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Abstract 

 
A rotorcraft roof composite sandwich panel has been redesigned to optimize sound 

power transmission loss (TL) and minimize structure-borne sound for frequencies 

between 1 and 4 kHz where gear meshing noise from the transmission has the most 

impact on speech intelligibility.  The roof section, framed by a grid of ribs, was 

originally constructed of a single honeycomb core/composite facesheet sandwich panel.  

The original panel has acoustic coincidence frequencies near 600 Hz, leading to poor 

TL across the frequency range of 1 to 4 kHz.  To quiet the panel, the cross section was 

split into two thinner sandwich subpanels separated by an air gap.  The air gap was 

sized to target the fundamental mass-spring-mass resonance of the panel system to less 

than 500 Hz, well below the frequency range of interest.  The panels were designed to 

withstand structural loading from normal rotorcraft operation, as well as 

‘man-on-the-roof’ static loads experienced during maintenance operations.  Thin 

layers of viscoelastomer were included in the facesheet ply layups, increasing panel 

damping loss factors from about 0.01 to 0.05.  Transmission loss measurements show 

the optimized panel provides 6-11 dB of acoustic transmission loss improvement, and 

6-15 dB of structure-borne sound reduction at critical rotorcraft transmission tonal 

frequencies.  Analytic panel TL theory simulates the measured performance within 3 

dB over most frequencies.  Detailed finite element (FE)/boundary element (BE) 

modeling simulates TL slightly more accurately, within 2 dB for frequencies up to 4 

kHz, and also simulates structure-borne sound well, generally within 3 dB. 
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Introduction 
 

Commercial rotorcraft are powered by drive systems comprised of complex 

transmissions.  As the transmission gears rotate at high rates of speed, they induce 

vibrations and noise at Gear Meshing Frequencies (GMFs) in the transmission 

cavity above the cabin (see the example in Figure 1, and [1, 2] for a general 

discussion of transmission noise).  Structural roof panels are driven acoustically 

and structurally by the GMF tones, radiating sound into the cabin.  Composite 

materials are sometimes used to construct lightweight stiff panels for rotorcraft 

which meet structural integrity requirements, but also lead to increased interior 

sound radiation due to their reduced structural impedances and increased sound 

radiation efficiencies.  Expensive and heavy acoustic treatments are therefore 

often added to the panels to reduce sound transmission.  A more efficient and 

cost-effective noise control approach, however, is to better design the structural 

panel itself to minimize noise. 

To characterize the structural-acoustic behavior of a typical sandwich roof panel, 

a notional design was constructed, as shown in Figure 2.  A honeycomb core 

composite face sheet sandwich panel (see Figure 3) is mounted between a 

rectangular frame of large, stiff aluminum ribs which represent the roof rails 

(which run forward and backward) and the intercostal beams (which run side to 

side).  The rotorcraft transmission mounts to the four corners of the rib frame.  

As shown in Figure 4, the center panel edges taper downward to pure face sheet 

stacks at the rib mounting points, which extend beyond the ribs.  The 

structural-acoustic behavior of this ‘baseline’ panel has been evaluated 

computationally and experimentally previously [3].  The transmission loss (TL) 

of the baseline panel, measured in NASA Langley’s Structural Acoustics Loads 
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and Transmission (SALT) facility [4] and shown in Figure 5, is low (less than 25 

dB) between 1-4 kHz, the frequency range most critical for speech communication, 

and where strong rotorcraft transmission tones typically occur.  In particular, our 

application is most concerned with Bull and Pinion Gear Meshing Frequencies 

(GMFs) at 1 and 3 kHz emanating from a typical Bell Helicopter rotorcraft 

transmission.  The sound transmission through the center panel, which has a low 

coincidence frequency of about 600 Hz, dominates the transmitted sound.  

