearly, Q[n] ≥ Q′[n] for all n ∈ {1, . . . ,N}, and by equation (6.34)
in Lemma 7, we have that16

�
(
Q,N,M ′ \ {

m∗}) ≥ �
(
DP

(
Q,m∗)

,N,M ′ \ {
m∗})

.(6.37)

Since M ′ ∩ (
⋃

j∈J ∗(Q,N) Bj ) = ∅, we have that

�P

(
D

(
Q,M ′ \ {

m∗})
,N,mG

1
) = max

1≤j≤J (Q,N)
|Bj | > �P

(
Q,N,m∗)

.(6.38)

Let M̂ = mG
1 ∪ (M ′ \ {m∗}), and we have that

S
(
D(Q,M̂),N

)
= S(Q,N) − �

(
Q,N,M ′ \ {

m∗}) − �P

(
D

(
Q,M ′ \ {

m∗})
,N,mG

1
)

(a)≤ S(Q,N) − �
(
DP

(
Q,m∗)

,N,M ′ \ {
m∗})

− �P

(
D

(
Q,M ′ \ {

m∗})
,N,mG

1
)

(b)
< S(Q,N) − �

(
DP

(
Q,m∗)

,N,M ′ \ {
m∗}) − �P

(
Q,N,m∗)

= S
(
D

(
Q,M ′),N)

,

where (a) and (b) follow from equations (6.37) and (6.38), respectively, which
shows that equation (6.32) holds (and in this case the inequality there is strict).

Cases 1 and 2 together complete the proof of Lemma 6. �

We are now ready to prove Proposition 3.

PROOF OF PROPOSITION 3. Lemma 6 shows that, for any fixed number of
deletions over a finite horizon N , the greedy deletion policy (Definition 9) yields
the smallest area under the resulting sample path, Q, over {1, . . . ,N}. The main
idea of proof is to show that the area under Q after applying πNOB is asymptoti-
cally the same as that of the greedy policy, as N → ∞ and λ → 1 (in this particular
order of limits). In some sense, this means that the jobs in M� account for almost
all of the delays in the system, as λ → 1. The following technical lemma is useful.

LEMMA 8. For a finite set S ⊂R and k ∈ N, define

f (S, k) = sum of the k largest elements in S

|S| .

Let {Xi : 1 ≤ i ≤ n} be i.i.d. random variables taking values in Z+, where
E(X1) < ∞. Then for any sequence of random variables {Hn :n ∈ N}, with

16For finite sets A and B , A \ B = {a ∈ A :a /∈ B}.
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Hn � αn a.s. as n → ∞ for some α ∈ (0,1), we have

lim sup
n→∞

f
({Xi : 1 ≤ i ≤ n},Hn

) ≤ E
(
X1 · I(X1 ≥ �F−1

X1
(α)

))
a.s.,(6.39)

where �F−1
X1

(y) = min{x ∈ N :P(X1 ≥ x) < y}.

PROOF. See Appendix A.4. �

Fix an initial sample path Q0. We will denote by M� = {m�
i : i ∈ N} the dele-

tion sequence generated by πNOB on Q0. Define

l(n) = n − max
1≤i≤I (M�,n)

|Ei |,(6.40)

where Ei is the ith deletion epoch of M� , defined in equation (6.3). Since Q0[n] ≥
Q0[mi] for all i ∈N, it is easy to check that

�P

(
D

(
Q0,

{
m�

j : 1 ≤ j ≤ i − 1
})

, n,m�
i

) = n − m�
i + 1

for all i ∈ N. The function l was defined so that the first I (M�, l(n)) deletions
made by a greedy rule over the horizon {1, . . . , n} are exactly {1, . . . , l(n)} ∩ M� .
More formally, we have the following lemma.

LEMMA 9. Fix n ∈ N, and let MG = G(Q0, n, I (M�, l(n))). Then mG
i =

m�
i , for all i ∈ {1, . . . , I (M�, l(n))}.

Fix K ∈ N, and an arbitrary feasible deletion sequence, M̃ , generated by a pol-
icy in �∞. We can write

I
(
M̃,m�

K

) = I
(
M�, l

(
m�

K

)) + (
I
(
M�,m�

K

) − I
(
M�, l

(
m�

K

)))
+ (

I
(
M̃,m�

K

) − I
(
M�,m�

K

))
= I

(
M�, l

(
m�

K

)) + (
K − I

(
M�, l

(
m�

K

)))
(6.41)

+ (
I
(
M̃,m�

K

) − I
(
M�,m�

K

))
= I

(
M�, l

(
m�

K

)) + h(K),

where

h(K) = (
K − I

(
M�, l

(
m�

K

))) + (
I
(
M̃,m�

K

) − I
(
M�,m�

K

))
.(6.42)

We have the following characterization of h.

