


# Quick Start Guide Prestressd Slabs





## 1 Scope

Slab prestressing provides an economical way to decrease the amount of required reinforcement (ULS) while allowing for larger spans with slender slabs and better structural performance regarding crack and deflection control. For similar economical graphical input and FEA analysis, SOFiSTiK software offers special features within the Structural Desktop SSD and SOFiPLUS. In the following quick start guide the different tasks and features will be explained briefly.



**Required versions:** SSD 10.64-23 or higher for analysis / SOFiPLUS(-X) 16.4/17.1-16 or higher for the graphical input.

6

system type



## 2 System 2D Prestressed Slab and SSD Tasks for Slab Prestress

When starting a new project, the System Information dialogue offers a new system type: 2D Prestressed Slab. This system type allows for plane slab systems including membrane effects and varying slab thicknesses with eccentric elements.

For 3D structures and inplane restraints use the 2D Prestressd Slab

| SOFiSTiK: System Information                                                                                                      |                          | 8                   |          |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|----------|
| Project                                                                                                                           |                          |                     |          |
| Title: SOFiSTiK AG 2006 - Slab Prestressing                                                                                       |                          |                     |          |
| Database: pt_slab_quickstart                                                                                                      |                          |                     | <b>2</b> |
| Directory: D:\sm_work\tendon\tnd\quickstart\system\                                                                               |                          |                     | <b></b>  |
| Design Code<br>Class(Tab.7.1N) N V EU V Altitud<br>Zones: Wind: V Snow. V Earthquake:                                             | e (m) 0.0                |                     |          |
| System                                                                                                                            | Calculation              |                     |          |
| O 3D Frame O 3D FEA                                                                                                               | Orientation of Deadload: | Positive Z-Axis     | ~        |
| O 2D Frame O 2D Wall                                                                                                              | Type of Calculation:     | Plane Stress System | ×        |
| ○ 2D Grillage ○ 2D Slab ○ 2D Prestressed Slab                                                                                     | Module:                  | SEPP                | ~        |
| Groups                                                                                                                            | System preview           |                     |          |
| Fixed Group Divisor: 10000     Free Distribution                                                                                  |                          |                     |          |
|                                                                                                                                   |                          |                     |          |
| Standard model (SI) Language                                                                                                      |                          |                     |          |
| Graphical Preprocessing                                                                                                           | Coordinate System        | Drawing Units       |          |
| Graphical Preprocessing<br>Groups on Separate Layers                                                                              |                          |                     |          |
| Standard model (SI) Language<br>Graphical Preprocessing<br>Groups on Separate Layers<br>tial Workspace [m]: 20<br>Databases (CDB) | Coordinate System        | Drawing Units       |          |

Figure 1: System Information dialogue for example project

After confirming the project setting, the SSD Task tree offers two special tasks.



| Project                                                                                                                                                                                                                       | ~ 🖗 🖬 🖪                                                                                                                                                      |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| System System Information Materials 1 C 30/37 (EN 1992) 2 S 500 (EN 1992) 3 Y 1770 C (EN 1992) Cross Sections Prestressing systems I SUSPA 6-4 Y1770S7 15,7 GUI for Model Creation (SOFiPLUS Clinear Analysis Linear Analysis | Animation Settings Amplitude [-] Amplitude Speed [%] Rotation Speed [%] O Coadcase Loop O Off Automatic                                                      |   |
| Analysis of Slab Prestress<br>Define Superpositioning<br>Analysis Superpositioning<br>Design Area Elements<br>Design Parameters of area element<br>Design ULS - area elements                                                 | C From 1 To 1<br>List of Loadcases<br>System<br>LC 1 total dead load<br>LC 2 variable load<br>LC 3 variable load<br>LC 4 variable load<br>LC 5 variable load | - |

Figure 2: Task Tree for 2D Prestressed Slab System

#### Task Prestressing System

The Task Prestressing System provides the possibility to select various predefined prestressing systems which are provided by the software. A preselection is performed according to the defined design code of the project.