In this paper, we summarize the design of an optimized roof panel which 

increases TL through the center sandwich panel region between 1 and 4 kHz, and 

specifically near 1 and 3 kHz (the transmission GMF tones), but also does not 

violate several important design constraints, including: 

• the areal density (mass/area) cannot exceed 5.7 kg/m2, 

• the thickness toward the cabin interior cannot exceed – 1.59 cm, and 

• the structural materials must withstand limiting in-flight loads as well as 

‘man-on-the-roof’ loading for maintenance operations. 

These constraints preclude the use of methods suggested in the literature to 

soften the sandwich panel to shift coincidence frequency upward so that the 

well-known TL coincidence dip is higher than the frequency range of interest [5, 6].  

Also, adding mass is clearly not an option due to the stringent weight requirement.  

Mass constraints are, of course, common in the aerospace community.   

Three well known noise control procedures were applied to develop an 

optimized panel design without violating the design constraints: 

• the center panel was split into two subpanels separated by an air gap, 

• a blanket, also used for insulation and fire protection, was included in the 

air gap, and 
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• very thin viscoelastic layers (VHB 9469 adhesive from 3M) were 

embedded within the outer and inner face sheet assemblies to increase 

structural damping. 

This paper summarizes the development of the optimized panel, including a brief 

assessment of the structural integrity calculations.  Measurements of 

structure-borne and airborne sound transmission loss are shown, along with 

comparisons to analytic and computational estimates. 

Panel Designs 
 

The baseline panel is shown in Figure 2, and the optimized panel is shown in 

Figure 6.  Schematics of the cross-sections of the baseline and optimized center 

panels are shown in Figure 7.  A useful reference on the properties of honeycomb 

sandwich panels may be found in [7].  The final optimized panel balances 

acoustic performance with structural integrity constraints, as well as meeting 

weight and space goals.  The split panel concept is augmented with damped face 

sheets which include embedded VHB viscoelastic material, and the gap is filled 

with a MicroLite blanket.  The final surface density of the optimized center panel 

region is 5.5 kg/m2, which is less than the upper limit of 5.7 kg/m2.  The baseline 

center panel surface density is 3.1 kg/m2 without any added treatment packages.  

Typical treatment packages increase the surface density by 1-2.6 kg/m2.  

Although the optimized panel is thicker than the baseline panel, the excess 

thickness is shifted to outside the fuselage, as shown in Figure 7.  The extra 

thickness will not affect the transmission or other electrical, mechanical, or 

hydraulic elements in the roof cavity region of a typical rotorcraft. 

The face sheets are made of layers of Cytec G30-500/5276-1 Carbon/Epoxy 

plain weave fabric, 0.2 mm (0.0079 in) thick, and the honeycomb cores are Hexcel 
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Kevlar (1/8” cell size, 3.3 lb/ft3).  The cores are sandwiched by inner and outer 

face sheets.  The baseline panel uses 3-layer fabric plies with [0/45/0] 

orientations, where the ‘0’ indicates fiber tows in the 0 and 90 degree directions 

(aligned with the edges of the overall panel) and the ‘45’ indicates fiber tows in the 

+ and – 45 degree directions.  In this plain weave fabric, there are equal amounts 

of fiber tows in the warp and weft directions.   

The edges of the baseline panel, which do not include honeycomb core, are 

stacks of 10 carbon/epoxy plies with orientation [0/45/45/0/0]S, where ‘S’ 

indicates symmetry about the center ply for the remaining angles.  The optimized 

panel edging has two additional outer plies, along with a layer of VHB material at 

the center (between plies 6 and 7), which weakens the effective flexural elastic 

modulus of the cross section by about 20%.  Selected properties of the panel 

materials are shown in Table 1.  Note that the honeycomb core shear modulus is 

stiffer in the ribbon direction. 

The frame is made from aluminum I-beams.  The roof beams (horizontal in 

Figures 2, 4, and 6) are 1016 mm (40 inches) long, and the intercostal beams 

(vertical) are 762 mm (30 inches) long.  The flange widths of the roof and 

intercostal beams are 76.2 mm (3 inches) and 50.8 mm (2 inches) respectively.  