LEMMA 10. h(K)� 1−λ
λ−(1−p)

· K , as K → ∞, a.s.

PROOF. See Appendix A.5. �
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Let

MG,n = G
(
Q0, n, I (M̃, n)

)
,(6.43)

where the greedy deletion map G was defined in Definition 9. By Lemma 9 and
the definition of MG,n, we have that

M� ∩ {
1, . . . , l

(
m�

K

)} ⊂ MG,m�
K .(6.44)

Therefore, we can write

MG,m�
K = (

M� ∩ {
1, . . . , l

(
m�

K

)}) ∪ �MG
K,(6.45)

where �MG
K

�= MG,m�
K \ (M� ∩ {1, . . . , l(m�

K)}). Since |MG,m�
K | = I (M̃,m�

K) by
definition, by equation (6.41), ∣∣ �MG

K

∣∣ = h(K).(6.46)

We have

S
(
D

(
Q0,M�)

,m�
K

) − S
(
D

(
Q0, M̃

)
,m�

K

)
(a)≤ S

(
D

(
Q0,M�)

,m�
K

) − S
(
D

(
Q0,MG,m�

K
)
,m�

K

)
(6.47)

(b)= �
(
D

(
Q0,M�)

,m�
K, �MG

K

)
,

where (a) is based on the dominance of the greedy policy over any finite horizon
(Lemma 6), and (b) follows from equation (6.45).

Finally, we claim that there exists g(x) :R → R+, with g(x) → 0 as x → 1,
such that

lim sup
K→∞

�(D(Q0,M�),m�
K, �MG

K)

m�
K

≤ g(λ) a.s.(6.48)

Equations (6.47) and (6.48) combined imply that

C(p,λ,πNOB) = lim sup
K→∞

S(D(Q0,M�),m�
K)

m�
K

≤ g(λ) + lim sup
K→∞

S(D(Q0, M̃),m�
K)

m�
K

,(6.49)

= g(λ) + lim sup
n→∞

S(D(Q0, M̃), n)

n
a.s.,

which shows that

C(p,λ,πNOB) ≤ g(λ) + inf
π∈�∞

C(p,λ,π).

Since g(λ) → 0 as λ → 1, this proves Proposition 3.
To show equation (6.48), denote by Q the sample path after applying πNOB,

Q = D
(
Q0,M�)



QUEUING WITH FUTURE INFORMATION 2129

and by Vi the area under Q within Ei ,

Vi =
m�

i+1−1∑
n=m�

i

Q[n].

An example of Vi is illustrated as the area of the shaded region in Figure 6.
By Proposition 1, Q is a Markov chain, and so is the process W [n] = (Q[n],
Q[n + 1]). By Lemma 4, Ei corresponds to the indices between two adjacent re-
turns of the chain W to state (0,0). Since the ith return of a Markov chain to a
particular state is a stopping time, it can be shown, using the strong Markov prop-
erty of W , that the segments of Q, {Q[n] :n ∈ Ei}, are mutually independent and
identically distributed among different values of i. Therefore, the Vi’s are i.i.d.
Furthermore,

E(V1)
(a)≤ E

(|E1|2) (b)
< ∞,(6.50)

where (a) follows from the fact that |Q[n + 1] − Q[n]| ≤ 1 for all n, and hence
Vi ≤ |Ei |2 for any sample path of Q0, and (b) from the exponential tail bound on
P(|E1| ≥ x), given in equation (6.28).

Since the value of Q on the two ends of Ei , m�
i and m�

i+1 − 1, are
both zero, each additional deletion within Ei cannot produce a marginal de-
crease of area under Q of more than Vi ; cf. Figure 6. Therefore, the value
of �(D(Q0,M�),m�

K, �MG
K) can be no greater than the sum of the h(K) largest

Vi’s over the horizon n ∈ {1, . . . ,m�
K}. We have

lim sup
K→∞

�(D(Q0,M�),m�
K, �MG

K)

m�
K

= lim sup
K→∞

f
({Vi : 1 ≤ i ≤ K}, h(K)

) · K

m�
K

(6.51)
(a)= lim sup

K→∞
f

({Vi : 1 ≤ i ≤ K}, h(K)
) · λ + 1 − p

λ − (1 − q)

(b)= E

(
V1 · I

(
X1 ≥ �F−1

V1

(
1 − λ

λ − (1 − p)

)))
· λ + 1 − p

λ − (1 − q)
,

where (a) follows from equation (6.29), and (b) from Lemmas 8 and 10. Since
E(V1) < ∞, and �F−1

V1
(x) → ∞ as x → 0, it follows that

E

(
V1 · I

(
X1 ≥ �F−1

V1

(
1 − λ

λ − (1 − p)

)))
→ 0

as λ → 1. Equation (6.48) is proved by setting

g(λ) = E

(
V1 · I

(
X1 ≥ �F−1

V1

(
1 − λ

λ − (1 − p)

)))
· λ + 1 − p

λ − (1 − q)
.