The textfile **tendon.tab** in the sofistik.23 folder contains the PT systems library



Individual prestressing systems can be defined by the user generating the file tendon\_usr.tab

| lumber   | Company            |          |   | System                    |                                                 | Tendan                     | Ductio          |
|----------|--------------------|----------|---|---------------------------|-------------------------------------------------|----------------------------|-----------------|
| 1        | SUSPA              |          |   |                           | fshren ohne Verbund 150mn#, \1770\$7 C35/40 * 💌 | SUSPA 6-4 1/17706 7 15,7 💌 | 20              |
| Analysis | Construction       | Protocol | - |                           |                                                 | R                          |                 |
| Steel    | 3 Y 1770 C (EN 199 | 21 - 12  |   | Prestressing force P0,max | 820.0                                           |                            | kN              |
|          |                    |          |   | Young's modulus           | 199000                                          |                            | N/mm            |
|          |                    |          |   | Vield strength            | 1520                                            |                            | N/mm            |
|          |                    |          |   | Tensile strength          | 1770                                            |                            | N/mm*           |
|          |                    |          |   | Анеа                      | 600.0                                           |                            | mm <sup>2</sup> |
|          |                    |          |   | Number of strands         | 4                                               |                            |                 |

Figure 3: Task Prestressing System with example system selected



Example System: SUSPA/DSI® Monostrands 150 mm<sup>2</sup> acc. ETA-03/0036: **Company:** SUSPA **System:** ETA Monolitzenspannverfahren ohne Verbund 150mm<sup>2</sup> **Tendon:** SUSPA 6-4 Y 1770 (Pack of 4 Monostrands) Check of the prestressing force: **P0, max:** with **ft0.1k = 1520 N/mm<sup>2</sup> =** 0.9\*1520 N/mm<sup>2</sup> \* 600 mm<sup>2</sup>= <u>820 kN</u>

The corresponding prestressing steel Y1770 (EN1992) can be generated in advance using the Task: Materials or directly in the Prestressing System Task:

| Material safety factor [-]      | 1.15         |                               |        |
|---------------------------------|--------------|-------------------------------|--------|
| Yield stress [MPa]              | 1520         |                               |        |
| Tensile strength [MPa]          | 1770         |                               |        |
| Compressive strength [MPa]      | 1770         |                               |        |
| FliessSpannung Druck            | 1520         | Ratio of bond properties [-]  | 0.75   |
| Limit of proportionality [o/oo] | 60           | EC2 bond coefficient (K1) [-] | 2      |
| Permanent strain of yield stres | s [MPa] 1520 | Relaxation (0.70 ft) [-]      | 8      |
| Limit strain (o/oo)             | 0            | Relaxation (0.55 ft) [-]      | ECL1 💌 |
| Hardenig module (MPa)           | 0            | Max. thickness [mm]           | 18000  |
| Dynamic strength [MPa]          | 0            |                               |        |

Figure 4: Material Strength Properties

#### Task: Analysis of Slab Prestress

The Task Analysis of Slab Prestress computes the resulting forces for existing slab tendons, per default the loadcase number 700 and the action P is assigned to the results.



Example

| oadcases | Groups     | Control Parameters         | Text Output | Graphical Output |  |
|----------|------------|----------------------------|-------------|------------------|--|
| Prestre  | ss CS 🕴 In | fo Tendons                 | Loadcase    | group CS         |  |
| 1        | 1.         | ,2,3,4,5,6,7,8,9,10,11,12, | 13 700      | 0                |  |
|          |            |                            |             |                  |  |

Figure 5: Task Analysis of Slab Prestress

## **3** Graphical Input of Tendons with SOFiPLUS(-X)

The tendons layout can be defined easily within the graphical pre-processor SOFiPLUS(-X), the tendons are generated in ground view, computation of the complete tendon layout including friction loss calculation is performed during the 'Export' (Meshing) of the system.

Only important boundary conditions, as support lines, stop lines, distance of tendons to the concrete faces and e.g. the transition lengths of the free tendon layout (Freie Spanngliedlage <sup>1</sup>) have to be specified by the user.