All beams are 102 mm (4 inches) high, with 3.96 mm (0.156 inch) flange and web 

thicknesses.  The roof beams and transverse intercostal beam webs are connected 

by aluminum shear clips, and the top flanges are connected by four aluminum 

splice straps at the joints which represent the transmission mounting points.  The 

roof beams are connected to the panel with 5/16” diameter titanium protruding 

shear head pins and titanium collars spaced at a nominal 6.5D pitch.  Additional 

structural details, including the tapered sections near the frame, are available in 
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[3]. 

Embedded Viscoelastomer 

Thin layers of viscoelastomer are sandwiched between the layers of the 

facesheet sections of the optimized panel to increase structural damping, and 

therefore random incidence TL at and above the panel critical frequency.  The 

face sheets used in these panels, however, are extremely thin and lightweight.  In 

the prototypic baseline panel, each sheet is comprised of only three layers of 0.2 

mm thick carbon fabric (0/45/0 degree orientations).  Replacing the center layer 

with viscoelastomer requires similarly thin and light damping material.  We used 

3M’s VHB 9469 adhesive, which is 0.13 mm thick, of comparable mass density, 

and is formulated to have high damping properties near room temperature and at 

frequencies between 1 and 4 kHz.  However, replacing the center layer of each 

face sheet with a layer of the VHB material leaves only outer and inner carbon 

layers with 0 and 90 degree ply orientations, reducing face sheet net stiffness. 

Young’s Moduli (computed assuming a Poisson’s ratio of 0.499) and loss 

factors for VHB 9469 are compared at 20 and 30 degrees C in Figure 8.  The loss 

factors are quite high, ranging between 0.7 and 1.1 between 1 and 4 kHz.  The net 

damping benefits of the VHB material were checked by performing experimental 

modal analyses on two test coupon panels.  The coupon panel dimensions (48 cm 

x 58 cm) were chosen to avoid modal degeneracy, so that each structural mode is 

distinct in frequency and easily identified.  Hexcel Kevlar core (1.27 cm thick) 

was used for the test coupon cores.  The two coupon panels were constructed 

using different approaches.  In the first panel, the carbon fabric and VHB were 

cocured, such that part of the VHB fused with the epoxy in the carbon fabric sheets.  

This formed a hybrid structure with uncertain properties.  A second panel with 
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pre-cured carbon fabric sheets post-bonded with the VHB was also constructed.   

Complex modes were extracted from experimental modal analysis data, and loss 

factors and resonance frequencies were compared for the two panels.  Figure 9 

compares the modal loss factors for the two panels for frequencies up to about 5 

kHz.  The post-bond approach consistently yields higher damping, and both 

construction approaches lead to strong damping improvements at 1 and 3 kHz, 

where the dominant transmission tones occur.  The cocuring process likely 

reduced the amount of VHB between the face sheets (with some of the VHB being 

absorbed into the sheets), thereby reducing the strain energy dissipated in the VHB 

layer.  Based on these data, the post-bond approach was used for the optimized 

panel. 

Replacing the center carbon layer reduces the face sheet stiffness, thereby 

reducing the flexural wavespeeds.  The measured mode shapes were used to 

estimate modal wavenumbers, which were combined with modal frequencies to 

determine the modal wavespeeds.  The modal wavespeeds were then used to infer 

an effective face sheet in-plane Young’s Modulus 30% of that of the baseline panel.  

Details of this procedure are provided in [3, 8].  The reduced stiffness and 

wavespeeds lead to higher acoustic coincidence frequencies, which must be 

monitored to ensure they do not align with the targeted reduction frequencies of 1 

and 3 kHz.  Here, the targeted coincidence frequency of the optimized panel 

section is about 2 kHz. 

The test coupons also provided an opportunity to verify the FE modeling 

procedure for sandwich panels with layers of VHB material.  Figure 10 shows a 

schematic of the cross-sectional modeling of the panels.  The coupons were 

modeled with 4,370 quadratic solid elements.  Each ply layer was modeled with 
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one element through its thickness, and four elements represent the Kevlar core. 