This completes the proof of Proposition 3. �
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6.3.1. Why not use greedy? The proof of Proposition 3 relies on a sample-
path-wise coupling to the performance of a greedy deletion rule. It is then only
natural to ask: since the time horizon is indeed finite in all practical applications,
why do not we simply use the greedy rule as the preferred offline policy, as opposed
to πNOB?

There are at least two reasons for focusing on πNOB instead of the greedy rule.
First, the structure of the greedy rule is highly global, in the sense that each deletion
decision uses information of the entire sample path over the horizon. As a result,
the greedy rule tells us little on how to design a good policy with a fixed looka-
head window (e.g., Theorem 3). In contrast, the performance analysis of πNOB in
Section 6.2 reveals a highly regenerative structure: the deletions made by πNOB

essentially depend only on the dynamics of Q0 in the same deletion epoch (the
Ei ’s), and what happens beyond the current epoch becomes irrelevant. This is the
key intuition that led to our construction of the finite-lookahead policy in Theo-
rem 3. A second (and perhaps minor) reason is that of computational complexity.
By a small sacrifice in performance, πNOB can be efficiently implemented using a
linear-time algorithm (Section 4.2), while it is easy to see that a naive implemen-
tation of the greedy rule would require super-linear complexity with respect to the
length of the horizon.

6.4. Proof of Theorem 2. The fact that πNOB is feasible follows from equa-
tion (4.1) in Lemma 2, that is,

lim sup
n→∞

1

n
I
(
M�,n

) ≤ λ − (1 − p)

λ + 1 − p
<

p

λ + 1 − p
a.s.

Let {Q̃[n] :n ∈ Z+} be the resulting sample path after applying πNOB to the
initial sample path {Q0[n] :n ∈ Z+}, and let

Q[n] = Q̃
[
n + m�

1
] ∀n ∈ N,

where m�
1 is the index of the first deletion made by πNOB. Since λ > 1 − p, the

random walk Q0 is transient, and hence m�
1 < ∞ almost surely. We have that,

almost surely,

C(p,λ,πNOB) = lim
n→∞

1

n

n∑
i=1

Q̃[i]

= lim
n→∞

1

n

m�
1∑

i=1

Q̃[i] + lim
n→∞

1

n

n∑
i=1

Q[i](6.52)

= 1 − p

λ − (1 − p)
,
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where the last equality follows from equation (6.26) in Proposition 2, and the fact
that m1 < ∞ almost surely. Letting λ → 1 in equation (6.52) yields the finite limit
of delay under heavy traffic,

lim
λ→1

C(p,λ,πNOB) = lim
λ→1

1 − p

λ − (1 − p)
= 1 − p

p
.

Finally, the delay optimality of πNOB in heavy traffic was proved in Proposi-
tion 3, that is, that

lim
λ→1

C(p,λ,πNOB) = lim
λ→1

C∗
�∞(p,λ).

This completes the proof of Theorem 2.

7. Policies with a finite lookahead.

7.1. Proof of Theorem 3. As pointed out in the discussion preceding Theo-
rem 3, for any initial sample path and w < ∞, an arrival that is deleted under the
πNOB policy will also be deleted under πw

NOB. Therefore, the delay guarantee for

πNOB (Theorem 2) carries over to π
w(λ)
NOB , and for the rest of the proof, we will be

focusing on showing that π
w(λ)
NOB is feasible under an appropriate scaling of w(λ).

We begin by stating an exponential tail bound on the distribution of the discrete-
time predictive window, W(λ,n), defined in equation (3.6),

W(λ,n) = max
{
k ∈ Z+ :Tn+k ≤ Tn + w(λ)

}
.

