
Quiz 6

1

Quiz 6

2

Quiz 6

3

Quiz 6

4

Quiz 6

5

Quiz 6

6

Quiz 6

7

0"

5"

10"

15"

20"

25"

30"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

The Memory
Hierarchy

8

In the book: 5.1-5.3, 5.7, 5.10

• Understand how CPUs run programs
• How do we express the computation the CPU?
• How does the CPU execute it?
• How does the CPU support other system components (e.g., the OS)?
• What techniques and technologies are involved and how do they work?

• Understand why CPU performance (and other metrics)
varies
• How does CPU design impact performance?
• What trade-offs are involved in designing a CPU?
• How can we meaningfully measure and compare computer systems?

• Understand why program performance varies
• How do program characteristics affect performance?
• How can we improve a programs performance by considering the CPU

running it?
• How do other system components impact program performance?

Goals for this Class

9

memory

Abstraction: Big array of bytes

Memory

CPU

Memory

10

Main points for today
• What is a memory hierarchy?
• What is the CPU-DRAM gap?
• What is locality? What kinds are there?
• Learn a bunch of caching vocabulary.

11

Processor vs Memory
Performance

• Memory is very slow compared to
processors.

Pe
rfo

rm
an

ce
 v

s
19

80

12

Memory’s impact
M = % mem ops
Mlat (cycles) = average memory latency
BCPI = base CPI with single-cycle data memory

CPI =

13

Memory’s impact
M = % mem ops
Mlat (cycles) = average memory latency
TotalCPI = BaseCPI + M*Mlat

Example:
BaseCPI = 1; M = 0.2; Mlat = 240 cycles
TotalCPI = 49
Speedup = 1/49 = 0.02 => 98% drop in performance

Remember!: Amdahl’s law does not bound the slowdown.
Poor memory performance can make your program
arbitrarily slow.

14

Memory Cache

• Memory cost
• >> capacity -> more $$
• >> speed/bw -> more $$
• >> speed -> larger (less dense)

• Build several memories with different trade-offs
• How do you use it? Build a “memory hierarchy”
• What should it mean for the memory abstraction?

memory Big slow memory

15

Memory Cache

• Memory cost
• >> capacity -> more $$
• >> speed/bw -> more $$
• >> speed -> larger (less dense)

• Build several memories with different trade-offs
• How do you use it? Build a “memory hierarchy”
• What should it mean for the memory abstraction?

memory Big slow memory

Small fast memory (a “cache”)

15

A typical memory hierarchy
on-chip cache

KBs

off-chip cache
MBs

main memory
GBs

Disk
TBs

Cost

2.5 $/MB

0.07 $/MB

0.0004 $/MB

Access time

5ns

60ns

10,000,000ns

< 1ns

16

© 2004 Jim Gray, Microsoft Corporation

Los Angeles

17

How far away is the data?

• Why did branch prediction work?

18

Why should we expect caching to work?

• Why did branch prediction work?
• Where is memory access predictable
• Predictably accessing the same data
• In loops: for(i = 0; i < 10; i++) {s += foo[i];}
• foo = bar[4 + configuration_parameter];

• Predictably accessing different data
• In linked lists: while(l != NULL) {l = l->next;}
• In arrays: for(i = 0; i < 10000; i++) {s += data[i];}
• structure access: foo(some_struct.a, some_struct.b);

19

Why should we expect caching to work?

The Principle of Locality
• “Locality” is the tendency of data access to

be predictable. There are two kinds:

• Spatial locality: The program is likely to access data
that is close to data it has accessed recently

• Temporal locality: The program is likely to access
the same data repeatedly.

20

Locality in Action
• Label each access

with whether it has
temporal or spatial
locality or neither
• 1
• 2
• 3
• 10
• 4
• 1800
• 11
• 30

• 1
• 2
• 3
• 4
• 10
• 190
• 11
• 30
• 12
• 13
• 182
• 1004

21

Locality in Action
• Label each access

with whether it has
temporal or spatial
locality or neither
• 1 n
• 2 s
• 3 s
• 10 n
• 4 s
• 1800 n
• 11 s
• 30 n

• 1 t
• 2 s, t
• 3 s,t
• 4 s,t
• 10 s,t
• 190 n
• 11 s,t
• 30 s
• 12 s
• 13 s
• 182 n?
• 1004 n

22

Locality in Action
• Label each access

with whether it has
temporal or spatial
locality or neither
• 1 n
• 2 s
• 3 s
• 10 n
• 4 s
• 1800 n
• 11 s
• 30 n

• 1 t
• 2 s, t
• 3 s,t
• 4 s,t
• 10 s,t
• 190 n
• 11 s,t
• 30 s
• 12 s
• 13 s
• 182 n?
• 1004 n

22

There is no hard and fast rule here. In practice, locality
exists for an access if the cache performs well.

Cache Vocabulary
• Hit - The data was found in the cache
• Miss - The data was not found in the cache
• Hit rate - hits/total accesses
• Miss rate = 1- Hit rate
• Locality - see previous slides
• Cache line - the basic unit of data in a cache.

generally several words.
• Tag - the high order address bits stored along with the

data to identify the actual address of the cache line.
• Hit time -- time to service a hit
• Miss time -- time to service a miss (this is a function of

the lower level caches.)

23

Cache Vocabulary
• There can be many caches stacked on top of each

other
• if you miss in one you try in the “lower level cache”

Lower level, mean higher number
• There can also be separate caches for data and

instructions. Or the cache can be “unified”
• In the 5-stage MIPS pipeline
• the L1 data cache (d-cache) is the one nearest processor. It

corresponds to the “data memory” block in our pipeline
diagrams

• the L1 instruction cache (i-cache) corresponds to the
“instruction memory” block in our pipeline diagrams.

• The L2 sits underneath the L1s.
• There is often an L3 in modern systems.

24

Typical Cache Hierarchy

25

EX
DecodeFetch/

L1

Icache

16KB

Mem

L1

Dcache

16KB

Write

back

Unified L2

8MB

Unified L3

32MB

DRAM

Many GBs

Data vs Instruction Caches
• Why have different I and D caches?

26

Data vs Instruction Caches
• Why have different I and D caches?

• Different areas of memory
• Different access patterns
• I-cache accesses have lots of spatial locality. Mostly sequential

accesses.
• I-cache accesses are also predictable to the extent that branches

are predictable
• D-cache accesses are typically less predictable

• Not just different, but often across purposes.
• Sequential I-cache accesses may interfere with the data the D-

cache has collected.
• This is “interference” just as we saw with branch predictors

• At the L1 level it avoids a structural hazard in the pipeline
• Writes to the I cache by the program are rare enough that

they can be slow (i.e., self modifying code)

27