The ribbon direction was modeled along the length of the panel.  The adhesive 

layers between the inner plies and the core were not modeled explicitly, but the 

layer masses were simulated instead by increasing the adjacent ply surface mass 

densities.  The final modeled and measured weights match almost exactly. 

The viscoelastomer Young’s Moduli were varied over several center 

frequencies per the data shown in Figure 8.  Complex modes were extracted using 

the commercial FE software NASTRAN for each property set, and modal 

frequencies were determined based on proximity to the center frequency of each 

set.  Figure 11 compares the measured and simulated resonance frequencies, 

which agree to within +-4%.  Figure 12 compares measured and simulated 

structural loss factors, which agree well for frequencies above 1 kHz.  Below 1 

kHz, the simulated loss factors are higher than the measured ones.  However, 

since this project focuses on frequencies between 1 and 4 kHz, we have not 

pursued the cause of this discrepancy.  Overall, the good agreement between 

measured and predicted resonance frequencies and loss factors confirm the 

modeling procedure and the underlying material properties. 

Air gap sizing and fill 

The 12.7 mm (0.5 inch) gap between subpanels was chosen to ensure that sound 

transmission degradation associated with the well-known mass-spring-mass 

resonance of a double panel system is well below 1 kHz.  This resonance 

frequency, where each panel acts as a lumped mass connected by the stiffness of 

the air gap, is: 

( )
2

1 2 1 2

1 /
2 /o

c df
m m m m

ρ
π

=
+

,      (1) 
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where ρc2 is the bulk Modulus of air, d is the air gap thickness, ρ is the air mass 

density, c is the speed of sound, and m1 and m2 are the two outer panel area 

densities.  In the equation, the numerator represents the air gap stiffness per unit 

area, and the denominator represents the effective total panel mass per unit area.  

This resonance amplifies the sound transmission through the double panel system 

at and around its resonance frequency.  The effects of the gap thickness on the 

mass-spring-mass resonance, and on the overall panel thickness, are summarized 

in Table 2.  A 12.7 mm gap shifts the resonance below 500 Hz, which is 

sufficiently low so that TL degradation should not occur above 1 kHz. 

Rather than leave the air gap empty, it is filled with a 9.5 mm (0.375 inch) thick 

layer of Amber Microlite AA insulation (24 kg/m3).  The Microlite blanket 

provides thermal insulation, as well as reduced sound transmission through its 

added mass.  It is common to add an extra layer of Microlite contained within a 

thin plastic covering on the inside surfaces of current rotorcraft roof panels.  

However, the layers are costly, and must often be removed when servicing the 

panels.  Including the insulation inside the panel is preferable.  The added 

acoustic transmission loss benefits are modest, and are due to the added mass of the 

material, as shown in Table 3.  Standard ‘mass law’ TL calculations [3] were used 

to compare to the values provided by the vendor. 

Structural integrity FE modeling and analysis 

The optimized panel was modeled using finite elements, as shown in Figure 13.  

Each ply of fabric and each layer of VHB was discretely modeled with a single 

layer of elements through the thickness.  Each core was modeled with two 

elements through the thickness.  Adhesive plies were not included in the model, 

as they have negligible effect on the structural performance of the panel.  Beams, 
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straps and angle brackets were used to represent the support structure of a 

prototypic roof frame.  The brackets, straps, beams, and panel are connected with 

fasteners.  These elements are connected together in the FE model using spring 

elements at the fastener locations.  The nominal smeared material properties are 

listed in Table 1. 

While we are focused mostly on the acoustic performance of the panel, it is still 

necessary to analyze the panel structural integrity using critical design loads for 

representative rotorcraft roof panels.  Skin panel strength (including debonding of 

face sheets from the core), ramp strength (the transition region between the center 

panel and the frame), edgeband fiber and bearing strength, panel stability and step 

load (man-on-the-roof) response were analyzed.  Upper skin applied ultimate 

loads were based on 150% of limit flight loads and were used to analyze the critical 

skin region using an elevated temperature wet open hole compression allowable.  

