Quiz 6

Question 1: Multiple Choice

Average Score 2.6129 points

Consider a single 2-bit predictor that starts in the "weakly taken" state. After the following sequence

of branches, which state will it be in (T == Taken, N == Not-taken):
T,T,T,NT,NT,T

Correct
Strongly not taken
weakly not taken
weakly taken

strongly taken.

Unanswered

Percent Answered
1.613%

9.677%

87.097%

1.613%

0%

Question 2: True/False

Average Score 1.90323 points
Squashing instructions and stalling the pipeline both result in increased CPI.
Correct Answers Percent Answered
v/ True 95.161%

False 4.839%
Unanswered 0%

Question 3: True/False

Average Score 1.77419 point

Squashing can be used to resolve control hazards.
Correct Answers Percent Answered
% True 88.71%

False 9.677%
Unanswered 1.613%

Question 4: True/False Average Score 1.77419 points

Stalling cannot be used to resolve control hazards.

Correct Answers Percent Answered

True 11.29%
v/ False 88.71%

Unanswered 0%

Question 5: True/False

Average Score 1.67742 points

Static branch predictors use tables of 2-bit counters.
Correct Answers Percent Answered
True 16.129%

v/ False 83.871%
Unanswered 0%

Quiz 6

Question 7: Calculated Numeric Average Score 1.12903 points

If we double the number of pipeline stages in the MIPS 5-stage design by dividing each existing

stage in half, what would the new branch delay penalty be (assume branches resolve at the end of
decode)?

Correct Answers Percent Answered
% 3 53.226%

2 24.194%

1 1.613%

10 3.226%

3 cycles 3.226%

6 1.613%

< 12.903%

Unanswered 0%

Quiz 6

Question 6: Calculated Numeric Average Score 0 points

On a scale of 1-10 (1 being completely unfair and 10 being completely fair), how fair was the
midterm?

Correct Answers Percent Answered
3 6.452%
10 9.677%
8.33333333333333333333333 1.613%
7 19.355%

14.516%

3.226% I I

8.065% l I t
1 2 3 4 5 6 7 8 9 10

14.516%
22.581%
Unanswered 0%

The Memory
Hierarchy

In the book: 5.1-5.3, 5.7, 5.10

Goals for this Class

e Understand how CPUs run programs
How do we express the computation the CPU?
How does the CPU execute it?

How does the CPU support other system components (e.g., the OS)?
What techniques and technologies are involved and how do they work?

e Understand why CPU performance (and other metrics)
varies
e How does CPU design impact performance?
e What trade-offs are involved in designing a CPU?
e How can we meaningfully measure and compare computer systems?

e Understand why program performance varies
How do program characteristics affect performance?

How can we improve a programs performance by considering the CPU
running it?

How do other system components impact program performance?

Main points for today

What is a memory hierarchy?

What is the CPU-DRAM gap?

What is locality? What kinds are there?
Learn a bunch of caching vocabulary.

Processor vs Memory
Performance

e Memory is very slow compared to
Processors.

1000 -

o
00
o
b
n
>
O
O
-
©
&
-
O
Yy—
S
)
al

Memory’s impact

M = % mem ops
Mlat (cycles) = average memory latency
BCPI = base CPI with single-cycle data memory

CPI =

Memory’s impact

M = % mem ops
Miat (cycles) = average memory latency
TotalCPIl = BaseCPIl + M*Mlat

Example:
BaseCPl =1; M =0.2; Mlat = 240 cycles
TotalCPIl = 49
Speedup = 1/49 =0.02 => 98% drop in performance

Remember!: Amdahl’s law does not bound the slowdown.
Poor memory performance can make your program
arbitrarily slow.

Memory Cache

v 8 R S h
i i '-l | i { | o= '
| » i
| 3 \ £y - "
M B Hll!y
| { ’)

LR RIS FEARETI Y SN RO

Memory cost
e >> capacity -> more $$
e >>speed/bw ->more $$
e >>speed -> larger (less dense)

Build several memories with different trade-offs
How do you use it? Build a “memory hierarchy”
What should it mean for the memory abstraction?