It is easy to see that {W(λ,m�
i ) : i ∈ N} are i.i.d., with W(λ,m�

1 ) distributed as a
Poisson random variable with mean (λ + 1 − p)w(λ). Since

P
(
W

(
λ,m�

1
) ≥ x

) ≤ P

(�w(λ)�∑
k=1

Xk

)
,

where the Xk are i.i.d. Poisson random variables with mean λ + (1 − p), applying
the Chernoff bound, we have that, there exist c, d > 0 such that

P

(
W

(
λ,m�

1
) ≥ λ + 1 − p

2
· w(λ)

)
≤ c · exp

(−d · w(λ)
)

(7.1)

for all w(λ) > 0.
We now analyze the deletion rate resulted by the π

w(λ)
NOB policy. For the pure

purpose of analysis (as opposed to practical efficiency), we will consider a new
deletion policy, denoted by σw(λ), which can be viewed as a relaxation of π

w(λ)
NOB .

DEFINITION 10. Fix w ∈ R+. The deletion policy σw is defined such that for
each deletion epoch Ei , i ∈N:
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(1) if |Ei | ≤ W(λ,m�
i ), then only the first arrival of this epoch, namely, the

arrival in slot m�
i , is deleted;

(2) otherwise, all arrivals within this epoch are deleted.

It is easy to verify that σw can be implemented with w units of look-ahead,
and the set of deletions made by σw(λ) is a strict superset of π

w(λ)
NOB almost surely.

Hence, the feasibility of σw(λ) will imply that of π
w(λ)
NOB .

Denote by Di the number of deletions made by σw(λ) in the epoch Ei . By the
construction of the policy, the Di are i.i.d., and depend only on the length of Ei

and the number of arrivals within. We have17

E(D1) ≤ 1 +E
[|Ei | · I(|Ei | ≥ W

(
λ,m�

i

))]
≤ 1 +E

[
|Ei | · I

(
|Ei | ≥ λ + 1 − p

2
· w(λ)

)]
+E

(|Ei |) · P
(
W

(
λ,m�

i

) ≤ λ + 1 − p

2
· w(λ)

)
(7.2)

≤ 1 +
( ∞∑

k=((λ+1−p)/2)·w(λ)

k · a · exp(−b · k)

)

+ λ

λ − (1 − p)
· c · exp

(−d · w(λ)
)

(a)≤ 1 + h · w(λ) · exp
(−l · w(λ)

)
for some h, l > 0, where (a) follows from the fact that

∑∞
k=n k · exp(−b · k) =

O(n · exp(−b · n)) as n → ∞.
Since the Di are i.i.d., using basic renewal theory, it is not difficult to show

that the average rate of deletion in discrete time under the policy σw(λ) is equal to
E(D1)
E(E1)

. In order for the policy to be feasible, one must have that

E(D1)

E(E1)
= E(D1)

λ
≤ p

λ + 1 − p
.(7.3)

By equations (7.2) and (7.3), we want to ensure that

pλ

λ − (1 − p)
≥ 1 + h · w(λ) · exp

(−l · w(λ)
)
,

which yields, after taking the logarithm on both sides,

w(λ) ≥ 1

b
log

(
1

1 − λ

)
+ 1

b
log

( [λ − (1 − p)] · h · w(λ)

1 − p

)
.(7.4)

17For simplicity of notation, we assume that λ+1−p
2 · w(λ) is always an integer. This does not

change the scaling behavior of w(λ).
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It is not difficult to verify that for all p ∈ (0,1) there exists a constant C such that
the above inequality holds for all λ ∈ (1 − p,1), by letting w(λ) = C log( 1

1−λ
).

This proves the feasibility of σw(λ), which implies that π
w(λ)
NOB is also feasible. This

completes the proof of Theorem 3.

8. Concluding remarks and future work. The main objective of this paper
is to study the impact of future information on the performance of a class of admis-
sions control problems, with a constraint on the time-average rate of redirection.
Our model is motivated as a study of a dynamic resource allocation problem be-
tween slow (congestion-prone) and fast (congestion-free) processing resources. It
could also serve as a simple canonical model for analyzing delays in large server
farms or cloud clusters with resource pooling [20]; cf. Appendix B. Our main re-
sults show that the availability of future information can dramatically reduce the
delay experienced by admitted customer: the delay converges to a finite constant
even as the traffic load approaches the system capacity (“heavy-traffic delay col-
lapse”), if the decision maker is allowed for a sufficiently large lookahead window
(Theorem 3).

There are several interesting directions for future exploration. On the theoreti-
cal end, a main open question is whether a matching lower-bound on the amount
of future information required to achieve the heavy-traffic delay collapse can be
proved (Conjecture 1), which, together with the upper bound given in Theorem 3,
would imply a duality between delay and the length of lookahead into the future.