The edgeband fiber strength analysis is similar to the skin panel strength analysis, 

except that the loading moment is applied directly to the edgeband.  The edgeband 

bearing strength was assessed for ‘jump takeoff’ load conditions.  To assess 

buckling, the panel was held fixed at the frame and critical loads and moments 

were applied.  The resulting critical buckling eigenvalues are both greater than 

1.0, demonstrating that the plies in the ramp will provide adequate stability under 

worst case operating conditions.  Finally, a 272 kg (600 lb) man-on-the-roof load 

was applied to the center of the panel.  A nonlinear static analysis was run which 

shows that the top panel will contact the bottom panel in this case, sharing the load 

between the panels.  Assuming a worst-case deflection (shown in Figure 14), 

maximum stresses were computed and found to be within allowable limits.  The 

maximum edge forces were then used to compute critical strains in the upper face 
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sheet, which were also found to be well within allowable limits.  More details on 

structural integrity evaluations are in [3]. 

Transmission Loss Simulations and Measurements 
 

For the baseline panel, TL was simulated using both traditional analytic infinite 

panel methods, and using a finite element (FE) model of the actual panel and a 

boundary element (BE) model of the air surrounding the panel.  FE/BE 

approaches for simulating TL have been used successfully by other researchers [9].  

Based on the good agreement between the baseline panel analytic and FE/BE 

approaches [3], the optimized panel was modeled using only analytic techniques. 

Modeling 

The baseline panel FE model was constructed entirely with solid brick elements.  

The face sheets were simulated with quasi-isotropic properties computed by 

integrating through the individual composite layers.  The honeycomb core 

material properties are anisotropic, reflecting the stiffer shear modulus in the 

ribbon direction.  The beams are fastened to the panel model using point spring 

connections tuned to provide good agreement with measured vibration behavior.  

The edges of the FE model were grounded to represent a stiff bolted connection to 

the window frame in the NASA SALT facility.  The acoustic BE model was 

generated using a lumped parameter approach [10], and connected to the FE model 

so that the radiation damping induced by the surrounding air was properly captured 

(for stiff lightweight panels with low coincidence frequencies, radiation damping 

can be substantial).  The BE model assumed infinite flat baffles extended from the 

panel edges.     

A Virtual Transmission Loss (VTL) was computed using ARL/Penn State’s 

CHAMP procedure (Combined HydroAcoustic Modeling Programs [11, 12]), 
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along with structure-borne sound transmission for a transverse point drive at one of 

the corners of the rib interfaces. To simulate a transmission loss measurement, the 

panel was excited with a virtual diffuse field pressure.  An acoustic diffuse field 

was applied to both the center panel, and the edge paneling.  The center and edge 

panel regions were loaded separately, so there is no coherence between center and 

edge regions.  Also, although the ribs are fairly large, they were not driven with 

acoustic loading.  Since the spatial correlation of a perfectly diffuse field is a sinc 

function, the pressure cross-spectral density matrix of the forcing function can be 

written as 

    
( )0

0

ij
FF pp

ij

k
G G

k
∆

∆
=

sin
,       (2) 

where Δij is the separation distance between points i and j, ko is the acoustic 

wavenumber and Gpp is the power spectral density (PSD) of surface pressure at 

point i.  Assuming unit pressure PSDs at all points, the sound radiation due to the 

diffuse field was calculated. 