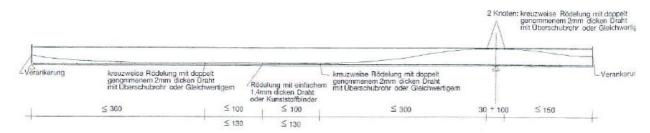



Figure 6: Free Tendon Layout (Freie Spanngliedlage) [1]

#### SOFiPLUS Toolbox: Prestressing



<sup>&</sup>lt;sup>1</sup> Maier, K.; Wicke, M.; Die freie Spanngliedlage. Beton- und Stahlbetonbau 95, 2000, Heft 2 Pp.: 62



The input of tendons and their layout is done in SOFiPLUS using the Toolbox Prestressing. Three icons for the input of three elements: Input of Tendons, Input of Support Lines and Input of so called Stop Lines are available, their input options and the modification of existing elements is explained below.

| -                  | Task: Generates new Tendons in ground view                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Options:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Input of<br>Tendon | <ul> <li>AutoCAD lines and polylines without kinks can be directly transferred into tendons</li> <li>Points picked generate straight tendons parallel to the global x- or y-Axis</li> <li>Tendons along a side of the structure are best generated using the 'distribute along line' option</li> <li>Skew layouts are possible using user coordinate systems (UCS)</li> <li>Modification of tendons: The tendon dialogue opens with a double-click on one or more selected tendon elements</li> </ul> |
|                    | <b>Task:</b> Generates support lines which define the height of tendon                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>A</b>           | elements crossing the line                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Innut of           | Options:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Input of           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Support Line       | <ul> <li>Direct input of support lines</li> <li>Curved object can be transferred into support lines</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | Modification of support lines: The properties (i.e. distance of                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | tendon from concrete face along line) of a support line are edited                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | using the AutoCAD properties dialogue                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| +                  | Task: Generates stop lines out of AutoCAD objects which cause                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | the intersecting tendons to end                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Input of Stop      | Options:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Line               | Selection of Lines etc. to become a stop line                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | Modification of stop lines: The stop line objects are copied in a                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | separate layer, modification is possible in the same way as for all                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | AutoCAD objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



#### SOFiPLUS Tendon Dialogue

Double clicking on one or more selected tendon elements opens the SOFiPLUS Dialog Tendon, here the necessary input for tendon parameters is possible.

| h. |
|----|
|    |
| 1  |

The arrow on one end of the tendon indicates the 'left' end

|   | 🚽 SOFiSTiK: Tendon                    |                          |  |
|---|---------------------------------------|--------------------------|--|
|   | General Points                        |                          |  |
|   | Number of tendon                      | 9                        |  |
|   | Name of tendon                        |                          |  |
|   | Construction stage build in           | 1                        |  |
|   | Construction stage grouting           | 1                        |  |
|   | Construction stage removal            | 0                        |  |
|   | Prestressing system                   | 1 SUSPA 6-4 Y1770S7 15,7 |  |
| - | Prestress direction                   | from right               |  |
|   | Kind of prestressing                  | Stressing and slip       |  |
|   | Tendon geometry                       | Free tendon geometry     |  |
|   | straight part in top position         | 0.300                    |  |
|   | Transition                            | 3.000                    |  |
|   | Distance of axis to upper concrete ec | ge 0.100                 |  |
|   | Distance of axis to lower concrete ed | ne 0.100                 |  |

Figure 7: Tendon dialogue

- **§ Prestress direction:** Definition of active and passive anchor side
- § Kind of prestressing
- **§ Tendon geometry:** Free tendon geometry or cubic spline geometry can be selected
- **Straight part in top position:** Length of the straight part over highpoints (colums etc.), *only for free tendon layout*
- § Transition: Transition length of the free tendon layout, only for free tendon layout
- **§** Distances of axis to upper and lower concrete edge



Der sich unter der Annahme der Biegalinie nach der linearen Stabtheorie ergebende Zusammenhang zwischen der Anhebung e und der Freien Durchhangslänge / von

$$l = 4 \sqrt{\frac{72 \cdot E \cdot I \cdot (e_1 + e_2)}{g}}$$

ergibt für die Monolitze F150 mit I = 269,2 mm<sup>4</sup>, E = 195000 N/mm<sup>2</sup>, g = 13,03 N/m

 $l = 130,504 \cdot \sqrt[4]{e_1 + e_2}$   $e_1, e_2, l[cm]$ .