Second, we believe that our results can be generalized to the cases where the
arrival and service processes are non-Poisson. We note that the πNOB policy is in-
deed feasible for a wide range of non-Poisson arrival and service processes (e.g.,
renewal processes), as long as they satisfy a form of strong law of large num-
ber, with appropriate time-average rates (Lemma 2). It seems more challenging
to generalize results on the optimality of πNOB and the performance guarantees.
However, it may be possible to establish a generalization of the delay optimality
result using limiting theorems (e.g., diffusion approximations). For instance, with
sufficiently well-behaved arrival and service processes, we expect that one can es-
tablish a result similar to Proposition 1 by characterizing the resulting queue length
process from πNOB as a reflected Brownian motion in R+, in the limit of λ → 1
and p → 0, with appropriate scaling.

Another interesting variation of our problem is the setting where each job comes
with a prescribed size, or workload, and the decision maker is able to observe
both the arrival times and workloads of jobs up to a finite lookahead window.
It is conceivable that many analogous results can be established for this setting,
by studying the associated workload (as opposed to queue length) process, while
the analysis may be less clean due to the lack of a simple random-walk-based
description of the system dynamics. Moreover, the server could potentially exploit
additional information of the jobs’ workloads in making scheduling decisions, and
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it is unclear what the performance and fairness implications are for the design of
admissions control policies.

There are other issues that need to be addressed if our offline policies (or policies
with a finite lookahead) are to be applied in practice. A most important question
can be the impact of observational noise to performance, since in reality the future
seen in the lookahead window cannot be expected to match the actual realiza-
tion exactly. We conjecture, based on the analysis of πNOB, that the performance
of both πNOB, and its finite-lookahead version, is robust to small noises or per-
turbations (e.g., if the actual sample path is at most ε away from the predicted
one), while it remains to thoroughly verify and quantify the extend of the impact,
either empirically or through theory. Also, it is unclear what the best practices
should be when the lookahead window is very small relative to the traffic intensity
λ (w � log 1

1−λ
), and this regime is not covered by the results in this paper (as

illustrated in Figure 8).

APPENDIX A: ADDITIONAL PROOFS

A.1. Proof of Lemma 2. Since λ > 1 − p, with probability one, there ex-
ists T < ∞ such that the continuous-time queue length process without deletion
satisfies Q0(t) > 0 for all t ≥ T . Therefore, without any deletion, all service to-
kens are matched with some job after time T . By the stack interpretation, πNOB
only deletes jobs that would not have been served, and hence does not change the
original matching of service tokens to jobs. This proves the first claim.

By the first claim, since all subsequent service tokens are matched with a job
after some time T , there exists some N < ∞, such that

Q̃[n] = Q̃[N ] + (
A[n] − A[N ]) − (

S[n] − S[N ]) − I
(
M�,n

)
(A.1)

for all n ≥ N , where A[n] and S[n] are the cumulative numbers of arrival and
service tokens by slot n, respectively. The second claim follows by multiplying
both sides of equation (A.1) by 1

n
, and using the fact that limn→∞ 1

n
A[n] = λ

λ+1−p

and limn→∞ 1
n
S[n] = 1−p

λ+1−p
a.s., Q̃[n] ≥ 0 for all n and Q̃[N ] < ∞ a.s.

A.2. Proof of Lemma 4. (1) Recall the point-wise deletion map, DP (Q,n),
defined in Definition 2. For any initial sample path Q0, let Q1 = DP (Q0,m) for
some m ∈ N. It is easy to see that, for all n > m, Q1[n] = Q0[n]− 1, if and only if
Q0[s] ≥ 1 for all s ∈ {m + 1, . . . , n}. Repeating this argument I (M,n) times, we
have that

Q[n] = Q̃[n + m1] = Q0[n + m1] − I (M,n + m1),(A.2)

if and only if for all k ∈ {1, . . . , I (M,n + m1)},
Q0[s] ≥ k for all s ∈ {mk + 1, . . . , n + m1}.(A.3)
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Note that equation (A.3) is implied by (and in fact, equivalent to) the definition of
the mk’s (Definition 7), namely, that for all k ∈ N, Q0[s] ≥ k for all s ≥ mk + 1.
This proves the first claim.

(2) Suppose Q[n] = Q[n − 1] = 0. Since P(Q0[t] �= Q0[t − 1]|Q0[t − 1] >

0) = 1 for all t ∈ N [cf. equation (2.1)] at least one deletion occurs on the slots
{n − 1 + m1, n + m1}. If the deletion occurs on n + m1, we are done. Suppose a
deletion occurs on n − 1 + m1. Then Q0[n + m1] ≥ Q0[n − 1 + m1], and hence

Q0[n + m1] = Q0[n − 1 + m1] + 1,

which implies that a deletion must also occur on n + m1, for otherwise Q[n] =
Q[n − 1] + 1 = 1 �= 0. This shows that n = mi − m1 for some i ∈ N.