To compute a transmission coefficient (radiated power divided by input power), 

the power incident on the panel was estimated.  For a perfectly diffuse field in a 

room, the power incident on an area S is defined as 

     
4

in
inc

cwP S= ,       (3) 

where win is the reverberant energy density and c is the sound speed.  Using the 

blocked pressure assumption we can approximate win as  

     
2

2
0

in
p

w
cρ

≅ ,       (4) 

where p is the acoustic pressure at the boundary and ρo is the fluid density.  Since 

we apply a unit pressure loading to the panel, the squared pressure in Eq. 4 must be 
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unity.  The transmission coefficient then becomes 

     
04/

radP
S c

τ
ρ

= ,       (5) 

where Prad is estimated with the BE model. The virtual transmission loss (VTL) 

becomes 

    0410 /log
rad

S cVTL
P

ρ 
=  

 
.      (6) 

We also computed the oblique angle of incidence transmission coefficient for an 

infinite panel, defined as 

 ( ) [ ]
( ) ( ) ( )( )

2
0

2 24 4
0 0 0

2 sin
,

2 sin sin sin

c

c D k h D k

ρ φ
τ φ ω

ρ φ ω η φ ωρ ω φ
=

   + + −   

, (7) 

where ω is the angular frequency, φ is the angle of incidence, D is the structural 

rigidity, η is the structural loss factor and ρh is the plate surface density [13].  For 

honeycomb sandwich panels, the flexural rigidity is computed as: 

( )
( )

2

22 1

Et h t
D

υ

+
=

−
,           (8) 

where E is the face sheet Young’s Modulus, t is the face sheet thickness, and h is 

the honeycomb core thickness.  Note that D increases significantly with core 

thickness.  For the analytic TL calculations, the effects of core shear, which limit 

the effective panel stiffness, are ignored.  Also, we assume the panels are 

quasi-isotropic for the analytic estimates, and do not consider variable rigidity 

with orientation.  This is consistent with the baseline panel, but the optimized 

panel does not include layers with 45 degree orientation, so that bending waves not 

in the 1 or 2 directions will be slower.  These effects should be small for the 

frequencies of interest in this study.  For the edge material, D is the usual: 
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( )
3

212 1
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υ
=

−
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The diffuse field transmission coefficient over all angles of incidence is then found 

using:  

   ( )
( )

( )
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2
0

2
0

0

, sin cos
, sin 2

sin cos
d

d
d

d

π

π

π

τ φ ω φ φ φ
τ ω τ φ ω φ φ

φ φ φ
= =

∫
∫

∫
.     (10) 

Note we assume that incident acoustic intensity on the infinite panel is identical 

over all angles of incidence.  This may not be appropriate based on observations 

in [14, 15], and should be investigated further.   

Since there are two panel regions, sound transmission is computed through both.  

Incident power is computed simply as the product of the surface incident intensity 

and the panel region areas (30 in x 36 in = 1080 in2 for the center panel, and 2 x 5 

in x 46 in + 2 x 3 in x 36 in = 676 in2 for the edge regions; see Figure 4 for panel 

dimensions and subtract a one inch wide frame around the panel when clamped in 

the NASA SALT facility).   

Baseline Panel 

Based on vibration measurements, the panel structural loss factors were set to 

0.01 (a typical value for sandwich structures).  The damping increases at and 

around panel coincidence, due to the radiation damping simulated in the acoustic 

BE model.  FE/BE and measured surface averaged drive point transverse 

mobilities (velocity/force) over three locations on the center panel are compared in 

Figure 15.  The resonance frequencies are well captured by the FE/BE model 

(within 10%), as are the mobilities.  The FE/BE mobilities are too low at 

resonance frequencies below 1 kHz, since the actual measured damping is less than 
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the assumed 0.01 loss factor.  Since this project focuses on frequencies above 1 

kHz, this discrepancy was not pursued further.  The mobilities also compare well 

with infinite panel theory estimates, made for both the ribbon (lower bound) and 

warp (upper bound) directions in the honeycomb core.  Figure 16 shows the 

incident and transmitted power for the baseline panel computed using the FE/BE 

model (up to 3.2 kHz), and using infinite panel theory. The FE/BE and analytic 

estimates agree well.   

The sound power transmitted through the center panel is highest for frequencies 

up to 5 kHz, with sound radiated by the edging dominating above 5 kHz.  