#### Figure 8: Formula for transition lenght [1]

|   | Auto     | Position    | Tura       | Relative   | Distance | Comment                 |  |
|---|----------|-------------|------------|------------|----------|-------------------------|--|
| 1 | Auto     | 0.000 m     | Type       | centred    | Distance | Comment                 |  |
| 2 | I have a |             | high point | 0.0111.0.0 | 0.000    | and the superations     |  |
|   |          | 5.000 m     | high point | from top   | 0.060 m  | created by support line |  |
| 3 |          | 13.000 m    | high point | homitop    | 0.000 m  | created by support line |  |
| 4 |          | 16.070174 m | high point | from top   | 0.060 m  | 2                       |  |
|   |          |             |            |            |          |                         |  |
|   |          |             |            |            |          |                         |  |

Figure 9: The Points tab allows for geometry modification of single tendons

| (*** | )<br>)             |            |    |
|------|--------------------|------------|----|
| s    | panngliedunterstü  | tzun 🖌 🏦 🎝 | 74 |
| (C   | )ata               |            | \$ |
|      | Spanngliedun       | High point |    |
|      | Länge              | *VARIES*   |    |
|      | Ausrichtung        | from top   |    |
|      | Verteilung 🍡       | Constant   |    |
|      | Anfangswert        | 0.1        |    |
|      | This drigs for the |            |    |

Figure 10: Input of tendon distance for a support line



**(†)** 

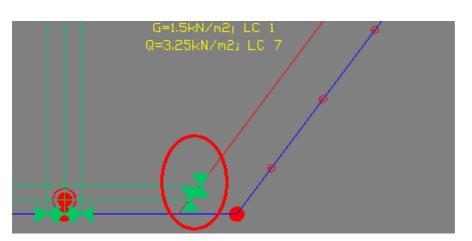
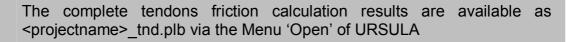




Figure 11: Stop Line (red line)

### 4 Analysis and Post Processing

After the definition of the tendons with SOFiPLUS, the SSD is used to control the further analysis and the post processing, the Task Linear Analysis is used to calculate all loadcases except prestress, here the aforementioned Task Analysis of Slab Prestress is employed. The reports of all calculation steps are managed using the URSULA button of the SSD, further reference on the SSD can be found via Menu 'Help' Quick Reference.



| Suchen in                     | : 🗀 system   |                                                           |              | -        | * 🗈 💣      | <b>.</b>    | 🔲 Vorschau     | i. |
|-------------------------------|--------------|-----------------------------------------------------------|--------------|----------|------------|-------------|----------------|----|
|                               | Sept_slab_r  | juickstart_003.p                                          | olb          |          |            |             | <br>Öffnen     | 1  |
|                               | _ 🙀 pt_slab_ | quickstart_004.p                                          | ыр           |          |            |             | Abbrechen      |    |
| Zuletzt<br>erwendete D        |              | quickstart_005.p                                          |              |          |            |             | Abbiechen      |    |
|                               |              | quickstart_008.p                                          |              |          |            |             |                |    |
|                               | 1 T T T      | uickstart_009.p                                           |              |          |            |             |                |    |
| Desktop                       |              | uickstart_010.p                                           |              |          |            |             |                |    |
| DUSKOP                        |              | uickstart_012.p                                           |              |          |            |             |                |    |
| 100                           | - Sat slab 🖉 | uickstart_013.p                                           | D            |          |            |             |                |    |
|                               |              | NE 200 - 2000-200 - 200                                   |              |          |            |             |                |    |
| 1                             | 🙀 pt_slab    | wickstart Ifd.plt                                         |              |          |            |             |                |    |
| igene Dateien                 | pt_slab      | wickstart_lfd.plt<br>wickstart_msh.p                      | DID          |          |            |             |                |    |
| igene Dateien                 | pt_slab      | wickstart Ifd.plt                                         | DID          |          |            |             |                |    |
| igene Dateien                 | pt_slab      | wickstart_lfd.plt<br>wickstart_msh.p                      | DID          |          |            |             |                |    |
| Eigene Dateien                | pt_slab      | wickstart_lfd.plt<br>wickstart_msh.p                      | DID          |          |            |             |                |    |
| igene Dateien<br>Arbeitsplatz | pt_slab      | wickstart_lfd.plt<br>wickstart_msh.p                      | DID          |          |            |             |                |    |
| <b>S1</b>                     | pt_slab      | wickstart_lfd.plt<br>wickstart_msh.p                      | DID          |          |            |             | Hinzufügen     |    |
| Arbeitsplatz                  | pt_slab      | wickstart_lfd.plt<br>wickstart_msh.p                      |              |          | Favoriten: | <b>_</b>    | <br>Hinzufügen |    |
| <b>S1</b>                     | pt_slab_     | wickstart_lfd.pli<br>quickstart_msh.p<br>quickstart_tnd.p | tart_tnd.plb | <u> </u> |            | <br>  D:\am | Hinzufügen     |    |