Now, suppose that n = mi − m1 for some i ∈ N. Let

nk = inf
{
n ∈ N :Q0[n] = k and Q0[t] ≥ k, ∀t ≥ n

}
.(A.4)

Since the random walk Q0 is transient, and the magnitude of its step size is at
most 1, it follows that nk < ∞ for all k ∈ N a.s., and that mk = nk , ∀k ∈ N. We
have

Q[n] (a)= Q0[n + m1] − I (M,n + m1)

= Q0[mi] − I (M,mi)
(A.5)

(b)= Q0[ni] − i

= 0,

where (a) follows from equation (A.2) and (b) from the fact that ni = mi . To show
that Q[n − 1] = 0, note that since n = mi − m1, an arrival must have occurred in
Q0 on slot mi , and hence Q0[n − 1 + m1] = Q0[n + m1] − 1. Therefore, by the
definition of mi ,

Q0[t] − Q0[n − 1 + m1] = (
Q0[t] − Q0[n + m1]) + 1 ≥ 0 ∀t ≥ n + m1,

which implies that n − 1 = mi−1 − m1, and hence Q[n − 1] = 0, in light of equa-
tion (A.5). This proves the claim.

(3) For all n ∈ Z+, we have

Q[n] = Q[mI(M,n+m1) − m1] + (
Q[n] − Q[mI(M,n+m1) − m1])

(a)= Q[n] − Q[mI(M,n+m1) − m1]
(A.6)

(b)= Q0[n + m1] − Q0[mI(M,n+m1)]
(c)= 0,

where (a) follows from the second claim [cf. equation (A.5)], (b) from the fact that
there is no deletion on any slot in {I (M,n + m1), . . . , n + m1} and (c) from the
fact that n + m1 ≥ I (M,n + m1) and equation (3.3).
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A.3. Proof of Lemma 5. Since the random walk X lives in Z+ and can take
jumps of size at most 1, it suffices to verify that

P

(
X[n + 1] = x1 + 1|X[n] = x1, min

r≥n+1
X[r] = 0

)
= 1 − q

for all x1 ∈ Z+. We have

P

(
X[n + 1] = x1 + 1|X[n] = x1, min

r≥n+1
X[r] = 0

)
= P

(
X[n + 1] = x1 + 1, min

r≥n+1
X[r] = 0|X[n] = x1

)
/
P

(
min

r≥n+1
X[r] = 0|X[n] = x1

)
(a)=

(
P

(
X[n + 1] = x1 + 1|X[n] = x1

)
(A.7)

× P

(
min

r≥n+1
X[r] = 0|X[n + 1] = x1 + 1

))
/
P

(
min

r≥n+1
X[r] = 0|X[n] = x1

)
(b)= q · h(x1 + 1)

h(x1)
,

where

h(x) = P

(
min
r≥2

X[r] = 0|X[1] = x
)

and steps (a) and (b) follow from the Markov property and stationarity of X, re-
spectively. The values of {h(x) :x ∈ Z+} satisfy the set of harmonic equations

h(x) =
{

q · h(x + 1) + (1 − q) · h(x − 1), x ≥ 1,

q · h(1) + 1 − q, x = 0
(A.8)

with the boundary condition

lim
x→∞h(x) = 0.(A.9)

Solving equations (A.8) and (A.9), we obtain the unique solution

h(x) =
(

1 − q

q

)x

for all x ∈ Z+. By equation (A.7), this implies that

P

(
X[n + 1] = x1 + 1|X[n] = x1, min

r≥n+1
X[r] = 0

)
= q · 1 − q

q
= 1 − q,

which proves the claim.
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A.4. Proof of Lemma 8. By the definition of �F−1
X1

and the strong law of large
numbers (SLLN), we have

lim
n→∞

1

n

n∑
i=1

I
(
Xi ≥ �F−1

X1
(α)

) = E
(
I
(
Xi ≥ �F−1

X1
(α)

))
< α a.s.(A.10)

Denote by Sn,k set of top k elements in {Xi : 1 ≤ i ≤ n}. By equation (A.10) and
the fact that Hn � αn a.s., there exists N > 0 such that

P
{∃N s.t. minSn,Hn ≥ �F−1

X1
(α), ∀n ≥ N

} = 1,

which implies that

lim sup
n→∞

f
({Xi : 1 ≤ i ≤ n},Hn

)
≤ lim sup

n→∞
1

n

n∑
i=1

Xi · I(Xi ≥ �F−1
X1

(α)
)

(A.11)

= E
(
X1 · I(X1 ≥ �F−1

X1
(α)

))
a.s.,

where the last equality follows from the SLLN. This proves our claim.