Coincidence peaks in radiated power are evident for the center panel near 600 Hz, 

and for the edge paneling near 5.5 kHz.  FE/BE and analytic TL calculations are 

compared to measurements made in the NASA SALT facility in Figure 17, which 

also highlight the important 1 and 3 kHz frequency regions where transmission 

GMF tones are highest.  The measurements and simulations agree well, with the 

coincidence dip in the analytic model overestimating TL degradation near 5.5 kHz.  

This is likely because the edging is not really an infinite panel, and analytic theory 

is only approximate.  The similarity between the FE/BE and analytic approach 

supports the use of analytic theory for assessing optimized panel design concepts 

(a significant savings in modeling and analysis costs). 

Optimized panel 

The TL benefits of the split center panel damped design are shown with 

measured and analytic data in Figure 18.  Based on modal analysis measurements, 

the analytic model assumed structural damping of 0.04 for the center panel and 

0.30 for the edge paneling.  The optimized panel coincidence dip is higher in 

frequency, since the split panel cores are half the thickness of that of the baseline 
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panel (reducing stiffness).  As intended, the coincidence dip lies between the two 

transmission GMF tones at 1 and 3 kHz.  The double panel concept nearly doubles 

TL at 1 kHz, and increases TL by 5 dB at 3 kHz.  Note that the mass-spring-mass 

resonance in the optimized panel, clearly visible in the measured data near 400 Hz, 

is not modeled in the infinite panel analytic estimate.  Figure 19 compares the 

power radiated by the center and edge panel regions of the optimized panel, and 

may be used to assess the relative importance of the noise control approaches.  

The center panel sound radiation is reduced significantly, to the point where it is 

well below the sound radiated by the edge material at all frequencies except for 

coincidence near 2 kHz.  Also, the impact of the MicroLite blanket is minimal, 

due to the flanking noise transmission through the edge material.  In an actual 

fuselage, the flanking paths through thin paneling around the sandwich panel roof 

will also likely dominate sound transmission, so that blankets are not necessary in 

the split panel design (at least, not for sound insulation purposes).   

Along with sound power TL, structure-borne sound transmission was also 

measured and simulated for a transverse drive applied to one of the corners of the 

frame.  The drive simulates structural forces emanating from the transmission.  

Figure 20 compares measured sound power for the baseline and optimized panels, 

and sound power simulated using the FE/BE baseline model.  The FE/BE and 

measured data agree well for the baseline panel.  Also, the measured optimized 

panel sound power transmission is reduced by 6 dB near 1 kHz, and by about 15 dB 

near 3 kHz. 

Summary and Conclusions 
 

An optimized rotorcraft framed roof sandwich panel has been designed to 

improve sound power TL and structure-borne sound transmission between 1 and 4 
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kHz, and for two transmission GMF tones at 1 and 3 kHz in particular.  The final 

optimized panel balances acoustic performance with structural integrity 

constraints, as well as meeting weight and space goals.  The optimized split panel 

concept is augmented with damped face sheets which include embedded VHB 

viscoelastic material, and is filled with a MicroLite blanket.  The air gap is 

sufficiently thick so that the mass-spring-mass panel resonance is well below the 

lowest frequency range of interest.  Although the optimized panel is thicker than 

the baseline panel, the excess thickness is shifted to outside the fuselage, and will 

not affect the transmission or other electrical, mechanical, or hydraulic elements in 

the roof cavity region.   

The optimized panel was constructed, and then tested in NASA’s SALT facility 

to confirm the simulated TL improvements.  The optimized panel reduces 

acoustically transmitted sound by 6-11 dB, and also reduces 

structurally-transmitted sound by 6-15 dB.  However, the sound transmitted 

through the center sandwich panel region was reduced so much that the edge panel 

radiation became dominant.  The edge radiation masks most additional noise 

reduction from the Microlite fill material, which may not be necessary in future 

designs for actual rotorcraft.  