Big slow memory

Memory Cache

e 4 TR R |

o R SHE i b ’
e 't g™
i -_‘.‘ ! i
0 0 ."." '

) '

: B Small fast memory (a “cache”)

Big slow memory

.. » ¥ . . '- . . ») ' 1 '.' 5
(LRLARFARIREFSFIARIRTIFIN ML UL M R R e e

Memory cost
e >> capacity -> more $$
e >>speed/bw ->more $$
e >>speed -> larger (less dense)

Build several memories with different trade-offs
How do you use it? Build a “memory hierarchy”
What should it mean for the memory abstraction?

A typical memory hierarchy

Cost Access time

on-chip cache
KBs

< 1ns

«— off-chip cache 2.5 $/MB

MBs

0.07 $/MB 60ns

@l <— main memory
- GBs

0.0004 $/MB 10,000,000ns

How far away Is the data?

Androm

109 Tape /Optical 2,000 Years
Robot

106 Disk 2 Years

1.5h
Memory 2

On Board Cache 10 min

On Chip Cache '
Registers %My Head 1 min

© 2004 Jim Gray, Microsoft Corporation

Why should we expect caching to work?

e Why did branch prediction work?

Why should we expect caching to work?

e Why did branch prediction work?

e \WWhere is memory access predictable

e Predictably accessing the same data
e Inloops: for(i=0;1<10; i++) {s += foo[i];}
e foo = bar[4 + configuration_parameter];
e Predictably accessing different data
e |Inlinked lists: while(l '= NULL) {I = I->next;}
e |narrays: for(i=0;i<10000; i++) {s += data]i];}
e structure access: foo(some_struct.a, some_struct.b);

The Principle of Locality

e “| ocality” is the tendency of data access to
be predictable. There are two kinds:

e Spatial locality: The program is likely to access data
that is close to data it has accessed recently

e TJemporal locality: The program is likely to access
the same data repeatedly.

Locality in Action

e | abel each access
with whether it has
temporal or spatial
locality or neither
° 1
° 2

3

10
4
1800
11
30

:
2
3

4
10
190
11
30
12
13
182
1004

Locality in Action

e | abel each access ° 1%
with whether it has 2 s, 1
temporal or spatial 3 s,

locality or neither 4 s,
1 n 10 s,t

2 S 190 n

3 S 11 st
10 n 30 s
4 s 12 s
1800 n 13s
11 s 182 n?
30 n 1004 n

Locality in Action

e | abel each access °
with whether it has
temporal or spatial

locality or neither

1 n
2 'S
3 S
10 n
4 s

1800 n °

11 S
30 n

There is no hard and fast rule here.

1t
2S,t
3 st
4 st
10 st
190 n
11 s,t
30 s
12's
13 s
182 n?
1004 n

In practice, locality
exists for an access if the cache performs well.

Cache Vocabulary

Hit - The data was found in the cache

Miss - The data was not found in the cache
Hit rate - hits/total accesses

Miss rate = 1- Hit rate

Locality - see previous slides

Cache line - the basic unit of data in a cache.
generally several words.

Tag - the high order address bits stored along with the
data to identify the actual address of the cache line.

Hit time -- time to service a hit

Miss time -- time to service a miss (this is a function of
the lower level caches.)

Cache Vocabulary

There can be many caches stacked on top of each
other

If you miss in one you try in the “lower level cache”
Lower level, mean higher number

There can also be separate caches for data and
instructions. Or the cache can be “unified

In the 5-stage MIPS pipeline

e the L1 data cache (d-cache) is the one nearest processor. It
corresponds to the “data memory” block in our pipeline
diagrams

the L1 instruction cache (i-cache) corresponds to the
“Instruction memory” block in our pipeline diagrams.

The L2 sits underneath the L1s.

There is often an L3 in modern systems.

Typical Cache Hierarchy

Decode

Unified L2
8MB

Unified L3
32MB

Data vs Instruction Caches

e Why have different | and D caches?

Data vs Instruction Caches

e \Why have different | and D caches?
e Different areas of memory

e Different access patterns

e |-cache accesses have lots of spatial locality. Mostly sequential
accesses.

|-cache accesses are also predictable to the extent that branches
are predictable

e D-cache accesses are typically less predictable
Not just different, but often across purposes.

e Sequential I-cache accesses may interfere with the data the D-
cache has collected.

e This is “interference” just as we saw with branch predictors
At the L1 level it avoids a structural hazard in the pipeline

Writes to the | cache by the program are rare enough that
they can be slow (i.e., self modifying code)