A.5. Proof of Lemma 10. We begin by stating the following fact:

LEMMA 11. Let {Xi : i ∈ N} be i.i.d. random variables taking values in R+,
such that for some a, b > 0, P(X1 ≥ x) ≤ a · exp(−b · x) for all x ≥ 0. Then

max
1≤i≤n

Xi = o(n) a.s.

as n → ∞.

PROOF.

lim
n→∞P

(
max

1≤i≤n
Xi ≤ 2

b
lnn

)
= lim

n→∞P

(
X1 ≤ 2

b
lnn

)n

≤ lim
n→∞

(
1 − a · exp(−2 lnn)

)n
(A.12)

= lim
n→∞

(
1 − a

n2

)n

= 1.

In other words, max1≤i≤n Xi ≤ 2
b

lnn a.s. as n → ∞, which proves the claim. �

Since the |Ei |’s are i.i.d. with E(|E1|) = λ+1−p
λ−(1−p)

(Proposition 2), we have that,
almost surely,

m�
K =

K−1∑
i=0

|Ei | ∼ E
(|E1|) · K = λ + 1 − p

λ − (1 − p)
· K as K → ∞(A.13)
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by the strong law of large numbers. By Lemma 11 and equations (6.28), we have

max
1≤i≤K

|Ei | = o(K) a.s.(A.14)

as K → ∞. By equation (A.14) and the fact that I (M�,m�
K) = K , we have

K − I
(
M�, l

(
m�

K

)) = K − I
(
M�,m�

K − max
1≤i≤K

|Ei |
)

(a)≤ K − I
(
M�,m�

K

) + max
1≤i≤K

|Ei |
(A.15)

= max
1≤i≤K

|Ei |
= o(K) a.s.

as K → ∞, where (a) follows from the fact that at most one deletion can occur in
a single slot, and hence I (M,n + m) ≤ I (M,n) + m for all m,n ∈ N. Since M̃ is
feasible,

I (M̃, n)� p

λ + 1 − p
· n(A.16)

as n → ∞. We have

h(K) = (
K − I

(
M�, l

(
m�

K

))) + (
I
(
M̃,m�

K

) − I
(
M�,m�

K

))
(a)
�

(
K − I

(
M�, l

(
m�

K

))) + p

λ + 1 − p
· m�

K − K

(b)∼
(

p

λ + 1 − p
· λ + 1 − p

λ − (1 − p)
− 1

)
· K,

= 1 − λ

λ − (1 − p)
· K a.s.

as K → ∞, where (a) follows from equations (A.13) and (A.16), (b) from equa-
tions (A.13) and (A.15), which completes the proof.

APPENDIX B: APPLICATIONS TO RESOURCE POOLING

We discuss in this section some of the implications of our results in the context
of a multi-server model for resource pooling [20], illustrated in Figure 2, which
has partially motivated our initial inquiry.

We briefly review the model in [20] below, and the reader is referred to the
original paper for a more rigorous description. Fix a coefficient p ∈ [0,1]. The
system consists of N stations, each of which receives an arrival stream of jobs at
rate λ ∈ (0,1) and has one queue to store the unprocessed jobs. The system has a
total amount of processing capacity of N jobs per unit time and is divided between
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two types of servers. Each queue is equipped with a local server of rate 1 − p,
which is capable of serving only the jobs directed to the respective station. All
stations share a central server of rate pN , which always fetches a job from the
most loaded station, following a longest-queue-first (LQF) scheduling policy. In
other words, a fraction p of the total processing resources is being pooled in a
centralized fashion, while the remainder is distributed across individual stations.
All arrival and service token generation processes are assumed to be Poisson and
independent from one another (similarly to Section 2).

A main result of [20] is that even a small amount of resource pooling (small but
positive p) can have significant benefits over a fully distributed system (p = 0). In
particular, for any p > 0, and in the limit as the system size N → ∞, the average
delay across the whole system scales as ∼ log1/(1−p)

1
1−λ

, as λ → 1; note that this
is the same scaling as in Theorem 1. This is an exponential improvement over the
scaling of ∼ 1

1−λ
when no resource pooling is implemented; that is, p = 0.