Figure 12: Report of tendon calculation



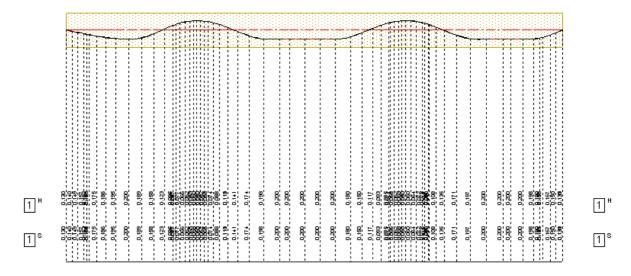



Figure 13: Tendon axis of free tendon layout

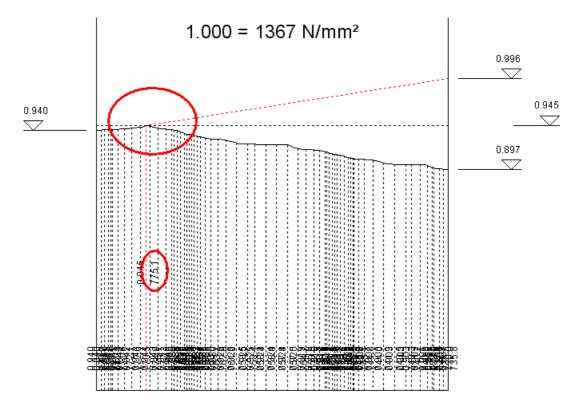



Figure 14: Tendon stresses (dashed line: Pm0,max=0.945\*P0,max=0.85\*1520 N/mm<sup>2</sup>); Maximum tendon force indicated red.

For simplified consideration of creep, shrinkage and relaxation losses, the Task Define Superpositioning is used to assign a factor (e.g. 0.88 for 12% CSR losses) to

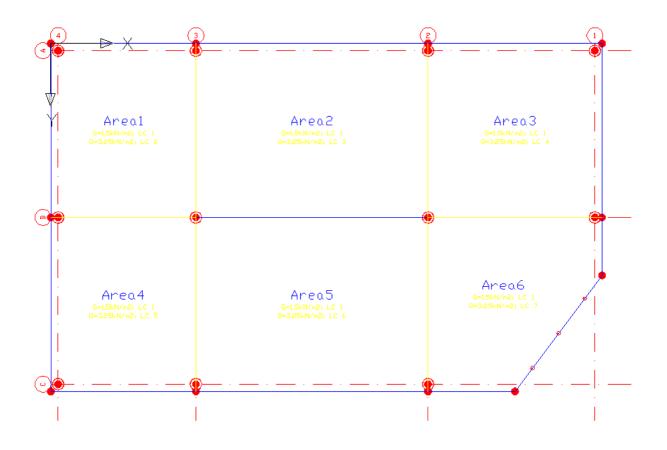
the prestressing loadcase in the automatically generated loadcase combinations (e.g. EC2-2004, ULS and SLS combination).