FE/BE modeling of the TL and structure-borne radiated sound of the baseline 

panel matches measurements within 3 dB.  However, simple analytic TL 

modeling also matches measured data within 3 dB over most frequencies.  The 

analytic theory may therefore be used for future TL design studies at significant 

time and cost savings. 
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Figure 1 – View of the inside of the transmission region in a commercial rotorcraft. 
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Figure 2 – Interior (top) and exterior (bottom, with frame) views of the notional baseline roof panel. 
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Figure 3 – Schematic of typical honeycomb core/composite facesheet panel. 
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Figure 4 – Baseline panel dimensions (not to scale).  Optimized panel has same 

in-plane dimensions and beams but different cross section. 
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Figure 5 – Measured TL (at NASA’s SALT facility [4]) for diffuse acoustic 

drive. 
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Figure 6 – Interior (top) and exterior (bottom, with frame) views of the optimized roof panel. 
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Figure 7 – Schematics and cross sections of baseline (left) and optimized (right) panels (not to 

scale). 
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Figure 8 – Young’s modulus and loss factor for 3M VHB 9469 at 20 C and 30 C. 
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Figure 9 – Measured structural loss factors for two test coupons with embedded VHB 9469. 
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Figure 10 – Cross-sectional detail of the FEM model for test coupons with embedded VHB material. 
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Figure 11 – FE vs. measured resonance frequencies for several mode shapes for test coupon with 

embedded VHB 9469. 
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Figure 12 – FE vs. measured damping loss factors for test coupon with embedded VHB 9469. 
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Figure 13 – FE model of optimized panel. 
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Figure 14 – Top:  Panel section for step load analysis highlighted in red box; 

Bottom: Non-linear analysis deflection results. 
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Figure 15 – Measured and simulated surface-averaged drive point mobility over 

center panel. 
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Figure 16 – Simulated input and radiated sound power for baseline panel. 
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Figure 17 – Measured and simulated TL for baseline panel. 
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Figure 18 – TL of baseline and optimized panels, simulations and 

measurements. 
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Figure 19 – Incident and transmitted powers for optimized panel. 
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Figure 20 – Measured structure-borne radiated sound power for joint transverse drive on baseline 

(including FE/BE) and split center panel designs. 
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Tables 
Table 1a – Selected center sandwich panel material properties.  The 1 and 2 directions are in-plane. 

Property Face Sheets Kevlar Core 

E11, E22 (GPa/Msi) 57 / 8.3 - 

ν12 0.21 - 

G13 (MPa/ksi) - 139 / 20.1 (ribbon) 

G23 (MPa/ksi) - 68 / 9.8 (warp) 

ρ (kg/m3 / lb/in3) 1550 / 0.0560 47 / 0.0017 

 

 

Table 1b – Edge panel properties.  The 1 and 2 directions are in-plane. 

Property Value 

E11, E22 (GPa/Msi) - baseline 54 / 7.8 

E11, E22 (GPa/Msi) - optimized 43 / 6.2 

ν12 0.21 

ρ (kg/m3 / lb/in3) 1550 / 0.0560 

t (mm / in) - baseline 2.0 / .079 

t (mm / in) - optimized 2.5 / .098 

 

 

Table 2 – Effects of air gap thickness on mass-spring resonance frequency and overall panel 

thickness. 

Air gap thickness 

(mm/in) 

Resonance 

Frequency (Hz) 

Overall panel 

thickness (mm/in) 

3.18 / 0.125 911 18.0 / 0.709 

6.35 / 0.25 644 21.2 / 0.835 

12.7 / 0.5 456 27.5 / 1.083 

 

 

Table 3 – Measured and mass-law based sound transmission loss improvements due to use of 

Microlite. 

Frequency (Hz) 
dB, Measured by 

Vendor 
dB, Mass Law 

500 2.4 2.4 

1000 4.6 4.7 

2000 6.6 6.8 

4000 8.8 10.5 
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