We next explain how our problem is connected to the resource pooling model
described above, and how the current paper suggests that the results in [20] can
be extended in several directions. Consider a similar N -station system as in [20],
with the only difference being that instead of the central server fetching jobs from
the local stations, the central server simply fetches jobs from a “central queue,”
which stores jobs redirected from the local stations (see Figure 3). Denote by
{Ri(t) : t ∈ R+}, i ∈ {1, . . . ,N}, the counting process where Ri(t) is the cumu-
lative number of jobs redirected to the central queue from station i by time t .
Assume that lim supt→∞ 1

t
Ri(t) = p − ε almost surely for all i ∈ {1, . . . ,N}, for

some ε > 0.18

From the perspective of the central queue, it receives an arrival stream RN ,
created by merging N redirection streams, RN(t) = ∑N

i=1 Ri(t). The process RN

is of rate (p − ε)N , and it is served by a service token generation process of rate
pN . The traffic intensity of the of central queue (arrival rate divided by service
rate) is therefore ρc = (p − ε)N/pN = 1 − ε/p < 1. Denote by QN ∈ Z+ the
length of the central queue in steady-state. Suppose that it can be shown that19

lim sup
N→∞

E
(
QN )

< ∞.(B.1)

A key consequence of equation (B.1) is that, for large values of N , QN becomes
negligible in the calculation of the system’s average queue length: the average

18Since the central server runs at rate pN , the rate of Ri(t) cannot exceed p, assuming it is the
same across all i.

19For an example where this is true, assume that every local station adopts a randomized rule and

redirects an incoming job to the central queue with probability p−ε
λ [and that λ is sufficiently close

to 1 so that p−ε
λ ∈ (0,1)]. Then Ri(t) is a Poisson process, and by the merging property of Poisson

processes, so is RN(t). This implies that the central queue is essentially an M/M/1 queue with
traffic intensity ρc = (p − ε)/p, and we have that E(QN) = ρc

1−ρc
for all N .
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queue length across the whole system coincides with the average queue length
among the local stations, as N → ∞. In particular, this implies that, in the limit of
N → ∞, the task of scheduling for the resource pooling system could alternatively
be implemented by running a separate admissions control mechanism, with the rate
of redirection equal to p−ε, where all redirected jobs are sent to the central queue,
granted that the streams of redirected jobs (Ri(t)) are sufficiently well behaved so
that equation (B.1) holds. This is essentially the justification for the equivalence
between the resource pooling and admissions control problems, discussed at the
beginning of this paper (Section 1.2).

With this connection in mind, several implications follow readily from the re-
sults in the current paper, two of which are given below:

(1) The original longest-queue-first scheduling policy employed by the central
server in [20] is centralized: each fetching decision of the central server requires
the full knowledge of the queue lengths at all local stations. However, Theorem 1
suggests that the same system-wide delay scaling in the resource pooling sce-
nario could also be achieved by a distributed implementation: each server sim-
ply runs the same threshold policy, π

L(p−ε,λ)
th , and routes all deleted jobs to the

central queue. To prove this rigorously, one needs to establish the validity of equa-
tion (B.1), which we will leave as future work.

(2) A fairly tedious stochastic coupling argument was employed in [20] to es-
tablish a matching lower bound for the ∼ log1/(1−p)

1
1−λ

delay scaling, by showing
that the performance of the LQF policy is no worse than any other online policy.
Instead of using stochastic coupling, the lower bound in Theorem 1 immediately
implies a lower bound for the resource pooling problem in the limit of N → ∞,
if one assumes that the central server adopts a symmetric scheduling policy, where
the it does not distinguish between two local stations beyond their queue lengths.20

To see this, note that the rate of Ri(t) are identical under any symmetric schedul-
ing policy, which implies that it must be less than p for all i. Therefore, the lower
bound derived for the admissions control problem on a single queue with a redi-
rection rate of p automatically carries over to the resource pooling problem. Note
that, unlike the previous item, this lower bound does not rely on the validity of
equation (B.1).

Both observations above exploit the equivalence of the two problems in the
regime of N → ∞. With the same insight, one could also potentially generalize
the delay scaling results in [20] to scenarios where the arrival rates to the local
stations are nonuniform, or where future information is available. Both extensions
seem difficult to accomplish using the original framework of [20], which is based
on a fluid model that heavily exploits the symmetry in the system. On the down-
side, however, the results in this paper tell us very little when system size N is

20This is a natural family of policies to study, since all local servers, with the same arrival and
service rate, are indeed identical.
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small, in which case it is highly conceivable that a centralized scheduling rule,
such as the longest-queue-first policy, can out-perform a collection of decentral-
ized admissions control rules.

Acknowledgment. The authors are grateful for the anonymous reviewer’s
feedback.
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