| E 2": Deflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Loadcare                          |                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------|
| G total dead load     Al loadcases with same time as the action     Plefilessing     Loadcase 200. Type FERM, Factor 0.98: aum_PV= 0.00     O vancer tose     Al loadcases with same type as the action     C - Al loadcases with same type as the action     Plefilessing     Loadcase 200. Type FERM, Factor 0.98: sum_PV= 0.0     O vancer tood     Al loadcases with same type as the action     Plefilessing     Loadcase 200. Type FERM, Factor 0.98: sum_PV= 0.0     O vancer tood     Al loadcases with same type as the action | 700<br>Tille<br>[nam_Pic= 0.00334 | All loadcases with same type as the action     Source PRI= 0.00 KN |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Factor                            | 0.88                                                               |
| 4 // 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>N</u>                          |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                                    |
| ": manually created or modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Combination Rule                  | Action Loadcase                                                    |

Figure 15: Factor for simple CSR consideration

The design in ULS and SLS of the prestressed slab is carried our using the standard design Tasks: Design ULS/SLS – area elements.

Remark on punching design for prestressed slabs:


Using BEMESS 11.90-23 the inclination and force of tendons crossing the punching area is automatically detected and considered in the punching design and checks, the mean compressive stress sigma-cd is considered for EC2-2004 and DIN 1045-1, selecting extensive text output for punching the prestress reduction force Vpd and the individual contributions can be checked.

| Punching Design (EC                                                     |                                            |                   |  |  |
|-------------------------------------------------------------------------|--------------------------------------------|-------------------|--|--|
| Node number                                                             | = 1 X= 5.000 [m] Y= 6.                     | 000 [m]           |  |  |
|                                                                         | = 705.9 [KN] LC= 2102 via QUAD conne       |                   |  |  |
|                                                                         | ⊨ 188.0 [kN]) V-ED= 517.9 [kN] — in peri   |                   |  |  |
|                                                                         | prestress due to creep and shrinkage are   |                   |  |  |
| dz/ds=inclination,                                                      | ha=horizontal deviation, dVPD=shear force  | positive=relieve  |  |  |
| perimeter 1:                                                            |                                            |                   |  |  |
| tendon no.                                                              | ZV= 675.0 [kN] dz/ds=0.020 alpha= 0.000 [° | ] dVPD= 13.2 [kN] |  |  |
| 2. cut                                                                  | ZV= 673.0 [kN] dz/ds=0.022 alpha= 0.000 [° | ] dVPD= 14.7 [kN] |  |  |
| tendon no.                                                              | ZV= 658.5 [kN] dz/ds=0.023 alpha= 0.000 [° | ] dVPD= 15.4 [kN] |  |  |
| 2. cut                                                                  | ZV= 656.5 [kN] dz/ds=0.023 alpha= 0.000 [° |                   |  |  |
| tendon no.                                                              | ZV= 676.4 [kN] dz/ds=0.027 alpha= 9.010 [° |                   |  |  |
| 2. cut                                                                  | ZV= 674.0 [kN] dz/ds=0.025 alpha= 8.569 [° |                   |  |  |
| tendon no.                                                              | ZV= 676.4 [kN] dz/ds=0.027 alpha= 9.010 [° | ] dVPD= 18.2 [kN] |  |  |
| 2. cut                                                                  | ZV= 674.0 [kN] dz/ds=0.025 alpha= 8.569 [° |                   |  |  |
| tendon no.                                                              | ZV= 658.5 [kN] dz/ds=0.023 alpha= 15.91 [° | ] dVPD= 14.8 [kN] |  |  |
| 2. cut                                                                  | ZV= 656.5 [kN] dz/ds=0.023 alpha= 15.91 [° | ] dVPD= 14.8 [kN] |  |  |
| tendon no.                                                              | ZV= 658.5 [kN] dz/ds=0.023 alpha= 15.91 [° | ] dVPD= 14.8 [kN] |  |  |
| 2. cut                                                                  | ZV= 656.5 [kN] dz/ds=0.023 alpha= 15.91 [° | ] dVPD= 14.8 [kN] |  |  |
|                                                                         |                                            | =========         |  |  |
|                                                                         |                                            | 188.0 [kN]        |  |  |
| perimeter 2 :                                                           |                                            |                   |  |  |
| tendon no.                                                              | ZV= 675.7 [kN] dz/ds=0.035 alpha= 0.000 [° |                   |  |  |
| tendon no.                                                              | ZV= 659.4 [kN] dz/ds=0.043 alpha= 0.000 [° |                   |  |  |
| 2. cut                                                                  | ZV= 655.6 [kN] dz/ds=0.043 alpha= 0.000 [° |                   |  |  |
| tendon no.                                                              | ZV= 677.3 [kN] dz/ds=0.050 alpha= 5.567 [° |                   |  |  |
| 2. cut                                                                  | ZV= 673.1 [kN] dz/ds=0.046 alpha= 5.222 [° |                   |  |  |
| tendon no.                                                              | ZV= 677.3 [kN] dz/ds=0.050 alpha= 5.567 [° |                   |  |  |
| 2. cut                                                                  | ZV= 673.1 [kN] dz/ds=0.046 alpha= 5.222 [° |                   |  |  |
| tendon no.                                                              | ZV= 659.4 [kN] dz/ds=0.043 alpha= 10.47 [° |                   |  |  |
| 2. cut                                                                  | ZV= 655.6 [kN] dz/ds=0.043 alpha= 10.47 [° |                   |  |  |
|                                                                         | ZV= 659.4 [kN] dz/ds=0.043 alpha= 10.47 [° |                   |  |  |
| 2. cut                                                                  | ZV= 655.6 [kN] dz/ds=0.043 alpha= 10.47 [° | ] dVPD= 27.4 [kN] |  |  |
|                                                                         |                                            | 318.4 [kN]        |  |  |
| Circular column                                                         | = 0.400 [m]                                | 010.4 [KN]        |  |  |
| Plate thickness h-s                                                     |                                            |                   |  |  |
| 1. perimeter at 2.                                                      |                                            | 021 [m]           |  |  |
| Min.reinforc. ac apper= 7.09 [cm2/m] (Min.design-moment-> inner column) |                                            |                   |  |  |
| Normal stress sigma-cd= -1.19 [MPa]                                     |                                            |                   |  |  |
| Tension reinforas ≥= 9.68 [cm2/m] mue= 0.44 [c/c] Vrd1= 148.1 [kN/m]    |                                            |                   |  |  |
| v-Sd = <u>1.15*V/u</u> = <u>148_1_[kN/m]</u> <= 148.1 [kN/m]            |                                            |                   |  |  |
| NO punching shear reinforcement necessary.                              |                                            |                   |  |  |
| In the critical punching zone at least 9.68 [cm2/m]                     |                                            |                   |  |  |
| tension reinforcement is required                                       |                                            |                   |  |  |
| •                                                                       |                                            |                   |  |  |

#### Figure 16: Extensive BEMESS output for punching design with tendons



## 5 Example System



| Example Slab System according EC2-2004 |           |                               |  |  |
|----------------------------------------|-----------|-------------------------------|--|--|
| Lx = 5/8/6 m                           | and I     | _y = 6/6m                     |  |  |
| Columns:                               | diameter  | 40 cm/ heigth 3.00 m/ C 30/37 |  |  |
| Slab thickness:                        | t = 26 cm |                               |  |  |
| Concrete:                              | C 30/37   |                               |  |  |
| Rsteel:                                | S 500     |                               |  |  |
| Prestressing steel:                    | S Y1770   |                               |  |  |
| Concrete cover:                        | 3 cm      |                               |  |  |
| Permanent loads:                       | automatic | selfweight + 1.50 kN/m²       |  |  |
| Live loading:                          | 3.25 kN/m | 2                             |  |  |
|                                        |           |                               |  |  |